
A Deep Neural Network for Pricing
American Options under

Jump-Diffusion in High Dimension:
A Backward Stochastic Differential

Equation Approach

by

Alex Starr

A research paper
presented to the University of Waterloo

in fulfillment of the
research paper requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Waterloo, Ontario, Canada, 2025



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Models that incorporate jumps are essential for capturing abrupt price movements observed
in financial markets. While jump–diffusion dynamics provide a more realistic description
of asset behaviour than pure diffusions, they add computational complexity to accurately
price options. This difficulty is especially pronounced for American options, which dom-
inate practical trading but have received comparatively less attention in the academic
literature than their European counterparts.

Recent advances in machine learning offer new opportunities for addressing these chal-
lenges. In particular, neural methods for solving backward stochastic differential equa-
tions provide a simulation-based alternative to classical PDE and PIDE techniques, which
struggle to scale to high-dimension from the curse of dimensionality. This thesis develops
a deep-learning framework for pricing American options under multi-asset jump–diffusion
models. We derive a discrete-time BSDE that incorporates both diffusion and jump compo-
nents and integrate it into the existing diffusion-only deep neural network framework. The
resulting method achieves accurate and stable performance in dimensions up to d = 100,
demonstrating that modern deep-learning tools can make high-dimensional American op-
tion pricing feasible in realistic jump–diffusion settings.
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Chapter 1

Introduction

Recent advances in artificial intelligence (AI) and deep learning have allowed for substan-
tial advancements in quantitative finance. Tasks that traditionally relied on closed-form
solutions, partial differential equation solvers, or large Monte Carlo simulations can now
be approached using data-driven methods. In particular, deep neural networks trained on
simulated market dynamics have shown strong ability to learn option prices, risk sensitiv-
ities, and hedging strategies in settings where classical methods become computationally
too slow or too difficult to implement.

A powerful nexus that connects financial modelling with machine learning is the use
of backward stochastic differential equations (BSDEs). In finance, a BSDE describes how
the price of a financial derivative evolves backward from its payoff at maturity. This
representation naturally incorporates a hedging strategy required to replicate the payoff
under a risk-neutral model. Neural BSDE solvers take advantage of this structure by using
neural networks to approximate the conditional expectations that appear in the backward
recursion, allowing them to scale effectively to high dimensions and to handle complex
products such as those with path dependence or early-exercise features.

Although BSDE-based approaches work well under continuous market dynamics, real
financial markets often exhibit sudden and discrete jumps due to earnings announcements,
macroeconomic events, or periods of market stress. Modelling these discontinuities is
essential for accurate pricing and hedging, but incorporating jumps into a BSDE creates
additional computational challenges. The jump component introduces extra nonlocal terms
that reflect the average effect of all possible future jumps. Directly estimating this term at
every time step typically requires repeatedly simulating large numbers of jump scenarios,
making the required training process computationally slow and unstable numerically.
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This thesis introduces a practical and scalable way to overcome the bottleneck re-
peatedly solving nonlocal terms. The key finding is to treat the nonlocality as another
conditional expectation problem. This means that it can be solved for in the same way as
the option price itself. Once trained, this compensator network can be inserted directly
into the BSDE solver, eliminating the need to sample jumps during the training process.
This substantially improves computational efficiency while preserving the intended finan-
cial behaviour of the model, such as the martingale property of discounted asset prices.

In addition, the framework developed in this thesis extends naturally to American
options, whose early-exercise feature requires determining when it is optimal to exercise
rather than continue holding the derivative. Classical numerical methods for American
options rely on solving a free-boundary problem or a variational inequality, both of which
become extremely difficult when jumps are present or when many underlying assets drive
the option. This work extends existing work on American options, and integrates the
jump feature into the existing American option framework of (source). By combining
the pre-trained compensator with a reflected BSDE formulation, the proposed approach
provides a unified neural-network framework for pricing and hedging American options
under jump-diffusion dynamics.

A major advantage of BSDE-based methods is that they operate on simulated paths
rather than spatial grids. This allows them to scale to dimensions that are inaccessible
to finite-difference or PIDE solvers. The combination of a pre-trained compensator, a
reflected BSDE formulation, and a neural network architecture tailored to high-dimensional
dynamics makes it possible to efficiently model multi-asset derivatives and basket options
in settings with realistic jump behaviour.

The remainder of this thesis develops these ideas in detail. Chapter 3 provides the
necessary background on European and American options, Monte Carlo simulation, jump-
diffusion, and the BSDE formulation used in modern learning approaches. Chapter 4
introduces the compensator network, the integration with reflected BSDEs, and the full
neural architecture. Chapter 5 presents numerical results demonstrating accuracy, stability,
and scalability. Chapter 6 concludes with limitations and potential extensions of the thesis,
including stochastic volatility and multi-factor Lévy processes.

Contributions

This thesis makes several contributions to the study of high-dimensional American option
pricing under jump–diffusion dynamics. The principal contributions of this thesis are as
follows:
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• A discrete-time BSDE for jump–diffusions that respects the no-arbitrage
conditions. We show a derivation of the discrete jump BSDE with correlated jump
structure. Culminating in Theorem 3.2.3, we provide the precise backward dynamics
satisfied by the option value, the diffusion hedge Zt, and the jump response vector
Ut. This theorem serves as the mathematical foundation for the proposed learning
algorithm.

• A scalable neural architecture for high-dimensional discontinuous dynam-
ics. We extend the Chen–Wan architecture by introducing a dual-head design with
separate time-decay outputs for the continuation value and jump response, enabling
stable training in high dimension.

• Empirical valuation of American Options in dimensions up to d = 100. The
experiments in Chapter 4 demonstrate high accuracy across a wide range of jump
intensities, basket dimensions, and time discretizations, while maintaining computa-
tional stability.

Collectively, these contributions establish a practical, theoretically grounded, and com-
putationally scalable framework for pricing and hedging high-dimensional American op-
tions under realistic jump–diffusion dynamics.
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Chapter 2

Background

2.1 Overview of Financial Options

In financial markets, a financial derivative can refer to any a class of security whose value
depends on, and is thus “derived” from, the performance of another underlying asset,
typically denoted S when referring to stocks. An option is a type of financial derivative
that grants the holder a contractual right to participate in the returns of the underlying
asset, without imposing any obligation on them. For example, a call option will specify a
strike price K, which grants the holder the right, but not the obligation, to purchase the
underlying stock S for K dollars at some time T in the future. If at this time S > K,
the holder would exercise the option, purchasing the underlying for K dollars, and could
then immediately sell it for S dollars. However, if S < K, the holder of the option would
not exercise their option. Since no transaction has happened, the value of the option is
0 at time T. From this construction, the value of an option at exercise in the future is
max(S–K, 0).

This asymmetric payoff profile, marked by capped downside and unlimited upside,
makes options a valuable tool that can be tailored to a wide range of hedging and specu-
lative objectives. Standard expositions of these options may be found in Shreve [19] and
Wilmott, Howison, and Dewynne [21]. It is then an important and valuable problem to be
able to come up with a fair price for an option, this fair price is known as the premium, or
option price.
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2.1.1 European Options

There are various styles of options; the simplest case of which is the European option. A
European option restricts the exercise of the contract to a single predetermined maturity
date T .

Let K > 0 denote the strike price at which the transaction may occur. A European call
option grants the right to purchase the underlying at K, whereas a European put option
grants the right to sell it. At maturity, the payoff is determined solely by the terminal
asset price ST . The canonical payoff functions are

gcall(ST ) = max(ST −K, 0), gput(ST ) = max(K − ST , 0).

These payoffs capture the fundamental asymmetry of option contracts: favorable move-
ments of the underlying generate positive returns for the holder, while adverse movements
result in no exercise and thus no additional loss beyond the initial premium. Since we do
not know the price of ST , we determine that the value at current time should represent the
expected option value over all potential asset prices. This is the standard arbitrage-free
framework, in which the price of a European contingent claim is a discounted expected
payoff under a risk-neutral probability measure,

V (t, St) = e−r(T−t) E[g(ST ) | St] ,

where r denotes the risk-free interest rate. This representation provides a probabilistic
foundation for option valuation and serves as a benchmark for numerical and analytical
methods introduced later in this chapter.

2.1.2 American Options

American options generalize European options by permitting exercise at any time prior to
or at maturity. This additional flexibility increases their economic value but introduces a
substantial conceptual and mathematical complication: the holder must determine when it
is optimal to exercise. The resulting valuation problem is inherently dynamic and requires
comparing the immediate exercise payoff with the value of continuation at every point in
time. Formally, an American option with payoff g(St) admits the following arbitrage-free
value

V (t, St) = sup
τ∈Tt,T

E
[
e−r(τ−t)g(Sτ ) | St

]
,
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where Tt,T denotes a set of all stopping times with respect to the filtration generated by
the underlying asset. The optimal stopping formulation naturally induces two regions:

Exercise region: V (t, S) = g(S), Continuation region: V (t, S) > g(S).

American options are therefore structurally more complex than their European coun-
terparts, as their valuation depends not only on the terminal payoff but also on the optimal
exercise policy. This distinction plays an important role in the subsequent formulation of
numerical methods and motivates the use of probabilistic techniques that can accommodate
early exercise without explicitly tracking the exercise boundary.

2.2 Asset Price Dynamics

A central component of option valuation is the choice of a mathematical model for the
underlying asset price. Such a model must balance realism with analytical and numerical
tractability. It should be rich enough to capture essential features of financial markets, no-
tably randomness, volatility, and occasional abrupt movements while remaining amenable
to simulation and analysis.

In this section, we introduce two widely used classes of asset price models: the geometric
Brownian motion (GBM) model and jump–diffusion models. These serve as fundamental
building blocks for the more general frameworks discussed later in the chapter. Compre-
hensive treatments of these models may be found in Shreve [19] and Øksendal [15].

2.2.1 Geometric Brownian Motion

The classical starting point for modelling asset prices is the geometric Brownian motion
(GBM). Under GBM, the asset price process St evolves according to the following stochastic
differential equation (SDE)

dSt

St

= µ dt+ σ dWt,

where µ denotes the drift, σ > 0 the volatility, and Wt a standard Brownian motion. This
model assumes that price changes occur continuously and are driven by a combination
of deterministic growth and random fluctuations. Solving the SDE yields the following
explicit representation

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
,
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demonstrating that GBM produces strictly positive asset prices and lognormally dis-
tributed returns. These properties contribute to GBM’s popularity and underpin the
Black–Scholes option pricing formula.

Although GBM is mathematically convenient, real financial markets often exhibit fea-
tures that it cannot capture. In particular, price trajectories may experience sudden jumps
due to news announcements, earnings reports, or broader market events. Academic liter-
ature has also shown that real-world asset returns exhibit heavier tails than are produced
by GBM (source). Such discontinuities motivate the extension of GBM to jump–diffusion
models.

2.2.2 Jump–Diffusion Models

Jump–diffusion models extend GBM by incorporating discrete, possibly large price changes
alongside the continuous fluctuations generated by Brownian motion. Formally, the asset
price follows

dSt

St−
= µ dt+ σ dWt + (Jt − 1) dNt,

where Nt is a Poisson process with intensity λ > 0, governing the arrival of jump events,
and Jt denotes the random multiplicative jump size. The notation St− denotes the left limit
of the price just before the jump, reflecting the fact that the process may be discontinuous.

This framework preserves the continuity of GBM between jump times while allowing
the price to undergo sudden shifts. It is capable of generating heavier tails and greater
return variability than the standard diffusion models alone and can better reflect market
behaviour during periods of heightened uncertainty.

A widely used specification is the Merton jump–diffusion model, in which the jump
sizes are lognormally distributed. Under this model,

Jt = eYt , Yt ∼ N (µJ , σ
2
J),

and each jump arrival results in a proportional change of the form St = St−Jt. The jump
intensity λ controls the expected number of jumps per unit of time, while the parameters
µJ and σJ control their average magnitude and variability.
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Jump–diffusion models form a natural bridge between classical diffusion models and
more general Lévy processes. Although they remain analytically tractable in some settings,
they introduce nonlocal features into the valuation problems for derivatives, necessitating
more sophisticated probabilistic and numerical tools.

2.3 Standard Option Pricing Techniques

2.3.1 Monte Carlo Simulation

Once a stochastic model for the underlying asset price has been specified, the pricing
problem can be expressed in terms of the distribution of the terminal asset value. Monte
Carlo methods approximate this distribution by generating a large number of sample paths
of the underlying process and computing discounted payoffs evaluated along those paths.
This pathwise interpretation makes Monte Carlo applicable to a broad range of models,
including those involving jumps or other features that complicate analytic treatments. A
detailed exposition of this topic appears in Glasserman [11].

Path Simulation

Given the discrete-time approximations introduced in Section 3.2, one constructs a time
grid 0 = t0 < t1 < · · · < tN = T , and simulates the asset price sequentially along this grid.
For GBM, a Euler–Maruyama discretization scheme yields

Stn+1 = Stn

(
1 + µ∆t+ σ

√
∆t Zn

)
, Zn ∼ N (0, 1),

while for jump–diffusion models, a simulated increment incorporates jump arrivals and
jump magnitudes,

Stn+1 = Stn

(
1 + µ∆t+ σ

√
∆t Zn

) Nn∏
k=1

Jn,k, Nn ∼ Poisson(λ∆t).

Repeating this construction M times produces an ensemble of independent trajectories
{S(m)

t }Mm=1, which serves as a numerical proxy for the model’s distributional dynamics.
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Valuation

For a European option with payoff g(ST ), the Monte Carlo estimator of the time-t value is

V̂ (t, St) = e−r(T−t) 1

M

M∑
m=1

g
(
S
(m)
T

)
.

This estimator converges to the true price by the law of large numbers, with a standard
error that scales as M−1/2. Its accuracy therefore depends on both the number of sample
paths and the time-step size used in discretizing the underlying process. Reducing either
source of error improves precision but increases computational cost. In practice, both
discretization bias and statistical variance must be controlled carefully when using Monte
Carlo estimates as benchmarks or as training data for learning-based methods.

Variance Reduction

As the convergence rate of Monte Carlo is slow relative to many deterministic methods,
variance reduction techniques are often employed to improve efficiency. Without going
into excess detail on each method, standard approaches include antithetic variates, con-
trol variates, and importance sampling; each method reduces estimator variance without
increasing the number of simulated paths, we refer the reader to Glasserman [11] for an
in-depth discussion of these techniques. These ideas are particularly useful in models with
jumps, where the distribution of ST may be skewed or heavy-tailed and naive sampling
may lead to high-variance estimates.

Role in Simulation-Based Methods

Beyond providing a standalone valuation method, Monte Carlo simulation forms the basis
of many modern numerical approaches to option pricing. Methods based on regression,
backward iteration, or BSDE formulations all rely on the availability of simulated asset
paths. In the context of this thesis, Monte Carlo plays an additional role: it is used to
generate high-quality estimates of certain conditional expectations, such as the jump com-
pensator, which serve as training targets for neural networks. The overall accuracy and
stability of the learning framework therefore depend critically on the quality of the simu-
lated data.
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Monte Carlo methods thus serve both as a flexible valuation tool and as a fundamental
computational component underlying the simulation-based techniques developed in the
following sections.

2.3.2 Classical PDE and PIDE Approaches

Option valuation problems can often be reformulated as partial differential equations
(PDEs). In models without jumps, the price V (t, S) of a European option typically satisfies
a parabolic PDE derived from the infinitesimal generator of the underlying asset process.
For example, under geometric Brownian motion, the classical Black–Scholes PDE takes
the form

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

with terminal condition V (T, S) = g(S). A detailed derivation of this result may be found
in Wilmott, Howison, and Dewynne [21].

When jumps are incorporated into the model, the valuation equation becomes a par-
tial integro–differential equation (PIDE), since the infinitesimal generator now contains a
nonlocal integral term representing the expected impact of jumps. In the Merton jump–
diffusion model, where jump sizes are lognormally distributed, the option price satisfies
the PIDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − λκ)S

∂V

∂S
− rV + λ

∫
R

[
V (t, Sey)− V (t, S)

]
fY (y) dy = 0,

where λ is the jump intensity, fY is the density of the normal jump-size distribution Y ,
and κ = E[eY − 1]. Derivations of this PIDE and its variants may be found in Merton [14]
and in the monograph of Cont and Tankov [7].

PDE and PIDE methods have been extensively developed and are effective in low di-
mensions, where the spatial domain is small and the integral terms can be evaluated with
sufficient accuracy. However, the computational cost of grid-based schemes grows expo-
nentially with the number of underlying assets. Each added dimension introduces an extra
spatial axis in the grid, rapidly making the discretization intractable. This phenomenon,
often referred to as the curse of dimensionality, severely limits the applicability of PDE
and PIDE methods to multi-asset options or models with high-dimensional state variables.
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For this reason, although these classical methods provide valuable theoretical insight
and serve as effective tools in one- and two-dimensional settings, their computational lim-
itations motivate the search for alternative approaches capable of scaling to higher dimen-
sions.

2.4 American Options and Optimal Stopping

American options introduce an early-exercise feature, requiring the valuation problem to
account for the holder’s decision of when to exercise. In the PDE framework, this leads to
a variational inequality that couples the pricing equation with the constraint

V (t, S) ≥ g(S),

together with a complementary condition that characterizes the exercise boundary. The
resulting free-boundary problem has been studied extensively and is well understood in
low-dimensional diffusion models; see, for example, Broadie and Detemple [5].

When jumps are present, the valuation equation becomes a PIDE complementarity
problem, and the exercise boundary interacts with the nonlocal integral term. This sub-
stantially increases the numerical burden: in addition to discretizing the spatial domain,
one must handle the jump integral and ensure consistency with the early-exercise con-
straint. As the dimension of the underlying state increases, grid-based discretizations
become infeasible, and computing the exercise region becomes prohibitively expensive.

Consequently, while PDE and PIDE formulations provide important conceptual foun-
dations for American option pricing, their scalability is limited in scope. High-dimensional
problems or models with complex jump structures require alternative frameworks that
avoid explicit grid construction and can accommodate optimal stopping without relying
on free-boundary identification.

2.5 Backward Stochastic Differential Equations

The limitations of grid-based PDE and PIDE methods in high-dimensional settings have
motivated the development of probabilistic techniques for the option valuation. A central
tool in this direction is the theory of backward stochastic differential equations (BSDEs),
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first introduced by Pardoux and Peng [16], who established existence and uniqueness re-
sults for a broad class of nonlinear backward equations. Since then, BSDEs have played an
important role in mathematical finance, particularly in the pricing and hedging of contin-
gent claims; see, for example, El Karoui, Peng, and Quenez [10], Zhang [22], and Pham [17].

In its basic form, a BSDE consists of a pair of adapted processes (Yt, Zt) satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dWs, t ∈ [0, T ],

for a given terminal condition ξ and a generator f . The solution Yt represents the value of
the contingent claim, while Zt corresponds to the hedging integrand associated with the
driving Brownian motion. In a risk-neutral setting, f arises from the drift adjustment of
the underlying asset dynamics, and the terminal condition ξ is the option payoff.

For European claims, choosing ξ = g(ST ) and an appropriate generator, which is GBM,
as discussed above, yields a probabilistic representation of the arbitrage-free price,

Yt = V (t, St),

where V denotes the option value function. Since the BSDE framework relies on simu-
lated trajectories of the underlying process rather than spatial grids, it avoids the curse of
dimensionality that limits PDE and PIDE methods. Numerical schemes based on Monte
Carlo regression—such as those developed by Bouchard and Touzi [4] and Gobet, Lemor,
and Warin [12]—are well suited for approximating (Yt, Zt) in high-dimensional settings.

The BSDE formalism also provides a representation of American options. In this case,
the value process must satisfy the early-exercise constraint

Yt ≥ g(St),

which leads to a reflected BSDE. The reflection is enforced through an increasing process
that forces the solution to remain above the payoff. This approach captures both the op-
tion value and the optimal stopping strategy without explicitly solving a free-boundary
problem. Foundational results for reflected BSDEs and their applications to optimal stop-
ping appear in El Karoui et al. [10] and Touzi [20].

From a computational standpoint, solving a BSDE typically involves simulating paths
of the underlying process and performing a backward-time approximation of conditional

12



expectations. This simulation-based structure extends naturally to models with more
complex features, such as state dependence or high-dimensional dynamics, and forms the
basis of the learning-based BSDE methods, such as in Chen & Wan [6], which form the
basis for the neural BSDE solver methods discussed in the next chapter.
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Chapter 3

Model Formulation

3.1 Modelling Dependence in Multi-Asset Jump Pro-

cesses

Before setting up the model for pricing such options in the multi-dimensional case, we first
need to define how we model jump dependence among underlying assets. Some jumps
reflect events that are specific to a single asset, while others correspond to market-wide
shocks that move many assets simultaneously. Capturing these different forms of depen-
dence is essential for a realistic model of discontinuities. The frameworks described below
provide several complementary ways to introduce such a structure.

Independent jump arrivals. The most direct approach assigns each asset its own Pois-
son clock, so that jumps arrive independently in each component. A jump in asset i occurs
when its clock rings, and its size is drawn from the marginal jump-size distribution specified
for that asset. This construction is simple and flexible, but it cannot generate simultaneous
jumps or coordinated movements across assets.

Common shock models. When several assets are exposed to the same underlying
sources of risk, it is natural to model them as sharing a common jump clock. Here a
single Poisson process represents system-wide shock events, and whenever this clock rings,
all assets in the affected group experience a jump. The magnitudes of the jumps may differ,
but their timing is shared, creating instantaneous co-movement. Common-shock construc-
tions appear widely in actuarial science and financial modelling; see Platen and Heath [18]
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or Dassios and Zhao [8]. Additional asset-specific clocks may be included to retain id-
iosyncratic behaviour. Literature has demonstrated that using a small number of common
shocks with a random participation structure can provide an accurate representation of
the complex jump dependence observed in real-world financial data [13, 1, 2, 9].

Dependence through copula-based jump sizes. Another way assets can move to-
gether is through the sizes of their jumps rather than their timing. In this approach, all
jumps are driven by a single arrival process, but the jump vector

X = (X(1), . . . , X(d))

is sampled from a multivariate distribution which dependence structure is specified by a
copula.

Definition 3.1.1 (Copula). A copula is a multivariate distribution function C : [0, 1]d →
[0, 1] with uniform marginals. Given marginal distribution functions FX(i) for the compo-
nents of a random vector, the joint distribution can be written in the form

FX(x1, . . . , xd) = C(FX(1)(x1), . . . , FX(d)(xd)) .

This representation separates marginal behaviour from dependence and is foundational in
the modelling of multivariate jump processes; see Cont and Tankov [7, Ch. 4].

Incorporating the copula framework introduces a dependence structure among jump
sizes while retaining full freedom to specify the one-dimensional distributions. For example,
assets may exhibit symmetric dependence, asymmetric dependence, or tail clustering, all
depending on the chosen copula family.

A common choice of copula is the Gaussian copula. One begins by sampling a Gaussian
vector with a chosen correlation matrix and mapping each component through the standard
normal distribution function. The resulting uniform vector is then pushed through the
inverse marginals to obtain a joint jump-size vector. In this way, the correlation matrix
directly determines how strongly the jump sizes tend to move together.

The copula approach can be combined with a common shock model as needed, enforcing
correlation in jump arrival time and jump size. A model may include both a common
jump clock affecting all assets and individual clocks for idiosyncratic shocks, while the
sizes of the common jumps may follow a copula-based multivariate distribution. This
layered structure provides substantial flexibility for reproducing a wide range of dependence
patterns observed in practice, while not having to model a seperate Poisson arrival process
for every subset of assets. For use in the BSDE framework, all we need is a Poisson arrival
process for each possible jump case.

15



3.2 Jump–Diffusion Dynamics and the BSDE Repre-

sentation

By construction, the BSDE solver enforces the solution to an SDE over a set of sampled
paths. Thus, we begin our extension of Chen & Wan [6] solver by deriving a new BSDE
formulation that incorporates this extra feature. We begin by describing the stochastic
model used for the underlying state process. As mentioned previously, we choose S to follow
a jump process, however we now extend it to the multi-dimensional case. Throughout, St ∈
Rd

+ denotes the vector of underlying asset levels at time t. The process evolves under the
risk–neutral measure Q and is driven by both continuous fluctuations and discrete jumps.
Continuous movements are generated by Brownian noise, while jumps arrive according
to a family of Poisson processes. This combination allows the model to capture sudden
discontinuities, common shocks, and idiosyncratic movements within a unified framework.

The mathematical link between jump–diffusions, BSDEs, and the corresponding PIDEs
is now well established. For a full and complete derivation of the link between BSDEs and
PIDEs, we refer the reader to Barles, Buckdahn, and Pardoux [3], where they extend the
classical Feynman–Kac correspondence to systems driven jointly by Brownian motion and
Poisson random measures. Their analysis shows that, under suitable regularity conditions,
the solution of a BSDE with jumps is precisely the viscosity solution of the associated PIDE,
and conversely that such PIDEs admit a probabilistic representation through BSDEs. This
result justifies treating the option price process as the solution of a backward equation
which martingale components capture the sensitivities to both continuous diffusion risks
and discontinuous jump risks.

Definition 3.2.1 (General jump–diffusion model). Let {Wt}t≥0 be an d–dimensional Brow-

nian motion, and let {N (m)
t }Mm=1 be independent Poisson processes with constant intensities

{λm}Mm=1. For each jump source m, let J
(m)
t denote a random mark describing the size or

direction of the jump, and let
Γ(m)(t, St−, J

(m)
t )

represent the instantaneous change in the state when jump type m occurs. The process St

satisfies the d–dimensional jump–diffusion SDE

dSt = b(t, St) dt+ Σ(t, St) dWt +
M∑

m=1

Γ(m)
(
t, St− , J

(m)
t

)
dN

(m)
t , (3.1)

Here:
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• b(t, S) is the drift vector determining the average rate of change of each asset,

• Σ(t, S) is the d× d diffusion matrix defined by

Σ(t, S) = diag
(
σ1(t, S), . . . , σd(t, S)

)
ρ1/2,

where σi(t, S) is the instantaneous volatility of asset i and ρ is the correlation matrix
governing the co-movement of the Brownian drivers.

• dN
(m)
t equals 1 if jump type m occurs at time t and 0 otherwise,

• Γ(m) determines how the state moves in response to a jump.

This formulation encompasses a wide class of stochastic models used in finance and insur-
ance.

Example: Merton Jump–Diffusion In the one–dimensional Merton model, jumps
occur according to a single Poisson process (M = 1). A jump multiplies the asset price by
a random factor J (often lognormally distributed). In this case,

Γ(1)(t, St−, J) = St−(J − 1),

and the SDE becomes

dSt = (r − λκ)St dt+ σSt dWt + St−(J − 1) dNt,

where κ = E[J − 1]. Thus, the Merton model appears as a special instance of the general
form (3.1).

To derive the backward equation satisfied by an option price, we use two classical results:
Itô’s lemma for jump processes and the risk–neutral martingale property of discounted
asset prices. For a full BSDE derivation, we refer readers to Chen & Wan [6], where the
extension for the jump case is using the Itô’s lemma with jumps instead of the continuous
variant of Itô’s lemma.

Theorem 3.2.1 (Itô’s lemma with jumps). Let Xt be a càdlàg semimartingale with contin-
uous part Xc

t and jump measure µ(dt, dx) with compensator ν(dx) dt. For any sufficiently
smooth function f(t, x),

df(t,Xt) = ft(t,Xt) dt+∇xf(t,Xt) · dXc
t +

1
2
Tr
(
D2

xxf(t,Xt) d[X
c]t
)

+

∫
Rd

(
f(t,Xt− + x)− f(t,Xt−)

)
(µ(dt, dx)− ν(dx) dt).

(3.1)
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This formula shows that the differential of f(t,Xt) has three components: a drift contribu-
tion from the predictable part of the motion, a Brownian term from continuous fluctuations,
and a jump term accounting for the instantaneous jump increments. A full definition and
proof of Itô’s lemma with jumps can be found in Cont and Tankov [7, Ch. 8].

Theorem 3.2.2 (Risk–neutral pricing condition). Let Vt denote the value of a claim paying
g(ST ) at time T . Under the risk–neutral measure,

e−rtVt = EQ[e−rTg(ST )
]
, (3.2)

and thus the discounted price process e−rtVt is a martingale.

3.2.1 Derivation of the Jump BSDE

Apply Itô’s Lemma Let Vt = v(t, St) and note that VT = g(ST ). Applying Itô’s lemma
for jumps (Theorem 3.2.1) to v(t, St) under the dynamics (3.1) yields

dVt =
[
vt(t, St) +∇xv(t, St) · b(t, St) +

1
2
Tr
(
ΣΣ⊤(t, St) vxx(t, St)

)
+

M∑
m=1

λmE
[
v
(
t, St− + Γ(m)(t, St−, J

(m)
t )

)
− v(t, St−)

] ]
dt

+ Zt dWt +
M∑

m=1

U
(m)
t dÑ

(m)
t ,

(3.3)

where

Zt := ∇xv(t, St) Σ(t, St), U
(m)
t := v

(
t, St− + Γ(m)(t, St−, J

(m)
t )

)
− v(t, St−),

and
dÑ

(m)
t := dN

(m)
t − λm dt

are the compensated Poisson increments. Thus U
(m)
t represents the instantaneous change

in option value if a jump of type m occurs at time t.

Enforce the No Arbitrage Condition To obtain the backward representation, we
consider the discounted value process Mt = e−rtVt. Under the risk–neutral measure this
process must be a martingale, reflecting the fundamental financial requirement of no ar-
bitrage. If Mt were to carry a predictable drift term, say dMt = αt dt +martingale terms
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with αt ̸= 0, then an investor could exploit this drift through a self–financing strategy.
In particular, holding one unit of the claim and financing the position at the risk–free
rate produces a wealth process whose discounted dynamics inherit the same drift αt dt. A
positive drift (αt > 0) would yield a strictly increasing expected discounted gain, while a
negative drift would permit riskless profit by shorting the claim and investing the proceeds.
In either case, the strategy requires no external cash flows—hence “self–financing”—and
generates a predictable excess return, contradicting the fundamental theorem of asset pric-
ing. Therefore, the drift of Mt must vanish. When the Itô–jump expansion of Vt = v(t, St)
is computed, all drift contributions must therefore combine exactly to rVt dt. Enforcing
this identity removes the drift from the discounted process and yields the jump–augmented
BSDE in which the processes Zt and U

(m)
t represent the instantaneous sensitivities to dif-

fusion and jump risks.

To obtain a backward representation of the price process, we start from the Itô–jump
expansion of Vt = v(t, St) obtained in (3.3). In particular, Vt satisfies

dVt = At dt+ Zt dWt +
M∑

m=1

U
(m)
t dÑ

(m)
t ,

where the coefficient At collects all drift contributions arising from Itô’s formula:

At = vt(t, St) +∇xv(t, St)·b(t, St) +
1
2
Tr
(
ΣΣ⊤(t, St) vxx(t, St)

)

+
M∑

m=1

λm E
[
v(t, St− + Γ(m))− v(t, St−)

]
.

To determine the form of this drift, we examine the discounted process Ṽt := e−rtVt.
Notably, by (Theorem 3.2.2), this is martingale and we will be able to use the fact that
it’s drift is 0. Using the product rule,

dṼt = e−rt dVt − re−rtVt dt,

and substituting the expression for dVt into expression for dMt yields

dṼt = e−rt
[
(At − rVt) dt+ Zt dWt +

M∑
m=1

U
(m)
t dÑ

(m)
t

]
.
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Under the risk–neutral measure, the discounted price of any tradable asset must be a
martingale. Thus the drift of Mt (the coefficient of dt) must vanish. Since e−rt > 0, this
condition is equivalent to

At − rVt = 0, that is, At = rVt.

In other words, the collection of drift terms produced by Itô’s formula must match the
instantaneous discounting rate r in order for the pricing process to be arbitrage–free. With
this identification, the dynamics of Vt reduce to

dVt = rVt dt+ Zt dWt +
M∑

m=1

U
(m)
t dÑ

(m)
t .

Finally, rewriting this in backward form gives the BSDE

Theorem 3.2.3 (Jump–Diffusion BSDE Representation). Let (St)t≥0 follow the jump–
diffusion dynamics in (3.1), and let the terminal payoff be VT = g(ST ). Under the risk–
neutral measure, and imposing the no–arbitrage condition that the discounted price process
e−rtVt is a martingale, the option value process (Vt)t≥0 satisfies the backward stochastic
differential equation

−dVt = −rVt dt− Zt dWt −
M∑

m=1

U
(m)
t dÑ

(m)
t , VT = g(ST ). (3.4)

This equation describes the backward evolution of the option price in the presence of
both continuous and jump–driven sources of uncertainty. The terms Zt and U

(m)
t quantify

the sensitivity of the option value to Brownian shocks and jump arrivals, respectively, and
will play a central role in the numerical scheme developed in later chapters.
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3.3 Discrete-Time Approximation of the BSDE

The continuous-time BSDE from Theorem 3.2.3 characterizes how the option value evolves
when both diffusion and jump risks are present. To make this relation usable in numerical
work, it must be translated into a form that acts on a discrete set of time points. The
purpose of this section is to show how the continuous equation naturally gives rise to a
backward recursion that links one time step to the next.

Discretization Scheme We divide the horizon [0, T ] into discrete times

0 = t0 < t1 < · · · < tN = T, ∆tn = tn+1 − tn.

On each short interval, the value process experiences only a small amount of drift, a small
Brownian fluctuation, and possibly a jump. Because these effects accumulate gradually,
the BSDE can be integrated over the interval [tn, tn+1] to relate the option value at the
two ends of the step.

Integrating the BSDE over a small step shows that the change in value over that interval
is made up of three contributions: the drift term involving rVt, the Brownian term scaled
by Zt, and the jump terms scaled by the U

(m)
t . Approximating each quantity by its value

at the left endpoint tn gives the discrete relation

Vn+1 ≈ Vn + rVn∆tn + Zn∆Wn +
M∑

m=1

U (m)
n ∆Ñ (m)

n . (3.5)

In this expression, the random increments ∆Wn and ∆Ñ
(m)
n represent the diffusion and

jump shocks that occur between the two time points.

Rewriting Backward from Final Time Since the BSDE describes a backward evolu-
tion starting from the terminal payoff, it is helpful to solve (3.5) for Vn rather than Vn+1.
Doing so yields

Vn ≈ e−r∆tn

(
Vn+1 − Zn∆Wn −

M∑
m=1

U (m)
n ∆Ñ (m)

n

)
. (3.6)

This backward form expresses the idea that the value today should equal the discounted
expected value of the option at the next time step, after adjusting for the shocks that occur
during the interval.
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At maturity, the value is known: VN = g(SN). The discrete BSDE then provides a
way to work backward from tN to t0, step by step, using (3.6). Each application of the
backward step replaces the continuous evolution of the BSDE over the interval by a finite
update that accounts for discounting, diffusion shocks, and the possibility of jumps.

The discrete approximation captures the essential structure of the continuous-time
BSDE. The term involving Zn represents the effect of small continuous fluctuations, while
the terms involving U

(m)
n capture the instantaneous impact of jumps. Discounting appears

because the BSDE contains the term −rVt dt, ensuring that the recursion remains consis-
tent with risk-neutral valuation. Thus, the backward relation (3.6) mirrors the logic of the
continuous BSDE but in a form that operates directly on discrete time points.

3.4 Neural Parameterization and Training Algorithm

The discrete BSDE yields a backward relation connecting the option value at two successive
time points. Rather than storing Vn and the jump coefficients Un on a grid, we represent
both quantities with a neural network depending on the current state. At each time step
tn and state Sn, the neural network outputs

Nθ(tn, Sn) =
(
Vθ(tn, Sn), Uθ(tn, Sn)

)
,

where Vθ approximates the continuation value and Uθ(tn, Sn) ∈ RM represents the jump
sensitivities associated with the M Poisson clocks driving the jump component of the
model.

Backpropogate Future Predictions The discrete BSDE takes the form, with the jump
term written in matrix form,

Vn ≈ e−r∆tn
(
Vn+1 − Zn∆Wn − U⊤

n ∆Ñn

)
,

where ∆Ñn ∈ RM collects the compensated Poisson increments on [tn, tn+1]. In the neural
approximation we replace

Vn ≈ Vθ(tn, Sn), Vn+1 ≈ Vθ(tn+1, Sn+1), Un ≈ Uθ(tn, Sn).

The backward step therefore uses the network’s prediction at the next time step to form a
training target for the current time step. To incorporate the early-exercise feature of the
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American option, the continuation value predicted by the network is compared with the
immediate exercise payoff. Denote the continuation value by

V cont
n = Vθ(tn, Sn).

If the immediate exercise is optimal at time tn, then the option value should satisfy

Vn = g(Sn),

where g(·) is the exercise payoff. Thus, after evaluating the network at (tn, Sn), we set the
training label to

V label
n = max

(
V cont
n , g(Sn)

)
.

This substitution ensures that the backward recursion respects the early-exercise constraint
at every step: if exercising is optimal on a given path and time, the label is replaced by
the payoff; otherwise, the continuation value is retained. In this way, the American option
logic is embedded directly into the training procedure, without the need to introduce an
explicit reflection process.

The BSDE Residual as the Loss Function To enforce the discrete BSDE, all terms
are moved to the left-hand side, producing the residual

ResV = Vθ(tn, Sn)− e−r∆tn
(
Vθ(tn+1, Sn+1)− Zn∆Wn − Uθ(tn, Sn)

⊤∆Ñn

)
.

If the model satisfies the BSDE perfectly, this quantity is met with perfect equality for
every path. Therefore, we consider this quantity as loss to minimize over, defined as a
mean squared residual,

L(θ) = E
[
Res2V ].

Thus the loss is exactly the discrete BSDE written with all terms on one side; minimizing
L(θ) drives the network output toward a solution of the backward dynamics.

Algorithm Summary Training follows a backward-in-time procedure that mirrors the
numerical evaluation of the BSDE.
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Algorithm 1 Training Algorithm for the Discrete Jump–Diffusion BSDE

1: Simulate M sample paths of (Sn,∆Wn,∆Ñn) on the grid {t0, . . . , tN}.
2: Initialize terminal values:

V label
N = g(SN)

3: for n = N − 1 down to 0 do
4: Evaluate the network at the current state:

(Vθ, Uθ) = Nθ(tn, Sn).

5: Form the discrete BSDE residual:

ResV = Vθ(tn, Sn)− e−r∆tn
(
V label
n+1 − Zn∆Wn − Uθ(tn, Sn)

⊤∆Ñn

)
.

6: Update network parameters by minimizing

L(θ) = E
[
Res2V

]
.

7: After optimization at step n, evaluate the network again to obtain the continuation
value:

V cont
n = Vθ(tn, Sn).

8: Apply American early-exercise logic by comparing continuation and payoff:

V label
n = max

(
V cont
n , g(Sn)

)
.

9: end for

In this way, the neural approximation (Vθ, Uθ) is trained to satisfy the discrete-time
BSDE by directly minimizing its residual. Because the same network predicts both the
continuation value and all M jump sensitivities, the method retains efficiency while cap-
turing the full structure of the jump component.

24



3.5 Neural Network Architecture

To approximate the mappings

(tn, Sn) 7−→
(
Vn, Un

)
required by the discrete BSDE introduced above, we employ a deep neural network whose
structure follows the ideas of Chen and Wan [6], but extends their formulation by adding a
dedicated output head for the jump–sensitivity vector. The model predicts the continuation
value Vθ(tn, Sn) and the M -dimensional jump vector Uθ(tn, Sn) that appear in the discrete
backward relation derived in the previous subsection.

Shared trunk with two output heads We choose a model depth of 7 fully connected
layers with a relu activation function. This follows the deep learning framework in Chen
and Wan [6] with a refinement where we split the last layer into two separate heads. The
first head with the task of learning the scalar option value, and the second head for the
vector of jump sensitivities. We choose the shared head network for its smaller size as we
do not need to duplicate shared behaviour. The network thus consists of a shared trunk
of six fully connected layers, followed by two independent output layers:

Nθ(tn, Sn) =
(
Vθ(tn, Sn), Uθ(tn, Sn)

)
, Uθ(tn, Sn) ∈ RM .

The shared trunk encodes the common nonlinear dependence on the state, while the two
heads specialize to the diffusion and jump components respectively. The hidden-layer width
is chosen as

H = max{ d+ 5, M }
where d is the number of underlying assets in S. This ensures s sufficiently expressive
capacity even when the number of jump clocks exceeds the number of underlying assets,
which may occur in the multi-asset jump constructions discussed earlier.

Input features Consistent with the BSDE discretization, the network takes as input
the tuple (

Sn, Vprestep, g(Sn)
)
,

where Vprestep denotes the value produced at the most recent forward point along the same
simulated path, and g(Sn) is the payoff feature as introduced in the background chapter.
Chen and Wan [6] showed that such features stabilize training near maturity, and our
formulation follows the same principle.
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Time–decay outputs In order to increase stability of the learned quantities, we refor-
mulate the output of the model to be the difference from the prestep value

τV (tn, Sn) ∈ R, τU(tn, Sn) ∈ RM ,

which are the incremental updates for V and U respectively.

Value prediction as an incremental update Rather than predicting Vθ(tn, Sn) di-
rectly, we use the incremental update formulation of Chen and Wan [6]:

Vθ(tn, Sn) = αV

(
Vprestep +∆tn δ τV (tn, Sn)

)
,

where αV is a learnable scalar, ∆tn is the time step, and δ is a fixed scaling constant
(not trained). In practice, this update is only applied every few time steps, and batch
normalization is incorporated in the shared trunk; see [6] for implementation details.
The jump–response vector is obtained through an analogous formula:

Uθ(tn, Sn) = αU

(
Uprestep +∆tn δ τU(tn, Sn)

)
,

where αU is a separate learnable scalar. The temporal scaling ∆tn and the factor δ match
the value update to maintain consistent time normalization across the diffusion and jump
components, while allowing the two outputs to learn independently through their distinct
time–decay outputs τV and τU .

The architecture mirrors the structure of the BSDE developed in the preceding subsec-
tions: the network does not learn Vn and Un directly, but instead learns local updates
designed to satisfy the backward relation. The shared representation captures the essen-
tial state dependence, while the two output heads and their associated time–decay outputs
produce the distinct components required by the diffusion and jump terms of the model.
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Chapter 4

Results

4.1 Training Data

All numerical experiments in this chapter are trained on simulated trajectories of the multi-
asset Merton jump–diffusion described in Chapter 3. For each configuration (d, λ,K,M),
we generate P = 240,000 independent sample paths on a uniform time grid with N discrete
points, drawn from sampling paths based on our specified correlated jumps structure.
Each path contains the full set of Brownian increments, compensated Poisson increments,
jump indicators, and post-jump states required by the discrete BSDE relation. For each
point in time. To ensure consistency across methods, the Monte Carlo benchmarks are
evaluated on exactly the same simulated paths and time grid as the neural network. The
resulting dataset provides both the forward trajectories for evaluating the BSDE residual
and the backward labels for enforcing the American early-exercise condition. This unified
simulation framework ensures that any pricing differences observed in the results arise from
model quality rather than differences in underlying training data.

4.2 High-Dimensional Pricing Accuracy

A primary objective of this work is to demonstrate that the jump-enhanced BSDE frame-
work can price American-style options accurately and stably in high-dimensional settings.
Thus, this is a feasibility study. Unless otherwise specified, all experiments in this section
use a geometric basket call with maturity T = 1.0, N = 25 exercise dates, risk-free rate
r = 0, diffusion volatility σ = 0.2, equicorrelation ρ = 0.75, and a Merton jump–diffusion
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with intensity λ and common jump clock J ∼ logN (0.005, 0.12). Wall-clock times were
recorded on a single NVIDIA A100 GPU. We focus on the geometric call due to the stabil-
ity of its PDE solution; however, all results also apply to other basket options whose payoff
is determined solely at a given point in time, for example, arithmetic average or maximum
options.

Pricing results produced by the neural BSDE solver are compared against two bench-
marks. The primary benchmark is a high-precision Monte Carlo dynamic programming
estimate evaluated on the same time grid and the same state projections used by the BSDE
method. This is done to allow for the same fixed grid on which American early exercise
is possible. A secondary benchmark, used for consistency checks, is obtained from an
American PIDE solver applied to the one-dimensional geometric reduction of the basket,
choosing to benchmark with the geometric basket option allows us to compare against
PIDE solver. Agreement between the Monte Carlo and PIDE prices confirms the validity
of both reference calculations.

To assess performance in moderate dimension, we evaluate configurations with d ∈
{3, 5} and jump intensities λ ∈ {0.5, 1.0, 1.5, 2.0} for an at-the-money strike K = 1.0.
Table 4.1 presents the neural prices, Monte Carlo benchmarks, absolute pricing errors, and
wall-clock times for all completed runs. The errors remain on the order of 10−4 across all
tested values of λ and show no indication of deterioration as dimension increases.

Table 4.1: Neural vs. Monte Carlo Pricing Across Dimensions for K = 1.0.

d λ VNN VMC |VNN − VMC| Wall Time (s)

3

0.5 0.073975 0.073794 1.81e-04 873.3
1.0 0.076526 0.076173 3.53e-04 841.8
1.5 0.078978 0.078634 3.44e-04 861.8
2.0 0.081235 0.080894 3.41e-04 860.8

5

0.5 0.072248 0.072174 7.40e-05 822.3
1.0 0.074812 0.074631 1.81e-04 868.4
1.5 0.077394 0.077136 2.58e-04 857.2
2.0 0.079751 0.079360 3.91e-04 850.4

To evaluate performance in very high dimension, we next consider fixed jump intensity
λ = 1.0 and vary the dimension from d = 10 up to d = 100. All model parameters remain
as above. The results appear in Table 4.2. The neural prices remain within a few 10−4 of
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the Monte Carlo benchmarks across all dimensions. In addition, the wall-clock time grows
smoothly with d and exhibits no signs of instability or explosive computational cost.

Table 4.2: High-dimensional Pricing Accuracy for a Geometric Basket Call

d VNN VMC |VNN − VMC| Wall-clock (s)

10 0.073605 0.073489 0.000116 833.30
25 0.072870 0.072776 0.000094 880.56
50 0.072671 0.072446 0.000225 1007.24
100 0.072706 0.072579 0.000127 1661.94

The results in Tables 4.1 and 4.2 demonstrate that pricing accuracy does not degrade
even as the dimension reaches d = 100. The absolute error is consistently comparable to
the inherent Monte Carlo uncertainty present in the benchmark. Runtime increases with
dimension as expected, but the growth is mild and free of numerical instabilities.

Taken together, these experiments show that the addition of jumps to the BSDE frame-
work achieves accurate and numerically stable American option pricing across a wide range
of dimensions. The ability to maintain accuracy in settings such as d = 50 and d = 100
highlights the effectiveness of the neural network in controlling the nonlocal jump con-
tribution and enabling scalability that would be inaccessible to classical PIDE or Monte
Carlo–BSDE methods.

4.3 Delta Accuracy in High Dimension

Accurate deltas are essential for hedging and risk management, particularly in high-
dimensional settings where even small gradient errors can propagate into substantial hedg-
ing discrepancies. This section evaluates the quality of the deltas produced by the jump
BSDE solver across dimensions ranging from d = 3 to d = 100. The experimental setting is
identical to that of Section 4.2: we consider a geometric basket call with maturity T = 1.0,
N = 25 exercise dates, risk-free rate r = 0, diffusion volatility σ = 0.2, equicorrelation
ρ = 0.75, and a Merton jump–diffusion with intensity λ = 1.0 and common jump clock
J ∼ logN (0.005, 0.12). The strike is fixed at K = 1.0.

Deltas are benchmarked against Monte Carlo pathwise estimates evaluated on the same
time grid and under the same jump–diffusion dynamics. For symmetric geometric baskets,
the benchmark delta is effectively the same across all components at points where the
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basket is near the money, and serves as a scalar reference value ∆MC for all coordinates. The
neural-network deltas ∆NN,i obtained from the BSDE solver can therefore be summarized
by their mean ∆̄NN across coordinates, together with a mean absolute componentwise
deviation Err∆ relative to the Monte Carlo benchmark.

Table 4.3 reports these quantities for dimensions d ∈ {3, 5, 10, 25, 50, 100}. The deltas
scale as expected with dimension—approaching 1/d in the moderately in-the-money re-
gion—and the neural estimates are consistently close to the Monte Carlo benchmark. The
componentwise error remains below 10−3 across all dimensions, and does not deteriorate
as d increases.

Table 4.3: Delta Accuracy for the Geometric Basket Call with λ = 1.0 and K = 1.0

d ∆̄NN ∆MC Err∆

3 0.333378 0.333310 0.000068
5 0.104756 0.103198 0.001558
10 0.052167 0.051330 0.000837
25 0.020788 0.020532 0.000256
50 0.010382 0.010264 0.000118
100 0.005232 0.005145 0.000087

For reference, an example plot of delta and price for a 100-dimensional call option is
shown below, with a PDE computed solution overlaid.
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(a) Neural delta vs. geometric average at t =
0.6.

(b) Value function vs. geometric average at
t = 0.6.

Figure 4.1: Pricing and Delta Estimation for d = 100

4.4 Error Behaviour Across Time and Dimension

To understand how approximation error propagates through the backward recursion, we
examine the evolution of pricing error across timesteps as well as its dependence on the
state dimension. All statistics reported here are averaged across the full set of strikes
K ∈ {0.5, 0.75, 1.0, 1.25, 1.5} and jump intensities λ ∈ {0.5, 1.0, 1.5, 2.0}, and therefore
represent the general behaviour of the solver rather than sensitivity to any particular
configuration.

The average RMSE between the neural BSDE price and the Merton American reference
at each timestep is shown in Table 1. Note that since we are in the backward setting, times
here represent the time backwards starting at maturity. The error is largest near maturity,
where the payoff introduces nonsmooth features and steep curvature that are challenging
for any regression-based method. As one moves backward in time, the RMSE decreases
and settles into a stable regime over most of the time horizon. This pattern reflects the
smoothing effect of conditional expectation in the BSDE recursion and indicates that the
method does not accumulate numerical instability as the recursion progresses.
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Figure 4.2: Average RMSE between the neural BSDE estimate and the Merton American
reference as a function of timestep tn, averaged over all strikes and jump intensities.

To assess how accuracy varies with dimension, we compute the mean RMSE over all
strikes and jump intensities for each dimension d. Table 4.4 summarizes the results. The
error remains within the 10−3 range from d = 3 through d = 100, with no indication of
a monotone increase. The absence of deterioration in high dimension is notable given the
typical variance amplification associated with jumps in classical BSDE schemes.

Table 4.4: Average pricing RMSE as a function of dimension d, aggregated over all strikes
and jump intensities.

Dimension d Mean RMSE

3 0.00160
5 0.00177
7 0.00184
10 0.00137
25 0.00453
50 0.00283
100 0.00390

Together, the timestep- and dimension-wise analyses show that the pricing errors remain
small and well structured throughout the backward induction. The backward recursion
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does not amplify noise, and high-dimensional configurations behave in a manner that is
consistent with both theoretical expectations and the empirical behaviour observed in the
pricing and delta results of earlier sections.

4.5 Interaction Between Jump Intensity and Time Dis-

cretization

The final set of experiments examines how accuracy depends jointly on the jump intensity
λ and the time discretization ∆t = T/N . This interaction is fundamental in jump–diffusion
models: larger values of λ correspond to more jumps being sampled, while smaller values
of ∆t reduce discretization error in the BSDE residual. If λ∆t is too large then numer-
ical instability may ensue. Understanding their combined influence helps identify stable
operating regimes for the solver.

We fix the geometric basket model at d = 5 with strike K = 1.0, maturity T = 1.0,
equicorrelation ρ = 0.75, and Merton jump–diffusion dynamics with common lognormal
jump factor J ∼ logN (0.005, 0.12). For time-step counts we choose N ∈ {5, 10, 20, 30}
and for jump intensities we consider λ ∈ {1, 2, 4, 8}. All other parameters and training
configurations remain consistent with earlier experiments. Table 4.5 presents the neural
and Monte Carlo prices, absolute errors, and wall-clock times for all configurations.

33



Table 4.5: Pricing accuracy for a d = 5 geometric basket call with K = 1.0

λ N VNN VMC |VNN − VMC| Wall-clock (s)

1.0 5 0.079754 0.079506 2.48e-4 147.3
1.0 10 0.079447 0.079269 1.78e-4 337.5
1.0 20 0.079398 0.079137 2.61e-4 654.0
1.0 30 0.079342 0.079152 1.90e-4 1009.3

2.0 5 0.088921 0.088625 2.96e-4 145.9
2.0 10 0.088410 0.088379 3.10e-5 318.4
2.0 20 0.088495 0.087984 5.11e-4 670.8
2.0 30 0.088340 0.088001 3.39e-4 983.8

4.0 5 0.105118 0.104919 1.99e-4 148.8
4.0 10 0.104431 0.104341 9.00e-5 340.3
4.0 20 0.104221 0.103887 3.34e-4 663.6
4.0 30 0.104034 0.103603 4.31e-4 994.4

8.0 5 0.133045 0.112110 2.09e-2 145.5
8.0 10 0.130990 0.131056 6.60e-5 329.7
8.0 20 0.130592 0.130276 3.16e-4 655.5
8.0 30 0.130034 0.129760 2.74e-4 1028.4

For fixed λ, the absolute pricing error decreases as the time grid is refined. This be-
haviour is consistent with the improved approximation of the BSDE residual at smaller ∆t.
For fixed N , the error increases with λ, reflecting the greater difficulty of representing the
more frequent jumps. Even for the high-intensity case λ = 8, accurate pricing is recovered
once N is sufficiently large. The accuracy across all cases aligns with the qualitative pre-
diction that the effective resolution parameter λ∆t governs the difficulty of the problem:
when λ∆t is small, the jump component is captured smoothly by the network and the
solver enters a stable regime.

Taken together, these experiments show that the BSDE framework is robust across a
wide range of jump intensities and time discretizations. Accuracy improves systematically
with refinement of the time grid, and the method remains stable even in regimes where
the jump activity is very high.
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Chapter 5

Conclusion

This thesis presented a scalable framework for pricing American-style options under multi-
asset jump–diffusion dynamics using a BSDE formulation designed to remain numerically
stable even in very high dimensions. Extensive numerical experiments demonstrated that
the approach produces accurate American option values and stable deltas across a range
of jump intensities, time discretizations, and dimensions up to d = 100, while maintaining
agreement with both Monte Carlo and PIDE benchmarks. These results show that high-
dimensional American options with realistic jump components can be addressed effectively
within this BSDE-based framework.

With regard to future extensions of this work, one natural extension is the develop-
ment of explicit jump-hedging strategies within the BSDE setting. Although jump risk is
only partially hedgeable in incomplete markets, trading environments often include liq-
uid instruments that provide partial protection against discontinuous movements, such as
short-dated options, crash-protection derivatives, or variance-linked products. Incorporat-
ing these instruments into the backward recursion, instead a general jump hedge, would
allow the solver to learn hedging strategies that manage both diffusive and discontinuous
risk, and would enable a quantitative assessment of the marginal value of jump hedging
under different model specifications.

A second major direction is the extension of the methodology to infinite-activity Lévy
models, such as CGMY, Variance Gamma, and other processes exhibiting heavy tails or
infinite variation. These models capture fine-scale structure in asset returns that finite-
activity jump models cannot represent. In such settings, the jump contribution becomes
an integral over the full Lévy measure rather than a finite sum of compound Poisson
events, requiring new representations for the jump operator and new training strategies
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to ensure numerical stability. The results of this thesis suggest that learning-based BSDE
methods have the potential to scale to these more demanding regimes, provided that the
Lévy integral is approximated in a controlled and computationally efficient manner.

Further extensions may incorporate market frictions, more general early-exercise fea-
tures, or hybrid payoff structures in which discontinuities interact with path-dependent
elements such as barriers or callable schedules. Each of these settings introduces additional
mathematical challenges, but they also broaden the practical relevance of the method for
applications in equity, energy, credit, and insurance markets.

Overall, this thesis demonstrates that high-dimensional American option pricing with
jumps can be carried out accurately and efficiently within a modern learning-based BSDE
framework. By establishing numerical stability, scalability, and robust hedging behaviour
across a wide range of model configurations, the work lays the foundation for a broader
class of high-dimensional derivatives models in which discontinuities and complex state
dynamics must be treated simultaneously. Continued development in these directions—
especially toward more realistic jump laws and the hedging of discontinuous risks—offers
considerable potential for advancing computational methods in quantitative finance.
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Table 1: Average pricing error per timestep across all strikes and jump intensities. RMSE
and maximum absolute error are reported between the neural BSDE solution and the
Merton American benchmark.

Step n tn RMSEn maxn |VNN − VMC|

0 0.00 6.82e-04 1.78e-02
1 0.04 7.38e-04 1.56e-02
2 0.08 7.04e-04 1.69e-02
3 0.12 7.96e-04 1.67e-02
4 0.16 8.47e-04 1.72e-02
5 0.20 8.20e-04 1.80e-02
6 0.24 8.87e-04 1.86e-02
7 0.28 9.46e-04 2.00e-02
8 0.32 9.17e-04 1.93e-02
9 0.36 9.86e-04 2.00e-02
10 0.40 9.92e-04 1.98e-02
11 0.44 1.07e-03 2.03e-02
12 0.48 1.06e-03 1.97e-02
13 0.52 1.09e-03 2.09e-02
14 0.56 1.04e-03 1.97e-02
15 0.60 1.09e-03 2.01e-02
16 0.64 1.16e-03 2.02e-02
17 0.68 1.17e-03 1.97e-02
18 0.72 1.19e-03 2.03e-02
19 0.76 1.27e-03 2.04e-02
20 0.80 1.52e-03 2.08e-02
21 0.84 1.28e-03 1.77e-02
22 0.88 1.27e-03 2.02e-02
23 0.92 1.32e-03 2.27e-02
24 0.96 1.43e-03 3.16e-02
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