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Abstract

Generating test data that cover all newly developed code has been an important step
in the software development process. Existing research has explored ways to automatically
generate test data to reduce costs and time in this process. This research paper pro-
poses a classifier that aims to find a more efficient automatic test data generation method
through dynamic executions of Python-written programs. The automatic generation pro-
cess converts conditional statements to function minimization problems that can be solved
by optimization algorithms, and then dynamic execution updates the local variable val-
ues. This classifier assigns the best optimization algorithm to each conditional statement
based on the patterns observed during the experiments. During the generation phase, a
heuristic approach isolates the variables affecting the current conditional statement to fur-
ther improve efficiency. The implementation of this classifier and the results of coverage
by iterations and coverage by runtime are shown in this research paper. We also bench-
mark the results against the random test data generation and the Least Squares method,
demonstrating the necessity of using optimization algorithms for effective test data genera-
tion. The results of the experiments validate that the integration of the classifier improves
conditional-decision coverage while reducing runtime.
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Chapter 1

Introduction

1.1 Background

As technological applications continue to develop and improve people’s productivity, there
has been increasing demand to assess their adequacy. Detecting faults in a newly developed
program before its release is an important step to improve the user experience and the
company’s reputation. However, manual program testing has been costly and inefficient.
It requires manual test case setup and may not cover all cases. For newly implemented
features, it is important to set up test cases that cover every conditional statement. This
step may become redundant and tedious for testers. Therefore, an automatic test case
generator can assist in testing and provide a comprehensive preliminary test set in addition
to the testers’ numerical accuracy tests.

A test adequacy criteria is needed to evaluate adequacy [22]. A problem is designed
to generate test cases based on the selected adequacy criteria. Since not every problem
is solvable, heuristics are generally used to generate test cases to find the method that
provides a better result but does not guarantee success in 100%.

The current literature shows that there are generally two ways of evaluating a program:
symbolic or dynamic execution. Symbolic evaluation often involves analyzing all possible
paths in a program, then generating test cases that execute the selected path without ac-
cessing the numeric values of the variables [14]. The dynamic execution approach [22] does
not symbolically evaluate the whole program upfront, but executes the program directly,
and only considers the current step in the program, not the entire path. This research will
focus on the dynamic execution approach.
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There has been significant interest in reducing testing costs and finding the best method
to automatically generate test cases. Search-based approaches have been used exten-
sively, for example, gradient descent method can be used for continuous and smooth con-
ditions, particle swarm algorithm [28](heuristic search approach) and genetic algorithm
[22](stochastic search approach) can be used for discrete conditions, such as boolean con-
ditions that contain non-numeric variables (strings, functions, etc.). However, current lit-
erature shows that gradient descent cannot be applied to discrete problems, particle swarm
has the issue of stopping at a local minimum, while genetic algorithm needs crossover and
mutation and eliminates part of the population in the process.

We are proposing a hybrid method that classifies the type of the condition, then applies
different optimization algorithms to generate a test case that can satisfy the condition.
This new methodology aims to increase the speed of test case generation and increase the
conditional coverage rate.

Condition coverage testing is used to test the effectiveness of the proposed method.
For each ”if” or ”else if” statement, both of its true and false branches count as conditions
that need to be met. The coverage is calculated as the number of conditions met / total
number of conditions.

1.2 Problem statement

This research focuses on automatic test data generation using the dynamic execution
method. The dynamic execution method reduces the generation process to a function
minimization problem. Therefore, the problem is to minimize the objective functions of all
conditional statements. While the program is being executed, the minimization problem is
performed for the conditional statement using the current the values of the local variables.
Each conditional statement is converted to an objective function:

min
X

f(X), X ∈ {x1, x2, x3, ...}, (1.1)

where X is a set of input parameters that are involved in the current conditional statement,
and f(X) is the objective function that the conditional statement is converted to. The
variables x1, x2, x3 stand for input parameters that form the test data.

For each conditional statement, if it is a conjunction of sub-conditions, e.g. it contains
a logical AND, we will minimize the sum of objective values of each sub-condition; while
if it is a disjunction of sub-conditions, e.g., it contains a logical OR, we will only minimize
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the objective value of the first operand of the OR expression. The mathematical formulas
are as follows:

Logical AND:

min
X

∑
i

fi(Xi), X ∈ {X1, X2, ..., Xi}, Xi ∈ {xi1, xi2, xi3, ...}, (1.2)

where the index i represents a sub-condition in the current conditional statement, fi(Xi)
is the objective function for the corresponding sub-condition. X1, X2, X3 represent the set
of input parameters of the sub-condition, and xi1, xi2, xi3 represent each input parameter
in the corresponding set i.

For example, the conditional statement if ((i + j <= k) and (j + k <= i)) will be
converted to mini,j,k{(i+ j − k) + (j + k − i)}.

Logical OR:

min
X

f1(X1), X ∈ {X1, X2, ..., Xi}, X1 ∈ {x11, x12, x13, ...}, (1.3)

where f1(X1) is the objective function for the first operand of the OR expression, X1 is
the set of parameters of this sub-condition, and x11, x12, x13 represent input parameters in
this set.

For example, the conditional statement if ((i <= 2) or (j <= 0) or (k <= 0)) will be
converted to min

i
i− 2, if i > 2.

The constraints of this system are the pre-defined range for the input parameters of
the program and the parent conditional statements.

1.3 Related works and research gaps

This research focuses on path-wise test data generators that take inputs and test criteria
to produce the desired test data [14]. Two methods are popular for path-wise test data
generation: symbolic evaluation [2][9] and dynamic execution [14][22].

1.3.1 Symbolic Evaluation

Symbolic evaluation allows variable values to be non-numeric, for example, elementary
symbolic values, arithmetic operators, and can also be a combination with numeric values

3



[9]. Some early research shows the direction of the evolution of this method. Clarke (1976)
[3] describes a system that automatically generates test cases through a symbolic evalua-
tion of each path. The symbolic evaluation can detect path infeasibility efficiently. The
DISSECT system [9] requires both the original program and the user defined commands.
It can draw a conclusion of the types of errors detected, but it might also require more user
input to increase its ability to detect errors. The SELECT system [2] can generate test data
or determine the correctness of a path but requires users’ inputs in some circumstances,
which is not yet automated.

1.3.2 Dynamic Execution

One of the earliest dynamic execution methods was investigated in [14], which identifies
the feasible paths of a program and then uses function minimization methods to output
the results that can traverse each path. The results show that this method improves
effectiveness by overcoming the limitation of symbolic evaluation with variables that are
unknown in advance and only become available during the execution of the program. This
is a significant improvement as these dynamically changing variables are frequently used
in programs. The function minimization method used is the direct-search method, which
is similar to applying gradient descent on each input variables individually.

This paper points out that the current function minimization method has some limita-
tions as it might end with a local minimum, not a global minimum. Following this paper,
more research was done to explore other function minimization (optimization) methods
that address this limitation.

Genetic Algorithm

Michael et al. [23][22] first discussed the use of genetic algorithms (GAs) for the automatic
generation of software test data, following [14]. They show that GAs perform better with
higher coverage and fewer iterations because they do not get trapped at local minimums
like gradient descent algorithms (GDs). They also propose that, while searching for results
of one requirement, the intermediate results may also happen to satisfy other requirements,
which could save time.
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Particle Swarm Optimization

The particle swarm optimization method (PSO) was first introduced in 1995 [13]. Windisch
et al. (2007) [28] first applied particle swarm optimization to software testing. They state
that PSO is simpler and easier to fine-tune than GA.

Since then, the particle swarm optimization technique has been widely used in auto-
matic test data generation with different testing criteria. The PSODGT (Particle Swarm
Optimization Data Generation Tool) [12] first adopts the condition-decision coverage, while
[16] used the path coverage. In [12], they state that the PSO is better at searching locally
and has a higher convergence speed compared to the GA, which further proves the signifi-
cance of applying PSO in the test data generation field.

More research was also done to modify and improve the application of particle swarm
optimization in the field of automatic test data generation. Wang et al. (2023) [27]
discussed the use of a combination of particle swarm optimization (PSO) and GA for
the generation of test data. They prove that this new algorithm performs better as it
has a more diversified population than the genetic algorithm technique. However, their
experiments were based on the efficiency of their proposed algorithm applied on the most
complex test path from 3 chosen small programs, not the entire program.

1.3.3 Testing Adequacy Criteria

The generation of test cases usually requires testing adequacy criteria to determine the
stop point. For the DISSECT system [9], it identifies the exact types of errors. For the
GADGET tool in [22] and the PSODGT tool in [12], they use the decision-conditional
testing criteria. In [28], they use the branch coverage.

One of the important measures of testing effectiveness is the code coverage. The code
coverage indicates whether all test cases can successfully execute the whole program, which
also implies the reliability of the test set [20]. The common testing criteria that has been
used are decision-conditional testing and branch testing. The decision-conditional testing
is important for software testing because it is usually required for testers to test all newly
added code. For the decision-conditional criteria, the generated test data ensures that all
code has been tested. Therefore, when the automatic test data generation satisfies the
decision-conditional testing criteria, it sets up a complete preliminary dataset to assist
with testers’ special test data.
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1.3.4 Summary

Both the symbolic evaluation and the dynamic execution methods can effectively perform
automatic test case generation. However, the symbolic evaluation can detect infeasible
paths more efficiently, while the dynamic execution needs to perform function minimization
until the stopping criteria has been met. In addition, only the dynamic execution has access
to the actual variable values while the program is executing.

Most existing works have tested their algorithms on simple programs with only numer-
ical variables.

In this paper, an automatic dynamic test data generation algorithm is introduced to
utilize all of GD, GA and PSO where they are most efficient and can handle more types
of input parameters.

This search-based test case generation does not guarantee the correctness of the outputs
of the program, but aims to find test cases that reach all conditional statements thus
avoiding the existence of unhandled exceptions.

1.4 Contributions

This research extends the automatic test data generator to programs written in the Python
language. For Python programs, an existing difficulty is that the types of the input pa-
rameters are not required to be pre-defined. As a result, before the values of the input
parameters are actually defined, their types are unknown. To overcome this difficulty, we
ask the user to pre-define the parameter types in advance, so that the automatic test data
generator can generate test data of the correct type.

As mentioned in [22], applying the automatic test data generator on larger and more
complex programs is important to show the impact of the complexity of the programs on
the proposed generator. We apply our proposed generator on larger programs, which are
not limited to a single function. The generator can be applied to a main function that calls
other functions.

Key contributions in this research paper are as follows:

• A classifier assigns the best optimization method for each condition. This can be
extended to apply any optimization method that is deemed more efficient based
on custom criteria. This classifier assigns the gradient descent method to single,
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continuous, and differentiable conditional statements, it assigns the particle swarm
method to multiple, continuous and differentiable conditional statements, and it as-
signs the genetic algorithm to other discontinuous and non-differentiable conditional
statements.

• The automatic test data generator is designed for Python programs. The application
of the automatic test data generator has been extended to Python programs.

• The automatic process can handle not only a standalone function, but also nested
functions within the main function. Previous works do not mention if nested functions
can be handled.
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Chapter 2

Theoretical Framework

This section discusses the theoretical background of this research paper. We will discuss the
fundamental theories that support the validity of the proposed new method: the search-
based software testing, dynamic execution and statistical pattern recognition. In this
research paper, we utilize a combination of these theories to achieve a better solution for
our problem.

2.1 Search-based software testing

The search-based software testing (SBST) has been the tool that is used to generate test
suits for software systems. This method was first published by Webb Miller and David
Spooner in 1976 [21]. Before this method was introduced, the symbolic execution and con-
straint solving was the mainstream technique for generating test data. The SBST involves
executing the software, using a fitness function to evaluate the inputs, and searching for the
best inputs that result in the lowest cost values using optimization algorithms. It mentions
that the simplest optimization algorithm is random search. The next section discusses the
fitness function.

2.2 Function minimization and objective function

In this section, we will discuss the objective function associated with the minimization
problem that automatic test data generation transforms into.
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In the first research of test data generation via dynamic execution [14], it introduces a
way to organize the conditional statement in a form such that E1 op E2, where E1 and E2
are arithmetic expressions, and op is the comparison operator. In this early research, they
assumed that there would be no logical operators such as AND or OR for simplicity. Later
in [22], the conjunctions (AND) and the disjunctions (OR) are discussed. They proposed
that in the presence of conjunctions, for example, for the conditional statement

if (A and B),

to satisfy the true branch of this condition, we only need to evaluate if B is true. This
is because B is only evaluated if A is true due to the short circuit evaluation of the
programming language. The tool in [22] is designed for C/C++ programs, but this feature
is also used for Python.

For each single condition without conjunctions or disjunctions, the objective function
is defined in Table 2.1.

Condition Objective function
1 x <= y x - y
2 x == y |x - y|
3 x >= y y - x
4 Boolean (true/false) if satisfied, 0; otherwise, 1000

Table 2.1: Objective functions for different types of conditions

In this research paper, we use a different approach for conjunctions and disjunctions.
For disjunctions (OR), only the first term of the conditional statement is considered. For
example, for the conditional statement

if (A or B),

we will only evaluate A, that is, convert A to its objective function based on Table 2.1,
then solve this minimization problem to get the desired test case. For conjunctions (AND),
all terms of the conditional statement are considered. For example, for the conditional
statement

if (A and B),

we will evaluate both A and B, that is, convert A and B to their objective functions,
respectively, based on Table 2.1, add the objective functions together, then solve this
minimization problem to get the desired test case. This method also applies when there
are more terms in a conditional statement. This way we perform the optimization on both
conditions simultaneously.

9



2.3 Dynamic Execution

Dynamic analysis theory provides the foundation for searching for solutions while executing
the programs. The existing automatic test data generation tool published in 2023 [18] did
not utilize dynamic execution of programs. It has a restriction for attributes of objects that
are assigned dynamically and that are difficult to identify upfront. In [15], variables that
cannot be randomly initialized can be set up by utilizing Codex, which is an AI-powered
tool that is trained on real-world coding tasks. However, the testing adequacy criteria
might be limited, as it can only insert assert statements to generate the test data.

On the other hand, dynamic analysis executes the program, and the variable attributes
are recorded. This lifts the limitations on unknown variable attributes, such as dynamically
assigned types or special formats of a general type. The program is executed with randomly
initialized input parameters of the main function, then all the other variables are recorded
as the program executes.

2.4 Statistical pattern recognition

Anil discussed the pattern recognition techniques in 1987, that it assigns categories to
different objects or events based on its observed patterns [11]. The design of the classifier
is based on patterns observed from initial experiments.
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Chapter 3

Optimization Algorithms

This research paper aims to explore different dynamic test data generation methods written
in Python. We choose to explore Python because it has become the most popular and
widely used programming language, especially in the data science and machine learning
fields [17]. For dynamic test data generation, the values of local variables can be calculated
dynamically and used to determine if the conditions are satisfied. To generate software
test cases using optimization algorithms that cover the if statements of a program, the
if statements are converted to objective functions. The optimization algorithms aim to
minimize the objective value, so that the test case satisfies the statement. This section
discusses the continuous objective functions. As test cases are generated, all conditions
will be evaluated to see if the test case happen to satisfy any conditions.

3.1 Random Generation

A traditional way of automatic software testing is to generate random test cases to detect
faults. Values are generated completely randomly for each parameter of the program.
This method is used together with manual unit testing to catch random cases that might
be skipped during manual testing. The effectiveness of this method usually depends on
the number of test cases generated; therefore the computational costs is potentially high,
especially when there are a significant number of parameters. This method minimizes the
implementation costs upfront, but is not efficient when comparing the number of effective
test cases generated to the total number of iterations, which may also increase the costs of
storage of these test cases.
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In this research paper, this method is used as a benchmark to evaluate the effectiveness
of optimization algorithms and the proposed algorithm.

3.2 Direct approach – Least Squares

Given that the minimization problem can be written as a system of equations, one of the
direct method of solving this problem is to solve the system of equations. The test cases are
generated by directly solving the linear system Ax = b. To transform the automatic test
data generation to a minimization problem, we use the objective functions in Table 2.1.
Then we used the least squares method to solve the minimization problem. The least
squares is a method that tries to find the optimal solution even when there is no exact
solution [10]. In this research paper, we do not consider complex numbers. The method
tries to solve this system:

min
x
||Ax− b||2,

where A ∈ Rm×n ,x ∈ Rn×k , b ∈ Rm×k. The variable k represents the number of
conditions that need to be met.

The program is first divided into various paths that it can take. For each path, all
conditions that need to be satisfied to reach the end of the path are combined to form one
of the main conditions that need to be satisfied for the condition coverage testing. Taking
triangle classification as an example, the first condition is ”if((i <= 0)or(j <= 0)or(k <=
0))”. We only consider the first operand of the OR expression, which can be converted to

A = [ A11 0 0 ],

x =

[
x11
x12
x13

]
,

b = [ −randnum ].

The setup for the least squares problem for the whole triangle classification program is
as follows:
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A is 27 by 27 matrix and is set up as follows:

A11 A12 A13 0 0 0 0 0 0 0...
0 0 0 A24 A25 A26 0 0 0 0...
0 0 0 A34 A35 A36 0 0 0 0...
0 0 0 A44 A45 A46 0 0 0 0...
0 0 0 0 0 0 A57 A58 A59 0...
0 0 0 0 0 0 A67 A68 A69 0...
0 0 0 0 0 0 A77 A78 A79 0...
... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 0 0...


x is a 27 by 9 matrix and is set up as follows:

x11 0 0 0...
x12 0 0 0...
x13 0 0 0...
0 x21 0 0...
0 x22 0 0...
0 x23 0 0...
0 0 x31 0...
0 0 x32 0...
0 0 x33 0...
... ... ... ...
0 0 0 0...


b is a 27 by 9 matrix and is set up as follows:

b11 0 0 0...
0 b21 0 0...
0 b22 0 0...
0 b23 0 0...
0 0 b31 0...
0 0 b32 0...
0 0 b33 0...
... ... ... ...
0 0 0 0...


Take the triangle classification program as an example, there are 3 input variables

needed. Elements in A for the first main condition are in the first 3 columns of A. The
number of rows it takes depends on the number of small conditions that need to be satisfied
simultaneously. For example, the first main condition is i <= 0, A11 = 1, A12 = 0, A13 =
0, b11 = -randnum. The second main condition is i = j > 0 and k > 0, A24(i) = 1, A25(j)
= -1, A35(j) = 1, A46(k) = 1, b21 = 0, b22 = randnum, b23 = randnum. This process is
repeated until we have coded all conditions in the format of Ax = b.

Finally, the least squares method is used to solve the linear system. This method has
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a runtime of 6.20e-05 second. A sample of test cases generated is as follows:

−90 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 58 0 0 0 0 0 0 0
0 58 0 0 0 0 0 0 0
0 44 0 0 0 0 0 0 0
0 0 48 0 0 0 0 0 0
0 0 11 0 0 0 0 0 0
0 0 48 0 0 0 0 0 0
0 0 0 60 0 0 0 0 0
0 0 0 8 0 0 0 0 0
0 0 0 8 0 0 0 0 0
0 0 0 0 −15 0 0 0 0
0 0 0 0 −18 0 0 0 0
0 0 0 0 18 0 0 0 0
0 0 0 0 0 53 0 0 0
0 0 0 0 0 53 0 0 0
0 0 0 0 0 53 0 0 0
0 0 0 0 0 0 75 0 0
0 0 0 0 0 0 90 0 0
0 0 0 0 0 0 68 0 0
0 0 0 0 0 0 0 44 0
0 0 0 0 0 0 0 25 0
0 0 0 0 0 0 0 46 0
0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0 29
0 0 0 0 0 0 0 0 45


Although the least squares method is the most straight-forward method when we think

of solving a linear system, it cannot be solved dynamically. As a result, it does not know
the values of local variables. Similarly, it cannot handle functions calls, as these functions
might be defined locally. Test cases generated by one conditional statement cannot be used
to evaluate other conditions.

A turnaround for solving the first limitation mentioned earlier is to set up the matrix
gradually while dynamically executing the program. However, as shown in Figure 3.1, as
the matrix becomes larger, the runtime will significantly increase. It will be more efficient
to perform an optimization algorithm to find the solution for the current condition instead
of only setting up the matrix.
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Figure 3.1: Comparison of Runtime for Different Number of Conditions Covered

Figure 3.1 shows runtime in seconds by number of conditions. The single value de-
composition method is used to solve the least squares problem. It shows that there is a
cubic relationship between runtime and the number of conditions. As number of conditions
increases, the percentage increase in runtime continues to increase. We can conclude that,
for real life programs, the least squares method will not be an efficient solution since the
runtime increases cubically as the number of conditions increases.

3.3 Gradient descent optimization for differentiable

conditions

In early research on automatic test data generation via dynamic execution [14], a similar
method, the alternating variable method, was used to solve the minimization problem.
The method adjusts each variable in turn towards the minimum.

Similarly, the gradient descent used in the context of test data generation also adjusts
each variable in turn. This method requires the objective function to be continuous and
differentiable. The algorithm uses the gradient of the objective function, and it gradually
moves the variable toward the goal with the following algorithm:

x = x− gradient× step size.
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The limitations of this method are that it requires a gradient and it might be trapped
at a local minimum. The step size chosen for this research is 1. This works fine with
variables with small ranges. For further fine-tuning, we also explored accelerated gradient
descent to dynamically calculate the step size, and gradient descent with line search to
optimize the searching process.

For each single condition without conjunctions or disjunctions, the gradient is defined
in Table 3.1 The gradients are only applicable for continuous and differentiable functions.

Condition Gradient
1 x <= y 1
2 x == y 1 if (x > y > 0); otherwise -1
3 x >=y -1
4 Boolean n/a

Table 3.1: Gradients for different types of conditions

3.4 Gradient descent optimization for non-differentiable

conditions

Regular gradient descent cannot properly handle non-differentiable function, as there is
no direct gradient. The objective function is not differentiable when the conditional is
boolean, in other words, it is a true/false condition. In this case, the finite difference
approximation can be used.

3.4.1 Finite difference approximation

When there is no direct gradient, 10 test cases are generated. The objective values are
calculated for each test case, then an approximate gradient is calculated for each test case
as follows [25, Chapter 8.1]:

df

dxi

=
f(x+ hiei)− f(x)

hi

The average of these gradients is then used to update each parameter.
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However, this still cannot easily handle function calls or loops dynamically, because for
boolean conditions, the objective value equals a constant penalty, therefore, there will be
no difference in the objective values for each test case. Instead, 10 random test cases are
generated and the one with the lowest objective value will be used for the next iteration.

3.5 Accelerated gradient descent optimization

The following accelerated gradient (AGD) algorithm is used (Ghadimi et al., 2016) [7]:

1. Set
xmd
k = (1− αk)x

ag
k−1 + αkxk−1

2. Compute ∇Ψ(xmd
k ) and set

xk = xk−1 − λk∇Ψ(xmd
k )

xag
k = xmd

k − βk∇Ψ(xmd
k )

3. Set k ← k + 1 and go to step 1

xk, x
ag
k , xmd

k are initialized by the initial random test case, and will be updated with the
AGD algorithm. k is the number of iterations, which starts at 1. α1 = 1 and αk ∈ (0, 1)
for any k ≥ 2, βk > 0, and λk > 0.

When a random test case is generated to take a different path of the program, xk, x
ag
k , xmd

k

are reset to the new test case because we need to include the values of the required local
variables in the context of them.

3.6 Gradient descent optimization with line search

The following gradient descent with line search is used [1, Chapter 9.3]:

1. Set β = 0.25

2. During the iterations, if f(x− t∇f(x)) > f(x)− t
2
||∇f(x)||2. update t=βt

3. Use t as the step size for the gradient descent algorithm.
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3.7 Particle swarm optimization

The particle swarm optimization method is inspired by the social behavior in nature that
can be observed in herds of animals, flocks of birds, etc. [28]. This method introduces
diversity in the test cases it generates, which increases the speed of finding the best solution.
In addition, the PSO does not get trapped at local minimums easily because it searches
around each local particle and also knows information from the overall population.

In the context of test data generation, for each condition, the number of dimensions for
PSO is the number of variables. The following algorithm is followed:

1. Randomly generate a population of particles. Each particle consists of randomly
generated values of the input parameters of pre-defined types.

2. If the condition has not been satisfied, update the velocity, which is used to adjust
each particle. For each parameter x1

i , ..., x
d
i , the velocity depends on both the personal

best score/position (pbestdfi(d)) and the global best score/position (gbestdfi(d)) at the

previous iteration, where i represents the number of iterations, fi(d) is the function
that measures the score/position. The velocity is updated with the following formula
[4] [28]:

vdi (t)← ω·vdi (t−1)+c·rdi ·(pbestdfi(d)(t−1)−x
d
i (t−1))+c·rdi ·(gbestdfi(d)(t−1)−x

d
i (t−1)),

where ω is the inertia weight which is set to 0.5, and c is the cognitive coefficient
which is set to 1.5. rdi is a uniformly distributed random variable in the range of [0,
1].

3. Adjust the particles and store the personal best score/position and the global best
score/position. The scores are the fitness values for each particle. The global best is
the best particle that has the least fitness value in our minimization problem.

4. Repeat steps 2 and 3. Stop if the best individual that satisfies the condition has been
generated or the maximum number of iterations (10,000) has been reached.

The population size is set to 50. Each input parameter that is required to generate is
defined as a particle. If the input parameter has a higher dimension (e.g. list), each item
counts as a separate particle. The fitness value is calculated by evaluating the value of the
objective function as in Table 2.1 using the values of local variables.
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3.8 Genetic algorithm

Using the genetic algorithm to solve the function minimization problem to find the desired
test data is the main contribution in [22]. This method does not stop at a local minimum,
and is helpful to solve multiple minimization functions simultaneously.

The genetic search algorithm mimics a natural selection process. In the context of test
data generation, the following algorithm is followed:

1. Randomly generate a population. Each individual consists of randomly generated
values of the input parameters of pre-defined types.

2. Select individuals from the population. The roulette-wheel selection method is used,
which assigns individuals with lower fitness values a higher probability to be selected.

3. Crossover and mutate to generate the next generation.

4. Repeat steps 2 and 3. Stop if the best individual that satisfies the condition has been
generated or the maximum number of iterations (10,000) has been reached.

The population size is also set to 50 to be comparable with PSO. Uniform mutation and
two-point crossover are used. The number of iterations refers to the number of generations
needed to find the solution. The fitness value is calculated by evaluating the value of the
objective function as in Table 2.1 using the values of local variables.
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Chapter 4

Pattern-based automated classifier

4.1 Automation

The abstract syntax tree (AST) module is used to perform a static analysis of the program
being executed and to parse the source program. The optimization calculation is inserted
before each conditional statement. The transformed program is then called to be executed.

We ask the user to pre-define the input parameter types in their source code. In Python,
it is not required for users to pre-define the parameter types, but this step is needed to
generate random initial test cases.

A coverage table is used, as used to track the progress of the generation process in
[22] and [5]. This table tracks the decision-conditional coverage during the process. The
coverage is tracked at each iteration to determine whether the current conditional statement
is satisfied, other conditional statements that happen to be satisfied, or if the whole process
can be terminated when the required coverage percentage is reached.

There is a test case storage that stores the final test cases generated that satisfy the
conditional statements. When the true branch of a conditional statement turns from ’false’
to ’true’, we store the current local test case to the test case storage, which is populated
at the end of the automation process.

At each iteration, the assigned optimization algorithm is applied to find the optimal
test case at the current step. The program is then executed again to update the values of
local variables. The evaluation of the output test data is done at the beginning of the next
execution. As a result, when the conditional statements are evaluated, the local variable
values have been properly calculated.
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The evaluation function is also inserted through AST to the source code. When eval-
uating, the transformed program will be executed and the conditional statement will be
marked as satisfied if it has been reached and satisfied. Especially at the first evaluation
step, we will update the false branch of the coverage table for all conditional statement
that cannot be reached by the current test data, or are evaluated as ’false’.

4.2 Sub-goal

The sub-goal method is used for conditional statements that are nested in a block [14]. For
conditions nested within an if block, the test data generated needs to satisfy the current
conditional statement and also ensures the current condition is feasible. For example, for
the triangle classification program,

1i f ( t r i == 0 ) :
2i f ( ( i + j <= k) or ( j + k <= i ) or ( i + k <= j ) ) :
3t r i = 4

when we reach line 2 and use the optimization algorithm to find a test case that satisfies
this conditional statement, the conditional statement in line 1 becomes the constraint.

The constraints are not only used at the evaluation step, but also add penalty to the
fitness values of the objective functions. Therefore, during the optimization process, the
constraints also help steer the produced result toward the desired direction. However, since
the gradient descent algorithm does not require the fitness calculation, the constraints can
only be applied at the evaluation step.

4.3 Heuristics

A heuristic approach is used to only consider variables that affect the current conditional
statement. For example, for the following current conditional statement in the binary
search program, only one element of a list will make its TRUE/FALSE status change.

1i f ( a r r [ mid ] == ta rg e t )

Then only item arr[mid] is considered for the optimization algorithm to find a solution,
not the entire list. This heuristic approach further improves efficiency, especially for the
gradient descent and the particle swarm optimization algorithms that adjust each element
individually.
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4.4 Condition classifier

The reason we want to assign the optimal optimization algorithm by a classifier is because
although the genetic search algorithm is a general algorithm that can solve all function
minimization problems, it takes longer time, especially for simple problems when compared
with other algorithms. Therefore, for single conditions that are continuous and differen-
tiable, we believe that it would be the most efficient to find the solution using the gradient
descent algorithm, while for multiple continuous and differentiable conditions, the PSO
would work better. To support this idea, results from preliminary experiments can be
found in Chapter 5.

In figure 4.1, the automated process is demonstrated. This process is ran five times to
get average results for the coverage rate, run-time taken, and number of iterations required.
We report the average results over multiple runs as the final result to eliminate the effect
of random noise and increase the reliability of the results.

Each run starts with a randomly generated initial test data based on the predefined
parameter types. When the program starts to execute, it decides whether the conditional
statement it reaches is the conditional statement it is currently working on. If it is the
conditional statement currently worked on, if it is not satisfied yet, the best-suited opti-
mization algorithm will be applied. The best candidate for the current iteration will be
produced. If the conditional statement is satisfied, the process will switch to the next con-
ditional statement that has not been satisfied according to the condition coverage table.
When a solution that satisfies a conditional statement is found, it will be recorded.

Afterwards, the execution of the program is continued, where it can either continue to
work on the next if block or nested conditional statements, or return back to the beginning
of the iteration. When the number of iteration on the current conditional statement exceeds
a threshold (100), a random test data is generated and the conditional statement currently
worked on will switch to the next one.

For optimization algorithms that require a population or particles to be generated ini-
tially, for example, the genetic algorithm and the particle swarm optimization, the popula-
tion is compromised of individuals that have been recorded that can reach the conditional
statement and other randomly generated individuals. This strategy has been utilized in
many existing literature [22][12], and has been proven to make the process significantly
more efficient.
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Figure 4.1: Automation Process
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Chapter 5

Experiment Results

5.1 Experiment design

The experiments are carried out on selected standalone programs using all algorithms
described in Chapter 3: random, gradient descent, genetic algorithm, particle swarm opti-
mization, and the classifier.

The following standalone programs are tested:

• binary search,

• triangle classification,

• analyze numbers. [6]

The binary search program has 4 conditional statement branches that are continuous
and differentiable with only one single condition. The triangle classification program has
20 conditional statement branches. Some of them are continuous and differentiable with
only one single condition; while others contain multiple continuous and differentiable con-
ditions. The analyze numbers program has 22 conditional statement branches that are
discontinuous and non-differentiable with both multiple conditions and single condition.
The conditions are discontinuous because they are boolean conditions with function calls
which are not differentiable and cannot slowly move to the destination in the direction of
the steepest slope. They require dynamic evaluation because the values of function calls
cannot be determined in advance. The first 2 programs are widely used in research papers
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to test the efficiency of the test case generation algorithm. To the best of our knowledge,
programs similar to the analyze numbers program have not been used in recent research
papers.

analyze numbers is used as an example of programs that contain non-linear conditional
statements. It contains function calls and loops that involve local variables and functions.
This program takes in a list of integers and analyzes if the following conditions are satisfied:

Conditional Statements
If the list is empty
If all numbers are the same
If there are negative numbers
If there is at least 1 zero
If all numbers are even
If all numbers are odd
If all numbers are sorted in ascending order
If all numbers are sorted in descending order
If there are duplicate numbers
If some numbers are above average
If some numbers are below average

Table 5.1: analyze numbers

We compared the coverage versus iterations between gradient descent and genetic al-
gorithm. GA can reach a coverage of 91% while GD can only reach a coverage of 55%.
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Figure 5.1: Comparison of Coverage vs Runtime for analyze numbers

5.1.1 Effectiveness metric

To measure the effectiveness of the algorithm, the condition-decision coverage is used as
was used by Michael, McGraw, and Schatz (2001) [22]. A coverage table is created: the
first column lists the conditional statements, the second column and the third column rep-
resents the true branch and the false branch respectively. Both true and false branches for
all conditional statements default to ”False”. As test cases are generated for each condi-
tional statement, the cell corresponding to the true branch of the conditional statement
is marked ”True” if the generated test case satisfies the conditional statement; otherwise
its false branch is marked ”True”. The process continues until all conditional statements
are satisfied or the number of maximum iterations is reached. The results shown in this
section are the average taken over 5 iterations, to reduce the effect of random noises.

5.1.2 Number of iterations

The number of iterations used to reach the maximum coverage is compared among gradient
descent, genetic algorithm, and particle swarm optimization. For each conditional state-
ment, the process stops when the corresponding condition is satisfied or the total number
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of iterations has exceeded 10,000. The process moves on to the next nested conditional
statement and iterates until the next conditional statement is satisfied.

(a) Continuous and Differentiable Condi-
tions: Comparison of Coverage vs Iterations

(b) Discontinuous and Non-Differentiable
Conditions: Comparison of Coverage vs It-
erations

Figure 5.2: Comparison of Coverage vs Iterations

Figure 5.3: Conjunctions: Comparison of Coverage vs Iterations

Figure 5.2a shows the coverage by number of iterations for a standalone program that
contains only continuous and differentiable conditions. The three optimization algorithms
can reach a coverage percentage of 100% before reaching the maximum iterations. On
average, the gradient descent method requires 120 iterations to reach its best coverage for
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the binary search program which contains two conditional statements. Among the three
algorithms, gradient descent performs the best as it requires the least number of iterations
to satisfy all conditional statements.

Figure 5.2b shows the coverage by number of iterations for a standalone program that
contains only discontinuous and non-differentiable conditions. The gradient descent algo-
rithm only covered 62% of all conditional statement branches, the particle swarm optimiza-
tion covered more at 70%, while the genetic algorithm found test cases that satisfy the
most conditional statements at 82%. It can be observed that the genetic algorithm requires
fewer iterations than the particle swarm optimization and gradient descent algorithm, while
achieving a high coverage.

Figure 5.3 shows the coverage by number of iterations for a standalone program that
contains conjunctions of continuous and differentiable conditions. The particle swarm
optimization and the genetic algorithm achieved similar coverage, while the particle swarm
optimization required relatively fewer iterations.

5.1.3 Runtime

In addition to the number of iterations, the runtime used was also compared. Some algo-
rithms might need fewer iterations but take longer time to process.

(a) Continuous and Differentiable condi-
tions: Comparison of Coverage vs Runtime

(b) Discontinuous and Non-Differentiable
conditions: Comparison of Coverage vs
Runtime

Figure 5.4: Non-Continuous and Non-Linear conditions: Comparison of Coverage vs Run-
time
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Figure 5.5: Conjunctions: Comparison of Coverage vs Iterations

Figure 5.4a shows the percentage of coverage by runtime for a standalone program that
contains only continuous and differentiable conditions. Gradient descent also required the
least runtime to finish its search, while the genetic algorithm required the most runtime.

Figure 5.4b shows the coverage by runtime for a standalone program that contains
only discontinuous and non-differentiable conditions. Both the genetic algorithm and the
particle swam optimization took similar time; however, the genetic algorithm achieved a
significantly higher coverage.

Figure 5.5 shows the coverage by runtime for a standalone program that contains con-
junctions of continuous and differentiable conditions. The particle swarm optimization and
the genetic algorithm achieved similar coverage, while the particle swarm optimization only
required one thirds of the runtime for the genetic algorithm.

5.1.4 Mixes of both continuous and discontinuous conditions

From the above 2 metrics in section 5.1.2 and section 5.1.3, we can conclude that the gra-
dient descent algorithm works the best for continuous and differentiable conditions, while
the genetic algorithm works the best for discontinuous and non-differentiable conditions.
In this section, the experiment is done on a more complex program that contains the above
standalone functions as nested internally-called functions.

A classifier introduced in this research paper is used to generate test cases. For each
condition, the classifier identifies whether the condition is continuous and differentiable or
discontinuous and non-differentiable. The classifier also identifies if there are conjunctions
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of multiple conditions. The optimal optimization algorithm is assigned to each condition
through a static analysis based on the patterns observed: for continuous and differentiable
conditions, the gradient descent is applied, for discontinuous and non-differentiable condi-
tions, the genetic algorithm is used, and for conjunctions of continuous and differentiable
conditions, the particle swarm optimization is used.

(a) Mixed conditions: Comparison of Cov-
erage vs Iterations

(b) Mixed conditions: Comparison of Cov-
erage vs Runtime

Figure 5.6: Mixed conditions: Comparison of Coverage vs Runtime

Figure 5.6a shows the percentage of coverage by number of iterations for a complex
program that contains continuous and discontinuous conditions and conjunctions.

Figure 5.6b shows the percentage of coverage by runtime for a complex program that
contains continuous and discontinuous conditions and conjunctions.

It can be observed that the classifier helped to increase coverage while decreasing run-
time.

5.2 Effect of Program Length

In this section, the effect of the complexity of programs in terms of number of conditions
they contain is examined. The coverage and runtime are compared when the number of
conditions is different. The results in this section helps to understand the scalability of the
proposed method when it is applied to more complex problems.
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5.2.1 Impact on Coverage

Figure 5.7: Classifier vs All methods: Comparison of Coverage for Different Number of
Conditions Covered

Figure 5.7 shows the percentage of coverage achieved for programs with different numbers
of conditions. For number of conditions at 4, the programs contain only continuous and
differentiable conditions. For number of conditions greater than 4 but less than 20, the
programs contain only mixes of single and multiple continuous and differentiable condi-
tions. For number of conditions more than 20, the programs contain both continuous and
discontinuous conditions.

There is no significant effect on coverage for the classifier method when more conditions
need to be covered, as highlighted in Figure 5.7. When number of conditions increases,
the coverage is still approximately 100%. This is because the best optimization algorithm
is being applied to each conditional statement individually, so that the coverage achieved
will not be negatively affected, regardless of the type of the conditional statement.

It can be seen that the random method only covered less than 50% of the conditional
statement branches. This is used as a benchmark to show the effectiveness of the opti-
mization algorithms.

5.2.2 Impact on Runtime

The runtime comparisons are conducted with a stopping point at a fixed condition-decision
coverage percentage. The coverage threshold is used as the stopping criterion to ensure
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that runtime comparisons across all optimization algorithms are made under identical
conditions.

(a) Comparison of Runtime (Continuous
only)

(b) Comparison of Runtime (All Condi-
tions)

Figure 5.8: Comparison of Runtime for Different Number of Conditions Covered

Figure 5.8 shows the results in which we set the process to stop when the percentage of
coverage reaches 85%. All of the genetic algorithm, the particle swarm optimization and
the classifier can achieve a condition-decision coverage above 85%. When the number of
conditions is relatively low, increasing number of conditions does not significantly impact
runtime. However, as number of conditions increases, especially with discontinuous and
non-differentiable conditions added, the runtime required increases significantly. However,
it can be seen that the classifier requires the least runtime increase to reach the same
percentage of coverage.

5.3 Effect of Range of Input Parameter Values

Compared with other papers, we see that the average coverage the model achieves matches,
but the number of iterations required differs. This is possibly due to the different range
that we assign for each variable. For our previous experiments, we assumed that the range
for numbers is [-100, 100], and the range for the lengths of lists are [0, 10].

Figure 5.9 and Figure 5.10 show the coverage by iterations and coverage by runtime
when we increase the range for numbers to [-1000, 1000] and increase the range for the
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lengths of lists to [0,100]. It can be observed that as the range of input parameters increases,
the number of iterations and runtime required also increase.

(a) Coverage vs Iterations for Different
Ranges of Input Parameters

(b) Coverage vs Iterations for Different
Ranges of Input Parameters

Figure 5.9: Coverage vs Iterations for Different Ranges of Input Parameters

(a) Coverage vs Runtime for Different
Ranges of Input Parameters

(b) Coverage vs Runtime for Different
Ranges of Input Parameters

Figure 5.10: Coverage vs Runtime for Different Ranges of Input Parameters

The range of input parameter values also affect the coverage. For example, for a input
parameter that is a list, whether it can be an empty list matters. Therefore, the range of
input parameter values must be adjusted before running the generation process.
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5.4 Fine-Tuning

Fine-tuning involves adjusting the hyperparameters of each algorithm to find the most
efficient setup.

5.4.1 Algorithm specific fine-tuning

For gradient descent, a fixed step size of 1, accelerated gradient descent and gradient
descent with line search have been explored.

(a) Coverage vs Iterations (b) Coverage vs Runtime

Figure 5.11: Fine-tuning for Gradient Descent

5.4.2 General fine-tuning

The number of iterations required to loop through the automation process is set to be
10000.

The number of iterations required should be correlated with the range of input variables,
as we observe in Figure 5.9 and Figure 5.10 to improve search efficiency.

For genetic algorithm and particle swarm optimization, a population of 50 is used. This
can be further tuned for better performance.

For particle swarm optimization, a weighted inertia factor based on the number of
iterations is used [12]. The cognitive coefficient is also adjusted based on the number of
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iterations. It starts with 1.5 and switches to 0.8 when the number of iterations reaches 50.
This is to make it more precise when searching near the optimum.

5.5 Discussions

In this section, we examine various methods: the random generator, the least squares
method, and three optimization algorithms: gradient descent, genetic algorithm, and par-
ticle swarm optimization. From our preliminary experiments, we found that the random
generator cannot effectively generate test cases that cover all conditional statements with
the same number of iterations or runtime compared to other methods. In addition, the
gradient descent method works the best when the conditional statement contains one con-
tinuous and differentiable condition, but it cannot handle discontinuous conditions that
involve function calls. The PSO is more efficient with conditional statements that contain
conjunctions of continuous and differentiable conditions. The GA is more efficient with
discontinuous and non-differentiable conditions.

From the preliminary results, the classifier assigns the most suitable optimization al-
gorithm to each conditional statement. The results show that the classifier consistently
reaches a coverage above 95% for all types of conditional statements, while requiring the
least number of conditions and the least runtime.

Factors that negatively affect the runtime of the classifier method are the range of input
parameters, the increase in the number of conditions, and the number of iterations spent
on an inaccessible paths. Solutions that address these drawbacks can be explored in future
work.
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Chapter 6

Conclusions

This research paper aims to find a more efficient automatic test case generation method to
increase the speed of the process and the conditional-decision coverage. We examined
the coverage and speed for three types of optimization algorithms (Gradient Descent,
Genetic Algorithm, and Particle Swarm Optimization) for different types of conditional
statement and realized that there was no single algorithm that could perform the best
for all types of conditional statement. Therefore, we proposed a classifier that assigns
the best optimization algorithm to the current conditional statement by static analysis.
It helped increase coverage and reduce runtime. Specifically, when running the program
and generating test cases dynamically, the values of local variables are known and the
best optimization algorithm can be chosen for each condition to achieve the best efficiency.
This classification method can generally be applied to a broader selection of optimization
algorithms and can be based on other custom criteria.

6.1 Limitations of the current approach

Limitations of the current classifier are as follows:

• If the parameter type is not built-in but is a user-defined class type, the current
generator cannot properly generate test data for them. Some adjustments to the
code base are required upfront.

• The current generator can only handle strings that are the identifiers of Enum mem-
bers.
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6.2 Future research ideas

There are future research ideas that can further improve the performance or overcome the
limitations of the current classifier.

• The current tool can be further extended to be compatible with user-defined param-
eter types, so that it would automatically work without additional initial work.

• Other test adequacy criteria can be used to measure the effectiveness of the proposed
classifier method.

• Other optimization algorithms, such as the ants colony, can be used to improve the
classifier.

• Further fine-tuning for the optimization algorithms may further improve the results.
For example, adjust the population size or the maximum number of iterations allowed
before stopping.
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