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Abstract

Data-driven paradigms for atmospheric forecasting now challenge the leading numerical
weather prediction (NWP) techniques, offering competitive accuracy and superior inference
speeds. This work draws on architectural decisions by leading data-driven models to present
a lightweight transformer based approach for tackling the forecasting task of condensation-
trail (contrail) risk prediction. Contrails are artificial cloud-like structures formed in the
upper atmosphere when aircraft fly through ice-supersaturated regions, and are the main
actor in global warming from air travel. This has motivated the development of reliable
contrail avoidance systems, in which contrail risk prediction plays a key role. Our work
highlights the contrail risk prediction capabilities of our lightweight transformer model and
the architectural decisions that enable it to learn complex dynamical-system relationships.
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Chapter 1

Introduction

The term contrails is used colloquially in reference to condensation trails. Condensa-
tion trails are artificial cloud-like particle structures observable as white streaks that trail
aircraft. These trails are well studied in their formation conditions [10, 42, 58, 41] and
warming effect on the global climate [2, 46, 48]. Conseqeuence of this warming effect and
the efficacy of slight flight path deviations on contrail prevention [18], the study of contrail
avoidance systems has become a focal challenge in the aviation community.

Addressing contrail avoidance is a multi-faceted problem. It demands sustained re-
search efforts into alternative fuel sources for air travel, operational systems for live aircraft
re-routing, and predictive tooling that can accurately forecast contrail prone regions. Of
these objectives, adoption of effective re-routing systems is the more immediately tractable
given maturity of forecasting capabilities and the effectiveness of small deviations to flight
path on contrail prevention. Furthermore, commercial aircraft already perform re-routing
to avoide areas of strong turbulance which is almost operationally identical to avoidance
of contrail risk regions.

Currently, there is no commercially deployed operational system that guide aircraft
away from contrail risk zones. At present, only small-scale operational intervention studies
and historical re-routing analyses have been done [36, 13]. Therefore, there is pressing need
for development of a preliminary system. These systems are primarily limited by accurate
measures of contrail risk at fine enough spatial and temporal resolutions [7]. Though per-
formant numerical weather prediction models currently exist [4] and competitive rivaling
data-driven atmospheric models [5, 30], operationally deployable contrail risk models do
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not exist.

In this study, we design and evaluate a small transformer-based model to assist in the
contrail avoidance task. The architecture decisions are inspired by other leading data-
driven models [5, 19] for large scale atmospheric prediction. We adapt their techniques to
fit our smaller architecture setting. We call our small transformer model for contrail risk
prediction TinyTrail.

The layout of our report is as follows. We first cover study of the environmental impact
of contrails, the atmospheric conditions under which their formation is favourable, and
recent literature on contrail avoidance systems. We also provide background on leading
numerical and data-driven atmospheric forecasting models. Following coverage of the back-
ground and related work, we motivate the design decisions in our model architecture for
TinyTrail and our approach to predicting contrail risk regions. We then discuss our ex-
perimental set up and results. Lastly, we end with a discussion contextualizing our results
in the larger contrail avoidance space and explore avenues for further research.
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Chapter 2

Background and Related Work

Contrails (condensation trails) are white cloud-like structures that form in wake of aircraft.
Though seemingly harmless, these trails contribute to a large fraction of the warming effect
due to aviation. For this reason, they have become of pressing concern and led to sub-
stantial efforts researching measures of avoiding contrails partly or entirely, particularly in
commecial settings. In this section we cover relevant background on contrail formation,
climate impact, and avoidance. Following, we introduce the leading datasets for atmo-
spheric modelling and the data-driven methods that use them. Additionally, we discuss
where these data-driven methods stand in comparison to the leading numerical weather
prediction (NWP) techniques.

2.1 Contrails

Documented observation of contrails dates back to late 1910s [55], however, serious research
interest only started when the detectability of aircraft started to become a military interest
in the 1940s [28]. The idea that the water vapour emitted from the engines could cause
supersaturation with respect to the liquid water was suggested early (1921 [52]), but was
dismissed for a long time till Schmidt (1941) [39, 40] and Appleman (1953) [1] developed
a theory showing that contrail formation conditions can be modelled as a function of
ambient pressure, humidity, temperature, and specific properties of the fuel combustion and
engine efficency. This developed into the Schmidt-Appleman Criterion (SAC) for contrail
formation. After formation, contrails will persist when the relative humidity with respect
to ice (RHi) is above 100% [43]. Extensive observational study has further supported the
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SAC as a valid threshold for contrail occurence [21]. The regions of atmosphere that are
referred to as RHi>100% are called Ice Supper Saturated Regions (ISSRs).

2.1.1 Formation of Condensation Trails

Contrails exist in two varieties, persistent and cirrus. Persistent contrails retain their
linear shape and typicall last 2-4 hours but can endure for 18 hours or more depending on
atmospheric conditions [7, 26]. Contrail cirrus is the term for aged persistent contrails that
have lost their initial linear shape. These cirrus spread spatially due to atmospheric factors
like wind sheer and turbulence and eventually become indistinguishable from naturally
occuring cirrus clouds. Together these two types of contrails are collectively referred to as
aircraft-induced clouds or cloudiness (AIC) [7]. Worth noting is that contrails may also
be extremely short-lived lasting only a few minutes, and after 10 minutes are defined as
”Cirrus Homogenitus” by The World Meteorological Organization (WMO). However, only
those contrails that peresist for extended periods of time are contributors to significant
wamming effects [7].

Figure 2.1: Contrail types. (a) Exhaust contrail (photo by Josef P. Williams; Unterstrasser et al. 2012).
(b) Aerodynamic contrail (photo by Dieter Klatt; Gierens et al. 2011). (c) Aircraft-induced lines and holes
in supercooled liquid clouds (cloud-top temperatures −35◦C to −25◦C); section of image with blue border
lines, near northwest corner of Texas (29 Jan 2007, NASA, Jeff Schmaltz, MODIS Rapid Response Team).
(d) Contrail visible shortly behind B747-400 engines, 38,000 ft, −61◦C, 28 May 2004; photo by Robert
Falk. (e) “Soot cirrus” observed at DLR, Oberpfaffenhofen, 0905 [51]
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The formation of contrails is a result of water vapour exhausted from an aircraft engine
mixing into sufficiently cold humid air. The vapour is a byproduct of the combution process,
which in favourable surrounding atmospheric conditions condenses and contributes to ice
crystal growth. This condensation binds to solid carbon particles in the exhaust of the jet
engines as well as onto the atmospheric aerosol particles [22]. Though a thermoodynamic
theory defined by Schmidt and Appleman provides a framekwork for understanding their
formation as a function of fuel source and engine type, there are still microphysical and
microchemical processes that are not captured by their criterion (SAC) [56].

Figure 2.2: Early stage lifecycle of contrail formation. Full details available at [22].

A neccessary condition for contrail peristence is the presence of ice-supersaturated re-
gions (ISSRs). These ISSRs are non-homogenous in their coverage with inconsistencies
across both vertical and horizontal dimensions. Meaning, there is no general rule for what
flight levels or geographic regions contrails may form in; pockets of ISSRs exist in irregular
patterns [46]. For this reason, the primary operational avoidance measure being explored
is contrail formation mitigation through trajectory adjustment [49, 50, 47, 58, 3, 18].

ISSRs are also relatively rare, in our study we had an average of approximate 8% of
our region classified as ice-supersaturated (ISS). In another recent study (2023), it was
observed that airspace over the UK was classified as ISSR approximate 10-15% of the time
[25]. Furthemore, a recent modelling study of 40.2 million flights in 2019 found 5% of the
total distance flown formed persistent contrails with the mean contrail segment lifetime of
2.4 hours [48].
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Correlations have also been observed between contrail formation, the thermal tor-
popause, and maximal points along jet streams [57]. The thermal tropopause is the
boundary between the troposphere and stratosphere where the lowest temperature in the
atmosphere occurs. This layer starts around 9km over the poles to around 17-20km at
the equator. In this layer, the combination of low temperatures, adiabatic cooling, and
enchanced relative humidity is favourable for ice cloud formation [7].

After formation, a necessary condition for contrail persistence is ISS, identifiable by
via an observed relative humidity with repsect to ice (RHi) above 100%. Other measures
of contrail sensitive areas exist that take into account both ISS and the predicted net
warming effect on the atmosphere. The leading metric is the Schmidt-Appleman criterion,
which takes into account the thermal efficiency of the engine, the lower heating value of the
fuel, and the relative humidity of the surrounding air [21]. Although the SAC condition
considers more factors in modelling contrail risk, it introduces significant complexity when
designing a machine learning model. In our setting we choose not to use the SAC for
modelling contrail risk of a region.

For simplicity, we leverage equation 2.3 and model contrail risk when this quantity,
RHi > 100%.

esi(T ) = 6.112 exp

(
22.46 (T − 273.15)

T − 0.55

)
(2.1)

e =
q p

0.622 + 0.378 q
· 1

100
(2.2)

RHi =
e

esi(T )
(2.3)

For our purposes, we assign binary labels to our geographic and temporal datapoints as a
function of the observed temperature (T ), specific humidity (q), and pressure (p) at that
point. More formally for a given dataset X , of spatio-temporal tensors X ∈ RH×W×T×C ,
we assign to each X label Y ∈ {0, 1} where,

Y = I(RHi(qX , pX , tX) > 100).

Here, qX , pX , and tX denote the relative hummidity, pressure, and temperature variables
over the region X and I(·) denotes the indicator function with value 1 when RHi > 100%
is observed and 0 otherwise. In this setting our tensor X spans spatial region H × W ,

6



temporal history T , and features C. In our study we selected 10 atmospheric variables to
make up C but only q, p, and t are required for identifying ice-supersaturation. We admit
that as a proxy for contrail risk, strict RHi thresholding is crude, however for preliminary
study setting we deem this sufficient.

2.1.2 Climate Impact

The standard measure of climate impact due to man-made (anthropogenic) factors is Ra-
diative Force in watts per meter squared (W/m2) [7]. The Intergovernmental Pannel on
Climate Change (IPCC) estimates the total annual anthropogenic Net Radiative Forcing
(NRF) at 2.38 W/m2, of which aviation’s total contribution is 0.090 W/m2, approximately
3.7% [26]. Contrails alone are estimated to have a NRF of 0.050 W/m2, which makes up
55% of aviation’s total net warming effect.

Figure 2.3: Effect of contrails on incoming shortwave radiation and longwave radiation. Taken from [8].

Contrails reflect away some incoming light from the sun in the form of shortwave radia-
tion due to their albedo effect. However, they cause a blanket effect which keeps warmpth
trapped in the lower atmosphere through the absoption of outgoing longwave radiation
from the earth’s surface [8]. Moreover, this effect prevails overnight resulting in a 24-hour
warming effect. It’s been shown that in general the warming effect is greater for flights
during the night than during the day [47]. A recent study has found, based on real North

7



Atlantic flights in 2023 and 2024, that ∼ 2.8% of flights sampled accounted for 80% of the
total radiative force [16].

One key difference between warming due to contrails and warming due to release of
gases (such as CO2 and nitrogen oxides, NOX) is that of immediacy. The warming effect
due to contrails is experienced immediately in the atmosphere, as opposed to gas emissions
which are projected to have an effect 20-40 years from now.

2.1.3 Current Work on Contrail Avoidance

There exist models that inform radiative forcing impact of a single contrail during its lifes-
pan, that are utilized by studies that measure the effect of contrail formation. This plays a
role in avoidance studies as well to derive measures of usefulness of interventions. The lead-
ing model is the Contrail Cirrus Prediction Tool (CoCiP) [41], which is computationally
efficent but the nature of it makes it incompatible with flight planning. CoCiP is useful as
a way to evaluate contrail formation and simulate evolution, however lacks instantaneous
reactivity to be compatible with trajectory optimization methodologies.

As a result, work on contrail avoidance has largely been limited to simulation studies,
with only two actual flight trials have been documented, both in low-density traffic situa-
tions [36, 13]. The avoidance strategy can be planned ahead of flight time, or implemented
during the flight. Trajectory adjustments can be made vertically or horizontally, where
vertical interventions are significantly more effective from a cost perspective due to the
large width of ISSRs [45]. These regions can have large horizontal spread (150± 250 km)
but shallow vertical spread on the order of 1000 to 2000 feet [7].

A study of the Japanese air-psace estimates that a deviation of 0.5-4.1% of flights can
lead to a contrail radiative force reduction of 50 to up to 93%, depending on atmospheric
variations [50]. Other recent studies have shown that only 2-16% of flight plans need to be
adjusted to avoid 54-80% of contrail-induced warming, depending on the location, season,
and mateorological conditions [7, 8, 16].

Efforts are beginning to inform customers of contrail risks to mitigate contrail formation
through informed customer flight scheduling. Travellers that book flights through Google
now are notified of the contrail risk of the flight, motivating the informed customer to take
decisions to mitigate their contrail footprint.
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2.2 Atmospheric Datasets in Climate Research

Modern climate research relies on large, coherent atmospheric reanalysis datasets that
provide physically consistent estimates of the global state of the atmosphere. The leading
product is the ERA5 dataset [20], produced by ECMWF, which offers hourly global fields
at high spatial resolution and incorporates satellite, radiosonde, and surface observations
through an advanced data assimilation system. ERA5 has become the de facto standard
for climate modelling, validation, and long-term atmospheric studies.

Other reanalysis products complement ERA5 in coverage or methodological emphasis.
NASA’s MERRA–2 dataset [17] is optimized for aerosol, chemistry, and radiation appli-
cations; NOAA’s CFSR and CFSv2 reanalyses [34, 35] are widely used in subseasonal-to-
seasonal prediction; and the JRA–55 dataset from the Japan Meteorological Agency [23]
provides a long, homogeneous record suitable for climate variability and trend analysis.
Together, these datasets form the backbone of contemporary climate research, enabling
reproducible modelling, evaluation of atmospheric processes, and construction of clima-
tologies across multiple temporal and spatial scales.

2.3 Data-Driven and Numerical Prediction Models

Recent progress in atmospheric prediction reflects two parallel modelling paradigms: (i)
numerical models derived from physical principles and discretized differential equations,
and (ii) data-driven models that learn dynamical relationships directly from historical at-
mospheric states. Numerical weather prediction (NWP) remains the operational standard
for medium–range forecasting [4], while data-driven models have demonstrated competi-
tive skill at global and regional prediction horizons [38]. Understanding the distinctions
and complementarities between these approaches is critical when designing specialized
predictors, such as models for contrail-risk classification or upper–tropospheric moisture
dynamics.

2.3.1 Numerical and Physical Models

Global Climate Models (GCMs) and numerical weather prediction systems solve approx-
imations to the governing equations of atmospheric motion, namely, the Navier–Stokes
equations under specific assumptions, coupled with radiation, thermodynamics, and cloud
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microphysics parameterizations [54, 4]. Modern operational NWPs, such as ECMWF’s
Integrated Forecasting System (IFS), combine these physical equations with variational or
ensemble-based data assimilation to produce globally consistent initial states [31]. GCMs
extend this framework to multi-decadal time scales, resolving climate feedbacks such as
water vapour, cloudiness, and circulation changes [15]. Although physically interpretable
and highly constrained, these models require substantial computational resources and rely
on parameterizations for unresolved processes (e.g., convection, cloud formation, sub-grid
turbulence).

2.3.2 Data-Driven Models

Deep learning systems have emerged as flexible forecast models capable of emulat-
ing atmospheric dynamics without explicit physical parameterizations. Early approaches
employed convolutional architectures such as ResNets and U-Nets for downscaling, post-
processing, and limited-area prediction [33, 9]. More recent work focuses on transformer-
based architectures, motivated by their ability to process high-dimensional spatial fields
and capture long-range dependencies.

FourCastNet [30] demonstrated that a Fourier Neural Operator (FNO) combined with
a lightweight transformer-style architecture can perform competitive global medium-range
forecasts. GraphCast [24] extends this idea using graph neural networks to propagate in-
formation along a spherical mesh, achieving state-of-the-art skill among purely data-driven
models.

ClimaX [29] adopts a modular transformer backbone based on a vanilla Vision Trans-
former (ViT), where variables are embedded via variable-tokenization and aggregated
through learned attention maps. This design allows flexible conditioning on arbitrary
variable subsets or predictive tasks, making it suitable for broad climate-modelling con-
texts.

Pangu-Weather [5] uses a Swin-transformer-based backbone with hierarchical spatial
attention and introduces Earth-Specific Positional Bias (ESB), which encodes latitudinal
anisotropy in atmospheric dynamics. ESB improves interpolation across latitude bands
and supports long-range spatial dependencies critical for global prediction. Pangu’s ar-
chitecture also incorporates 3D Swin layers for vertical coupling and demonstrates strong
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deterministic forecast skill.

Recent work explores faster transformer variants such as the Faster-Swin Transformer
[59], which improves computational throughput via window-shift optimization and sparse
attention, suggesting potential scalability for climate and weather prediction workloads.

Transformer Backbones in Climate Models

Transformers are used as the principal encoder in several models: (1) ClimaX (ViT), (2)
Pangu-Weather (3D Swin), (3) FourCastNet (hybrid FNO + attention), (4) GraphCast
(message–passing GN with transformer-like aggregation), (5) Swin-based regional models
in downscaling and extreme-event prediction. Across these systems, the transformer serves
as the foundational operator for representing spatial–temporal dependencies.
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Chapter 3

Approach

3.1 Dataset

We leverage the ERA5 hourly data on pressure levels from 1940 to present [11] for our study.
ERA5 is the fifth-generation global atmospheric reanalysis produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) under the Copernicus Climate
Change Service. It provides physically consistent, hourly three-dimensional atmospheric
fields on standard pressure levels from 1940 to the present. For contrail forecasting, ERA5
supplies the thermodynamic variables required to diagnose ice supersaturation, including
temperature T , specific humidity q, and pressure p at upper-tropospheric flight levels
(typically 200–300 hPa). These fields enable direct computation of relative humidity with
respect to ice, RHi(T, p, q), which governs contrail persistence under ice-supersaturated
conditions.

The geographic domain considered in this study covers the central United States, de-
fined by the latitude band 30◦N–50◦N and longitude range 120◦W–80◦W. This region is
chosen due to its high density of transcontinental air traffic and frequent occurrence of
upper-tropospheric ice-supersaturated layers. All atmopsheric variables are extracted on
the pressure levels 200, 225, 250, and 300 hPa, which span the typical cruise altitudes
of commercial aviation and the primary altitude range of persistent contrail formation.
These pressure levels correspond approximately to flight levels FL390 (200 hPa), FL370
(225 hPa), FL340 (250 hPa), and FL300 (300 hPa).
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Figure 3.1: Geographic region corresponding to our dataset covering the spatial box 30-50◦N , 120-80◦W .

The atmospheric variables chosen for this study are highlighted in Table 3.1. These 10
variables, of the original 16, have the strongest observed correlation with features relevant
for ISSR formation.

Variable Description
t Temperature (K)
q Specific humidity (kg/kg)
r Relative humidity (%)
u Zonal wind component (m/s)
v Meridional wind component (m/s)
w Vertical velocity (Pa/s)
z Geopotential (m2/s2)
clwc Specific cloud liquid water content (kg/kg)
ciwc Specific cloud ice water content (kg/kg)
cc Cloud fraction (0–1)

Table 3.1: ERA5 pressure-level variables chosen for model training and short descriptions.
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3.2 Input Representation

We define our full dataset to be the tensor X with dimension (Tfull, H,W ) × (C,P ) :=
(17520, 81, 161)× (10, 4). We differentiate the spatial and temporal element of the tensor
with (Tfull, H,W ) which corresponds to the temporal size of the full dataset (in hourly
timesteps), the longitudinal spread, and latitudinal spread respectively. The remaining
(C,P ) correponds to the number of channels per spatial point and the number of pressure
levels respectively. In our case, we have 10 atmospheric variables to train on at 4 pressure
levels. Our full dataset for training and validation covers the date range January 2022 to
December 2023. We perform our model comparisons on a sample date and time from the
month of November in 2024.

3.2.1 Label Generation

For a given sample X ∈ X with dimension (T,H,W ) × (C,P ) where our time history
T = 4, number of channels C = 10, and number of pressure levels P = 4, we assign binary
contrail risk labels Y ∈ {0, 1}T×H×W×C×P . This risk label is identified via the formula for
ISS to exist at that point given the temperature, specific humidity q, and pressure p. We
use the formula specified in equation 2.3 which we restate here. Also note we refer to Tx

as temperature at a point x ∈ RT×H×W ,

esi(Tx) = 6.112 exp

(
22.46 (Tx − 273.15)

Tx − 0.55

)
e =

qx px
0.622 + 0.378 qx

· 1

100

RHi(Tx, qx, px) =
e

esi(T )

We reiterate here that an individual sample is made up of a pair (X, Y ) where X is
the tensor of atmospheric state over a history of four hours and our classification tensor Y
where each spatial point is assigned a value governed by the following,

Y = I(RHi(Tx, qx, px) > 100),

where I(·) denotes the indicator function with value 1 when RHi > 100% is observed and
0 otherwise.
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3.2.2 Data Pre-processing

Before our raw samples, (X, Y ), can be processed by the transformer it must be pre-
processed. This includes data standardization and patchification. When preparing our data
for model training, each variable in our tensor is normalized to zero mean and unit variance.
Additionally, the region is patchified with each patch projected down to our embedding At
the patchfication, we specify a patch size p which determines N = ⌈H/p⌉⌈W/p⌉.

Figure 3.2: Starting from the left, we have our raw sample tensor. This gets processed via a patchification
process which partitions the tensor into patches of size p. Patches at the edge of the region are padded by
repeating the boundary values. These patches are then projected into a specified embedding dimension d
via the Vec(·) function, which uses the learnable projection matrix W ∈ Rd×D, where D = C × P × p2.
Additionally spatial and temporal positional embedding terms are added at this stage to facilitate indexing
for the attention mechanism in the transformer.

Each spatiotemporal patch xt,n ∈ RD is mapped to the model embedding dimension
via a linear vectorization operator Vec(·), defined as

Vec(xt,n) = Wxt,n + b,

where W ∈ Rd×D is a learnable projection matrix and b ∈ Rd is a learnable bias. This
operation converts each flattened patch into a token embedding in Rd forming the token
sequence X ∈ RL×d prior to positional encoding where L = T × N and T denotes the
number of temporal steps.

Let the tokenized spatiotemporal input be represented as X ∈ RL×d and N = Hp ×
Wp the number of spatial patches per time step obtained from an Hp × Wp patch grid.
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We employ a separable spatiotemporal positional encoding composed of an independent
temporal encoding and an independent spatial encoding.

The temporal encoding PEtime ∈ RT×d is defined using a 1D sinusoidal positional
embedding. For time index t ∈ {0, . . . , T − 1} and channel index i ∈ {0, . . . , ⌊d/2⌋ − 1},

PEtime
t, 2i = sin

(
t · exp

(
−2i

d
log(10000)

))
, PEtime

t, 2i+1 = cos

(
t · exp

(
−2i

d
log(10000)

))
.

The spatial encoding PEspace ∈ RN×d is constructed using a 2D sinusoidal encoding over
the patch grid by splitting the embedding dimension as d = dy + dx, with dy = ⌊d/2⌋ and
dx = d−dy. For patch coordinates (y, x) with y ∈ {0, . . . , Hp−1} and x ∈ {0, . . . ,Wp−1},
the spatial encoding is defined as

PEspace
y,x =

[
PE(y)

y

∣∣∣ PE(x)
x

]
∈ Rd,

where, for i ∈ {0, . . . , ⌊dy/2⌋ − 1} and j ∈ {0, . . . , ⌊dx/2⌋ − 1},

PE
(y)
y, 2i = sin

(
y · exp

(
− 2i

dy
log(10000)

))
, PE

(y)
y, 2i+1 = cos

(
y · exp

(
− 2i

dy
log(10000)

))
,

PE
(x)
x, 2j = sin

(
x · exp

(
−2j

dx
log(10000)

))
, PE

(x)
x, 2j+1 = cos

(
x · exp

(
−2j

dx
log(10000)

))
.

After flattening the spatial grid, this yields PEspace ∈ RN×d.

Each token at time index t and spatial patch index n is then assigned the combined
positional encoding

PEt,n = PEtime
t + PEspace

n ,

which is added to the corresponding token embedding prior to attention, yielding the final
transformer input Z = Xt,n + PEt,n ∈ RL×d. The positional encoding describe here is
consistent with the 1D-positional encoding presented in the original Attention is All You
Need paper [53] and its natural extension to 2D presented in the vision transformer setting
[12].

3.3 Transformer Model Architecture

Our model, and many other leading data-driven models [6, 30, 24, 29], use the vision trans-
former (ViT) encoder model [12] as the backbone for learning the spatio-temporal features
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of the atmosphere. The task of vision is similar to the task of atmospheric modelling,
the longitude and latitude grid mirrors a screen’s resolution and the RGB channels par-
ralells our atmospheric variables under consideration. Our proposed model architecture for
TinyTrail takes inspiration from two other models: Pangu-Weather [5] and FourCastNet
[30]. Namely, we borrow the ideas of an earth specific positional bias term in the atten-
tion mechnasim and the usage of learning in the frequency domain respectively from each
paper.

We perform ablations on the architectural decisions, using the vanilla vision transformer
as our baseline. In total we compare the performance of the baseline, baseline with Fourier
neural operator head layer, baseline with earth spatial positioning bias, and baseline with
both.

Figure 3.3: Baseline encoder-only Transformer architecture for next-hour contrail-risk prediction. Input
atmospheric fields over T historical time steps are patchified into N spatial tokens per step, forming a
sequence of length L = TN . Each patch token is linearly projected to the model dimension and enriched
with separable temporal and spatial sinusoidal positional encodings before being processed by a stack of
Transformer encoder layers. From the encoded sequence, only the tokens corresponding to the most recent
time step are retained and passed through a linear projection head to produce per-patch logits. These
logits are subsequently unpatchified to reconstruct the predicted contrail-risk field Ŷ on the physical grid,
which is compared against the ground-truth field Y .
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In Fig 3.3 we visualize the baseline architecture. The details of this encoder structure
are well covered in original transformer and ViT works [53, 12].

To recover the full-resolution prediction grid, we view the coarse patchwise logits
Ŷpatch ∈ RHp×Wp as samples of a continuous field and define the high-resolution recon-

struction Ŷ ∈ RHout×Wout by evaluating this field under a bilinear sampling operator. Let
(x, y) denote output-grid coordinates and let (u(x), v(y)) be the corresponding continuous
coordinates in the coarse grid. The reconstruction can be written compactly as

Ŷ (x, y) =

Hp−1∑
i=0

Wp−1∑
j=0

Kx

(
u(x)− i

)
Ky

(
v(y)− j

)
Ŷpatch(i, j),

where Kx and Ky are the 1D bilinear sampling kernels,

Kx(t) = max(1− |t|, 0), Ky(t) = max(1− |t|, 0),

and the 2D kernel is given by their separable product K(x, y) = Kx(x)Ky(y). This operator
corresponds exactly to continuous bilinear interpolation, in which each output pixel (x, y)
is obtained as a weighted combination of the four nearest coarse-grid samples. In practice,
this operation is implemented in Python using torch.nn.functional.interpolate with
mode="bilinear" and align corners=False, which applies the same separable bilinear
sampling kernel over the coarse prediction grid.
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Figure 3.4: Overview of the proposed Transformer architecture, highlighting its differences from the
baseline model. As in the baseline, atmospheric fields over T historical time steps are patchified into N
spatial tokens per step, linearly projected to the model dimension, and enriched with separable temporal
and spatial sinusoidal positional encodings before entering a stack of Transformer encoder layers. In
contrast to the baseline, each self-attention block here incorporates an Earth-Specific Positional (ESP) bias,
which injects geophysical structure directly into the attention logits and allows the model to better capture
latitude–longitude dependencies relevant for upper-tropospheric contrail formation. After encoding, only
the final-time tokens are retained and passed through a linear projection head, as in the baseline; however,
the resulting per-patch logits are subsequently refined by a low-frequency spectral redisual (LFSR) module
head and spectral regularized loss term Lspec that penalizes spurious high-frequency artifacts. Together, the
ESP-enhanced attention and the LFSR modules extend the baseline architecture with physically informed
inductive biases tailored for contrail-risk prediction.

3.3.1 Training Loss

To train the model for binary contrail–risk prediction, we employ the binary cross–entropy
(BCE) loss applied independently at every spatial location and pressure level. Let

Ŷ ∈ RB×P×H×W

denote the model logits and
Y ∈ {0, 1}B×P×H×W

the corresponding ground–truth labels. The sigmoid function

σ(z) =
1

1 + e−z
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maps logits to probabilities. The per-element BCE loss is defined by

ℓ(y, ŷ) = −
[
y log σ(ŷ) + (1− y) log

(
1− σ(ŷ)

)]
, y ∈ {0, 1}, ŷ ∈ R.

Aggregating over batch index b, pressure level p, and spatial coordinates (i, j) yields
the full training objective

L(θ) = − 1

BPHW

B∑
b=1

P∑
p=1

H∑
i=1

W∑
j=1

[
Yb,p,i,j log σ(Ŷb,p,i,j) + (1− Yb,p,i,j) log

(
1− σ(Ŷb,p,i,j)

)]
.

This loss penalizes low predicted probability at locations where Yb,p,i,j = 1 (regions exhibit-
ing contrail–favorable conditions) and high predicted probability where Yb,p,i,j = 0. The
normalization by BPHW ensures that L(θ) represents the mean cross–entropy across all
pixels and channels in the batch. This loss is utilized in both the baseline, ablations, and
full model architecture.

3.3.2 ESP Attention

Let Z ∈ RL×d denote the sequence of token embeddings, and define

Q = ZWQ, K = ZWK ,

with projection matrices WQ,WK ∈ Rd×dk . Scaled dot-product attention augmented with
an Earth-Specific Positional (ESP) bias is given by

A = Softmax

(
QK⊤
√
dk

+ Besp

)
, A ∈ RL×L,

where Softmax is applied row-wise. Elementwise,

Ai,j =
exp

(
QiK

⊤
j√

dk
+ Besp(i, j)

)
∑L

ℓ=1 exp
(

QiK⊤
ℓ√

dk
+ Besp(i, ℓ)

) ,
where Qi ∈ Rdk and Kj ∈ Rdk denote the ith and jth rows of Q and K, respectively.
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ESP Bias Construction

Fix a spatial patch grid of size Hp × Wp and let N := HpWp denote the number of
spatial tokens per time slice. Let T ∈ N denote the number of time slices, so that the
total sequence length is L := TN . For each spatial patch index i ∈ {1, . . . , N}, define
normalized coordinates

pi := [xi, yi]
⊤ ∈ [0, 1)× [−1, 1],

where xi is longitude-like (periodic) and yi is latitude-like.

Learned Fourier embedding

Let M ∈ N denote the number of learned Fourier bands and let

B ∈ RM×2, β ∈ RM

be learned parameters. Define the learned Fourier positional embedding ϕ
(LFE)
i ∈ R2M by

ϕ
(LFE)
i =

[
sin(2π(Bpi + β))
cos(2π(Bpi + β))

]
,

where Bpi + β ∈ RM and the sine/cosine are applied elementwise.

Low-rank bilinear bias

Let r ∈ N denote the ESP rank and let

W pos
q ,W pos

k ∈ R2M×r

be learned projection matrices. Define the projected positional features

ui := (ϕ
(LFE)
i )⊤W pos

q ∈ Rr, vi := (ϕ
(LFE)
i )⊤W pos

k ∈ Rr.

Let α ∈ R be a learned global scale. The spatial ESP bias for a single time slice is the
bilinear form

Bsp(i, j) := αu⊤
i vj = α

(
(ϕ

(LFE)
i )⊤W pos

q

)(
(ϕ

(LFE)
j )⊤W pos

k

)⊤
, Bsp ∈ RN×N ,

which satisfies rank(Bsp) ≤ r.
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Block-diagonal extension in time

Define the full ESP bias over the length-L token sequence by repeating the same spa-
tial bias independently within each time slice and assigning zero bias across distinct time
slices:

Besp := blkdiag(Bsp, . . . , Bsp) ∈ RL×L,

i.e., for t, s ∈ {1, . . . , T} and i, j ∈ {1, . . . , N},

Besp

(
(t, i), (s, j)

)
=

{
Bsp(i, j), t = s,

0, t ̸= s.

Resulting Attention Kernel

With the ESP bias defined above, the attention weights take the form

Aa,b =
exp

(
QaK⊤

b√
dk

+ Besp(a, b)
)

∑L
ℓ=1 exp

(
QaK⊤

ℓ√
dk

+ Besp(a, ℓ)
) , a, b ∈ {1, . . . , L}.

This construction yields an attention mechanism in which the additive term Besp acts as
a learned, low-rank, low-frequency positional prior over the spatial grid (with longitude
periodicity encoded through xi ∈ [0, 1)), while leaving cross-time coupling to be learned
through the content-dependent term QK⊤.

3.3.3 Low-Frequency Spectral Residual (LFSR) Module with
Spectral Regularization

Given the patchwise predictions produced by the Transformer, let

Z ∈ RB×N×P

denote the output tensor corresponding to the final-time tokens, where B is the batch size,
N is the number of spatial patches, and P is the number of output channels (e.g., pressure
levels). These patchwise predictions are unpatchified and rearranged to form a spatial grid

hmap ∈ RB×H×W×P ,
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where H ×W denotes the spatial resolution of the reconstructed field.

The LFSR module is designed as a residual post-processing step: it does not replace the
Transformer’s prediction, but instead provides a mechanism for learning global, large-scale
corrections when beneficial.

Forward Fourier Transform

Each channel of hmap is transformed into the frequency domain using a two-dimensional
real-valued Fourier transform. For each batch element b and channel p, we compute

Hf (b, u, v, p) =
H−1∑
h=0

W−1∑
w=0

hmap(b, h, w, p) exp
(
−2πi

(
uh
H

+ vw
W

))
.

Because hmap is real-valued, its Fourier coefficients satisfy the Hermitian symmetry prop-
erty. Namely, the coefficients at negative frequencies are the complex conjugates of the
corresponding positive-frequency coefficients. Consequently, the discrete spectrum contains
redundant information and need only be stored on a nonredundant half-plane.

In our implementation, we retain all vertical frequency indices u ∈ {0, . . . , H − 1}
and only the nonnegative horizontal indices v ∈ {0, . . . , ⌊W/2⌋}, yielding the compact
representation

Hf ∈ CB×H×(W/2+1)×P .

The restriction v ≤ ⌊W/2⌋ reflects the fact that indices v > W/2 correspond to wrapped
negative frequencies whose coefficients are fully determined by Hermitian symmetry. Thus,
although only W/2+1 horizontal frequencies are explicitly stored, the full H×W spectrum
is implicitly represented and hmap can be reconstructed exactly via the inverse real FFT
meaning no spectral information is lost.

Low-Frequency Spectral Residual Update

Fix integers Kx ∈ {1, . . . , H} and Ky ∈ {1, . . . , ⌊W/2⌋ + 1}, and define the retained low-
frequency index set

Klow := {(u, v) ∈ Z2 : 0 ≤ u < Kx, 0 ≤ v < Ky}.

23



For each (u, v) ∈ Klow and batch index b ∈ {1, . . . , B}, we form a real-valued feature vector
by concatenating real and imaginary parts across channels:

rb(u, v) :=
(
Re (Hf (b, u, v, 1:P )) , Im (Hf (b, u, v, 1:P ))

)
∈ R2P .

All coefficients with (u, v) /∈ Klow are left unchanged. Next, a two-layer multi-layer percep-
tron (MLP) gθ : R2P → RP and a learned scalar α ∈ R produce a channel-wise correction
shared across frequency pairs (u, v) and batches b,

∆b(u, v) := α gθ
(
rb(u, v)

)
∈ RP .

We implement gθ with a hidden width dmid = max(8, ⌊rhiddenP ⌋), where rhidden ∈ (0, 1]
controls the capacity of the spectral correction. Concretely, the MLP gθ is a two-layer
network of the form

gθ(r) = W2 σ(W1r + b1) + b2, gθ : R2P → RP ,

where σ denotes the GELU activation applied coordinate-wise. For a vector x ∈ Rdmid , it
is defined componentwise by

σ(x)i = xi Φ(xi), i = 1, . . . , dmid,

where Φ : R → [0, 1] is the standard normal CDF applied coordinate-wise. We also have
the learnable parameters W1 ∈ Rdmid×2P , b1 ∈ Rdmid , W2 ∈ RP×dmid , and b2 ∈ RP . The
hidden width is set to dmid = max(8, ⌊rhiddenP ⌋). Larger dmid increases the number of
learnable parameters and the expressivity of the spectral correction ∆, while smaller dmid

provides a computationally efficient constraint on the complexity of the learned update.

The modified spectrum H′
f ∈ CB×H×(W/2+1)×P is then defined by updating only the

real part on Klow: for (u, v) ∈ Klow and p ∈ {1, . . . , P},

ReH′
f (b, u, v, p) = ReHf (b, u, v, p) + ∆b(u, v)p

ImH′
f (b, u, v, p) = ImHf (b, u, v, p),

and H′
f (b, u, v, p) = Hf (b, u, v, p) for (u, v) /∈ Klow.

At the spectral-update stage, the shared MLP produces an input-adaptive, channel-wise
correction in the low-frequency Fourier domain. For each batch element b and retained fre-
quency (u, v) ∈ Klow, the module computes a correction vector ∆b(u, v, :) ∈ RP . Although
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the correction is emitted per channel, it is cross-channel coupled, meaning each entry
∆b(u, v, p) may depend on all channels because the MLP input concatenates the real and
imaginary components across the P channels. The correction is then applied as a residual
update to the low-frequency Fourier coefficients (in our implementation, to the real part
only), while all coefficients outside Klow are left unchanged.

Inverse Fourier Transform

Let H′
f ∈ CB×H×(W/2+1)×P denote the modified Fourier spectrum after the low-frequency

residual update. We map this spectrum back to physical space by applying the two-
dimensional inverse real Fourier transform channel-wise. For each batch element b ∈
{1, . . . , B}, spatial index (h,w) ∈ {0, . . . , H − 1} × {0, . . . ,W − 1}, and channel p ∈
{1, . . . , P}, we define

δ(b, h, w, p) :=
H−1∑
u=0

⌊W/2⌋∑
v=0

H′
f (b, u, v, p) exp

(
2πi

(
uh
H

+ vw
W

))
∈ R.

Equivalently, in operator form,

δ := irFFT2(H′
f ) ∈ RB×H×W×P ,

where irFFT2 : CB×H×(W/2+1)×P → RB×H×W×P denotes the inverse operator associated
with the forward real FFT on an H ×W grid. By construction, δ is real-valued and has
the same spatial resolution and channel dimension as the original prediction hmap.

Residual Blending

Let δ ∈ RB×H×W×P denote the spatial correction field obtained after the inverse real
Fourier transform. We apply a learnable pointwise channel-mixing operator to δ before
adding it residually to the original logits. Concretely, define

Blend : RB×H×W×P → RB×H×W×P

as a 1×1 convolution across channels. For each batch index b ∈ {1, . . . , B}, spatial location
(h,w) ∈ {0, . . . , H− 1}×{0, . . . ,W − 1}, and output channel p ∈ {1, . . . , P}, the operator
is given by [

Blend(δ)
]
(b, h, w, p) =

P∑
q=1

Apq δ(b, h, w, q) + cp ∈ R,

25



where A ∈ RP×P and c ∈ RP are learnable parameters shared across all spatial loca-
tions, applied pointwise in (h,w). This operation mixes information across channels while
preserving the spatial resolution.

The refined logits are then obtained via a residual update

hmap ← hmap + Blend(δ), hmap ∈ RB×H×W×P .

In our implementation, the blending parameters (A, c) are initialized to zero, so Blend(δ) ≈
0 at initialization and the refinement head acts as a near-identity mapping; the contribution
of the residual correction is therefore learned only when supported by the training objective.

Spectral Regularization

In addition to the LFSR head, we impose a spectral penalty on the predicted logits during
training to discourage excess high-frequency energy. We define the high-frequency set using
normalized spatial frequencies in Nyquist units. For a discrete field on an H ×W grid,
the Nyquist wavenumber corresponds to the highest resolvable oscillation (one cycle every
two grid points), hence normalized frequencies lie in [0, 0.5] (nonnegative half-spectrum)
or [−0.5, 0.5] (signed spectrum).

Concretely, for the real FFT index v ∈ {0, . . . , ⌊W/2⌋} we define the normalized hori-
zontal frequency by

κx(v) :=
v

W
∈ [0, 0.5],

and for the vertical FFT index u ∈ {0, . . . , H−1} we define the signed, normalized vertical
frequency by

κy(u) :=

{
u
H
, 0 ≤ u ≤ ⌊H/2⌋,

u−H
H

, ⌊H/2⌋ < u ≤ H − 1,
∈ [−0.5, 0.5].

Thus κy(u) is positive for u ≤ H/2 and represents wrapped negative frequencies for u >
H/2. Given cutoffs kcut

x , kcut
y ∈ [0, 0.5], we define

Khigh :=
{

(u, v) ∈ {0, . . . , H − 1} × {0, . . . , ⌊W/2⌋} : κx(v) > kcut
x or |κy(u)| > kcut

y

}
.

The spectral regularization loss is then

Lspec(hmap) := λ
1

B P H (⌊W/2⌋+ 1)

B∑
b=1

P∑
p=1

H−1∑
u=0

⌊W/2⌋∑
v=0

1[(u, v) ∈ Khigh]
∣∣Hf (b, u, v, p)

∣∣2, λ ∈ R≥0

26



where 1[·] is the indicator function. This term is added to the training objective (weighted
by λ) and does not alter the inference-time architecture. This spectral regularization term
penalizes excessive energy in high-frequency Fourier modes of the predicted logits. By
assigning a cost to the power spectrum outside a prescribed low-frequency band, this
penalty discourages spurious fine-scale oscillations while preserving the model’s ability to
represent large-scale structure.

Motivation

The LFSR module and spectral regularization serve complementary roles. The LFSR
module provides the model with an explicit mechanism for learning global, large-scale
corrections in Fourier space, compensating for the inherently local and patchwise inductive
biases of Transformer-based architectures. Importantly, it does not impose any preference
toward smooth or low-frequency predictions; it simply enables such corrections when they
improve task performance.

Spectral regularization, by contrast, introduces an explicit inductive bias that discour-
ages unconstrained high-frequency energy in the predicted fields. For coarse-resolution
geophysical prediction tasks, fine-scale spectral components are often poorly supervised,
under-resolved, or dominated by noise, making such penalties a principled form of output-
space regularization.

Both mechanisms are motivated by prior work on Fourier-domain operator learning and
spectral token mixing. Fourier Neural Operators (FNO) parameterize global convolutional
kernels in Fourier space and have shown to provide an efficient way to model long-range
spatial interactions in PDE solution operators [27]. Adaptive Fourier Neural Operators
(AFNO) extend this idea as an efficient Fourier-domain token mixer for high-resolution
fields [19], and have been deployed at scale for global data-driven weather forecasting in
FourCastNet [30]. Related global spectral filtering architectures, such as Global Filter
Networks, also demonstrate that Fourier-domain filtering can capture long-range spatial
dependencies efficiently via learned frequency-domain transformations [32]. Our approach
outlined here is inspired by these works.
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Chapter 4

Experimental Setup and Results

4.1 Model Specification and Ablations

Baseline Model Configuration

For the baseline Transformer architecture, we adopt a lightweight encoder–only design
tailored to short–horizon contrail–risk prediction. The model is trained using a sliding
temporal window of length Tin = 4 hours, from which the network predicts the contrail–
risk field at a lead time of ∆t = 1 hour. At each training step, the input therefore consists
of four consecutive hourly atmospheric states, and the target corresponds to the binary
contrail–risk label one hour into the future.

Spatial inputs are patchified with a patch size of p = 8, and each patch is embedded
into a latent representation of dimension d = 256. The Transformer encoder comprises 4
layers with 4 attention heads per layer, using standard pre–norm residual blocks and GELU
activations. Training is performed with a batch size of 8 for 40 epochs using the Adam
optimizer with learning rate 10−4 and weight decay 5× 10−3. These hyperparameters were
selected as a standard starting point for the model; hyperparameter optimization search
may lead to better performance.
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Baseline + ESP Ablation

To assess the contribution of Earth–Specific Positional (ESP) bias, we augment the base-
line Transformer with the learnable additive attention bias Besp(i, j). For the ablation
experiments, the ESP module is configured with the following hyperparameters: esp rank

= 8, esp kx = 2, and esp ky = 2. Each parameter controls a distinct component of the
ESP mechanism:

• Rank r = 8. The ESP bias is parameterized as a low–rank factorization Besp(i, j) =

(ϕ
(LFE)
i W pos

q ) · (ϕ(LFE)
j W pos

k )⊤, where r determines the dimensionality of the learned
projection matrices W pos

q ,W pos
k ∈ R2M×r. Increasing the rank increases the expres-

siveness of the spatial bias field, while keeping r = 8 yields a compact, computation-
ally efficient prior.

• The quantity M denotes the number of learned Fourier modes used in the Least–
Frequency Encoding (LFE) of the true latitude–longitude coordinates. It is deter-
mined by the product of the chosen kernel sizes, M = kx× ky, so that larger (kx, ky)
allow the positional embedding to represent finer spatial variation while remaining
dominated by smooth, low–frequency structure.

• Fourier kernel size in latitude (kx = 2). ESP uses a set of learned Fourier features
ϕ(LFE)(x, y) to encode geospatial coordinates. The parameter kx specifies the number
of low–frequency Fourier bands used along the meridional (north–south) direction,
controlling how much large–scale latitudinal structure the model can represent.

• Fourier kernel size in longitude (ky = 2). Analogously, ky determines the number
of azimuthal (east–west) low–frequency components. Together, (kx, ky) set the spatial
resolution of the learnable geophysical prior, ensuring that ESP biases emphasize
planetary–scale, slowly varying patterns rather than high–frequency noise.

This configuration introduces a mild but meaningful inductive bias that reflects the
natural structure of atmospheric fields, while keeping the additional parameter cost neg-
ligible. The ablation isolates the effect of this positional prior when added on top of the
baseline Transformer without the LFSR head component.

The ESP mechanism adds only a small number of learnable parameters relative to the
baseline Transformer. The LFE embedding uses M = kxky = 4 learned Fourier modes,
producing a 2M–dimensional positional feature vector for each token. The projection
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matrices W pos
q ,W pos

k ∈ R2M×r therefore contain 2Mr = 64 parameters each, and the
learned frequency matrix B ∈ RM×2 together with the phase vector β ∈ RM contributes
an additional 3M = 12 parameters. In total, the ESP module introduces fewer than 150
parameters, several orders of magnitude smaller than the baseline model’s Transformer
layers.

From a computational standpoint, the cost of forming the bias matrix Besp ∈ RL×L

is dominated by the low–rank bilinear form (ϕiW
pos
q )(ϕjW

pos
k )⊤, which scales as O(Lr)

rather than O(L2) due to the rank–r factorization. Since L = TN is relatively small
in our setting (with Tin = 4 and moderate patch count), the additional computation is
negligible compared to the self–attention layers themselves. The ESP augmentation yields
a geophysical inductive bias at effectively no additional parameter or runtime cost.

Baseline + LFSR Head Ablation

In this ablation, the baseline Transformer is extended with an LFSR (Low-Frequency Spec-
tral Residual) head that refines the predicted contrail–risk field in the frequency domain.
After unpatchifying the model output into hmap ∈ RB×H×W×P , the LFSR head computes
its 2D Fourier transform Hf = Fhmap and applies residual correction term to selected low-
frequency modes. The hyperparameters lfsr kx = 0.25 and lfsr ky = 0.25 determine
which portion of the spectrum this correction is applied to. The hyperparameters spec kx

= 0.35, spec ky = 0.35, and spec lambda = 0.2 determine the loss penalty for select
high-frequency modes.

Full Architecture (TinyTrail)

The full architecture integrates both components examined in the ablation studies. Specif-
ically, it augments the baseline Transformer simultaneously with the Earth–Specific Po-
sitional (ESP) bias—configured with esp rank = 8, esp kx = 2, esp ky = 2—and the
LFSR spectral refinement head using the parameters lfsr kx = 0.25 and lfsr ky =

0.25. In combination, ESP contributes a geophysically structured, low-rank additive at-
tention prior, while LFSR performs a low-frequency spectral refinement of the output field
and high-frequency loss penalty. This joint configuration yields the complete model used in
our experiments, incorporating both a physically informed attention bias and a large-scale
spectral smoothing mechanism on top of the baseline architecture.
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4.2 Dataset

We construct our training and evaluation dataset from two full years (2022-2023) of ERA5
hourly reanalysis on pressure levels, restricted to ten atmospheric state variables (listed
in Table 1). The data are cropped to the geographic domain (50 N, 30 N, 120 W, 80 W),
corresponding to a mid–latitude region over the central United States, as visualized in
Figure 3.1. For each pressure level, the ERA5 fields are stored at a spatial resolution of
0.25◦×0.25◦ and hourly temporal frequency, yielding a high–resolution, multi–year dataset
for short–term contrail–risk prediction. Across all variables, pressure levels, and timesteps,
the resulting dataset occupies approximately 30 GB.

4.3 Hardware

All models were trained on a single NVIDIA H100 GPU. Across the full set of experi-
ments, including the baseline, ESP-augmented, LFSR-augmented, and full architectures,
the average end-to-end training time per run was approximately 15 minutes.

4.4 Qualitative Evaluation

To qualitatively assess model behaviour, we examine predictions for a fixed example on
26 November 2024 at 16:00 UTC. For this timestep, each model variant produces a
spatial heatmap of predicted contrail–risk probabilities, which we compare directly against
the ground–truth labels derived from ERA5 RHi. Visual differences in the intensity and
extent of high–risk regions highlight the characteristic biases of each architecture: sharper
or more fragmented patterns indicate over–sensitivity to local features, while smoother,
broader structures reflect a stronger large–scale prior.

4.5 Quantitative Evaluation

A key aspect of probabilistic prediction quality is calibration. A model is considered well
calibrated if its predicted probabilities reflect true event frequencies. Formally, for a pre-
dicted probability p̂, a perfectly calibrated model should satisfy

Pr(Y = 1 | ŷ = p̂) ≈ p̂.
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In other words, among all pixels for which the model assigns probability p̂ to contrail
formation, approximately a fraction p̂ of them should indeed be labeled positive. In our
quantitative evaluation we similarly compare performance on 26 November 2024 at
16:00 UTC contrail risk prediction.

To quantify calibration quality, we use the Expected Calibration Error (ECE), which
partitions predictions into M probability bins B1, . . . , BM and measures the discrepancy
between accuracy and average predicted confidence within each bin. The ECE is defined
as

ECE =
M∑

m=1

|Bm|
N

∣∣acc(Bm)− conf(Bm)
∣∣,

where

acc(Bm) =
1

|Bm|
∑
i∈Bm

1{yi = 1}, conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i.

A lower ECE indicates better calibration, with ECE = 0 achieved only for a perfectly cali-
brated classifier. In our evaluation, we compute ECE across all spatial pixels and pressure
levels to provide a robust measure of probabilistic fidelity for contrail–risk prediction.
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4.6 Results

4.6.1 Qualitative Results

Figure 4.1: Qualitative comparison of contrail–risk predictions for 26 November 2024 at 16:00 UTC.
The top panel shows the ground-truth binary contrail mask (RHi > 100%) over the evaluation region. The
bottom row displays predicted probability heatmaps at 200 hPa for the full TinyTrail model, and for each
ablation: LFSR-only, ESP-only, and the baseline Transformer.

Figure 4.2: Qualitative comparison of contrail–risk predictions for 26 November 2024 at 16:00 UTC
and 225hPa .
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Figure 4.3: Qualitative comparison of contrail–risk predictions for 26 November 2024 at 16:00 UTC
and 250hPa .

Figure 4.4: Qualitative comparison of contrail–risk predictions for 26 November 2024 at 16:00 UTC
and 300hPa .
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4.6.2 Quantitative Results

Figure 4.5: Calibration curves for contrail–risk prediction at 200 hPa for the validation example on
26 November 2024 at 16:00 UTC. Each panel shows, for a given model variant (TinyTrail, LFSR-
only, ESP-only, Baseline), the relationship between the predicted contrail probability (horizontal axis) and
the observed event frequency within each probability bin (vertical axis). The dashed diagonal represents
perfect calibration: points lying on this line indicate that a predicted probability p corresponds to an
empirical event frequency of p. The blue curve shows the model’s actual calibration behaviour, with
deviations from the diagonal reflecting over- or under-confidence. The light grey bars along the lower axis
depict the distribution of predicted probabilities (bin fractions), indicating where most predictions occur.
Models with lower ECE values (reported in each title) achieve closer alignment between predicted risk and
true contrail occurrence.
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Figure 4.6: Calibration curves for contrail–risk prediction at 225 hPa for the validation example on 26
November 2024 at 16:00 UTC.
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Figure 4.7: Calibration curves for contrail–risk prediction at 250 hPa for the validation example on 26
November 2024 at 16:00 UTC.
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Figure 4.8: Calibration curves for contrail–risk prediction at 300 hPa for the validation example on 26
November 2024 at 16:00 UTC.
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Chapter 5

Discussion and Conclusion

5.1 Qualitative Evaluation Across Pressure Levels

Figures 4.1–4.4 show qualitative predictions of contrail–risk probabilities for the case study
on 2024–11–26 at 16:00 UTC across pressure levels 200, 225, 250, and 300 hPa. Each figure
pairs the binary RHi> 100% label field (top) with a set of predicted probability maps from
TinyTrail, the LFSR head ablation, the ESP ablation, and the baseline model (bottom
row).

While these heat maps do not by themselves allow strong conclusions about relative
model performance, they do help reveal characteristic spatial biases introduced by each
architectural modification. The LFSR head tends to produce probability fields with more
pronounced spatial gradients and sharper transitions, consistent with its spectral refine-
ment mechanism. The ESP ablation, by contrast, often yields smoother, more latitudinally
organized structures, reflecting the influence of its learned geophysical positional bias. The
baseline model generally exhibits softer spatial variation, with broader regions of moderate
confidence. TinyTrail combines both inductive biases and therefore displays a mixture of
localized structure and large–scale organization.

Across pressure levels, all models show some sensitivity to altitude, with changes in the
apparent coherence, smoothness, or contrast of their predicted fields. These qualitative
differences highlight how architectural components shape the spatial character of predic-
tions; however, a more precise assessment of model accuracy and calibration is provided in
the subsequent quantitative analysis.
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5.2 Quantitative Evaluation Across Pressure Levels

To complement the qualitative inspection of spatial prediction patterns, we evaluate model
behaviour quantitatively through calibration analysis at four pressure levels (200, 225,
250, and 300 hPa). Overall, all architectures—Baseline, ESP-augmented, LFSR-refined,
and the full TinyTrail model—exhibit reasonably well-calibrated probability estimates,
as indicated by their low Expected Calibration Error (ECE) values across levels. This
is noteworthy given the difficulty of predicting contrail-permitting conditions from high-
dimensional atmospheric fields, and it underscores a key trend in the literature: even
pure ViT-style architectures can perform strongly on geophysical tasks. In particular,
ClimaX [29] achieves state-of-the-art results using a vanilla ViT backbone with no explicit
physical priors, illustrating the surprising effectiveness of the transformer’s general-purpose
representation capacity.

While TinyTrail does not achieve the lowest ECE at every pressure level, its perfor-
mance remains competitive relative to the baselines. Small variations in calibration across
models are expected, as the probability distribution of RHi> 100% is highly skewed and
sensitive to subtle errors in humidity and temperature dynamics. Differences among mod-
els likely reflect several factors: (i) slightly different inductive biases (spectral filtering,
geophysical positional structure), (ii) small variances in optimization dynamics given the
relatively short training schedule, and (iii) limited calibration sample size for computing
empirical reliability curves.

It is important to emphasize that the calibration results do not suggest any model
is failing; rather, they indicate that all variants—including the raw ViT baseline—are
effective at producing meaningful probabilistic estimates. TinyTrail’s performance, even
when not strictly the best, should not be interpreted as dismissing its architectural design.
Instead, the results suggest that further improvements could plausibly be achieved via
hyperparameter search, extended training, temperature scaling or post-hoc calibration, or
wider evaluation samples. Given the sensitivity of ECE to binning choices and dataset
size, additional calibration diagnostics (such as adaptive binning or Bayesian reliability
estimation) may yield even clearer distinctions among model families.

In summary, all models demonstrate strong quantitative behaviour across pressure lev-
els, and TinyTrail remains a viable, compact architecture whose performance could be
further enhanced with more extensive experimentation. These early results invite natural
follow up experiments of small architecture designs for this task.
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5.3 Model Size Comparison

To contextualize the compactness of the proposed TinyTrail architecture, we compare its
parameter count to several leading data-driven weather forecasting models. Despite incor-
porating both spectral refinement (LFSR) and geophysically informed positional structure
(ESP), TinyTrail remains orders of magnitude smaller than state-of-the-art systems, un-
derscoring its suitability for lightweight research and rapid experimentation.

Model Parameter Count Description

TinyTrail ∼ 3.82M

A lightweight Transformer for short-term
contrail-risk prediction, optionally equipped
with ESP positional bias and LFSR spectral
refinement. Designed for efficiency and rapid
experimentation.

FourCastNet ∼ 433M

A high-capacity global forecasting model built
on Adaptive Fourier Neural Operators,
emphasizing spectral mixing and large-scale
parallel training.

Pangu-Weather ∼ 256M

A leading 3D Earth-system Transformer
incorporating Earth-specific positional biases,
achieving operational-scale deterministic
weather forecasting performance.

ClimaX ∼ 115M

A general-purpose climate foundation model
using a pure ViT encoder with no explicit
physical priors, demonstrating strong results
across diverse Earth-system tasks.

Table 5.1: Parameter counts and descriptions of TinyTrail and leading weather–climate forecasting
architectures. The compact TinyTrail model remains 30–100× smaller than large operational systems
while achieving competitive contrail-risk predictive performance.

This comparison highlights an important point: although TinyTrail is approximately
30–100 times smaller than prominent operational-scale systems, its performance on
contrail-risk prediction remains competitive. The results suggest that carefully chosen
inductive biases, efficient token representations, and task-specific transformer design can
yield strong performance even at modest parameter scales.
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5.4 Future Work

The preliminary results presented in this study motivate a number of natural extensions
aimed at improving the fidelity, robustness, and practical utility of data-driven contrail–risk
prediction. Future experiments should explore scaling the temporal conditioning win-
dow beyond the four-hour history used here. Longer input sequences (e.g., 8–12 hours)
may enable the model to capture slower mesoscale moisture dynamics that influence the
onset and persistence of ice-supersaturated regions. Observational studies indicate that
ice-supersaturated regions—a necessary precursor for persistent contrail formation—can
exhibit variability on time scales ranging from minutes up to several hours, with mean
lifetimes on the order of hours and maxima extending to roughly 16 hours under certain
atmospheric conditions [44]. Such evidence motivates extending the temporal context be-
yond the current four-hour window to allow learning models to better integrate temporal
dependencies in moisture and thermodynamic evolution.

Similarly, hyperparameter tuning, increased model capacity, and training on a larger
temporal span of ERA5 (beyond the two years considered in this work) may reveal addi-
tional gains. Additionally, the use of higher-vertical-resolution datasets such as ERA5’s
137-level [14] product can allow interpolation to a finer set of aviation-relevant flight lev-
els and offer contrail–risk estimation with improved re-routing capabilities. This was not
used in our study due to the more copmlex nature of the dataset and stronger access
restrictions. Beyond model scaling, there are several promising avenues for operational
evaluation. With a denser set of flight-level predictions, one can perform historical case
studies to estimate how much contrail formation might have been reduced had certain
altitude-adjustment interventions been applied. Such analyses would help quantify the
potential climate impact of contrail avoidance strategies and assess the practical value of
real-time contrail–risk maps.

Towards better calibration evaluations, we can measure calibration against true ob-
served contrail occurrence. One method for testing model calibration would be to take a
large sample of flight data (e.g., from the OpenSky Network [37]) and compare predicted
contrail formation against observational contrail detections, such as those visualized on
the Contrails.org contrail map [10]. Comparing predicted contrail probabilities with real
historical contrail formation events would enable more rigorous calibration diagnostics and
support the development of correction methods tailored to aviation operations. This back-
testing against live flight data also lends itself to a post-training finetuning. Furthermore,
in a live operational setting, using observed contrail risk in a reinforcement learning con-

42



text may also be worth exploring.

Another direction is the exploration of alternative proxy labels for contrail formation
beyond ice supersaturation. While RHi> 100% is widely used and physically justified, ad-
ditional variables—such as Schmidt–Appleman threshold diagnostics, relative temperature
and pressure gradients, or multi-variable contrail formation models—may capture dynam-
ics missing from a single-threshold label. Jointly modeling these factors could yield more
robust contrail–risk estimators and expand the applicability of transformer-based architec-
tures to aviation–climate interaction studies.

Taken together, these directions highlight a rich landscape for future research: larger
models, longer temporal context, higher-vertical-resolution inputs, historical intervention
studies, and calibration against real flight and contrail-formation records. The preliminary
effectiveness of TinyTrail and its ablations suggests that transformer-based systems offer
a strong foundation for the next generation of operational contrail–mitigation tools.

5.5 Conclusion

This work presented TinyTrail, a compact Transformer architecture for short-term con-
trail–risk prediction built from ERA5 pressure-level data. Through a series of ablations, we
explored the contributions of two lightweight inductive biases—Earth–Specific Positional
(ESP) structure and LFSR-based spectral refinement—and demonstrated that each pro-
duces characteristic spatial effects in the prediction field while maintaining strong overall
calibration performance. Despite its small parameter count, TinyTrail its ablated variants,
aligning with broader evidence in the literature that even vanilla ViT backbones can serve
as effective forecasting models in atmospheric settings.

Our qualitative and quantitative analyses show that all examined architectures cap-
ture essential patterns of contrail-permitting conditions, highlighting both the strength
of transformer-based approaches and the promise of further task-specific refinement. At
the same time, the variability across pressure levels and the modest differences in calibra-
tion suggest that there remains considerable room for advancement. The results motivate
deeper investigations into model scaling, richer temporal context, higher-vertical-resolution
atmospheric inputs, and calibration against observed contrail formation events.

Overall, these findings support the feasibility of lightweight, data-driven models for
operational contrail-avoidance applications and establish a foundation upon which more
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comprehensive forecasting and decision-making systems can be developed.
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