
H-infinity Optimal Actuator
location for Generalized plants

with Full Information

by

Purushottam Sinha

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof. Kirsten Morris

Waterloo, Ontario, Canada, 2017

c� Purushottam Sinha 2017

I hereby declare that I am the sole author of this report. This is a true copy of the
report, including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

2

Abstract

The main focus of this project is the algorithmic development of H1 optimal ac-
tuator location problem. Initially, the theoretical concepts useful in understanding
the problem and algorithm development is discussed. The idea of H1 norm is in-
troduced with the algorithms used to compute it for appropriate matrix functions.
The concept of generalized plant , its notions of stability and the least attenuation
problem is discussed. The key theorems in developing the algorithm for least atten-
uation are stated discussing their implication useful from the point of developing an
algorithm.

A Pattern Search Optimization algorithm, combining features of Generalized Pat-
tern Search(GPS) and Hooke and Jeeves Coordinate search(HJCS) is discussed in
detail. The features of it di↵erent from Standard GPS has been highlighted. With
this, MATLAB’s built in routines fminsearch(Nelder Mead), Patternsearch(In
GPS setting) and fmincon have also been used to check their performance. The
structure of the solver developed to implement all these algorithms together is pre-
sented. The example of 1-D heat equation has been used to implement the solver.
The modeling of this problem in the form of generalized plants using FEM with hat
functions basis is described. This example fits in the specific class of generalized
plants for which the closed form result for least attenuation is given in [9]. This
has been used to get the exact plots of variation of least attenuation with actua-
tor location and check the performance of the solver. The contour plots have been
presented with the quiver plot of trajectory of the Pattern Search Algorithm. The
performance of optimization algorithms in di↵erent cases have been presented. The
advantages of deploying some important theoretical results related to the attenua-
tion problem in the Pattern Search Algorithm developed has been shown comparing
its performance with MATLAB routines. Furthermore, a significant comparison has
been made amongst the MATLAB subroutines.

3

Contents

I Motivation . 5
II H1 norm . 5
III Generalized Plants . 9
IV H1 attenuation . 12
V The Main Problem . 16
VI Solving The Problem . 17
VII Example: 1-D Heat Equation problem 25
VIII Conclusion and Future Work . 55

4

I Motivation

In engineering applications, the controller design for a physical system is done ac-
cording to the target objectives. A common controller design objective is to min-
imize the e↵ect of unwanted external inputs to the output of a system which is of
importance. A broad category of controller design area which deals with a similar
objective is the H1 controller synthesis. In H1 control the target is to design a
controller which minimizes the maximum gain possible due to unwanted external
input to the concerned output. The ability of the controller to achieve this objec-
tive is highly dependent on the actuator location as will also be seen later. The op-
timal positioning of the actuator allows to attain the required objective with least
amount of controlling e↵ort spent, which is true in general and not just limited to
this problem. This demands a way to estimate the best actuator location for a con-
trolled system. This location is called H1 optimal actuator location. The method
of solving this problem has been discussed in this report.

II H1 norm

H1 norm is a norm defined for matrix valued functions which are analytic and
bounded in the right-half complex plane. Lets denote the set of all such matrix val-
ued functions by MH1. For eg:

G(s) =

"
1

(s+1)2+4
1

(s+2)2+5
1

(s+3)2+4
1

(s+4)2+5

#

where s 2 C. Here G(s) 2 MH1

Definition II.1. Consider G(s) 2 MH1 , the H1 norm for G(s) is defined as

||G||1 = sup
!

max
i

�
i

(G(j!))

where, j =
p
�1, �

i

(G(j!)) represents the singular value of the matrix G(j!).

Consider a standard state space representation of a Linear Time Invariant (LTI)
system

ẋ = Ax+Bu

y = Cx+ Eu
(1)

5

Here x denotes system states, u denotes the control input to the system and y de-
notes the observation or output of the system. On taking the Laplace transforma-
tion and eliminating the state variable x(s), results in an equation relating u to y,
which is

y(s) = (C(sI � A)�1B + E)u(s)

The matrix function G(s) = C(sI �A)�1B +E is called the transfer function of the
above LTI system which relates the input signal Laplace transform to the output
signal Laplace transform as

y(s) = G(s)u(s)

The transfer functions G(s) 2 MH1 are called stable transfer function matri-
ces. Here is a theorem which gives a very result about to the H1 norm of a stable
transfer function.

Theorem II.1. [1] Suppose the transfer function of (1) above G(s) 2 MH1, then
the value

||G||1 = sup
||u||2=1

||y||2

where ||u||2 =

sZ 1

0

u(t)Tu(t) = 1, ||v||2 =

sZ 1

0

v(t)Tv(t)

The proof is skipped here. The idea which has to be extracted here is that the
maximum gain possible in L2 norm of the output signal is the H1 norm of the
transfer function. The condition of G(s) being analytic and bounded should be
noted for the above result.

There are several controller design problems which naturally simplifies down to a
problem on H1 norm of a matrix function. Here is a simple instance below. Sup-
pose there is a system with the state-space description

ẋ = Ax+Bu+B1d

y = Cx+Du

As in the state space description (1), x represents the state of the system, u repre-
sents control input and y represents the observation output. A new variable intro-
duced here is d which denotes the disturbance input to the system. Now, suppose
the task is to design a controller H with u = Hx such that the peak gain in y due

6

to disturbance d (which can possibly be of di↵erent frequencies) is the least. On
substituting u = Hx, and taking laplace transform of the system of equations, the
transfer function equation is

y(s) = (C +DH)(sI � A� BH)�1B1d(s)

The way to solve this problem is to find the controller H such that it minimizes the
H1 norm of that transfer function.

An other common instance is the criteria of robust stability on the controller de-
sign. In this case a Plant model P (i.e with some state space description) is known
with some uncertainty. The objective is to design a controller which uncondition-
ally stabilizes the Plant with its uncertainty. This leads to a condition on the H1
norm of a particular matrix function depending on the kind of uncertainty in Plant
P. Apart from this, some other criteria like reducing sensitivity of a system, or re-
ducing sensitivity on a particular spectrum of input signal ultimately leads to a
condition on the H1 norm of a matrix function.

Now the question arises, given a matrix function G(s) 2 MH1, how is its H1 norm
calculated. One can see the di�culty involved in the problem as its the maximiza-
tion of a singular value over the whole imaginary axis. There is no known closed
form function to calculate H1 norm of a general transfer function. Hence, we rely
on iterative methods to calculate this norm in general which also makes it compu-
tationally expensive. There is a result which proves to be the key for the iterative
algorithms. The result is stated without proof here.

Theorem II.2. [2] Consider the transfer function of the standard state space de-
scription of a control system

ẋ = Ax+Bu

y = Cx+ Eu
(2)

which is G(s) = C(sI � A)�1B + E. Now define the matrices R = ETE � �2I, S =
EET � �2I and

Z
�

=


A� BR�1ETC �BR�1BT

�2CTS�1C �AT + CTER�1BT

�

Assume that A has no imaginary axis eigenvalues and � > ||E||. Then � is a singu-
lar value of G(j!) if and only if j! is an eigenvalue of Z

�

.

The above theorem is the key to calculating the H1 norm for valid matrices. An-
other important result which will not be rigorously proved here is that the function

7

�
max

G(j!) is a continuous function of ! for G(s) 2 MH1. These two above results
are pivots to developing the iterative algorithms. There are two iterative algorithms
discussed below.

Bisection Algorithm
One inference which the Theorem II.2 has is that the problem of optimizing over
the whole imaginary axis j! can be reduced to an optimization problem in the fi-
nite range of real numbers (i.e the range in which the norm is lying). Suppose for a
transfer function G(s) 2 MH1, there is a value � 2 R such that �0 < � < ||G||1 ,
where �0 = �

max

G(j!0) for some !0 2 R, then

• if � < ||G||1 then the matrix Z
�

constructed above will have some purely
imaginary eigenvalue.

• If � > ||G||1, then there will be no purely imaginary eigenvalue of Z
�

.

The bisection algorithm described below to calculate the ||G||1 norm is exactly
based on this idea. Note that the bisection algorithm is not using the extra infor-
mation which Theorem II.2 is giving which will be discussed in the next algorithm.

• Start with an upper bound �
max

> ||G||1 and a lower bound �
min

= �
max

G(j!0)
for some !0 2 R

• while (�
max

� �
min

)  tol

– gamma = (�
max

+ �
min

)/2

– construct Z
�

and check if there is any imaginary eigenvalue of Z
�

– if there is any imaginary eigenvalue of Z
�

, then �
min

= �, else �
max

= �

• H1 = (�
max

+ �
min

)/2 ;

The tolerance value ’tol’ would depend on the accuracy desired in the result. Here,
in this algorithm the transfer function is not used but only the constituent matri-
ces. There is an algorithm which makes the use of transfer function and the stronger
statement of Theorem II.2

Transfer function based Algorithm
A strong statement made in Theorem II.2 is that if for the transfer function G(s),
�
i

G(j!) = r for some i, then Z
r

would be having an imaginary eigenvalue j!. This
algorithm makes use of this strong statement.

8

• STEP 1: Choose a value !0 to start the algorithm

• STEP 2: Initialization �
min

= max(�
max

G(0), �
max

G(j!0), �max

E)

• STEP 3: Compute Z
�

min

and its imaginary eigenvalues. Let the imaginary
eigenvalues be {j!1, j!2, . . . j!n

} where {!1,!2 . . . ,!n

} are in sorted order.

• STEP 4: Compute the midpoint {!12,!23, . . .!n�1,n}of each interval
(!1,!2), (!2,!3), · · · , (!n�1,!n

).

• STEP 5: Compute �
min

= max(�
max

G(j!12), �max

G(j!23), · · · , �max

G(j!
n�1,n), �min

)

• STEP 6: Set �
max

= �
min

+ tolerance

• STEP 7: Compute imaginary eigenvalues of Z
�

max

. If there are any compute
all of them and start from step 4 with �

min

= �
max

. If there are no imaginary
eigenvalues compute �

ans

= �

max

+�

min

2

return �
ans

III Generalized Plants

The concept of Generalized Plant is an abstraction of a general system which
rigorously characterizes the signals associated with it. Here is a brief description of
the idea of Generalized plant.

1. Signal d is an uncontrolled signal input to the plant, for instance some known
disturbance.

2. Signal u is a controlled signal input to the plant.

3. Signal z is the performance output which depends on the objective of the con-
troller.

4. Signal y is the measured output fed to the controller

Here is an image of the open loop Generalized Plant indicating signal flows

9

Here is the state-space representation of a generalized plant.

ẋ = Ax+B1d+B2u

z = C1x+D11d+D12u

y = C2x+D21d+D22u

The x in the state space equation represents the internal states of the Plant. The
concise way to denote this same state space representation is given below.

2

4
A B1 B2

C1 D11 D12

C2 D12 D22

3

5

Here is the transfer function representation of the generalized plant.

z
y

�
=


G11 G12

G21 G22

� 
d
u

�

where G is the transfer function of the plant.
where every subsystem G

ij

is denoted by (A,B
i

, C
j

, D
ij

). The way to denote a gen-
eralized plant consistently used in this report is, Plant(A,B1, B2, C1, D11, D12, C2, D12, D22).
Now, the complete description of the general framework i.e generalized plant with
the controller equation in the form of transfer function is


z
y

�
= G


d
u

�

u = Hy

(3)

where H is the controller transfer function. Here is the closed loop diagram of the
whole system.

10

Generalized plant with full information
A generalized plant with full information means the complete information about
the known disturbance and the state is available to the controller. Mathematically,

this uniquely determines the signal y being fed to the controller which is


x
d

�
. Ba-

sically the matrices C2, D21 and D22 are uniquely determined and these are given
below.

C2 =


I
0

�
, D21 =


0
I

�
, D22 =


0
0

�

Now, introducing generality in plant description brings in some sophistication in
controller design analysis. A definition and a result regarding the stability of gener-
alized plant is stated here.

Definition III.1. Lower Linear Fractional Transformation : Let G be the trans-
fer function representation as given above. Let � be another matrix of appropriate
dimension such that lim

s!1det(I �G22(s)�(s)) 6= 0. Then, the Lower Linear Frac-
tional Transformation is defined as

F
L

(G,�) = G11 +G12�(I �G22�)�1G21

Here all the matrices G
ij

are assumed to follow the required dimension criteria so
that all the operations above are compatible.
Now in (3), the transfer function from the uncontrolled input d to the performance
output z is

z = F
L

(G,H)d

The basic requirement of a controller meant for any specific objective is that it
should ultimately result in the plant being internally stable. Here is the result which
states a useful property of the stabilizing controller and the existence condition of a
stabilizing controller.

Definition III.2. A pair of matrices A(n⇥ n) and B(n⇥m) is stabilizable if there
exists a matrix K such that (A � BK) is Hurwitz i.e all the eigenvalues of (A-BK)
is negative.

Definition III.3. A pair of matrices A(n ⇥ n) and C(m ⇥ n) is detectable if there
exists a matrix F such that (A� FC) is Hurwitz.

11

Theorem III.1. [3] A controller H internally stabilizes a generalized plant G if
and only if it internally stabilizes �G22 in standard negative feedback configuration.
Furthermore, a stabilizing controller to G exists if and only if (A,B2) is stabilizable
and (A,C2) is detectable.

Implication: A useful insight which this result gives is that a lower order system
can be analyzed to do the stability analysis of the generalized plant. The point use-
ful for this report is the condition which the theorem gives for the existence of a
stabilizing controller. One can appreciate some of the conditions given in the up-
coming theorems knowing the above.

IV H1 attenuation

Suppose there is a generalized plant P(A,B1, B2, C1, D11, D12, C2, D12, D22). Now,
does a controller with transfer function H exist such that ||F

L

(G,H)||1 < � ?
This is called H1 attenuation problem. If there does exist a controller H such that
||F

L

(G,H)||1 < �, then the controller H is said to provide attenuation �. An in-
herent complication in this problem is the unknown H, because of which the trans-
fer function ||F

L

(G,H)||1 is not known and hence the H1 norm cannot be trivially
calculated or checked to be less than �.

There are some key theorems on Algebraic Riccati Equations(AREs) and relating
achievable attenuation � in a generalized plant with the solution of an ARE con-
structed using � and the constituent matrices of the plant. These theorems form
the basis of developing the algorithm for checking the existence and even finding
the controller providing attenuation �. These theorems are stated without proofs
with their utility in the algorithm explained. Firstly, there are some important as-
sumptions about the constituent matrices which are stated below. The reasons be-
hind these assumptions are not explained here and can be looked in [8]

Assumptions[7]

1. (A,B2) is stabilizable and (A,C2) is detectable.

2. (A,B1) is stabilizable and (A,C1) is detectable.

3. D12

⇥
DT

12 C1

⇤
=

⇥
I 0

⇤

⇥
D21 B1

⇤
DT

21 =


I
0

�

4. D11 = D22 = O

12

Now, here are the Theorems.

This first theorem is a result on ARE.

Theorem IV.1. [4] Consider the ARE with unknown P , where A, R and Q are
known real square matrices with Q and R being symmetric

ATP + PA+ PRP +Q = 0

Now, consider the Hamiltonian matrix

Z =


A R
�Q �AT

�

Suppose


X
Y

�
represents generalized eigenvectors of Z corresponding to the nega-

tive eigenvalues. If the above ARE has a stabilizing solution i.e there exists P which
solves it and A+RP is Hurwitz, then the matrix Z has no purely imaginary eigen-
values and X is a full rank square matrix i.e

Range


X
Y

�
\ Range


0
I

�
= 0

and the solution P is a real symmetric matrix.

Implication: This theorem comes out to be useful in seeing the existence of a sta-
bilizing solution of an ARE and indeed calculating it using the negative eigenspace
of constructed Hamiltonian. The way this theorem helps in disturbance attenuation
problem will be seen later.

Theorem IV.2. [5]Assuming that DT

12

⇥
D12 C1

⇤
=

⇥
I 0

⇤
and (A, B2) is stabiliz-

able and (A, C1) are detectable, then if there exists a controller with transfer func-
tion H such that ||F

L

(G,H)||1 < �, then there exists a static feedback controller K
such that ||F

L

(G,K)||1 < �.

Implication: This non trivial result implies that if there is any controller which
provides attenuation �, then there would exist a constant state feedback controller
which provides this attenuation. This not only shows that a very simple propor-
tional control will get that attenuation but also that there is nothing related to dis-
turbance which is needed to be included in the feedback.

Now comes the last and the main theorem which connects everything.

13

Theorem IV.3. [6] For a given plant, assume that DT

12

⇥
D12 C1

⇤
=

⇥
I 0

⇤
and

(A, B2) is stabilizable and (A, C1) are detectable. There exists a stabilizing con-
troller H for the full information problem with ||F

L

(G,H)||1 < � if and only if
there exists a symmetric solution P � 0 of the ARE

ATP + PA+ P (
1

�2
B1B

0
1 � B2B

0
2)P + CT

1 C1 = 0

such that A+ (1
�

2B1BT

1 � B2BT

2)P is Hurwitz.

Implication: The very useful point which this theorem makes is the existence of
a positive semi-definite stabilizing solution of the given ARE is necessary and su�-
cient to conclude that there is a controller which provides attenuation � .

Interconnection: Here is a short description explaining their interconnection.
Treat R = (1

�

2B1B0
1 � B2B0

2) and Q = CT

1 C1 in Theorem IV.3. Now, Theorem IV.1
can be used with the ARE in Theorem IV.3 to check the existence and even find-
ing the feedback stabilizing controller which can provide attenuation �. Theorem
IV.1 also gives the way to find the solution of the ARE. Although, very important
to note, it doesn’t say anything about the positive semi-definiteness of P so this
will have to be checked separately. This does increase the computational expense
as it requires the explicit calculation of the solution and then checking its positive
semi-definiteness.

Here is the algorithmic description of the idea.

1. construct the matrices

Q = C1C
T

1

R =
1

�2
B1B

0
1 � B2B

0
2

2. construct the Hamiltonian using the above matrices

Z =


A R
�Q �AT

�

3. Check if any of the eigenvalues of Z is imaginary.

4. If there is an imaginary eigenvalue of Z, � attenuation is not possible for the
plant.

14

5. Else if there is no imaginary eigenvalue of Z, do the following.

(a) find the matrix


X
Y

�
which is the negative eigenspace of Z with both X

and Y to be square matrix.

(b) If rank(X) = n,

• find P = Y X�1.

• If P is +ve semidefinite then � attenuation is possible
else its not possible

So its the very last step in the algorithm where an attenuation to be possible is
clear. The algorithm for being able to check any attenuation comes out to be of
huge importance in developing the algorithm for the main problem as will be seen
later. Now, one can move towards solving the main problem

15

V The Main Problem

The H1 optimal actuator location problem mathematically is two optimization
problems one over another. Though, understanding it physically is comparatively
more intricate. The understanding of the idea of full information, performance out-
put in the context of generalized plant presented in one of the sections above is as-
sumed.

Problem Statement : There is a generalized plant with parametrized B2 given
as, Plant(A,B1, B2(r), C1, D11, D12, C2, D12, D22), with full information. There is
some known performance output of the system. All the constituent matrices of gen-
eralized plants are constant (with all standard assumptions true) and known ex-
cept B2. B2 is a function of r i.e the actuator location. The aim is to determine the
actuator location for which the attenuation achievable is the least i.e H1 optimal
actuator location.

Description: Given an actuator location r, the matrix B2, denoted as B2
r

is known
and hence the plant P

r

= Plant(A,B1, B2
r

, C1, D11, D12, C2, D12, D22) is known.
From the H1 disturbance attenuation problem discussed above, the Plant P

r

has
some least disturbance attenuation say �

r

. Now, the location r⇤ for which �
r

⇤ is the
least is the H1 optimal actuator location which has to be determined.

16

VI Solving The Problem

A clear complexity involved in solving this optimization problem is the unavailabil-
ity of a general closed form function for the least attenuation of a generalized plant
with everything known. Moreover, each function evaluation is computationally ex-
pensive. On the positive side, there are specific results for this problem which can
be exploited to minimize the number of function evaluations required to solve the
problem. This brings in the need of building optimization algorithm meant specif-
ically for this problem. There is one algorithm which has been coded entirely for
solving this problem. This algorithm is a mixture of Generalized Pattern Search
(GPS) and Hooke and Jeeves coordinate search(HJCS)[10] and is described below.
The other algorithms used are MATLAB’s routines which are GPS, fminsearch(Nelder-
Mead) and fmincon. The algorithms being implemented through MATLAB routines
are not described here and can be seen in [12].

Patternsearch (a mix of GPS and HJCS) for Project
The direct search algorithms broadly consist of a combination of a local search and
a step which ensures a faster coverage of the domain, ”a domain coverer”. There
can be several variants of the local search and domain coverage step suitable for
di↵erent problems. The Patternsearch algorithm coded for this project is using a
combination of features of GPS and HJCS. Before going on with the description of
this algorithm, here is a definition and a result which is important to understand a
step in the algorithm.

Definition VI.1. Positive Spanning Basis: A positive spanning basis {e1, e2, e3 . . . ek}
of Rn means for any x 2 Rn, 9{c

i

� 0 8 i} such that

x =
i=kX

i=1

c
i

e
i

Result: Let e
i

represent ith column of the identity matrix of dimension n. It can
be shown that the vectors

e1, e2, e3, e4, e5......., en, en+1 = �ones(n, 1)

form the positive spanning basis of Rn. Here is the proof.

Suppose there is a point in Rn, x0 = [a1; a2; a3, a4......, an]. There are two cases pos-
sible

1. min
i

a
i

� 0 : Here trivially x0 =
P

i=n

i=1 aiei + 0e
n+1.

17

2. min
i

a
i

= a
i0 < 0 : Let d

i

= a
i

� a
i0 . Note that d

i

� 0 8 i. It can be seen that

x0 =
i=nX

i=0

d
i

a
i

� a
i0en+1

Hence proved. The notation B0 is used to denote the above basis in this report.

Utility of the above result: Suppose there is some point x0 in the domain of
a given optimization problem (minimization). Assuming the gradient to be exist-
ing and its value at this step to be �rf(x0). Now, suppose there is some positive
spanning basis B

p

of the domain. Its not di�cult to see that there will exist atleast
one basis vector b

i

2 B
p

such that b
i

· �rf(x0) > 0. This ensures that there
is atleast one direction in B

p

in which the function is decreasing. This idea is ex-
ploited in the local or exploratory search part of the algorithm.

Algorithm Subparts
This whole algorithm is a combination of three functions. The complete flow of
steps in the algorithm is described after the description of these functions.

1. Initializer: This function initializes the variable to start o↵ the optimization.
It initializes the location and a Plant object with all the matrices.

2. Pattern Search Function

This function implements the core algorithm which is an iterative process un-
til there is no further improvement which it can do. Here are the sub-parts of
this function.

(a) Exploratory search or Polling : This is the local search step of the
algorithm. The method of local search used here is drawn from the GPS,
wherein there is a positive spanning basis used to conduct the local search.
A better point is looked for opportunistically around the current point
with a given step size to save as many function evaluations as possible
greedily. The set of directions chosen for search has been chosen to be
the positive spanning basis B0 specified above. The advantages of us-
ing this basis is that its having the least positive spanning basis size and
its easy to implement. If there is no better point found then it simply
returns the current point. The step size decreases if a better point is
not found out with the current step size, until the minimum step size
is reached, but note that the step size is reduced outside this function

18

in the implementation. The minimum step size is the acceptable toler-
ance in the optimal location. The initial step size has been chosen to be
5 times the minimum step size. The idea used is that initial step size
shouldn’t either be too big or too small. Although, there is a space of
more rigorous choice of initial step here. Below is the algorithm

x1 = exploratory search (x0, B0, step)
x1 = x0

for b 2 B0

x
candidate

= x0 + step * b
if x

candidate

in domain
check if x

candidate

is better
if yes, x1 = x

candidate

and break ;
if no, continue

return x1

NOTE: The Theorem IV.3 gives the condition which can be used to
check if a point is better or not. This is of huge importance as far as the
performance of overall algorithm is considered. This helps in preventing
the very expensive function evaluation at a point which is not better.

(b) Patternmove : This step is drawn from the idea of patternmove in
HJCS. This step is done only after a successful exploratory search. The
objective of this step is to get a bigger step in the direction in which
function tends to be decreasing. The function has the information about
the points before and after the successful exploratory search happened
just before it. A step is taken directly in the the same direction and of
the same step size to look for a better point. Further, very importantly,
this step keeps continuing until it is getting successful. Its importance is
explained after the Patternmove algorithm described below.

function x2 = patternmove(x0, x1)
set x2 = x1

x20 = x1 + (x1 � x0)
if x20 is in domain

check if x20 is better
if yes

set x2 = x20

19

until step - minimum step > 0
do x21 = exploratory(x20 , B0, step)
if x21 better than x20

set x2 = x21 and break this loop
else step = step/2

return x2

There are two important things about Patternmove here

i. First, an exploratory search is also and only conducted if the point
x20 turns out be better than x1. This is a bit di↵erent from pattern-
move of HJCS wherein the search is conducted around x20 irrespec-
tive of it being better or not.

ii. Second, one may mistakenly feel that terminating Patternmove right
after checking the point x20 to be better or not and then conducting
the exploratory search entirely outside this will be the same thing
as being done above and apparently will also reduce complications
in implementation. As mentioned and will be seen (when the entire
algorithm will be described), this step is being conducted until it
keeps getting successful. So conducting an exploratory search within
it brings in the possibility of making even a bigger move in the next
iteration of patternmove.

3. Global Search : This step is done after the Pattern Search function returns
its optima. It picks prescribed number of random set of points in the domain
and checks if the those points are better than than the optimal point found
out by Pattern Search. If the Global Search is successful, the iterative pro-
cess of Pattern Search and Global Search again starts from the new point
obtained by Global Search. In general, this step is not expected to be of util-
ity unless the pattern search algorithm ended up giving a bad minima i.e a
huge portion of the domain having values lesser than the minima obtained
through patternsearch function. The thing to note is that it just checks and
doesn’t compute the function values which keeps it from being a very com-
putationally expensive step. Also, this function is used only after an optima
given by Pattern Search.

NOTE: The whole algorithm together is being called as the Pattern Search Al-
gorithm which is a combination of initializer, a Pattern Search Function and a
Global search function.
Now, here is the sequence of steps or a pseudocode of the whole algorithm connect-
ing all the pieces.

20

1. initialize the actuator location x and the Plant P with all the matrices given
in the Problem and B2 using the initialized actuator location x. Set a value
for maximum number of function evaluations.

2. The Patternsearch(x)
STEP 1 : set x0 = x
STEP 2 : x1 = exploratory search(x0, step)
STEP 3 : if x1 = x0

step = step/2
if step < minimum step

terminate the Pattern Search and return x1

else if x1 6= x0

STEP 5 : do x2 = patternmove(x0, x1)
STEP 6 : if x2 6= x1

x0 = x1

x1 = x2

go to STEP 5
else

go to STEP 2

3. x2 = Globalsearch(x1).
if x2 6= x1

Go to (b) with x = x2

else
terminate the whole algorithm and the optimal point is x2

These all steps are done only till a certain number of function evaluations value set.
STEP 6 in Patternsearch function above is where one can see the continuous steps
of patternmove if it is being successful and hence brings in the benefit of doing lo-
cal search within.

Highlighting Di↵erences from GPS/Direction Direct Search [11]
GPS is the pattern search algorithm which has a combination of Global Search and
a Local search(Exploratory as said here or Polling) in each iteration. Though, there
are some authors who say the Global search step to be optional, here it has been
seen as a required step of GPS and comparisons have been made on this ground.
The Pattern Search implemented in this project will be called as Project Pattern
Search (PPS). The positive spanning basis is assumed to be minimal in both algo-
rithms.

• In GPS, the iteration starts with a set of function evaluations, called ”Global
Search”, which if successful directly starts the next iteration with the next

21

Global Search around the new point. If unsuccessful then there is a local
search conducted around the current point. In PPS, the first step in each iter-
ation is the local search around the current point.

• After a successful local search, GPS starts a new iteration doing another global
search with the new point. PPS does a ”Pattern move” after this with the
idea of moving on in the same direction, the step of which can get bigger and
bigger depending on the repated success of it.

The idea is to keep the number of function evaluations as less as possible with an
e�cient movement throughout the domain. Doing a Global Search, that too in each
iteration, can possibly be very costly for an optimization problem which is so sen-
sitive to the number of function evaluations. Meanwhile, the coverage of domain is
ensured with the Pattern Move step which is likely to be e�cient. The initial tar-
get was to implement both these algorithms project specifically but could not be
done. MATLAB’s built in routines have been used to implement some other pat-
tern search and gradient based algorithms. Although, It would not be fair to com-
pare their performance with PPS since it has been developed specifically for the
project and has got some routines which are directly useful for this problem. But,
one can gain some insight on the parameters crucial for good performance and also
performance comparison can be made within these built-in routines.

The MATLAB algorithms implemented in this project are ”fminsearch” (Nelder
Mead), ”Patternsearch” (implementing it in GPS specific way described above) and
”fmincon”. The performance of all these algorithms will be described in the up-
coming sections. The implementation of all the above algorithms required a care-
ful organization of routines. For instance, to be able to implement MATLAB algo-
rithms, there has to be a function set up which on entering the location gives the
least attenuation value. These features have to be added while maintaining the user
friendly nature of the solver. This led to development of many subroutines which
motivates a brief description of the structure of the whole solver.

Solver Description

1. Mainfunction file, ’mainfunction.m’ : This is the head function which
contains all the machinery inside to calculate the optimal actuator location
for a given problem. The problem is specified to this function by passing all
the generalized plant matrices except B2, a function which calculates B2 on
passing a location variable and the domain which specifies the region in which
actuator is going to lie.

22

2. Plant object creator file, Plant.m: This file defines the object Plant using
all the required constituent matrices. There are three methods for this Plant
object created in this file. The properties of this Plant object are all the con-
stituent matrices A,B1, B2, C1, D11, D12, C2, D12 and D22 .

The methods are enumerated below with their functions.

(a) constructor : This function constructs the object Plant on passing all the
constituent matrices.

(b) gammacheck: This function is used to check if an attenuation � is achiev-
able for the given Plant.

(c) hinfcalculator: This function calculates the least attenuation for the
given plant using the MATLAB’s routine ”hinfsyn”.

(d) myhinfcalculator: This function calculates the least attenuation based
on the theorems in Section 3 and in general turns out to be pretty faster
than using MATLAB’s hinfsyn.

Creating this separate object Plant helps in conveniently performing several
steps within the optimization algorithm or other small routines and can infact
be used independent of everything for doing small checks, for instance just
checking if a given Plant has got a particular attenuation.

3. Initializer file, ’intitializer.m’ This function initializes the actuator loca-
tion and a Plant object with B2 corresponding to the initialized location

NOTE : The domain , B2 function and the initialized Plant object have
been declared global to avoid the requirement of passing them and its useful-
ness will be clearer later on.

4. Algortihm file, ’purusminsearch.m’ : This is the function file which con-
tains the whole implementation of the Pattern Search optimization Algorithm
described above. It returns the optimal actuator location and the least at-
tenuation value for the given problem taking starting location as input. It
requires the environment of the mainfunction to run. This function file has
been created separately accounting the possibility of adding some functionali-
ties outside the

(a) Patternsearch function file, ’purunewpatternsearch.m’ : This
function file implements the whole Pattern Search algorithm. It calls the
exploratory search and patternmove functions iteratively. There are two
sub-function files created for Patternsearch function

23

i. Exploratory search function file, ’exploratorysearch.m’

ii. Patternmove function file, ’patternmove.m’

(b) Global Search function file, ’globalsearch.m’

5. MATLAB’s algorithm compatible maker, ’hinfcalculator.m’ : This
function is created just to be able to implement MATLAB’s optimization
algorithms. MATLAB’s algorithms in general require a function to be opti-
mized to be passed. Due to no closed form function for the current problem
available it requires to set it up.

Additional small subroutine functions

1. search parameters setter, ’setsearchparameters.m’ : This function sets
the search parameters for the exploratory search. The parameters are the di-
rection set, initial step and minimum step size values.

2. point in domain checker, ’ispointindomain.m’ : This function checks if
a location is within the domain.

3. Quiver plotter, quiverplot.m : This plots the search trajectory the
Pattern Search algorithm in 2D and 3D domain case

Below is a flowchart describing the connections of the function files described above

24

VII Example: 1-D Heat Equation problem

The 1-D heat equation has been modeled in the form of generalized plant. The
problem of H1 optimal actuator location is then solved for that plant model us-
ing the solver described above. The problem is solved for di↵erent possibilities of
external parameters which here is number of actuators and the external disturbance
mode. The comparison of Algorithms has then been made for di↵erent cases

Physical situation and Governing PDE
There is a very thin rod of unit length kept in the domain [0,1]. T (x, t) represents
the temperature of the rod at position x and time t. There is some external distur-
bance d(x, t) = b1(x)v(t) in the temperature which is spread throughout the rod
which cannot be controlled. Note that the disturbance function taken here is such
that the distribution of the disturbance in the domain is the same. There is an ac-
tuator(or may be multiple) which is being used to control the temperature. The
form of the governing PDE for this problem is

@T

@t
= �

@2T

@x2
+ b1(x)v(t) + bact

r

(x)u(t);

where bact
r

(x) represents the influence of the actuator on the temperature when
kept at a location r in the domain. u(t) represents the control input by the actua-
tor. Here in this example the actuator shape is assumed to be

bact
r

(x) =

(
0 |x� r| > ✏

1 |x� r| < ✏

for some ✏. The temperature at the ends are assumed to be fixed to zero i.e T(0, t)
= T(1, t) = 0

Modelling the problem into State Space form
Finite Element Methods(FEM) is used to model the problem in the state space
form. The basis used here for both solution function space and the test functions
space are Hat functions. Let (x) be a test function. The variational representation
of the PDE above is

Z 1

0

@T

@t
 (x)dx =

Z 1

0

(�
@2T

@x2
 (x) + b1(x)v(t) (x) + bact

r

(x)u(t) (x))dx

Using Dirichlet boundary condition i.e T(0) = T(1) = (0) = (1) = 0, the first
term in the RHS can be simplified by doing integration by parts to get a simpler
variational form

25

Z 1

0

@T

@t
 (x)dx = �

Z 1

0

�
@T

@x
 0(x)dx+ v(t)

Z 1

0

b1(x) (x)dx+ u(t)

Z 1

0

bact
r

(x) (x)dx

The above identity has to be true for every test function and so for every basis
function of test functions. These basis functions here are the hat functions which
will be represented here as �

i

, where �
i

is

�
i

(x) =

8
><

>:

x�x

i�1

x

i

�x

i�1
x
i�1  x  x

i

x

i+1�x

x

i+1�x

i

x
i

 x  x
i+1

0 else

Replacing a general test function by the basis function �
i

in the variational form

Z 1

0

@T

@t
�
i

(x)dx = �
Z 1

0

�
@T

@x
�0
i

(x)dx+v(t)

Z 1

0

b1(x)�i

(x)dx+u(t)

Z 1

0

bact
r

(x)�
i

(x)dx

Now,

LetT =
i=nX

i=1

c
i

�
i

=) @T

@t
=

i=nX

i=1

ċ
i

�
i

and
@T

@x
=

i=nX

i=1

c
i

�0
i

Putting this back in the above variational representation

Z 1

0

(
i=nX

i=1

ċ
i

�
i

)�
j

dx = ��
Z 1

0

(
i=nX

i=1

c
i

�0
i

)�0
j

dx+ v(t)

Z 1

0

b1(x)�j

dx+ u(t)

Z 1

0

bact
r

(x)�
j

dx

Now the above equation is true for all �
j

. So there are n equations and n variables.
The system of equations is

Mċ = ��Sc+B1d+B2u (4)

26

where

M =

2

666666666664

R 1

0 �1�1dx
R 1

0 �1�2dx
R 1

0 �1�3dx · · ·
R 1

0 �1�n

dxR 1

0 �2�1dx
R 1

0 �2�2dx
R 1

0 �2�3dx · · ·
R 1

0 �2�n

dxR 1

0 �3�1dx
R 1

0 �3�2dx · · · ·
R 1

0 �3�n

dxR 1

0 �4�1dx · · · · ·
R 1

0 �4�n

dx
· · · · · · ·
· · · · · · ·R 1

0 �n�1�1dx · · · · ·
R 1

0 �n�1�n

dxR 1

0 �n

�1dx
R 1

0 �n

�2dx · · · ·
R 1

0 �n

�
n

dx

3

777777777775

S =

2

666666666664

R 1

0 �
0
1�

0
1dx

R 1

0 �
0
1�

0
2dx

R 1

0 �
0
1�

0
3dx · · ·

R 1

0 �
0
1�

0
n

dxR 1

0 �
0
2�

0
1dx

R 1

0 �
0
2�

0
2dx

R 1

0 �
0
2�

0
3dx · · ·

R 1

0 �
0
2�

0
n

dxR 1

0 �
0
3�

0
1dx

R 1

0 �
0
3�

0
2dx · · · ·

R 1

0 �
0
3�

0
n

dxR 1

0 �
0
4�

0
1dx · · · · ·

R 1

0 �
0
4�

0
n

dx
· · · · · · ·
· · · · · · ·R 1

0 �
0
n�1�

0
1dx · · · · ·

R 1

0 �
0
n�1�

0
n

dxR 1

0 �
0
n

�0
1dx

R 1

0 �
0
n

�0
2dx · · · ·

R 1

0 �
0
n

�0
n

dx

3

777777777775

c =

2

66666666664

c1
c2
c3
c4
·
·

c
n�1

c
n

3

77777777775

B1 =

2

666666666664

R 1

0 b1�1R 1

0 b1�2R 1

0 b1�3R 1

0 b1�4

·
·R 1

0 b1�n�1R 1

0 b1�n

3

777777777775

B2 =

2

666666666664

R 1

0 b
act

�1R 1

0 b
act

�2R 1

0 b
act

�3R 1

0 b
act

�4

·
·R 1

0 b
act

�
n�1R 1

0 b
act

�
n

3

777777777775

For the hat functions as the basis functions the Matrices M and S are

M =
�x

6

2

666666664

4 1 0 0 0 0 0 . . .
1 4 1 0 0 0 0 . . .
0 1 4 1 0 0 0 . . .
. . .
. . .
0 0 0 0 0 . . . 1 4 1
0 0 0 0 0 1 4

3

777777775

27

S = � 1

�x

2

666666664

2 �1 0 0 0 0 0 . . .
�1 2 �1 0 0 0 0 . . .
0 �1 2 �1 0 0 0 . . .
. . .
. . .
0 0 0 0 0 . . . �1 2 �1
0 0 0 0 0 �1 2

3

777777775

where �x represents the finite element size.
Problem Statement: For the state space description of the 1-D rod heat equation

given by (4), suppose the performance output z is


c
u

�
. It is assumed that the full

information about the disturbance v and states c is known. Further disturbance
distrbution b1(x) i.e B1 and the actuator function bact

r

(x) i.e B2(r) is given to us.
The objective is to estimate the H1 optimal actuator location for the given perfor-
mance output. The actuator function bact

r

(x) has been described in the problem
introduction.

Solving the Problem:
First of all, the generalized plant representation of the system is

ċ = ��M�1Sc+M�1B1d+M�1B2u

z =


I
0

�
c+


0
I

�
u

y =


I
0

�
c+


0
I

�
d

The problem is set to be solved using the solver developed. There are di↵erent
cases for which this problem has been solved. These cases di↵er in the disturbance
function and the number of actuators used. The cases discussed here are

1. Using 1 actuator (B2 with one column) with first mode disturbance i.e b1(x) =
sin(⇡x), second mode disturbance i.e b1(x) = sin(2⇡x) and third mode distur-
bance i.e b1(x) = sin(3⇡x) .

2. Using 2 actuators (B2 with two columns) with first, second and third mode
disturbance.

3. Using 3 actuators with first mode disturbance

28

Solver Results Verification
This beautiful paper [9] gives the expression for the closed form function of the
least attenuation for a specific class of generalized plants. Our current problem of
1-D temperature flow fits into that specific class and hence the result can be used
for verification of the result. Infact, this result not only has been used to verify the
solver results but also to get the exact plots of the variation of the least attenuation
with respect to actuator locations which helps in getting insight of the performance
of the algorithms.

Parameters set for Algorithms
A set of parameters set for a particular algorithm has been used for all the test
cases. The parameters have been set in a way which keeps the comparison on a
suitable ground. The parameter settings are described below

1. Project Pattern Search
Minimum step size = .01 (The size of the finite element)
Initial step size = .05 (Chosen to be 5 times the minimum step size)
Step size contraction = .5
No step expansion

2. MATLAB’s Patternsearch
MATLAB’s patternsearch in itself provides several parameters to be set. The
parameters have been set in a way to replicate a standardized GPS discussed
above.
Mesh Size Tolerance = .01
Mesh Contraction Factor = .5
Initial Mesh ize = .05
Polling Order = Consecutive (i.e the same order maintained irrespective of
successful Poll search)
Polling Method = n+1 basis
Search Function = ’Latinhypercube’

3. MATLAB’s fminsearch (Nelder-Mead)
Setting parameters for MATLAB’s Nelder-Mead proved to be a bit tricky.
The important thing about MATLAB’s Nelder Mead implementation is that
it stops only when all the parameter values given are satisfied. A very low
value of any of the function tolerance or variable tolerance can increase the
number of function evaluations in a huge way. A high value of those parame-
ters can lead to inaccurate results. The parameters set are
Function Tolerance = 1

29

Simplex sides tolerance = .01

4. MATLAB’s fmincon
This was implemented to check the performance of a gradient based algo-
rithm. The tuning of parameters for it was di�cult. There are only two pa-
rameters which was set other than the default parameters
Finite Di↵erence Step Size = .01
Minimum change in variables for finite di↵erence = .01

IMPORTANT NOTE:
It will not be fair to compare the performance of the PPS algorithm with the MAT-
LAB’s routines and make some conclusion on this basis. This is because of the im-
portant functionality in PPS of being able to check the function value at a point
to be less than a particular function value, through the results and algorithm dis-
cussed in section IV . This facility is not available to MATLAB’s routines which
would be computing the function value in its procedure. Although, one can com-
pare the MATLAB’s subroutines within themselves. Further, one can appreciate
the importance of the number of function evaluations done. Also, the other pur-
pose which it can serve is to see if a particular algorithm is being able to solve the
problem. For instance, it would be interesting to see if fmincon which is a gradi-
ent based algorithm is able to solve the problem. This is because firstly, there is no
closed form of the function and further the problem of H1 optimal actuator loca-
tion in itself doesn’t have a result specifying the smoothness.

Results
Now, the results for each case has been described in detail. In each case the simu-
lation has been done for four starting points. The performance parameters of each
algorithm has been tabulated together. The exact plots(due to [9]) of least attenua-
tion have been shown which can be used to verify the accuracy of the solver results.
The optimal location rigorously searched through the domain (within the accuracy
of .01) using the closed form has been mentioned. In case of 2-D(2 actuators) and
3-D(3-actuators) domain of optimization the quiver plot of the trajectory of Project
Pattern Search Algorithm has also been shown. The quiver plots is helpful to ap-
preciate some big systematic step sizes taken due to Patternmove step of PPS and
also getting the insight of the work of the exploratory search algorithm.

1. Number of actuators = 1 , Disturbance mode = 1

optimal location = .5

30

Fig: Variation of Least attenuation with actuator location

Performance of Algorithms- 1 Actuator with first mode disturbance

final position �
min

Func. Count Time
Project Patternsearch 0.4898 1365.4595 11.0000 11.2332

MATLAB Patternsearch 0.5013 1368.2881 15.0000 18.0953
MATLAB Nelder-Mead 0.4959 1379.9252 18.0000 21.4779

MATLAB fmincon 0.4987 1367.8536 39.0000 47.4811

Table 1: Initial Point:0.177

final position �
min

Func. Count Time
Project Patternsearch 0.4998 1359.7988 2.0000 3.2086

MATLAB Patternsearch 0.5098 1362.1513 21.0000 24.8932
MATLAB Nelder-Mead 0.5004 1361.3508 17.0000 18.4410

MATLAB fmincon 0.4810 1377.1824 43.0000 50.1881

Table 2: Initial Point:0.549

31

final position �
min

Func. Count Time
Project Patternsearch 0.4809 1376.3604 10.0000 8.4628

MATLAB Patternsearch 0.4901 1362.7637 23.0000 27.0640
MATLAB Nelder-Mead 0.4998 1359.5667 26.0000 30.7616

MATLAB fmincon 0.4934 1379.0684 43.0000 51.3453

Table 3: Initial Point:0.964

final position �
min

Func. Count Time
Project Patternsearch 0.5082 1372.8002 8.0000 5.7355

MATLAB Patternsearch 0.4892 1369.9327 15.0000 17.2546
MATLAB Nelder-Mead 0.5096 1363.4011 19.0000 21.2959

MATLAB fmincon 0.4955 1380.6158 60.0000 73.0040

Table 4: Initial Point:0.582

Brief Performance Summary: Accuracy of results have been consistent in all
the algorithms. The Patternsearch function has consistently taken less time to
solve due to significantly less number of function evaluations whereas the gra-
dient based algorithm ’fmincon’ took the highest time with very high number
of function evaluations.

2. Number of actuators = 1 , Disturbance mode = 2

optimal locations = .13, .88

32

Performance of Algorithms- 1 Actuator with 2nd mode disturbance

final position �
min

Func. Count Time
Project Patternsearch 0.1297 1683.0480 6.0000 4.7538

MATLAB Patternsearch 0.8762 1682.4469 12.0000 13.6509
MATLAB Nelder-Mead 0.1326 1682.6651 14.0000 14.4552

MATLAB fmincon 0.1238 1682.4326 86.0000 98.5994

Table 5: Initial Point:0.241

final position �
min

Func. Count Time
Project Patternsearch 0.1338 1682.5165 9.0000 6.3860

MATLAB Patternsearch 0.1268 1682.9982 17.0000 17.7900
MATLAB Nelder-Mead 0.1280 1683.0731 16.0000 16.5969

MATLAB fmincon 0.1238 1682.4326 76.0000 81.0176

Table 6: Initial Point:0.0434

final position �
min

Func. Count Time
Project Patternsearch 0.1263 1682.9358 8.0000 7.1743

MATLAB Patternsearch 0.8663 1682.4878 11.0000 11.5983
MATLAB Nelder-Mead 0.1255 1682.8187 16.0000 15.9917

MATLAB fmincon 0.1238 1682.4326 100.0000 107.8479

Table 7: Initial Point:0.386

final position �
min

Func. Count Time
Project Patternsearch 0.1278 1683.0649 6.0000 5.5042

MATLAB Patternsearch 0.1267 1682.9798 22.0000 25.6240
MATLAB Nelder-Mead 0.1222 1682.9831 14.0000 15.2794

MATLAB fmincon 0.1238 1682.4326 71.0000 80.0356

Table 8: Initial Point:0.326

Performance Summary : The results obtained here almost follows the same
trend as in the previous one. The Nelder Mead and Pattern Search almost
performing similar here as well like the previous case .

33

3. Number of actuators : 1 Disturbance mode = 3

Optimal location = (.12, .88), �
min

= 793.6.

Performance of Algorithms- 1 Actuator with 3rd mode disturbance

final position �
min

Func. Count Time
Project Patternsearch 0.1212 793.5740 3.0000 2.8529

MATLAB Patternsearch 0.8993 793.9823 15.0000 15.8578
MATLAB Nelder-Mead 0.1013 793.9046 5.0000 5.1260

MATLAB fmincon 0.1163 793.5390 107.0000 124.9265

Table 9: Initial Point:0.0965

final position �
min

Func. Count Time
Project Patternsearch 0.8895 793.6746 4.0000 3.6965

MATLAB Patternsearch 0.1181 793.6717 16.0000 17.8914
MATLAB Nelder-Mead 0.8832 793.5821 14.0000 16.7811

MATLAB fmincon 0.8886 793.5776 104.0000 124.7356

Table 10: Initial Point:0.939

34

final position �
min

Func. Count Time
Project Patternsearch 0.1383 794.2500 9.0000 6.5887

MATLAB Patternsearch 0.8898 793.7024 14.0000 15.7371
MATLAB Nelder-Mead 0.5069 804.1252 6.0000 6.5307

MATLAB fmincon 0.8787 793.5663 106.0000 129.3479

Table 11: Initial Point:0.489

final position �
min

Func. Count Time
Project Patternsearch 0.1210 793.5892 15.0000 13.0014

MATLAB Patternsearch 0.1278 793.8248 10.0000 11.0795
MATLAB Nelder-Mead 0.4974 804.1112 10.0000 12.4680

MATLAB fmincon 0.4955 804.1231 37.0000 41.0730

Table 12: Initial Point:0.577

Performance Summary : This case is a bit tricky due to multiple unequal lo-
cal minimas. The wrong local minima has been highligted in the table. The
Nelder-Mead and fmincon gave the wrong result on two occasions and 1 oc-
casion respectively. Also, this time the MATLAB’s patternsearch on average
clearly took more time but with accurate results in each case compared to
Nelder Mead. The other performance parameters nearly followed the same
trends.

35

4. Disturbance mode : 1 , Number of actuators = 2

Now, bringing in two actuators makes it a 2-D optimization problem. Local
Minima: (.36, .64) and (.64, .36).

Fig : plot of the actual variation with the contour plot below

36

Performance of Algorithms- 2 Actuators with first mode disturbance

Algorithm final position �
min

Func. Count Time
Project Patternsearch (0.6396, 0.3523) 905.8859 9.0000 8.8396

MATLAB Patternsearch (0.3531, 0.6373) 908.8079 38.0000 41.8543
MATLAB Nelder-Mead (0.5399, 0.1164) 1185.1262 32.0000 35.9109

MATLAB fmincon (0.6287, 0.3570) 908.3191 123.0000 133.6971

Table 13: Initial Point : (.63, .097)

final position �
min

Func. Count Time
Project Patternsearch (0.3509, 0.6288) 901.8534 10.0000 10.3693

MATLAB Patternsearch (0.6566, 0.3819) 911.8253 42.0000 42.2061
MATLAB Nelder-Mead (0.3604 , 0.6282) 904.7453 53.0000 51.6024

MATLAB fmincon (0.3703, 0.6391) 903.9698 62.0000 62.0078

Table 14: Initial Point:(0.666 0.894)

Algorithm final position �
min

Func. Count Time
Project Patternsearch (0.6100, 0.3317) 914.0815 10.0000 6.4921

MATLAB Patternsearch (0.6376, 0.3517) 903.2342 42.0000 42.6662
MATLAB Nelder-Mead (0.6285, 0.3615) 900.7136 65.0000 71.5872

MATLAB fmincon (0.3515, 0.6287) 899.4619 138.0000 161.5411

Table 15: Initial Point: (.805, .576)

Algorithm final position �
min

Func. Count Time
Project Patternsearch (0.3515, 0.6286) 899.9824 12.0000 8.1304

MATLAB Patternsearch (0.3694, 0.6305) 911.7375 42.0000 48.7847
MATLAB Nelder-Mead (0.3615, 0.6389) 899.1703 67.0000 69.9822

MATLAB fmincon (0.6287, 0.3515) 899.3980 157.0000 171.9311

Table 16: Initial Point = (.518,.943)

Performance Summary : The MATLAB’s patternsearch clearly is better in
performance compared to Nelder-Mead in this case. The increase in dimen-
sion is leading to more function evaluations in Nelder Mead and hence making
it slow. Also the performance of fmincon has improved in terms of the ratio of
time taken with other patternsearch methods compared to the 1-dimensional
case.

37

Fig: Contour Plot and PPS Quiver Plot , disturbance mode = 1

This gives a good idea of how the search algorithm is behaving in terms of
e�ciency.

38

Fig: Corresponding PPS Quiver Plots

The quiver plot here helpful to see the variation in the step sizes also how
e�cient the search has been.

39

5. Disturbance mode = 2 , number of actuators = 2

Optimal locations = (.25;.75) and (.75;.25).

40

Performance of Algorithms- 2 Actuator with 2nd mode disturbance

final position �
min

Func. Count Time
Project Patternsearch (0.7569, 0.2340) 733.8441 16.0000 12.7035

MATLAB Patternsearch (0.2325, 0.7580) 732.3525 57.0000 57.1768
MATLAB Nelder-Mead (0.7513, 0.2425) 733.3779 50.0000 51.0978

MATLAB fmincon (0.7475, 0.2457) 732.5882 70.0000 82.8462

Table 17: Initial Point 1:[0.728 0.576]

final position �
min

Func. Count Time
Project Patternsearch (0.7579, 0.2435) 730.3839 14.0000 13.1648

MATLAB Patternsearch (0.2418, 0.7664) 733.8085 38.0000 43.2345
MATLAB Nelder-Mead (0.7381, 0.2532) 730.6285 48.0000 63.0703

MATLAB fmincon (0.7547, 0.2515) 734.4159 101.0000 117.4730

Table 18: Initial Point 2:[0.734 0.430]

final position �
min

Func. Count Time
Project Patternsearch (0.2331, 0.7491) 734.4014 14.0000 14.1724

MATLAB Patternsearch (0.2521, 0.7466) 728.9361 50.0000 55.5868
MATLAB Nelder-Mead (0.2425, 0.7564) 729.2743 45.0000 52.5779

MATLAB fmincon (0.2456, 0.7475) 732.1549 114.0000 126.2268

Table 19: Initial Point 3:[0.403 0.548]

final position �
min

Func. Count Time
Project Patternsearch (0.7771 , 0.2329) 737.8534 17.0000 15.6100

MATLAB Patternsearch (0.2513 , 0.7533) 736.1637 42.0000 46.9707
MATLAB Nelder-Mead (0.7577 , 0.2427) 727.9388 57.0000 68.6455

MATLAB fmincon (0.7420 ,0.2518) 735.6211 64.0000 72.1520

Table 20: Initial Point 4:[0.442 0.393]

Performance Summary : The most important thing to notice here is the sig-
nificant improvement on average in the performance of fmincon. This can
possibly be because of more elliptical nature of contours in a bigger range
here compared to the previous example. Due to the same reason the relative
performance of Nelder Mead as compared to MATLAB’s Patternsearch has
also improved from previous case since it inculcates the idea of gradient algo-
rithm better in pattern search form.

41

fig: Quiver Plot, Initial Point 1

42

fig: Quiver Plot, Initial Point 2

43

fig: Quiver Plot, Initial Point 3

44

fig: Quiver Plot, Initial Point 4

45

6. disturbance mode = 3 , number of actuators = 2

46

Performance of Algorithms- 2 Actuator with 3rd mode disturbance

Algorithms final position �
min

Func. Count Time
Project Patternsearch (0.8391 , 0.5532) 683.5120 9.0000 7.9044

MATLAB Patternsearch (0.1695 , 0.4462) 683.8662 54.0000 59.4004
MATLAB Nelder-Mead (0.8348 , 0.5601) 682.7842 31.0000 38.1222

MATLAB fmincon (0.8359 , 0.5498) 682.3078 106.0000 117.4604

Table 21: Initial Point 1:[0.627 0.539]

Algorithms final position �
min

Func. Count Time
Project Patternsearch (0.5577 , 0.8307) 683.6276 10.0000 8.5432

MATLAB Patternsearch (0.4423 , 0.1638) 682.1351 42.0000 47.4825
MATLAB Nelder-Mead (0.5498 , 0.8265) 682.4701 27.0000 26.3630

MATLAB fmincon (0.5562 , 0.8294) 683.5206 88.0000 90.3925

Table 22: Initial Point 2:[0.533 0.955]

Algorithms final position �
min

Func. Count Time
Project Patternsearch (0.4510, 0.1638) 682.3118 14.0000 12.6227

MATLAB Patternsearch (0.1546, 0.4373) 683.3469 30.0000 32.0690
MATLAB Nelder-Mead (0.4510, 0.1628) 682.4018 56.0000 59.8260

MATLAB fmincon (0.1545, 0.4413) 682.8396 79.0000 88.9140

Table 23: Initial Point 3:[0.741 0.0704]

Algorithms final position �
min

Func. Count Time
Project Patternsearch (0.5534, 0.8386) 683.2862 10.0000 9.5185

MATLAB Patternsearch (0.5513, 0.8266) 682.5427 38.0000 42.0402
MATLAB Nelder-Mead (0.5575, 0.8385) 683.0286 23.0000 24.0477

MATLAB fmincon (0.5561, 0.8359) 682.5084 81.0000 92.5809

Table 24: Initial Point 4:[0.49 0.973]

Performance Summary : The performance of fmincon and Nelder-Mead showed
even more relative improvement. This can be because of more number of local
minimas increasing its vicinity to a random point with the elliptic contours.
The accuracy was not a↵ected since all the minimas are equal.

47

fig: Quiver Plot, Initial Point 1

48

fig: Quiver Plot, Initial Point 2

49

fig: Quiver Plot, Initial Point 3

50

fig: Quiver Plot, Initial Point 4

51

7. Disturbance mode = 1 , Number of actuators = 3

Since there are several minimas possible, so it cannot be exhaustively listed.
The �

min

value is 738.88 from closed form rigorous search.

Performance of Algorithms- 3 Actuators with 1st mode disturbance

final position �
min

Func. Count Time
Project Patternsearch (0.6986 0.5030 0.3145) 742.9264 22.0000 21.1322

MATLAB Patternsearch (0.5195 0.7088 0.2934) 741.8082 78.0000 80.4833
MATLAB Nelder-Mead (0.6955 0.3018 0.4905) 737.9412 86.0000 87.0701

MATLAB fmincon (0.4819 0.2921 0.6881) 736.7003 121.0000 119.9274

Table 25: Initial Point:[0.818 0.709 0.743]

final position �
min

Func. Count Time
Project Patternsearch (0.6999 0.3108 0.5089) 739.9220 15.0000 11.1220

MATLAB Patternsearch (0.4981 0.2911 0.6794) 742.0988 71.0000 72.7436
MATLAB Nelder-Mead (0.6984 0.3022 0.5098) 733.6735 89.0000 91.3772

MATLAB fmincon (0.6866 0.2956 0.4900) 740.7381 123.0000 116.2032

Table 26: Initial Point:[0.993 0.357 0.753]

final position �
min

Func. Count Time
Project Patternsearch (0.4992 0.6785 0.2920) 736.3181 11.0000 9.6818

MATLAB Patternsearch (0.5102 0.6949 0.3221) 739.5257 54.0000 57.9752
MATLAB Nelder-Mead (0.5097 0.6797 0.2736) 747.0353 47.0000 51.9260

MATLAB fmincon (0.4983 0.6878 0.3020) 735.8468 119.0000 120.3229

Table 27: Initial Point:[0.539 0.768 0.233]

final position �
min

Func. Count Time
Project Patternsearch (0.6987, 0.3215 , 0.5278) 740.2035 22.0000 20.2866

MATLAB Patternsearch (0.4985 , 0.2829 , 0.6679) 743.8631 69.0000 77.8280
MATLAB Nelder-Mead (0.3615 , 0.0733 , 0.6384) 869.9228 58.0000 70.6796

MATLAB fmincon (0.3096 , 0.4905 , 0.6803) 742.0402 84.0000 98.5903

Table 28: Initial Point:[0.325 0.0836 0.513]

52

Performance Summary : The important observation in this case is relative im-
provement in performance of fmincon which can be because of the increase
in dimension of optimization space. Apart from this Nelder Mead failed to
produced correct result in one instance. To primarily check the relative im-
provement of fmincon a test case with 4 actuators is also run.

8. Disturbance mode = 1, Number of actuators = 4

From closed form rigorous search minima comes out to be �
m

in = 643.4

final position �
min

Func. Count Time
Project Patternsearch (0.4488 0.7277 0.5705 0.2832) 643.3564 31.0000 25.9805

MATLAB Patternsearch (0.2631 0.7360 0.4123 0.5879) 646.9877 194.0000 184.6373
MATLAB Nelder-Mead (0.1876 0.6580 0.4305 0.1161) 778.0484 84.0000 91.0171

MATLAB fmincon (0.2637 0.7174 0.5683 0.4149) 645.0324 170.0000 180.1866

Table 29: Initial Point:[0.127 0.913 0.632 0.0975]

final position �
min

Func. Count Time
Project Patternsearch (0.5987 0.7376 0.4519 0.2998) 646.6444 31.0000 27.0262

MATLAB Patternsearch (0.4097 0.2732 0.7138 0.5492) 646.3857 101.0000 105.1364
MATLAB Nelder-Mead (0.6980 0.5103 0.3228 0.1173) 698.6541 109.0000 119.9425

MATLAB fmincon (0.7168 0.5643 0.4207 0.2688) 645.9019 147.0000 155.5011

Table 30: Initial Point:[0.933 0.973 0.192 0.139]

final position �
min

Func. Count Time
Project Patternsearch (0.7169 0.4506 0.6547 0.3028) 658.6823 32.0000 29.4935

MATLAB Patternsearch (0.2835 0.4387 0.7271 0.5802) 643.5616 132.0000 132.8168
MATLAB Nelder-Mead (0.4110 0.1080 0.6392 0.0214) 844.4908 105.0000 114.7140

MATLAB fmincon (0.7465 0.2798 0.5884 0.4399) 645.0452 127.0000 134.6103

Table 31: Initial Point:[0.989 0.0669 0.939 0.0182]

Performance summary : The performance of fmincon has got even more
closer to the patternsearch algorithms and in some case even beating them
by a minor margin. Nelder-Mead algorithm showed bad performance in two
instances here.

53

Overall Performance Summary of Algorithms

1. The PPS algorithm overall performed the best due to the least number of
function evaluations done.

2. The overall performance of Patternsearch algorithm turned out to be better
than Nelder-Mead and gradient based methods, with Nelder-Mead very occa-
sionally turning out to be better. The Nelder-Mead algorithm also struggled
with accuracy in a few instances which became more frequent with increase in
the dimension of optimization.

3. Contrary to what was expected, the gradient based method fmincon produced
correct results in all cases with very rare failures. Further, the relative per-
formance of gradient based method improved with the increase in the domain
of optimization. A shortcoming of gradient method was the requirement of
a lot of function evaluations which makes it not the best alternative for low
dimension H1problems.

54

VIII Conclusion and Future Work

The problem of H1 optimal actuator location is a computationally expensive prob-
lem. The most determining factor about the performance of a solver for it is the
number of function evaluations done in getting the final result. The Theorems de-
scribed in Section 4 together give a way to check if attenuation at any location is
less than a particular value. This has been extensively used in the pattern search
algorithm proposed in the project. This greatly reduces the number of function
evaluations in the exploratory search step as those points in the domain where the
attenuation is already not less than the current point is not even evaluated. The
reduction in number of function evaluations can be directly seen comparing it with
MATLAB’s pattern search algorithms which have the identical search parameters
except having the tool to check an attenuation before calculating it. The Pattern
search algorithm implemented in the project successfully estimated the optimal lo-
cations being fast. Another important observation is the performance of the gradi-
ent based algorithm. The result is correct in almost all occasions which is a useful
result for future research. The success of gradient algorithm can be attributed to
the smooth nature of the cases discussed. Seeing the results of the algorithms it can
be inferred that the Patternsearch algorithms suits better to the nature of the prob-
lem if it is a low dimensional problem. Although, if the problem is high dimensional
then it would be interesting to look at the performance of gradient based algorithm
whose relative performance with respect to pattern search algorithms improves with
increase in dimension.

One future work which naturally follows from here is the comparison of GPS and
HJCS algorithms developed specifically for this problem with the performance of
patternsearch which is using the combination of both. Also, an interesting problem
encountered is related to the algorithm for checking an attenuation � in section 4.
In the algorithm, to check an attenutation, the very last step requires checking the
positive semidefiniteness of solution of ARE P because it is forced by Theorem IV.3
but not concluded from Theorem IV.1. This requires some extra computational
work of calculating the solution and then checking its positive semidefiniteness .
An important thing to notice is that the Q for the ARE constructed to check the
attenuation in Theorem IV.3 is positive semi-definite which has not been assumed
in the Theorem IV.1 . It will be interesting to research the possibility of positive
semidefiniteness automatically implied or a certain bound in � value as a function
of norms of the matrices which guarantees positive semidefiniteness of the solution.
The another scope of work here is the performance of a gradient based optimization
algorithm implemented specifically for this problem compared to the Patternsearch

55

algorithms. This is because of the improving performance of gradient methods with
increase in dimension and deterioration in the performance of patternsearch algo-
rithms.

56

Bibliography

[1] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 65-66

[2] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 66-67

[3] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 252-254

[4] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 272-275

[5] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 280-282

[6] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 282-285

[7] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 278-279

[8] Kirsten Morris, Introduction to Feedback Control, Harcourt/Academic Press
2001, pp. 259-261, pp. 278-279

[9] Lidstrom, Carolina; Rantzer, Anders; Morris, Kirsten; H-infinity optimal con-
trol for infinite-dimensional systems with strictly negative generator, 2016
IEEE 55th Conference on Decision and Control, CDC 2016

[10] http://www.sce.carleton.ca/faculty/chinneck/po/Chapter17.pdf

[11] Kasinathan, Dhanaraja; Morris, Kirsten; H-infinity optimal actuator location,
2013 IEEE Transactions on Automatic control, Vol. 58

[12] Jorge Nocedal, Stephen J. Wright Numerical Optimization, Second Edition
2006

57

	Motivation
	H norm
	Generalized Plants
	H attenuation
	The Main Problem
	Solving The Problem
	Example: 1-D Heat Equation problem
	Conclusion and Future Work

