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Abstract

Metal artifacts are very common in CT scans since metal insertion or replacement
is performed for enhancing certain functionality or mechanism of patient’s body. These
streak artifacts could degrade CT image quality severely, and consequently, they could
influence clinician’s diagnosis. Many existing supervised learning methods approaching
this problem assume the availability of clean images data, images free of metal artifacts,
at the part with metal implant. However, in clinical practices, those clean images do not
exist. Therefore, there is no support for the existing supervised learning based methods
to work clinically. We focus on reducing the steak artifacts on the hip scans and propose
a convolutional neural network based method to eliminate the need of the clean images at
the implant part during model training. The idea is to use the scans of the parts near the
hip for model training. Our method is able to suppress the artifacts in corrupted images,
highly improve the image quality, preserve the details of surrounding tissues, without using
the clean hip scans.
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Chapter 1

Introduction

When a patient has metallic objects implanted in their body, such as hip replacements,
dental fillings, aneurysm clips and coils (Figure 1.1), their CT scans may contain different
types of metal artifacts[!]. The typical appearance of metal artifacts are some bright
and dark streaks expanding from or surrounding the metal pieces. The streak artifacts
may obscure vital information for physicians to analyze CT scans and make diagnosis.
In the past few decades, many metal artifacts reduction methods have been developed in
attempts to combat this problem. However, so far there is no standard solution to this
difficult problem in clinical CT imaging.

With the rapid advancement in medical technology and medical device industry, a
growing number of people are receiving metal implants for the treatment of diseases or
physical functionality support. This has led to an increase in the frequency of encountering
metallic objects in CT scans. In 2012, 16 million out of 80 million CT scans performed in
the U.S. contain metal artifacts[!]. Metal artifacts is a common and crucial issue in CT
imaging.

During CT scanning, metal pieces block some x-rays from being detected and lead to
errors in measurements at detectors. The errors are then amplified in the transformation
from the detector measurements to a CT scan, resulting in metal artifacts[1]. The streak
artifacts due to metallic objects overlay a large amount of information in the scans. Con-
sequently, the quality of the images with artifacts degrades considerably. Physicians may
then experience difficulties in detecting the abnormalities, tumor and other pathological
changes in the scans with artifacts. To improve image quality and diagnosis accuracy, the
presence of severe streak artifacts necessitates the need for developments in metal artifacts
reduction.



Figure 1.1: Examples of metal artifacts in the CT images of hip scan|4], brain scan[27] and
dental scan[27].

The metal artifacts reduction problem is challenging. It is difficult to infer the informa-
tion altered by the metallic objects. This problem has been studied for a few decades and
different approaches have been developed to improve the quality of the CT scans with arti-
facts. The existing metal artifacts reduction methods usually belong to one of the following
three categories: physical correction, iterative reconstruction and sinogram correction![].
Some approaches are the combination of the methods in more than one category. In physi-
cal correction, beam hardening reduction[!9] and filtered back-projection[30] are built into
modern scanners, aiming to correct the errors during CT scan reconstruction. Unfortu-
nately, the results are often not satisfactory and have visible streak residues. Iterative
algorithms remove the artifacts from the corrupted CT scans directly[31]. But the com-
putation for iterative reconstruction methods is expensive, and consequently is inefficient.
Sinogram correction techniques include interpolation and inpainting. Linear and spline
interpolations are intuitive and widely used interpolation methods to solve the sinogram
correction problem[18]. However, linear interpolation introduces new artifacts and distorts
the shape of tissue surrounded by the metal[l]. Meanwhile, cubic spline interpolation does
not return a smooth sinogram view[18]. Since these two interpolation methods are usually
carried out in one dimension, the spatial information in the sinogram is unused. Image
inpainting? methods are able to make use of spatial information to make better sinogram
corrections. Many inpainting methods in the literature are PDE-based. The Euler’s Elas-
tica inpainting technique corrects the values of traces in sinograms while preserving sharp
edges and curvature[35, 11]. Total Variation inpainting can inpaint sinograms smoothly[34].
They can suppress most of the artifacts but require complicated mathematical calculations
which are time-consuming and computationally expensive.

1Sinogram will be introduced in Chapter 2.
2Inpainting will be introduced in Chapter 3.



Convolutional Neural Network (CNN)[21] has been widely used and attains extraor-
dinary achievements in computer vision and pattern recognition[22]. Meanwhile, CNN
models have also been developed for image restoration, and many of which are adopted
from the models used for image classification and image segmentation|[7]. Researchers in
medical imaging have attempted to take advantage of CNN and apply it to solve the prob-
lems in medical imaging. To tackle the metal artifacts reduction problem in CT scans,
researchers usually take artifacts contaminated images for restoration or erroneous sino-
grams for inpainting. Zhang and Yu[36] proposed a two-phase CNN based method to
suppress metal artifacts, by combining the information from the artifact-corrupted images
and pre-corrected images obtained from the interpolation method. Using a special loss
function for a deep neural network, Gjesteby et al.[12] developed a model for artifacts
suppression and tested it on phantom images. Xie et al.[33] applied deep residual learning
using the improved GoogleNet to reduce metal artifacts on phantom images. Ghani and
Karl[11] chose to inpaint sinograms by learning the values to be filled into metal traces
using CNN.

Many of the proposed CNN models can suppress metal artifacts effectively. However,
there is a commonly neglected issue in the above mentioned studies — the existence and
the availability of the labeled data, that is images, which are used as the target for model
training. In order for a CNN to learn how to reduce artifacts in corrupted images or how
to inpaint sinograms, it needs artifact-free images or correct sinograms as training targets.
Without these images, the learning task cannot be completed. Unfortunately, the existing
methods in the literature typically assume the existence of such clean reference images.
A good model indeed plays an important role in applying supervised learning to solve a
problem, but the significance of the data used for training, particularly the target data,
should not be ignored.

In this thesis, we focus on reducing metal artifacts in the hip scans of patients with
hip prosthesis. In clinical practices, we do not have artifact-free hip scans as targets for a
model to learn from. To solve this issue, we propose an innovative method that conducts
model training on the scans near the hip with simulated artifacts. Artifacts suppression is
then carried out on the actual artifact-corrupted hip scans using the trained model. Our
approach eliminates the need for clean hip scans in model training and produces artifact-
free hip scans using model prediction.

The rest of the thesis is organized as follows. Chapter 2 provides some background
knowledge for a better understanding of the metal artifacts reduction problem and our
approach. Chapter 3 describes our proposed method in details and Chapter 4 validates
the method by presenting different experimental results. Chapter 5 concludes the thesis
and points out potential directions for future research.



Chapter 2

Background

In this chapter, we will introduce some background knowledge for a better understanding
of the subsequent chapters. Section 2.1 gives a summary of the mechanism of CT machines,
the CT imaging process and the formation of metal artifacts. Section 2.2 provides a short
introduction to supervised learning, neural networks and optimization techniques.

2.1 CT Imaging and Metal Artifacts

Computed Tomography (CT) is a computerized x-ray imaging procedure in which x-ray
beams are generated to pass through the patient’s body while rotating around. The signal
collected at the detector will be processed and transformed by the machine to produce
cross-sectional images, or sometimes called slices, of a body. For different diagnostic and
therapeutic purposes in medical disciplines, CT scan can be conducted on different parts
of the body, such as head, cardiac, abdomen, pelvis, or even the entire body. Thus, CT
is widely used to detect diseases and conditions of a patient’s body and help pinpoint the
location of infection, tumor, blood clots, etc[4].

2.1.1 CT Mechanisms

CT scanner uses special x-ray equipment to obtain image data from different angles around
the body and creates the cross-section images of body tissues, organs, and bones.

The scanning unit is called gantry (Figure 2.1 A), and consists of two components —
the transmitter (also known as the x-ray unit) and the receiver (also known as the data

4



Figure 2.1: CT Mechanism. Picture A[17] shows the gantry in a CT machine and some
consecutive slices of chest. Picture B[15] illustrates the x-ray emission and detection inside
the gantry. Picture C is a sinogram recorded in CT machine after 180° gantry rotation.
Picture D is a CT scan of the hip[13].



acquisition unit or the x-ray detector). The x-ray unit emits multiple beams which will
be detected at the detector after passing through the body of a patient (Figure 2.1 B).
Before whole-body C'T scanning, the patient is asked to lie on a table, which will slowly
move through the gantry during scanning. The patient is fixed to the table throughout
the process and is transported continuously through the scanning field. As the patient
being moved forward, the gantry performs multiple 360° rotations. For every rotation, at
each small angle, the detector records the attenuation coefficients into a one-dimensional
array. After data collection, the computer inside the scanner will concatenate the arrays
of attenuation coefficients from different angles together into a 2D matrix, where each
column in the matrix is the one-dimensional record from a different angle (Figure 2.1 C).
For example, if the detector collects data at each 1° in one rotation, the resulting matrix
will have 360 columns. Such a matrix represents an intensity record for a slice of the body,
also known as a sinogram'. Mathematically, the process of acquiring a sinogram is called
radon transform. The inverse radon transform, which is also called Filtered Back Projection
(FBP), is the method of CT scan reconstruction from a sinogram (Figure 2.1 D). Different
objects, such as organs, tissues, bones, and air, have different attenuation coefficients[25].
Objects with high attenuation will appear brighter and objects with low attenuation will
appear dimmer. Hence, the brightness of different objects will be noticeably different in
the reconstructed CT scans.

Compared to conventional X-ray images (Figure 2.2 A), which are usually taken one
at a time, multiple and successive slices contain more information when they are stacked
in order (Figure 2.2 B). In addition, through sophisticated mathematical calculations and
transformations, the consecutive slices can be used to construct a three-dimensional digital
image or even build a physical model (Figure 2.2 C). This helps physicians identify the
location of possible tumors, abnormalities, and other pathological changes more accurately.

2.1.2 Radon Transform and Filtered Back Projection

Radon transform and FBP (inverse radon transform) play important roles in producing
CT scans.

Suppose a CT slice of body is [f(x,y)], where (z,y) is the coordinate of a pixel and
f(z,y) is the pixel value. Radon transform calculates the projection of a slice from different

Tn one full rotation, the sinogram from 0° to 180° is always identical to the sinogram from 180° to
360° (see Figure 2.1 C). We usually use the data collected in the first half of the full rotation. So the
number of columns in the matrix in the example can be reduced to 180.



Figure 2.2: Examples of (A) the X-ray image[23], (B) the CT scan[29] and (C) the 3D CT
model of hip[Y]

angles. The sinogram for a slice [f(z,y)] is

R(p, )l (2, 9)] = / N / " Fa,y)d(p — wcosO — y sin O)dedy, (2.1)

where p is the perpendicular distance from a line to the origin, and # is the angle formed
by the distance vector. In CT scanner, p is the radius of the gantry, i.e. the half of the
distance between the x-ray emitter and detector, and 6 is the angle that the gantry rotates
to. 4 is the delta function where d(z) = oo when x = 0 and § = 0 otherwise.

The inverse radon transform is as following,
flz,y) = / / G(v cos B, v sin @) [v]e?miv@cosb+ysing) go gy, (2.2)
—o00 J0

where G(vcosf,vsing) = [* R(p,0)e >™*dp. Here, G(vcosh,vsinb), represented in
polar coordinates (v, #), is the two dimension Fourier Transform of f(x,y). |v| compensates

for the high density of projections near the origin in frequency domain. It is essentially a
high pass filter, and hence the “filter” in Filtered Back Projection.

2.1.3 Metal Artifacts Formation

Metal streak artifacts are very common in CT scans when a patient has a metal insertion.
Usually, patients are required to take off all removable metallic objects before CT scanning.
For those items which cannot be removed, such as dental fillings, surgical clips and hip
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Figure 2.3: Metal artifacts formation. A column in the sinogram is the data recorded in
the detector after x-ray beams are emitted and pass through the body.

replacement prosthesis, it is difficult to avoid artifacts in the scans. Metallic materials
have high attenuation coefficients, much higher than that of bones and other tissues. As a
result, the metal implants appear extremely bright, leading to strong artifact effects at its
surroundings or even across the whole image.

Metal streak artifacts are mainly due to the errors in the sinogram and the filters used
in FBP. The detector records relatively high values for those x-rays passing through metal
pieces since metallic objects have higher attenuation coefficients. Since each column in a
sinogram is the attenuation coefficients recorded at an angle, as the gantry rotates, the
high values resulting from metal pieces form bright traces in the sinogram (see Figure 2.3).
However, the sinogram of an image without artifacts has no such bright bands (Figure 2.1
C). The errors in sinograms led by inaccurate measurements from metallic objects result in
the streaks in CT scans. During CT scan reconstruction, FBP uses a high pass filter, which
further exaggerate the difference between detected values[!]. Since the values at the bright
traces are much higher than others in sinograms, the exaggeration in value difference brings
up artifacts. The filter creates great distinction in the color of metallic objects from other
tissues, as well as bright and dark streaks originating from the metal in the reconstructed



image.

Metallic objects and the resulting artifacts in CT scans create a large obstacle in
CT scan interpretation. Artifacts may cover crucial information in CT scans and hinder
diagnosis[?]. Around 20% of CT scans taken in the U.S. annually have metal artifacts|!].
It is essential and necessary to develop effective and efficient methods to solve this issue,
in order to provide physicians with higher quality scans for diagnosis.

2.2 Supervised Learning, Neural Networks and Train-
ing

Supervised learning is widely used for predicting unseen or future events using existing
information, and is the foundation of our proposed method for reducing metal artifacts.
This section will introduce supervised learning, the supervised learning model we use in
our approach, and the methods to train a model.

2.2.1 Swupervised Learning

Supervised learning is one of the main branches of machine learning. Some examples of
supervised learning problems could be predicting the future sales of products offered by a
company or identifying the digits in images of house numbers. Typically there are three
components in a supervised learning problem: an outcome measurement (label), a set
of features (input) and a model that predicts the outcome using the features. Outcome
measurements can be numerical (the highest temperature of the next day) or categorical
(win or lose a game). Features can be of these two types as well, and usually have a
relationship with the outcome. Using the data we collect, we can build a prediction model
that predicts the outcomes of new situations given features.

One thing that makes supervised learning distinct from other machine learning tasks
is the label of an observation. In supervised learning, we want a model to learn the
transformation from input to label using the collected data, where the transformation is
specified by a set of parameters. Suppose we have n observations. The model in supervised
learning can be seen as a function f(@; X), where € contains the parameters of the model
and X = {x1, zo,...,x,} is the input data. The labeled data is y = {y1, y2, ..., yn}. We call
each (z;,y;) as an observation. The goal of supervised learning is to find the parameter 0
such that the difference between f(60; X) and y is minimized. Without y, the parameter



6 cannot be found. Therefore, the labeled data y plays a significant and essential role in
supervised learning.

As we explained above, we aim to minimize the difference between f(0;X) and y.
Such difference is called loss function. Let the loss function be denoted by [. A supervised
learning problem is then defined as:

min [(0) :=1(f(8; X),y) (2.3)
Specifically, the loss function is a function of 6 as well, written as [(@). The process
of minimizing the loss function to obtain 6 is called training. By applying optimization

techniques, which will be discussed in section 2.2.3, we can solve the minimization problem
to find 6.

Once we find é, we have a trained model and are ready to apply the it on new data X "
Let 3 denote the label of new data. If [(f(€; X’),y’) is low and is similar to I(f(0; X),y),
we may conclude that the model is well trained and able to produce reliable prediction.

2.2.2 Neural Network

There are various models in supervised learning. Some model has an explicit form of f,
such as linear regression, and some does not. The model, neural network, we use in our
approach is defined implicitly. It is inspired by the biological nervous system in animals.
When information is received in a neural network, it will be passed through different
neurons in the form of signals. As the brain receives signals, it will makes commands for
reactions. In this section, a brief introduction of neural network will be given, as well as
the network components and structures used in the convolutional neural network (CNN)
model in our approach.

Mechanism of Neural Networks

In the implementation of neural network, neurons are seen as nodes and connections are
seen as edges. The signals transmitted in a network are real numbers. When a node
receives signals, it processes the numbers by applying summation followed by a function.
Such functions are typically non-linear functions and are called activation functions, which
will be introduced in section 2.2.2. The result of the activation function is the output of
the node. The output will then be passed to the nodes that are connected with the current
one via outgoing edges. Every edge in the network has a weight. During transmission, the

10
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Figure 2.4: The first 2 layers of a feed-forward neural network model. Each circle represents
a node and each line represents a connection edge.

output from the node will be multiplied by the weight of each connection edge. Since the
weights on different outgoing edges vary, a single node will pass distinct signals to different
nodes.

Since the connections among neurons in the nervous system are too complicated to
imitate for data modeling, neurons are partitioned into different sets for constructing a
neural network model. Each set of nodes is called a layer. An input layer, multiple
intermediate layers, and an output layer collectively form a neural network model. Each
node in an intermediate layer has both incoming edges and outgoing edges. One of the
most simple neural networks is the sequential feed-forward neural network that consists of
several layers of nodes and sequentially transmits information through layers (Figure 2.4).

Mathematically, we present a feed-forward neural network in the following way. Suppose
we have a set of sample data {x;,Xa,...,X,}, where each x; € R3. In this example (see
Figure 2.4), the first two intermediate layers have 5 nodes individually. The weights of the
connection edges between input layer and the first layer are stored in a matrix W) € R>*3,
and the weights between the first layer and the second layer are represented as a matrix

11



W® € R>5. Let 01 and o, be the activation functions to process outputs from layer 1 and
layer 2 respectively. To learn from a sample x;, for each of its 3 features, the information
needs to be passed to every node in the first layer. The input to the first layer for a
sample is WMx; + b where vector b is a bias term. After applying the activation
function o, we obtain the output of the first layer for sample x;, zgl) = o (WWx; + bW).
Repeating this process, we can acquire the output of the second layer for sample x;, zl@) =
UQ(W(Q)ZEI) + b®), where b® is the bias term in the second layer.

In a neural network model, the weights are essentially the parameters in the € of the
loss function as introduced in section 2.2.1.

Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a type of neural network for imagery analysis, such
as image classification, image segmentation, object detection, etc. A CNN usually consists
of an input layer, an output layer, and multiple convolutional layers. The mechanism of
convolutional layer inherits from the convolution operation in signal/image processing. In
such a layer, a sliding window, called a kernel, moves across an image to capture spatial
and pattern features. Multiple kernels can be used in one convolutional layer to extract
various characteristics and information.

Suppose we have an image of size 4 x 4 and each pixel value is x;;, where row i =
1,2,3,4 and column j = 1,2,3,4. We want to use a 2 X 2 kernel to convolve the image
(see Figure 2.5). Let k,, be the weights in the kernel, where p = 1,2 and ¢ = 1,22
Convolution typically starts from the top left corner of the image. The result of the corner
is k11211 + ka2 + k21721 + KkoaZao. Then the kernel slides towards the right for 1 pixel®
and gives the resulting value k1212 + k12213 + ko122 + kootos. Repeating the process, the
kernel finishes convolving one horizontal line. It then moves to the first two columns in the
second and the third row, i.e. 1 pixel downward®*, and repeat the convolution as previous.
By stacking and concatenating the resulting values in the order we proceed convolution,
we obtain a 3 x 3 convoluted “image”. We then obtain the output of a convolutional layer
with one kernel after applying an activation function.

Convolutional layer is designed to improve the efficiency in a neural network model for
image data. Considering the number of pixels in an image, which could be 10,000 for a

2For an RGB color image with red, green and blue channels, the kernel has depth 3, the same as the
number of image channels.

3The sliding step is not necessarily 1. If the step size is 2, then the kernel moves 2 pixels to the right.
The step size is usually smaller than or equal to the kernel size.

41t again depends on the step size.

12
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Figure 2.5: Kernel operations and margin padding in a convolutional layer. The image is
of size 4 x 4 and is padded with zeros to the left margin and top margin. Convolution is
conducted by a 2 x 2 kernel with weights k11 = 7, k12 = 5, ko = 3 and ko = 9. Blue, red
and green squares illustrate the convolution at the margin and in the image. The image
below is the result of convolution with the kernel.
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100 x 100 image (small) or over 1 million for a normal size photo, it is computationally
expensive to assign weights for each pixel. For the photo with 1 million pixels, if we use
20 kernels of size 5 x 5 each, we will have 20 x (5 x 5) = 500 parameters (weights), which
is much less than 1 million. Through deploying kernels, we can not only extract spatial
information but also reduce a large amount of computing resource usage.

Convolutional layer is the most important component in the model we use for metal
artifact reduction. Through connecting 6 consecutive convolutional layers, our model learns
the way to correct sinograms during model training. The model will be introduced and
explained in detail in section 3.3.

Margin Padding

In the above example (Figure 3.3), a 4 x 4 image becomes a 3 x 3 image after convolution.
Sometimes it is not desirable to alter the sizes of the input and the output of a layer. To
resolve this issue, we can pad some zeros around the image. For instance, we can pad a row
and a column of zeros above and at the left of the image, so that the padded image now is
of size 5 x 5. The convolution operates in the same way as before. When the window slides
through the row of zeros and the column of zeros, only the weights that overlap with the
pixels in the image will be used and the weights corresponding to the padded zeros will be
ignored. At the top left corner, the convoluted result would be kqox11; after one step to
the right, the result is ko171 + koow1o; after one step downward at the very left, the result
is kiox11 + koowo1. By padding some zeros along the margins, we obtain the convolution
result to be a 4 x 4 image, which is the same size as the input.

Activation Function

Activation function is an imitation of the firing process in a neuron that determines what
information will be passed to the connected neurons and when to pass them[l(]. It is
used after each intermediate layer in a neural network. A typical activation function is
non-linear. Commonly used activation functions include sigmoid: o(x) = 1/(1+e~*), and
Rectified Linear Unit (ReLU): o(z) = z if x > 0 and o(z) = 0 otherwise. A commonly
used variant of ReLLU is called Leaky ReLU, and is represented as o(z) = x if x > 0 and
o(x) = ax otherwise, where « is a hyperparameter and usually less than 1.

In our model, we adopt Leaky ReLLU as the activation function after each convolutional
layer.
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2.2.3 Training and Optimization

As explained in section 2.2.1, we want to find the best parameter 0 for a model. To achieve
this, we need to minimize a loss function as presented in 2.3. Here, optimization techniques
can fulfill the minimization goal. In this section, we will briefly introduce loss functions and
three optimization techniques: gradient descent, stochastic gradient descent, and ADAM.

Loss Function

A loss function represents the difference between the predicted label and the actual label
of an observation. The smaller the value of the loss, the more accurate the prediction we
have. Two commonly used loss functions in the literature for training a neural network
are logloss and mean squared error. Specifically, logloss is used for classification problems
and mean square error is for regression problems.

For logloss in classification, the function to be minimized is

16) =~ 373y log(F(8:x)0), (2.4)

i=1 k=1

where there are n samples and K classes; y;; = 1 if sample 7 is in class k and y; = 0
otherwise; f(60;x;), is the predicted probability of sample x; to be classified to class k by
the model.

For mean squared error in regression, the function to be minimized is

1 n
ZOI:— i 0 iz, 25
©)= 3 ol 10:x) (25
where y; and f(0;x;) are the actual value and the predicted value of sample x; respectively.

For our model, which will be introduced in section 3.3, its output data and target data
are both images. Logloss, which is in regard to classification probability, is not a suitable
loss function when the target data is images. Thus, we choose to use mean squared error
to measure the difference between outputs and targets.

Gradient Descent

With a defined loss function, the next step is training the model, i.e. minimizing the loss
function. One of the most classical methods is gradient descent.
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To find the minimum of a loss function {(8) using gradient descent, we start from some
point 6, and take a step toward the direction that gives the greatest decrease in [. This
direction is the negative gradient at 6, denoted by —V1I(0;). After taking the first step,
we reach a new point, say 6@5. We then take another step by calculating the direction with
steepest drop. The procedure of moving from @, to 65 is called an update. The general
formula of one update is 6,1 = 6, — aVI(0;), where « is a hyperparameter for step size
and 4 is the iteration number. The updating process gives a decreasing sequence of (),
ie. 1(6;) >1(0) >1(03) > ... . When the difference between 6,,; and 0; is close’, we can
stop updating and conclude that we have reached a local minimum of function [.

Stochastic Gradient Descent

In gradient descent, the gradient VI(6;) is calculated from the entire data set (X,y) in
an update step. This is computationally expensive, especially when there are millions or
billions of observations. By deploying stochastic gradient descent[5], the gradient compu-
tation is based on a subset of observations, called a batch of data, in one update. The
batches of data are obtained by random partition in the original data set. Each batch has
the same size. With a lighter computation burden at each step, the training process could
be accelerated.

Batch Normalization

Batch normalization is known for its effectiveness regarding performance, efficiency, and
stability in training a neural network. Suppose the network is currently learning from a
batch of data B of size n. For the j* feature, the mean of the data in this batch is

n
1
J ni : 1)
=1

and the variance is
n

1
0p; = - > (i — pss)*.
i=1
The normalized data of feature j is then xj; = (i; — pup;)/0op;. We perform the nor-
malization for each feature individually, and pass the final normalized data to the next
layer.

>The stopping threshold of the difference between 8;,, and ; is user-defined. Sometimes the threshold
is defined as the difference between 1(68;,1) and 1(8;). Either way, the value is typically 10~ or smaller.
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ADAM

In gradient descent and stochastic gradient descent, we need to determine the step size of
each update manually. At the beginning of training, we may use a relatively large step size
to move towards a local minimum faster. As training proceeds, we get closer and closer
to the local minimum and do not want to miss it by taking big steps, so we decrease the
step size. It could be hard to adjust of the step size accordingly during training. Thus,
ADAM][20], which is a variant of stochastic optimization and known as adaptive moment
estimate, takes a user-defined initial step size at the beginning and modifies it as training
proceeds. It can adapt the step size automatically, removing the need to manually modify
the step size during training.
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Chapter 3

Methodology

Metal artifacts reduction is still an unsolved problem in CT imaging. The existing ap-
proaches based on supervised learning require clean scans of patients with metallic im-
plants. In reality, such scans do not exist. For this reason, a novel supervised learning
based method is required to eliminate the need of clean images.

In this chapter, we outline our proposed method to reduce metal artifacts, and discuss
each component in the method. Our approach focuses on the artifacts resulting from hip
replacements only, and deploys CNN for sinogram inpainting. The key to this approach
is getting rid of the requirement of clean hip scans that are not available clinically, by
generating a training data set from the scans of the parts above and below the hip. After
the model is trained, it can then be used for artifacts suppression on corrupted hip scans.

The ground truth assumption issue is discussed in more details in section 3.1 and our
method is outlined in section 3.2. The CNN-based sinogram inpainting model is described
in section 3.3. It is based on the work of Ghani and Karl[l1]. The input images to the
model are the sinograms with bright bands resulting from metallic objects, and the target
images are the sinograms without those bands. The model will be trained to inpaint the
bright belts. In order to be efficient and generalizable, the model should be applicable
on multiple patients. Our strategy to create a generalizable model is discussed in section
3.4. An additional component illustrated in section 3.5 is K-means segmentation which is
utilized for segmenting the metallic objects from the artifact-corrupted images. It is an
important part in training data generation.
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3.1 Ground Truth Assumption

To train a neural network for reducing metal artifacts in CT images, we need to have
artifact-corrupted images as inputs and artifact-free images as targets for a CT scan-based
model, or their corresponding sinograms as inputs and targets for a sinogram-based model.
In the literature, we often call such target data the ground truth.

However, in clinical practices, the artifact-free scans at the part with inserted metallic
objects are not available. When a patient with hip prosthesis takes a whole-body C'T scan,
the metallic object is already implanted and so it will lead to artifacts immediately. Even
if the patient takes CT scans before the replacement implant and after the implant, it is
not guaranteed that the patient can stay in the same position and remain in the same
physical situation in the two screenings. We may obtain the error in the parts other than
the locations of metal pieces. Therefore, clinically it is impossible to acquire a pair of
artifact-corrupted and artifact-free CT images with everything else in the image held the
same.

As explained in section 2.2.1, supervised learning requires input-target pairs for train-
ing. An inpainting model needs target examples in order to learn how to map an artifact-
corrupted image to an artifact-free image, or how to map a sinogram with bright traces to
a smooth sinogram without traces. Ground truth images are strict requirements in order
to actually apply neural networks for metal artifacts reduction. However, for the pro-
posed methods in the literature, the target images are the clean hip scans of patients with
metallic hip replacements. As previously discussed, these scans do not exist. Therefore,
it is necessary to come up with a new method of training CNN models for metal artifacts
reduction that does not rely on the existence of clean images at the hip.

3.2 Our Proposed Method

To tackle the ground truth assumption issue, we propose an innovative method to remove
the need for clean images at the hip. In a series of CT scans, the scans from the abdomen
to the thigh are similar in terms of body shapes, bone shapes and tissues. By taking
advantage of the similarities, our idea is to simulate streaking artifacts in the scans near
the patient’s hip and train a CNN model, which will be introduced in section 3.3, on the
sinograms of these images. After the model is trained, it can then be used to reduce
artifacts in the scans of the hip. In this situation, the training data, including the input
images and the target images, is generated from the scans that are available in clinical
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Figure 3.1: The data used for creating training set and testing data set for modeling. Top:
the scans of the abdomen — the part above the hip. These images are used as training data.
Middle: the scans of the hip. These are testing data. Only input images are available.
Bottom: the scans of the thigh — the part below the hip. These images are also used for
training.
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practices. The clean images of the artifact-corrupted scans at the hip are not required for
model training any more.

In a whole-body CT screening, the contrast and brightness of all slices for a patient
are usually similar since radiation doses! are identical in one screening. Also, the shapes
of the parts near the hip, such as abdomen and thigh, are similar to the ones at the hip.
Most importantly, the pixel value distributions of the images from the abdomen to the
thigh are similar as well. Additionally, radon transform transfers the similarity of the pixel
distributions to sinograms, so that the sinograms of the images with similar backgrounds
also have similar pixel distributions. Therefore, we think that a model can learn artifacts
reduction from the near hip scans, which have similar backgrounds to hip scans.

A natural approach to metal artifacts reduction is to remove the streaks directly from
artifact-corrupted images. However, this is difficult since the locations of streaks are hard
to acquire. Instead, we will correct the errors caused by the metal pieces when generating
the sinograms. Specifically, the values that need to be changed are the ones in the traces
resulting from metallic objects (Figure 2.3). Together with the idea described above, the
training data consists of the sinograms of artifact-corrupted near hip scans as inputs and
the sinograms of clean near hip scans as targets. Artifact-corrupted near hip scans will be
generated from clean near hip scans using artifacts simulation. The testing data consists
of the sinograms of artifact-corrupted hip scans as inputs only. As previously discussed,
artifact-free hip scans that would serve as target images in the testing set do not exist
(Figure 3.1).

To verify our idea, we prepare the training data for model training in the following
way (see Figure 3.2). Given a series of artifact-corrupted hip scans, we first segment the
metal picces from these images. This segmentation will be useful for simulating artifacts
on the scans near the hip. Since the trained model will be used to reduce artifacts on
the CT slices of the hip, we hope the simulated artifacts are as similar as possible to the
artifacts on the hip scans. Here, metal segmentation is used to approximate the shapes
and locations of the metallic objects. We apply the K-means clustering method, which will
be introduced in section 3.5, for metal pieces segmentation. After obtaining the segmented
metallic objects at the hip scans, we store the results as masks for the subsequent streak
simulation. We can overlay a mask on a scan near the hip and apply radon transform to
get a sinogram with bands in light colors. To simulate artifacts, we fill the bands with the
largest existing value in a sinogram®. We then apply FBP on the trace-filled sinograms to
reconstruct CT scans. Due to the modification in sinograms, the reconstructed scans near

'Radiation doses: the amount of x-rays.
2This step is for the computational simulation of artifacts only.
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Figure 3.2: Training data generation process. This process can be viewed as a segmentation
step and an artifacts simulation process.
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the hip now have very bright metal pieces as well as streak artifacts. Lastly, by applying
radon transform on the artifact-corrupted near hip scans, we acquire their corresponding
sinograms, which are the input data to our model. The targets are the sinograms of the
clean images near the hip.

When our model finishes training using the sinograms obtained from the above proce-
dure, it can correct the sinograms by inpainting the bright bands. We use the trained model
to correct the sinograms of artifact-corrupted hip scans. The corrected output sinograms
will then be used to reconstruct artifact-free C'T scans of the hip by FBP.

Model training often requires a large amount of data, especially when the model is
complicated and contains many parameters. The number of the abdomen scans and the
thigh scans of a patient, which is usually around 20, is insufficient for a model to learn
sinogram inpainting. We, therefore, conduct perturbations on the segmentation results
regarding the sizes and locations of the metallic objects to obtain additional masks®. Then,
we randomly choose a near hip scan and overlay one of the perturbed masks on it, to
simulate artifacts. Through perturbation, we can acquire sufficient training data and make
the model learn to correct a variety of different traces in sinograms.

3.3 Convolutional Neural Networks for Sinogram In-
painting

Because we want to replace the values of traces with correct ones, we can view this process
as filling the gaps in sinograms. The values of traces can be seen as missing values. In
the literature, the completion of an image with missing parts is called inpainting. Conven-
tional approaches for sinogram inpainting are often based on partial differential equation
(PDE). For instance, the Euler’s Elastica inpainting technique corrects the values of traces
in sinograms and preserves sharp edges and curvature at the mean time[35, 11]. Total
variation is deployed by Duan et al. for sinogram inpainting to suppress artifacts[10]. The
PDE-based inpainting methods can reduce most of the metal artifacts but are complicated
and time-consuming. It is more desirable to have an efficient approach to solve the artifacts
reduction problem.

In recent years, neural network models have been developed for image restoration,
and many of them are modified from the models used for image classification and image

3The number of masks depends on the model size and architecture. In our case, 1000 masks are sufficient
for model training.
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Figure 3.3: Model architectures.

segmentation[21]. Since image data contains spatial structures and information, these
models usually adopt convolutional layers to learn patterns in images. The training data
generated by Zhang and Yu[30] is the combination of pre-corrected images obtained from
the interpolation method and the artifact-corrupted images. Due to the insufficiency of
clinical samples, images are separated into small grids which are used as the inputs to their
CNN model. Gjesteby et.al[12] developed a CNN model with a special loss function and
validated its performance on phantom images. Xie et.al[32] used an improved GoogleNet
for residual learning to suppress artifacts. The model was also only applied on phantom
images. These three metal artifacts reduction models all take artifact-corrupted images as
inputs and clean images as targets. Ghani and Karl corrected the values of the traces in
sinograms using a neural network model with convolutional layers only[l 1]. The sinograms
with inpainted traces are then used to reconstruct artifact-free images by FBP. In general,
these models performed well in reducing metal artifacts in either phantom images or clinical
images and produced better results than conventional approaches.

Training a CNN model could take hours to days. But using a trained model to reduce
artifacts could be done less than one second. In this way, using neural network models for
metal artifacts suppression is more efficient than the traditional methods.

The model we use in our approach is a CNN model (Figure 3.3), inspired by the model
developed by Ghani and Karl[l1]. Only convolutional layers are used in the network.
The kernels used in convolutional layers capture the spatial information in sinograms to
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correct the values of the bright traces. The kernel is of size 5 x 5 and is moved 1 pixel
at a time. We pad zeros along margins so that the input image size is the same as the
output image size. Each convolutional layer is followed by an activation function — Leaky
Rectifier Linear Unit (Leaky ReLLU) with slope 0.2. Additionally, batch normalization is
performed after activation. The last convolution layer is just the output layer and does
not have activation or batch normalization. Ghani and Karl’s model has 10 intermediate
convolutional layers. We reduce the number to 6 for better computational efficiency and
find no obvious degradation in model performance.

3.4 Single Patient & Multiple Patients Scenarios

Based on our proposed method, we design two model training processes for metal artifacts
reduction in clinical applications. The first process trains models using the scans of a single
patient and will be used on the hip scans of the same patient only. The other process trains
model on the hip scans of multiple patients and is thus more robust. The trained model
can be applied on the patients it trained on and potentially also applied on future patients.

For the first process, we observe that consecutive slices from one CT screening are
consistent in body shapes and similar in brightness, contrast and pixel value distributions.
Their corresponding sinograms also share a large amount of resemblance. When a model is
being trained on these sinograms, it does not need to adapt to background variations and
thus, it can focus on inpainting traces. However, the generalizability and transferability of
the trained model will be relatively low. The model may work effectively for the patient
used for training, but may produce poor artifacts suppression results for other patients.
Therefore, training a model on every single patient’s sinograms is inefficient.

To resolve this concern, we consider developing a model that can be applied to multiple
patients who have various physical circumstances and characteristics. We initially deployed
our model directly on the sinograms obtained from multiple patients’ scans. Due to the
diversity in body shapes and image properties, the input sinograms from different patients
have more variances in pixel value distributions than the sinograms from a single patient.
Unfortunately, our model trained on multiple patients fails to adapt to the dissimilarities
in the inputs and produces sinograms that output blurred reconstructed CT images. Con-
sequently, we realize we need to use normalization* techniques to make the inputs obtained
from multiple patients similar.

“The “normalization” here is different from the one in batch normalization (section 2.2.3).
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Figure 3.4: The scans of the hip of different patients. The images have different brightness,
contrast and body shapes.
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Through observing the CT scans of different patients, we notice the inconsistencies in
body shapes as well as the brightness and contrast of the scans (Figure 3.4). Since it is
inappropriate for us to alter any physical property or condition of a patient, we ignore the
body shape inconsistencies during input normalization. Between brightness and contrast,
we observe that brightness is the main cause of the variance in pixel value distributions of
the scans and the corresponding sinograms. Thus, we focus on normalizing the brightness.

First, we randomly choose a patient and use one of his/her near hip scans as the
standard®. Then, we want to make the near hip scans of other patients similar to the
standard.

The first method we try is histogram matching, since it is a direct way of matching
pixel distributions. The resulting scans from histogram matching are able to achieve con-
sistent brightness. However, we also need to adjust the brightness of hip scans back to
original levels after artifacts are removed. The reversion is aimed to keep the consistency
of brightness in the scans of a patient. Therefore, the normalization method we use should
be easily reversible. Unfortunately, we fail to find a way to reverse histogram matching.

We next consider a much simpler normalization method, scaling, which can be reversed
by dividing the scaling factor. Given an image S as the standard and an image I to be
scaled, we find a scalar a such that the value distribution of al is similar to the value
distribution of S. We use the same scaling factor for all the scans of a single patient
and different scaling factors for scans of different patients. After scaling the near hip
scans of different patients and applying radon transform, we can acquire the sinograms
with similar distributions. By applying FBP on the output sinograms from the model, we
obtain artifact-free images with similar distributions. We then divide the images by their
corresponding scaling factors to get the final images without artifacts, but with background
pixel value distributions similar to the original scans.

3.5 K-means Clustering for Metal Segmentation

As we introduced in section 3.2, we need to simulate metal artifacts in the CT scans of
the parts near the hip so that we can create the input data to our model. We will use
the shape and location of metal artifacts extracted from corrupted scans at the hip as a
basis for artifact simulating. Thus, we need to segment the metal artifacts in corrupted
hip scans so that the artifacts’ approximate locations and shapes can be obtained.

SWhether the scans are bright or dim does not matter. The goal of normalization is to have similar
brightness among all patients’ scans.
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Figure 3.5: Metal segmentation using K-means clustering. Segmenting (A) using k& = 3
gives (B). The segmentation mask (C) is generated by merging the black and grey segments
to one black segment. So the mask is a binary image with metal pieces segmentation result
being white and the rest being black.

As objects with higher density appear brighter in images and have higher pixel values,
metal artifacts appear very bright and attain high values. In some simple cases, separating
metal parts from the background can be easily done by thresholding. However, most
clinical images have complicated backgrounds. It is not easy to predetermine thresholds
to perform metal segmentation for hip CT scans.

In order to be more robust, we apply the K-means clustering method to segment metallic
objects from artifact-corrupted images. Consider a greyscale image that has N pixels. We
first sort these N pixels by their values in increasing order, where lower values appear darker
and higher values appear brighter in images. Then, we randomly choose k values without
replacement from the given values, and assign them as the & center points, ci, ca, ..., cx°.
In the first iteration, we calculate the difference between each pixel value to each center
point. We label a pixel as in class ¢, where 1 < i < k, if the difference of the pixel value
and ¢; is the smallest. After the first iteration, each pixel has a label that indicates which
class the pixel belongs to. For each class ¢, we compute the mean pixel value and assign
the computed mean to ¢;. This ends the first iteration with new center points. Iterations
will be repeated until two consecutive iterations give identical center points. After the final
iteration, we choose the class with the highest center point value to represent the metal
artifacts.

6We have observed that k > 3 gives stabler segmentation results. In our experiments, we use k = 3.
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Chapter 4

Experiment and Result

In this chapter, we perform 4 experiments to validate our idea and approach. The data
used in our experiments include phantom images and clinical images. The metal arti-
facts reduction results will be displayed in image form and evaluated using quantitative
measurements.

4.1 Model Training and Data source

The model we introduce in Section 3.3 is used for all the experiments outlined in this
chapter. We also apply identical settings for training in all experiments. We deploy
ADAM optimizer with learning rate 5e-3 and decay 2.5e-5. Due to computational resources
limitation and the large image size, we use a batch 16 sinograms when training our model.
Training time varies with different inputs, ranging from 1 to 2 hours. The loss function is
mean squared error, measuring the Euclidean distance between outputs and targets.

The data used in Experiment 1 are artificial phantom images. The data used in the rest
of the experiments are obtained from Grossberg et al.[13]. Due to memory limitations, we
resize the images from 512 x 512 to 256 x 256. Additionally, all the images in the dataset,
including hip scans, are metal-free and artifact-free!. Therefore, we need to simulate
artifacts on hip scans and then validate our proposed method. We will use the clean hip
images as reference images to perform both qualitative and quantitative evaluations.

!Unfortunately, we are unable to find clinical whole-body CT scans that have artifacts at the hip part,
i.e. real world scans of the patients who have hip replacements. Such scans can make a huge contribution
to this research in the future.
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4.2 Performance Evaluation Metrics for Metal Arti-
facts Reduction

To evaluate the metal artifacts reduction outcome, we conduct qualitative and quantitative
analysis on the reconstructed scans using the outputs of our model. The evaluation will
be conducted only on the test data in each experiment.

Qualitative evaluations are performed by showing the artifact-corrupted images, the
artifact-reduced images and the reference images.

Quantitative evaluations are conducted using the following measurement metrics:

e MSE: Mean Squared Error, the average squared difference between pixels. Smaller
values imply smaller discrepancies between the artifact-reduced image and the refer-
ence image.

e PSNR: Peak Signal-to-Noise Ratio. Larger values indicate better reconstruction from
the artifact-corrupted image.

e SSIM: Structural Similarity, ranged from 0 to 1. Higher values suggest higher simi-
larity between the artifact-reduced image and the reference image.

4.3 Experiment 1: phantom images

Before applying our method on clinical images, we first test the model performance on
phantom images to have an idea of the robustness and the performance of our model.

4.3.1 Experiment Setup

Each phantom image is in greyscale 0 — 1 and of size 128 x 128. In all the phantom
images we generate, we use pure black color with greyscale value 0 as background since air
usually appears very dark in CT scans. Then, we insert a big white ring, with greyscale
value 0.9, to represent the outer body skeleton. We also insert 3 to 10 different shapes in
random levels of grey between 0.1 to 0.8 at random locations within the outer white ring,
to simulate various tissues and organs. Shapes could vary from circles, ellipses, squares,
and rectangles. Similarly, 1 to 4 random shapes with greyscale value of 1 are inserted at
various locations to represent simulated metallic objects.
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Input

Target

metal artifacts

1000 sinograms (have bright | 1000 sinograms (no bright traces)
Training traces) of phantom images with | of phantom images without metal

metal artifacts and artifacts

100 sinograms (have bright | 100 sinograms (no bright traces)
Testing traces) of phantoms images with | of phantom images without metal

and artifacts

Table 4.1: Training and testing data in Experiment 1

The artifact simulation procedure is similar to the one in Figure 3.2. The only difference
is in the method used to obtain the masks of metal pieces. In this experiment, since all
metallic objects are simulated, we can acquire the masks when we insert the simulated
metals into the images. Two examples of the generated phantom images can be seen in
Figure 4.1.

Most of the objects in this experiment are randomly generated. Thus, we can create
as many phantom images as we want. Considering the size of our model and the number
of parameters needed, we generate 1100 phantom images, 1000 for training and 100 for
testing (Table 4.1). The partition between the training set and the testing set is completely
random. The target images for training and testing are the sinograms of the phantom
images without simulated metallic objects. These sinograms have no bright traces. After
the model finishes learning from the training data set, it can be used to make predictions
on the testing set. The predicted results, which are the corrected sinograms, will then be
used to reconstruct images using FBP to give the final artifact reduction results.

4.3.2 Result

The qualitative results in Figure 4.1 and the quantitative results in Table 4.2 both in-
dicate reconstructed images have significant improvement in image quality compared to
artifact-corrupted images. Most of the artifacts are successfully suppressed by correcting
the values in traces in sinograms using our trained model, and they can be barely seen
in the reconstructed images. Even though the input images have a variety of shapes and
shades in the background and simulated metal pieces, our model is capable to handle the
variance and provide stable prediction results on par with the performance on the training
set.
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Figure 4.1: Experiment 1: phantom images. Above: Two examples of phantom images
with simulated artifacts and the corresponding metal artifact reduction results. Below:
the corresponding targets, inputs and outputs in our model.
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Comparing with the experiment performed by Ghani and Karl[! 1], our input data
has much more variance stemming from a larger variety of background shapes and simu-
lated metal pieces. The phantom images they used in their experiment all have the same
background and their simulated metallic objects are filled circles only. Our experiment
demonstrates the robustness of the model and shows its capability for reducing artifacts
even given different image backgrounds.

Images MSE SSIM PSNR
Corrected Image 7.727e-5 43.289 0.9817
Uncorrected Image 7.721e-3 27.221 0.5583

Table 4.2: Quantitative Comparison Results of Phantom Images

4.4 Experiment 2: hip scans for training and testing
(one patient)

In the second experiment, we want to see if our model could perform well on real CT hip
scans, which have more variances in object shapes and brightness than phantom images.
The tissues and organs in our body have complicated shapes and curves. Additionally, the
attenuation coefficients vary in different parts of an organ or a tissue, while the attenuation
coefficients are consistently identical in generated shapes in phantom images. In this
experiment, we further test our model’s capabilities, including robustness and adaptability,
on more complicated inputs.

4.4.1 Experiment Setup

Since no patients in the data set have existing metal implants and therefore no CT slices
contain streaking artifacts, we need to simulate streaking artifacts to generate inputs for
both the training set and the test set. A patient with 250 slices of hip CT scans is singled
out from the data set, and 11 consecutive slices from the scans are chosen. Using these 11
images, we identify the sizes and the locations of hip bones. Then, we use these information
to generate 1100 masks, by perturbing the location and size of the metal pieces. The rest
of the artifacts simulation process is similar to the one introduced in Figure 3.2. After
obtaining 1100 corrupted hip scans, we randomly partition them into a training set and
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reference sinogram sinogram with trace corrected sinogram
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reference image metal artifacts reconstructed image

reference image metal artifacts reconstructed image

Figure 4.2: Experiment 2: hip scans for training and testing. Above: an example of the
target, the input and the output in our model. Below: three testing examples to illustrate
metal artifacts reduction result.
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Input Target

1000 sinograms (have bright traces) | 1000 sinograms (no bright traces) of

rating |- ¢ hip scans with metal artifacts hip scans without metal and artifacts

100 sinograms (have bright traces) of | 100 sinograms (no bright traces) of

Testi . . i . . i
esting hip scans with metal artifacts hip scans without metal and artifacts

Table 4.3: Training and testing data in Experiment 2

a test set with 1000 and 100 images respectively. By applying radon transform again, we
acquire the inputs for both data sets (Table 4.3). The targets are correspondingly the
sinograms of the original clean slices of the parts above and below the hip.

4.4.2 Result

As shown in Figure 4.2 and Table 4.4, in this experiment where training and testing data
both obtained from real hip scans, our model does an excellent job in reducing streak arti-
facts. Both the quantitative measurement and the qualitative analysis indicate the image
quality of the reconstructed images is significantly improved compared to the artifact-
corrupted images. The parts, which used to be covered by streaks and artifacts, is visible
after correction. Although the dark streaks in the artifact corrupted images resulted in
slightly darker shades in the reconstructed image, we can still see the parts beneath the
shades fairly clearly. This experiment reveals the adaptability of the model to clinical
data, which contains not only complicated shapes and curves but also diverse attenuation
coefficients in different parts of body matter.

Images MSE SSIM PSNR
Corrected Image 9.180e-5 40.523 0.9752
Uncorrected Image 6.623e-2 20.793 0.3514

Table 4.4: Quantitative Comparison Results of hip scans for training and testing.
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4.5 Experiment 3: training on near hip scans, testing
on hip scans (single patient)

In the previous two experiments, we assume that the clean images of the hip are available
and we use them as the target for both model training and testing. However, as explained
in section 3.1, it is impossible to obtain the artifact-free hip scans if the patient has metal
implants at the hip. Since we have clean slices at the parts other than hip, we can simulate
artifacts on these slices, and let the model learn how to reduce artifacts by inpainting traces
in the sinograms of these slices. Once the model learns the pattern, it can be applied to
the artifact-corrupted slices of the hip to suppress streaks.

In this experiment, we validate our idea by training our model on the sinograms gen-
erated from the near hip scans and testing the trained model on the sinograms of artifact-
corrupted hip scans. All images in the training set and testing set come from a single
patient.

4.5.1 Experiment Setup

The patient and artifacts simulation procedure on hips scans are identical to the ones de-
scribed in Experiment 2. We generate 1000 hip scans with artifacts, then perform K-means
segmentation with k = 3 to extract the masks of metallic objects. For generating training
data, we pick 22 near hip scans, 11 consecutive slices above the hip and 11 consecutive
slices below the hip from the same patient. We overlay each of the 1000 masks on a random
near hip scan and then simulate artifacts as described in Figure 3.2. From this we acquire
1000 near hip scans with various artifacts. We use the corrupted sinograms of these 1000
scans as training input and the corresponding clean sinograms as training targets. The 11
slices with manually inserted circles are used to make 11 artifact corrupted images, which
are then used as the testing set. In model prediction, the 11 sinograms of the hip scans
with artifacts will be used as inputs (Table 4.5).

For experimental purposes only, we compare the reconstruction results of the 11 hip
scans with the clean ones which are obtained from the data source directly. In clinical
practices, we do not have the clean images of the hip to compare with. The only available
comparison, in reality, is between artifact-corrupted scans and artifact-reduced scans.
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metal artifacts

reference image reconstructed image

reference image metal artifacts reconstructed image

reference image metal artifacts reconstructed image

Figure 4.3: Experiment 3: training on near hip scans and testing on hip scans from a single
patient. Three testing examples to illustrate metal artifacts reduction result in the scans
of hip.
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Input

Target

1000 sinograms (have bright traces)

1000 sinograms (no bright traces) of

hip scans with metal artifacts

Training || of near hip scans with metal artifacts | near hip scans without metal and ar-
obtained from one patient tifacts obtained from one patient
. . 11 sinograms (no bright traces) of
. 11 have bright t f1.. . .
Testing sinograms (have bright traces) o hip scans without metal and arti-

facts

Table 4.5: Training and testing data in Experiment 3

4.5.2 Result

As observed from Figure 4.3 and Table 4.6, the artifacts are significantly suppressed in
the hip scans transformed by FBP from the corrected sinograms. Unlike the data sets in
Experiment 2, the training data and the testing data are generated from different images.
Our model successfully learns the way to correct the values in the traces in sinograms
regardless of the difference in the backgrounds in the images. Even though the model has
never seen the hip sinogram, by learning from the abdomen and the thigh sinograms, the
model is able to adapt the knowledge learned and fill the traces in the hip sinograms with
appropriate values. This experiment further demonstrates the flexibility of our model for
handling discrepancies between the training data and testing data.

Images MSE SSIM PSNR
Corrected Image 3.564e-4 40.990 0.9473
Uncorrected Image 6.623e-2 20.793 0.3514

Table 4.6: Quantitative Comparison Results of Experiment 3: training on near hip scans
and testing on hip scans from a single patient.

4.6 Experiment 4: training on near hip scans, test on
hip scans (multiple patients)

Similar to the experiments in many other studies about metal artifacts reduction, Experi-
ment 2 and 3 are carried out on the scans of a single patient. As explained in section 3.4,
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Input

Target

1000 sinograms (have bright traces)

1000 sinograms (no bright traces) of

Training || of near hip scans with metal artifacts | near hip scans without metal and ar-
obtained from 10 patients tifacts obtained from 10 patients

: . 102 sinograms (no bright traces) of

. 102 h bright t . . .

Testing 02 sinograms (have bright traces) hip scans without metal and arti-

of hip scans with metal artifacts

facts

Table 4.7: Training and testing data in Experiment 4

building one model per patient is inefficient in practice. A trained model might work well
for that specific patient but might fail to produce adequate artifact suppression results for
the CT scans of other patients. We hope to generalize our approach so that it can used on
multiple patients with various physical circumstances and characteristics.

4.6.1 Experiment Setup

In this experiment, we generate our training data set and testing data set using the scans
from 10 different patients. As illustrated in section 3.4, the scans of different patients have
variances in brightness, contrast and body shapes. Among these variants, brightness leads
to the greatest variance in pixel values. To reduce the variance in pixel values in scans and
sinograms, we need to normalize the data regarding brightness before generating the data
set for modeling. Normalization is carried out using scaling functions, which make the pixel
value distributions of all scans similar. After the above data preprocessing, we generate
1000 corrupted images from the near hip slices from the 10 patients’ scans for training using
the same process in Experiment 3. The testing data in this experiment is 102 artifact-
corrupted hip scans obtained from the 10 patients (Table 4.7). Pixel value distribution
normalization is conducted on these images before the input sinograms are generated. The
reconstructed results of hip scans will then be re-scaled using the inverses of the scaling
functions, and compared with the clean images in the same way as in Experiment 3.

4.6.2 Result

As shown in Figure 4.4, without brightness adjustment, our model fails to produce clear
reconstructed artifact-free images. The reconstructed images appear blurry and cloudy,
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metal artifacts reconstruction metal artifacts reconstruction

Figure 4.4: Two failed cases in Experiment 4 without brightness adjustment.

containing insufficient structural details at the hip. Due to the difference among the pixel
value distributions of the corrupted images, the values in the corresponding sinograms
also have dissimilar distributions. The model is not robust enough to perform appropriate
adjustments regarding the discrepancy in value distributions. Therefore, it is essential to
preprocess the images from different patients so that the input sinograms possess similar
value distributions.

We obtain the results shown in Figure 4.5 and Table 4.8 by normalizing the pixel value
distributions as a preprocessing step. We see a greater reduction of streak artifacts when
comparing the reference images and the reconstructed ones. With the normalization of
pixel value distributions using scaling functions, our approach can adapt to the variances
in body shapes and physical conditions at the hip, and be applied on multiple patients.

Images MSE SSIM PSNR
Corrected Image 2.324e-4 36.915 0.9094
Uncorrected Image 6.271e-2 21.438 0.4329

Table 4.8: Quantitative Comparison Results of Experiment 4: training on near hip scans
and testing on hip scans of multiple patients.
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reference image metal artifacts reconstructed image

Figure 4.5: Experiment 4: training on near hip scans and testing on hip scans of multiple
patients. Five testing examples to illustrate metal artifacts reduction results in hip scans.
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Chapter 5

Conclusion and Future Work

In this paper, we propose an innovative approach to address the issue of metal artifacts in
CT scans. In particular, we focus on removing artifacts at the hip, by training a neural
network on the data generated from the scans near the hip. Our method eliminates the
need for ground truth images at the hip and produces reconstructed hip scans without
metal artifacts while preserving the details in the background. In our experiments, we test
our approach on the scans obtained from a single patient as well as the scans obtained from
multiple patients. Our approach is further generalized compared to the existing methods
in the literature.

However, there is still room for future improvements in our method. One potential step
could be acquiring a series of whole-body CT scans with artifacts at the hip and using
the CT machine for artifacts simulation. Because the data used in our experiments are all
clean images, the artifacts in the hip scans are simulated computationally. These generated
artifacts might attain different properties and characteristics from the artifacts formed in
the CT machine. When deploying our approach in clinical practices, we should to train
our model using the scans with real artifacts. It might be beneficial to simulate artifacts
on near hip scans in alternative ways, such as using the CT machine and phantom objects,
in order to attain streaks with similar properties to the streaks formed in CT scanners.
Another direction of potential future work could be improving the architecture of the neural
network model. In the scenario of multiple patients, without brightness adjustment, our
model fails to adapt to the variance in the brightness of images. It may be possible to
modify the model architecture and improve the robustness against different pixel value
distributions.
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