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Abstract

Markets only quote option prices at a limited set of strikes and maturities, so a large
part of the price surface is usually missing. Reconstructing these unobserved regions is
important not only for consistent pricing but also for hedging and for extracting quantities
like implied or local volatility. Traditional approaches rely on a chosen asset-price model
and often struggle when data are sparse, noisy, or not well explained by the model. Recent
machine-learning methods relax these assumptions, but they still do not automatically
enforce the no-arbitrage conditions that any valid price surface must satisfy. This project
explores the use of score-based generative models (SBGMs) to complete both European
and American option price surfaces when only partial market information is available.
The main idea is to guide the sampling procedure by adding two types of corrections:
(i) no-arbitrage corrections that nudge the generated surface toward economically valid
shapes, and (ii) physics-informed corrections that incorporate PDE-based structure under
certain modeling assumptions. These additional components help the generative model
converge faster and produce surfaces that are much more consistent with option-pricing
theory. We tested physics-informed and no-arbitrage correctors on European put options in
a predictor-corrector scheme with discretised reverse diffusion using stochastic differential
equations. We also combined the no-arbitrage corrector with another annealed Langevin
Dynamics to correct American put price surfaces. In general, we attained 1072 of mean
average errors for all cases, and different levels of improvement according to moneyness
and maturity periods.
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Chapter 1

Introduction

The financial markets provide option prices for a discrete set of strike prices and maturity
dates. In practice, however, the availability of market option prices depends on trading
activity. When only a small subset of strikes and maturities is actively traded, the observed
market data provide only partial information about the full option price surface. This
creates the need to estimate the missing prices at untraded points, a task referred to as
the option price completion problem. To fill in the missing values on a price surface is
to enable more accurate pricing of options and efficient evaluations of traders’ portfolios,
and a better understanding of the market’s expectations regarding the fluctuations of the
underlying asset prices.

Completing the option price surface is essential for several reasons. It enables consistent
pricing of options across strikes and maturities, supports the assessment and hedging of
portfolios containing derivatives, and ensures the enforcement of no-arbitrage conditions.
Moreover, once a complete and arbitrage-free price surface is available, implied volatility
and local volatility surfaces can be inferred with greater accuracy, allowing for a clearer
interpretation of market expectations about future asset movements.

Classical approaches to filling in or extrapolating missing option prices rely on modeling
the stochastic behavior of the underlying asset. The Black-Scholes framework [1], for
example, assumes the asset prices evolve according to a geometric Brownian motion. More
sophisticated alternatives, such as stochastic volatility models [18], local volatility models
[11], and rough volatility models [14] introduce additional randomness or path-dependence
to better capture market features. Each of these models is governed by a set of parameters
that must be calibrated so that the model-generated option prices align with the observed
market data under a chosen distance or loss metric. In addition, these methods are model-



dependent and the calibration of the parameters, such as volatility, highly depends on
data availability. The noisy and sparse market data therefore may not be in favor of these
methods.

Recent developments in machine learning explore model-free and data-driven approaches.
For examples, [22] explored the hybrid approach of using recurrent neural network (RNN)
with Monte Carlo method to price American options. [9] attempted to use Physics Informed
Neural Network to directly incorporate physical laws into the pricing via Partial Differential
Equations (PDEs) for both European and American options. The inclusion of machine
learning methods improved the pricing speed and accuracy. These methods however do
not guarantee to produce arbitrage-free price surfaces. It would be beneficial to identify
methods to generate arbitrage-free price surfaces, with the flexibility to include various
model assumptions.

Among machine learning models, generative models are designed to generate samples from
an unknown data distribution given only samples from the distribution. They can be
grouped into three main categories: likelihood-based models, implicit generative models,
and the score-based generative models. However, likelihood-based models, such as [21], [10],
[11], depend on some known form of the distribution to compute the likelihood computation
during training. Implicit generative models, such as [15], contain an adversarial compo-
nent in the architecture and therefore can be expensive and difficult to train. Score-based
generative models (SBGMs), on the other hand, bypass the restrictions on the distribution
form and allow flexible model architectures. The earliest work of SBGMs came from [36].
They utilized denoising score-matching with Langevin Dynamics to generate samples from
unknown distributions. The technique was widely used in image generation and natural
language processing. Later, more recent approaches with SBGMs have been designed to
speed up the sampling process with stochastic differential equations (SDEs) and proba-
bility flows [39]. Recently, to generate samples with desired quantitative features, physics
informed features can be included in the sampling process to guide the diffusion [23], [35],
[32]. Partial differential equations can be employed into diffusion models for model cali-
bration and numerical solutions. The idea of utilizing partial information of the solution
surface and the coefficient field aligned with our direction of using partial observations of
market information in the problem.

In this research project, we navigate methods to generate arbitrage-free price surfaces
given partial market information. Arbitrage-free modeling is crucial because it ensures
that the generated option price surfaces are financially consistent. Without enforcing no-
arbitrage conditions, a model might produce prices that allow riskless profits, which are
not observed in real markets and would make any downstream trading, hedging, or risk
management strategies invalid. By incorporating arbitrage-free constraints, we can pro-



duce synthetic surfaces that are both realistic and usable for practical applications, such
as hedging, pricing exotic derivatives, or calibrating risk models. Previous projects have
investigated volatility surface completion for European Options using score-based gener-
ative models (SBGMs) [21]. SBGMs generate new samples according to trained samples
from an unknown distribution. The distribution is therefore free of model assumption
and provide flexibility in the modeling performance over traditional parametric model-
ing approaches. However the generative methods are also notorious for its slow sampling
convergence speed. In this project, we employ techniques to speed up the process using
no-arbitrage correctors. We also find that, with additional modeling assumptions, we can
define physics-informed correctors which helped with the sampling speed as well. Physics-
informed and no-arbitrage corrector were enforced in combination of discretized reverse
diffusion to complete European put price surfaces. In particular, American options are
notoriously difficult to manage, due to its early exercise property. There does not exist
any close-form solutions and thus it relies on numerical methods to solve. The compu-
tation of American options is much harder and more expensive than European options.
Despite the numerical challenges, it is one of the most commonly traded entity on the
market. We attempted SBGMs to complete American put price surfaces in the framework
of our designed no-arbitrage corrector with SDE-type predictors, and showed improvement
in sampling arbitrage-free surfaces. We identify strike regions where it outperforms the
benchmark SBGMs and limitations in the end.

The research project is organized as follows: Chapter 2 provides background concepts of
option pricing including European and American options and no-arbitrage conditions. It
also introduces SBGMs, the training and sampling setups and their variants, including
sampling with SDEs, probability flow and guided diffusion. Chapter 3 lays out the foun-
dations of European Option pricing theories and numerical results. It defines the set-up of
no-arbitrage and physics-informed correctors targeting European Options. Chapter 4 for-
mulates the completion problem for American options, with the corresponding correctors.



Chapter 2

Background

In this chapter, we will cover the preliminary background for the project. Concepts of
European and American options are introduced. We then define the expected shape and
features desired for our final output, by introducing the definitions of arbitrage and con-
ditions for the arbitrage-free price surface to satisfy. Next, we will describe our main tool,
the score-based generative model, and how to train such a model and generate samples
via Langevin dynamics. Then, we will lay out the predictor-corrector scheme, a method
to increase sampling accuracy and to speed up the sampling process, by incorporating
stochastic differential equations into the framework.

2.1 Option Pricing

An option is a type of derivative product of an underlying asset. We will consider two
types of option in this project: European options and American Options.

2.1.1 European Options

A European call (put) option is a contract that gives the right, not the obligation to
buy (sell) 1 unit of an asset, at a predetermined price (strike) K > 0 at a specified time
(maturity) 7' > 0. The seller of a call (put) option can be viewed as an insurance provider
from whom the option owner can benefit from the upside (downside) movement of the
underlying without bearing the risk from the downside (upside) movement. To acquire the
purchasing/ selling right, a price must be paid, which is the option price. The process of
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identifying the fair price is called option pricing, making the option fair to everyone in the
market.

The pricing takes into account several key elements, including the underlying asset’s price
S, the strike price K, the maturity 7', the interest rate r, the dividend rate ¢ and the
volatility o of the underlying. With estimates of these values, a model can be constructed
to analyze and even predict the market behavior. In this project, we will mainly focus on
the asset price S and the volatility o.

A popular choice for modeling European options is the Black-Scholes model [1]. Let S; be
the price of the underlying asset at time ¢. The Black-Scholes model assumes S; follows
the geometric Brownian motion under the risk neutral measure:

dSt = TStdt + UStdZt, (21)

where Z; is the standard Brownian motion. It can then be derived that the put option

OV 1, PV 9V -
E—F—Usw—l—TS%—TV—O, (2.2>

2
V(S,T) = max(K — S,0),

where V(S,T) is the European put option price at time ¢, S is the price of the underlying
at time ¢. A prominent reason for the popularity of this model is that this provides a
closed-form solution for option price:

Pps(So, K, T,7,0) = —So®(—dy) + Ke " ®(—ds), (2.3)
where Ppg denotes the Black-Scholes European Put option prices, d; = #:7 [log (%)

+ (r + %2) T}, dy = di — ov/T, and ® is the c.d.f. of the standard normal distribution.

Throughout this project, we will only consider put options, but the mechanism works for
call options as well. We consider constant risk-free rate r and zero dividends.

To identify a correct model Pgg for the market, one needs to estimate the volatility o,
given the observed option price P at given n strikes {K;: i = 1,--- ,n} and m maturities
{T;: j=1,---,m}. This process is called model calibration. The volatility value such that
the model resembles the current market observation on {(Kj;, T;)}; ", is called implied
volatility o;,,,. In other words, it is the process to find oy, such that given r, ¢,

PBS(Kia T], Oimp, T, Q) = Pob5<Ki7T1j; o,r, Q)7

forall¢ =1,--- ,nand j = 1,--- ,m. With this estimate of o;,,,, one can generate the
whole surface with the same option pricer Pgg. Although there are no analytic formulas



to recover o from observed prices, fortunately, the Black-Scholes formula is a monotonic
function of the volatility . Given its smoothness for ¢ > 0, numerical methods, such
as Newton’s method [12], can be applied to find the root o for the calibration problem.
However, in practice, market data are often sparse, leaving gaps in observed option prices.
These gaps prevent direct calibration for all strikes and maturities, motivating methods
for completing the price surface before applying volatility calibration. Estimation of the
missing price and volatility values is referred to as the completion problem.

Previous work has focused on using SBGMs to complete European implied volatility surface
Oimp(K,T) [21]. They found that the performance of the model was worst around the
boundaries. For this project, we directly compare the performance on the put price surface
Pe(K,T).

2.1.2 American Options

In contrast, an American call (put) option allows the option owner to exercise the option
anytime on or before the maturity 7'. This property is called the early exercise property.
Early exercise can be valuable, for example, for deep in-the-money put options with high
interest rates or options approaching maturity. In such cases, exercising early can provide a
higher payoff than holding until expiration. Unlike European options, which only take into
account the intrinsic value at maturity 7', the actual value of an American option at any
time before T depends on future potential values. Therefore, the valuation of an American
option involves determining not only the expected discounted payoff at maturity but also
the optimal exercise strategy over the time interval [0,7]. Although both call and put
options exist, in the context of American versus European options, American call options
on non-dividend-paying stocks are equivalent in value to their European counterparts.
Therefore, the early exercise feature is only relevant for puts (or calls on dividend-paying
stocks), and we focus on put options in this study.

At each time t € [0, 7], the owner of an American put option either exercises the option
immediately for an instant payoff max(K — S, 0), or continues holding it for a potentially
higher future value. Suppose C(S,t) denotes the continuation value of the option at
time t given the asset price S, i.e.

C(S,t) = ]E[eiT(T*t)(K —S)y | S = SL

where T is a stopping time, representing the (possibly random) time at which the option is
exercised based on information available up to that time. This is the expected discounted
value of the option if it is not exercised at time ¢ and the holder follows an optimal exercise



strategy thereafter. This is the expected discounted value of the option if not exercised at
time ¢. Then, the fair price of the American put can be formulated as:

P4(S,t) = max (K — S,C(5,1)).

If the continuation value exceeds the immediate exercise value max(K — S,0), then it is
optimal to continue holding the option. In this region, the option price is computed using
the standard Black-Scholes PDE, i.e. Equation (2.2). However, if the immediate exercise
value dominates, i.e. K —S > C(S,t), it becomes optimal to exercise the option early. In
this exercise region, the option value must coincide with the intrinsic value:

Pa(S,t) = K — S. (2.4)

The difference between the American and European option values is referred to as the
early-exercise premium. This quantity represents the additional value arising from the
flexibility to exercise the option at any time prior to maturity. Formally, the early-exercise
premium II(S,¢) is defined as

T1(S,t) = Pa(S,t) — Py(S,1),

where Pr denotes the European put price. Since the holder of an American option can
always choose to wait until maturity and receive the European payoff, it follows that
I1(S,t) > 0 for all (S,t). The premium therefore quantifies the expected benefit of being
able to exercise optimally before maturity. Intuitively, when the underlying asset price
drops sufficiently below the strike, the immediate exercise value K — S may exceed the
continuation value C(S,t), making early exercise optimal. A key structural reason un-
derpinning this behavior is that the underlying price S is bounded below by zero. When
S — 0, the American put’s payoff approaches K, while the European put’s maximum
discounted payoff is only Ke "". Thus, deep in-the-money American puts can capture
the full strike amount earlier, reinvesting the proceeds at the risk-free rate—an oppor-
tunity unavailable to the European counterpart. Conversely, for an American call on a
non-dividend-paying stock, early exercise is never optimal. This asymmetry arises pre-
cisely because the underlying price has no upper bound: there is no analogous “cap” that
would make receiving S — K immediately more valuable than holding the call to maturity.
Hence, the early-exercise premium for an American put reflects the value of accessing the
intrinsic payoff earlier when the asset price is low, a benefit rooted in the asset’s limited
downside.

From a mathematical perspective, the early-exercise premium can be interpreted as the
expected discounted gain from the possibility of early exercise under the risk-neutral mea-
sure. Equivalently, it is the solution to a free-boundary problem, where the boundary

7



separates the continuation and exercise regions. The early-exercise premium thus encap-
sulates the economic value of flexibility and the analytical complexity introduced by the
optimal stopping feature of American options.

Therefore, the early-exercise property makes American put options computationally more
challenging than European put options. In particular, there are no analytic formula for the
exact price of American options and therefore one can only rely on numerical approxima-
tion, such as binomial method [26], [25], finite difference methods [13], [16] and machine
learning methods [9].

2.1.3 No-arbitrage Conditions

An arbitrage opportunity refers to the market scenario that one can create a portfolio
that for certain will have positive gain. Assuming that there is such an opportunity, it is
assumed that such opportunities would be exploited by market participants, eliminating the
arbitrage quickly, and therefore the advantage will vanish quickly. Hence, it is reasonable to
assume the price surface will contain no arbitrage opportunities. The conditions for such
scenarios are called no-arbitrage conditions. They are one of the many determining
factors of the shape of the price surfaces. In this project, we consider a finite set of strikes.
We will use no-arbitrage conditions from [3], [4]:

Theorem 2.1.1 (No-arbitrage Conditions for European Put Options) Suppose the
prices of European Put options with maturity T are given for a finite number of strikes

Ky, -+, K,. Denote the FEuropean put prices at each point (K,T) by Pg(K,T), which

is linearly interpolated between the grid points. Then the European put prices are free of

arbitrage opportunities if and only if the following are satisfied:

1. Pg(K,T) is increasing in K.
2. Pp(K,T) is convex in K.
3. e TK > Pp(K,T)> (e K — Sy), for K > 0.

4. OxP(K+,T) <e, for K >0 with Pg(K,T) > e "TK — Sj.

where Sy is the current price of the underlying and Ox Pp(K+,T) is the derivative in K
of Pg from the positive side. For the calendar arbitrage, we impose

5. Pg(K,T) is non-decreasing in T > 0.



The first three conditions guarantee strike-wise no-arbitrage: put prices must increase and
be convex in the strike, lie between their natural lower and upper bounds, and have slopes
consistent with risk-neutral probabilities, i.e., between 0 and e~"?. The final condition
ensures no calendar (maturity) arbitrage, requiring that option prices increase with time
to maturity, since a longer-lived option can never be worth less than a shorter-lived one.
Together, these conditions ensure that the price surface could, in principle, arise from a
valid risk-neutral distribution of the underlying asset.

For American options, the early-exercise property makes it more complicated. Their no-
arbitrage conditions hinge on the European options.

Theorem 2.1.2 (No-arbitrage Conditions for American Put Options) [7/ Suppose
the prices of American Put options are given with maturity T are given for finitely many

strikes Ki,--+ , K,. Denote the American put prices at each point (K,T) by Pa(K,T),

which is linearly interpolated between these grid points. Assume that the corresponding

FEuropean Put prices Pp(K,T) satisfy the no-arbitrage conditions in Theorem 2.1.1. Then

the American Put price Pa(K,T) is arbitrage-free if and only if:

1. PA(K,T) is increasing in K.
2. PA(K,T) is convex in K.
3. OxPA(K+,T)K — Po(K,T) > O Po(K+,T)K — Pp(K,T) for all K > 0.

4. max{(K — Sy)y, Pe(K,T)} < P4(K,T) < Pg(e"TK,T).
For calendar no-arbitrage, we additionally require:
5. PA(K,T)— Pg(K,T) is non-decreasing in T > 0.

The conditions above extend the European no-arbitrage relations by incorporating the
early-exercise feature of American options. The first condition ensures convexity and
monotonicity with respect to strike, as before. The second condition enforces consistency
between the slopes of the American and European price functions, guaranteeing that the
early-exercise premium is nonnegative and convex. The third condition bounds the Amer-
ican price between the intrinsic value and the discounted strike, and above its European
counterpart. Finally, the last condition prevents calendar arbitrage by requiring that the
early-exercise premium increases with maturity. We will explain them in finer details in
Chapter 4.



2.2 Score-based Generative Models

Having established the financial context, we now turn to generative modeling techniques
that will enable price surface completion. Generative modeling techniques aim to sample
from an unknown data distribution given only samples from the distribution. The whole
regime of score-based generative models can be boiled down into one single statement.
Instead of sampling from the unknown data distribution, noise is added sequentially to
the given samples, until they follow a distribution that has a known structure to us. Then
one can sample from the output distribution and revert the process to approximate the
unknown distribution.

This formulation of the problem gets around several numerical challenges present in other
generative methods, such as the estimation of normalizing constant and expensive model
component. The model also achieves greater accuracy in prediction over other methods

such as conditional GANs [15], U-Nets [34], and even physics-informed neural networks
(PINNSs) [33] in some cases. In the following, we will describe the training and the inference
of SBGMs.

2.2.1 Score Matching

The central advantage that differentiates SBGMs from likelihood-based and implicit adver-
sarial generative methods stems from score matching [30]. Suppose our goal is to generate
samples z € R? from an unknown distribution D, with a density function py(x). Instead
of modeling po(x) directly, SBGMs aim to model the score of the distribution, which is
defined as the gradient of the log density function V, logp(x) [0].

Modeling on the score avoids the numerical trouble to estimate the normalizing constant,
as in the likelihood computation. More precisely, to estimate the probability density p(z),
one has to ensure the normalizing property

7= /de(a:)dx.

This poses numerical challenges since the integral approximation requires the estimation
over the whole space R, which could be expensive in high dimensional cases. Instead, when
one estimates the score of the distribution V,logp(z), one can skip the computational
difficulty in estimating the normalizing constant Z:

V. log (%) =V, logp(z) — V,log Z = V, log p(z).
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Besides the numerical difficulty, the neural network to model the score also refrains from
the trouble of including adversarial component in the architecture, and therefore is much
easier to train. The process of training a model sq¢(x) with model parameter # to learn the
score p(x) from the training samples is called score matching [(]. One can formulate the
training loss as the following:

1
£(0) = 5Ezwp [llso(x) = Valogp(a)]3]
In this project, we will use denoising score matching to train the model sq [12]. There
are other formulation of score-matching, which can be found in [38]. The numerical chal-

lenge is that the score V,logp(x) of the true distribution is still unknown. The idea of
denoising score matching is to add predetermined noise z to the true distribution, and
then estimate the score of the noise-perturbed distribution, with density ¢, (:-|z). Formally,
suppose we are given some set of data points x ~ D with a probability density p(x). The
samples are perturbed via & = x + 2 with noise z ~ N(0, p*1;), where ¢ refers to the noise
level and 1, is the identity matrix in R, Assume ¢ is small enough so that the noise
perturbed distribution is close to the true distribution, i.e. g,(z) ~ p(z). Then, the noisy
sample 7 follows the conditional noise-perturbed distribution

4,(T) = /~D 4, (T|x)p(x)de. (2.5)

Then, the training loss we defined above becomes

1

L(0) = 3 Eqp @aip(a) [156(F) — Vzlog g, (Z|2)]|] - (2.6)

In particular, since we define z ~ N(0,%I;), and hence ¢, (7|z) = #exp (—%),
then it can be shown that _
T—z
o2
which is easily computable, even for high dimensional space. Under this setting, the net-
work, sg« with optimal parameter 8* minimizes Equation (2.6) and consequently sg«(z) =

V. logg,(z) =~ V, logp(x).

Vilog gp(zlr) = — , (2.7)

2.2.2 Langevin Dynamics

With the optimal network sg+, we can use Langevin dynamics to sample from the density
p(z) using the score [36]. More precisely, if we fix a small step size @ > 0 and the number
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of steps M, and suppose we have some initial random noise sample Ty ~ N(0, I;), the
Langevin dynamics gives an iterative algorithm:

Ty1 < T + aV, log p(Tk) + V2azy, where z, ~ N (0, 1,).

With the trained score network sy« (z) ~ V, log p(x), all the terms in the algorithm can be
computed. In an intuitive sense, it can be thought as providing the most probable direction
V. log p(Zy) to the current step 7y, while giving a more generalized exploration from the
random noise zj. It can be shown that under some conditions, the final distribution of x,;
will tend to the true probability density p as M — oo and o« — 0.

2.2.3 Noise Conditional Score Network

Note that the current setup of the network sy assumes using only one noise level. Two
potential problems may arise. The first is slow mixing, especially for multi-modal data
distribution. When two modes of data are segregated by a low density region, the algorithm
may not correctly recover the relative weights of these modes if ¢ is too small. The second
is inaccurate score estimation. For regions with low data density, score matching may lack
sufficient data to estimate score functions accurately [30].

To sidestep these potential difficulties, one can perturb the data using different levels of
noise, and train the score network depending on the respective noise level. In other words,
define a geometric increasing sequence of noise levels: p; < pg < --- < ¢, where L is the
number of noise levels considered and the common ratio is v > 1. Suppose that ¢, is large
enough so that the final noisy samples are diverse enough to cover even regions of low data
density; and ¢, are small enough so that the noise-perturbed distribution is close to the
true distribution, i.e. ¢,(z) = p(z) in Equation (2.5) [37].

Then, we will train the score network sy (7, ) that is now conditional on the noise level ¢,
by minimizing the training loss for each ¢:

1 . ~

0;9) = 5B, Gleie) [lls0(F, ) = Vlog g, (F|2)["] - (2.8)

Again, since we use normal distribution for the noise perturbation, by Equation (2.7), the
loss becomes

-l

1
= J . (2.9)

0(0; ) = §Eq¢<%|x>p<x> [

50(57 @) +
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Now, to train on single score network sy(-,-) for the whole sequence of noise levels {p; }£ |,
the training loss is

L
1
L(O;{pi}y) = 17 E Ail(0; i)
=1

1 L 2
=7 D _AEq, @) :
2L Zzl e p )

\; is set to be ¢? to make the order of magnitude of p?{(6;p;) independent of p; [30].
This is to balance the training loss among different noise levels so that the model performs
evenly well on each noise level. Since the score network sq(z, ¢) now depends on the current
generated sample x and the noise level ¢, such network is called Noise Conditional Score
Network.

(2.10)
~ T —x
50(7, i) + —

i

Since we consider different noise levels, the Langevin dynamics needs some adjustments as
well. It can be thought of as moving from completely noisy samples, following the directions
towards clean samples (via the score), from large noise levels gradually to smaller noise
levels. The adjusted algorithm is called Annealed Langevin Dynamics (ALD) [30].
The central idea of ALD stems from the observation that, a higher noise level ¢ would
introduce better mixing and score matching for the noise-perturbed distribution ¢,, and
thus should take a larger step a.

Algorithm 1: Annealed Langevin Dynamics (ALD)

Data: sequence of noise levels {¢;}£ ;, number of sampling steps per noise level
M, stepsize parameter ¢, trained noise conditional score network sy, -)

Result: 7
Initialize Zpr ~ N(0, p21p);
fori=1L,---,1do

2
3 define the stepsize o; + eZ—é;

L

4 fort=1,---,M do
L sample z; ~ N (0, Ip);

N =

update the new sample via T, 1 < Ty + «;89(Ty, 0i) + V22

7 fM:fo

Intuitively, the sampling process begins with a highly noisy initialization—a “cloud” of
samples— and progressively refines them as the noise level decreases, moving from coarse
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to fine details in the data distribution. However, when transitioning between noise levels,
the gap must not be too large. The gap here means the spacing between consecutive noise
levels. If the noise level of the sample drops too quickly, the sampler cannot smoothly
transition from coarse to fine details and may fail to follow the data manifold. otherwise,
the sampler may fail to track the true data manifold, leading to instability or divergence
in the sampling process. This transition between noise levels is called mixing.

2.2.4 SBGMs with Stochastic Differential Equations

To ensure smoother mixing, one can consider a continuous noise schedule instead. The
iterative sampling process can be thought as solving a Stochastic Differential Equation
(SDE) [39]. It is possible to employ an infinite number of noise levels to maximize the
performance of SBGMs in a continuous sense. We first provide the most general account
and then apply to our previous discrete case for comparison.

Suppose z(0) are samples from some unknown distribution pg. The goal is to add noises
(diffuse) to the samples up to a point, so that the perturbed samples z(7T") follow some
distribution pr, which is independent of py and of a form known to us. Here x(t) refers to
the sample after adding noise of level ¢, with ¢ € [0,7]. We use T, as opposed to L in the
previous section, to emphasize that the noise levels are now continuous, but not discrete.
An example of such pr is a Gaussian distribution with some fixed mean and variance.
With this setup, since the form of pr is known, we can sample z(7T') from the distribution
pr, and then reverse the diffusion (denoise) to original samples x(0), which should follow
the unknown true distribution py, which we now call the prior distribution.

Formally, we wish to construct a diffusion process {x(t)}o<i<r such that x(0) ~ pg, and
x(T) ~ pr. There are many different formulation of the noising schedule. In general,
consider that the diffusion process follows the Stochastic Differential Equation (SDE):

dr = f(z,t)dt + g(t)dw, (2.11)

where w is the standard Brownian motion, f(-, ) : R — R? is called the drift coefficient of
z(t) and g(-) : R — R is called the diffusion coefficient of x(¢). This noise schedule exists
and is unique as long as f and g are globally Lipschitz [39].

Suppose the observed data are perturbed following the SDE (2.11), we can then reverse
the diffusion from z(T") ~ pr via

dx = [f(z,t) — g(t)*V log p;(z)]dt + g(t)dv, (2.12)
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where v is another standard Brownian motion and p; is the probability density of z(t).

To sum up, given data from pg, one can add noise via SDE (2.11) so that the output
samples follow the distribution py. Then, we can sample from py by iterating samples
from pr using the reverse diffusion (2.12). Observant readers will notice that the inter-
mediate distribution p;,t € (0,7 still depends on the prior py. Under the principle of
denoising score matching as in the discrete case, we replace it with the transition den-
sity pot(z(t)]2(0)) = N (z(t); 2(0), ©*(t)1;) for tractability, where the noise level is now a
continuous function ().

Now, we can compare it to the previous discrete case {p;}~ ,, which is geometric and
increasing, with common ratio v > 1, as we defined before. Define a function

or (t=1)/(L—=1)
o(t) = ¢ (;) , for t € [1,1].
1

Note that with this, we have

(i—1)/(L-1) . .
¥ (Z> = ¥1 <%) = gpl(fYLil)(lil)/(Lil) = ()0171 = Vi, for v = 17 T 7L'

So this ¢(t) is the continuous version that coincides the discrete set of noise levels we

discussed before. Now if we fix the smallest and largest noise scales ,,;, = @1 and

Omaz = @1, and then we increase the number of noise levels L to infinity, we have p(t) =

gomm(%)t for t € (0,1] [39]. Recall that the discrete noising process can be written as

min
_ / 2 2 o
T = Tio1 +\/p; — ;i 1%i—1, fori=1--- L,

where z;_1 ~ N (0, I;) and zg is the clean sample. To transition to the continuous version,
we consider continuous stochastic processes {x(t)}{_, and {z(t)}/_, such that z(+) = x;
and z(7) = z for i = 0,---, L. As we increase the number of noise levels L, this becomes:

z(t+ At) = 2(t) + /P2 (t + At) — 2(t) 2(t) ~ 2(t) + d[(p;;t)} At z(t)

As At — 0, this converges to

d 2.13
i, (213)

where w is the standard Brownian motion. The corresponding transition kernel is

Pmin

po(a(B)](0)) = N (az(t); £(0), 2 (9”’”) fd> |
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Comparing Eq.(2.13) and Eq.(2.11), we set f(z,t) = 0 and g(t) = w. The corre-

sponding reverse diffusion SDE follows Equation (2.12) to become:

dr = —@Vz log po(x)dt + @dv. (2.14)

The discretised version of the diffusion for {¢;}£, from Eq.(2.13) is

T = X1+ /97— 9?7 zi-1, where z,_; ~ N(0, 1), (2.15)

with zp ~ py, and the discretised reverse diffusion SDE (2.14) is

v = xi1 — (9f — 07 1) Valogpo(wia) + 1/ 9F — 07121 (2.16)

To train such model, we follow the similar training loss as defined before in Eq.(2.10). We
find a score network sy(x,t), so that it minimizes the loss

1

§Et (M) Ea(0)Eawaoy [ so(z(t), 1) — Vg log pos((t) |2(0))[13]] (2.17)

where t samples from the uniform distribution ¢[0, 7] and A(¢) : [0,7] — R+ is a positive
weighting function so that the order of magnitude of the residual for each noise level would
be similar. Akin to the discrete case, A(t) can be set to be ©?(t).

2.2.5 Predictor-Corrector

At each time step, the numerical solver, SDE (2.16), gives an estimate of the sample
at the next time step, serving as the ”predictor” of the score. This estimation can be
improved since we have trained the model sy(x,t) ~ V,logpi(x), estimating the same
distribution. The idea for improvement is to hybridize the samples from either solver
with some correction using ALD (Algorithm 1). It was found that the hybrid approach
improved the accuracy significantly at the expense of doubling the computational cost [39].
The algorithm is presented in Algorithm 2.

2.2.6 Guided Diffusion

The fundamental assumption imposed on the original formulation of score-based generative
models is that the only known information of the data distribution pg is the set of data
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Algorithm 2: Predictor Corrector Scheme

Data: sequence of noise levels {¢;}Z ,, number of correction steps per noise level
M, step size parameter e, trained noise conditional score network sy(-, -)

Initialize z;, ~ N(0, p3 Ip);

fori=L-1,---,1do

/* Predictor Step */

N =

3 Define the step size «; + ez—g;

L
4 Sample z; ~ N(0, I);
Update the new sample via reverse diffusion in Eq. (2.16):

Ti < Tigr + (05 — ©7)80(Tiv1, Pig1) + /05 — 5%
/* Corrector Step */
6 fort=1,---,M do
7 Sample z; ~ N (0, Ip);

Correct the sample via ALD: z; «— x; + aysg(x;, i) + V205 2;

samples. However, in our context, the option price dynamics can be assumed to follow
certain models, and hence the price surface distribution can be governed by some physical
laws, i.e. the Black-Scholes PDE. In addition, it is also reasonable to assume some values
on the price surface are known.

In short, during the inference step, the denoising samples are guided with some sparse
observations and relevant PDE constraints, so that the generated samples would be more
likely to be plausible and adhere to the imposed constraints. This type of diffusion is called
guided diffusion [23].

Formally, the distribution of the sample is conditional on physical laws and sparse obser-
vation. Then, the score is also conditional on them [5]:

p(x)p($0b8|$>]
p(xobs>
=V, logp(x) + V, log p(xeps|T).

V. logp(x|zes) = Vi log { (2.18)

Note that the first term is the score, which was previously estimated with the score network.
The second term accounts for how far off the current sample is from the observed values.
Since our diffusion process uses normal distribution, this term is proportional to their
Euclidean distance ||xqps — || [5]-
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For the PDE constraints, suppose the generated sample x solves a PDE  C R%:
F(x;n) =0 on £,

where I is some general differential operator on €2 and 7 is some parameters for the model.
At each sampling step, the sample z is modified to slightly reduce the PDE residual 7,
which is defined to be ||F(z;n)||3. To this end, one can simply take a small step to the
negative gradient direction V.| F(z;n)||3 [23]. An advantage of this approach is that it
reuses the same trained model. The residual term, though requiring careful discretisation,
applies to other PDEs flexibly.
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Chapter 3

Price Surface Completion for
European Options

In this chapter, we will focus on the European Options and the completion of European
Put price surfaces. We first formulate the problem in the discrete setting and describe
our measures of arbitrage for a given price surface. We then introduce the method of
previous project on arbitrage-free implied volatility surface completion using score-based
generative models. We converted this method to complete price surfaces and use this as the
benchmark. We then design two correctors and introduce our principle of guided diffusion:
no-arbitrage correctors and physics-informed correctors. Afterwards, setups and results of
numerical experiments will be shown.

3.1 Problem Formulation

We first describe the problem we intend to solve. We fix the risk-free rate r = 0.1 and as-
sume no dividends. Suppose we are given a grid of maturities and strikes G == {(K;,T}): i =
1,---,nand j =1, --- ,m}. Further suppose we are given observed European Put option
prices in some subset of grid points Gus = {(K;,T;) € G: Pg(K;,T;) is known}. Our goal
is to estimate the European put prices at the remaining grid points G\Gs, such that the
whole surface is arbitrage-free. For convenience, we assume same number of strikes and
maturities, n = m.
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3.2 No-arbitrage Conditions

Under this setting, we first define loss terms to measure how ”violated” the current price
surface estimate is, in terms of the no-arbitrage conditions in Theorem 2.1.1 we presented
before. More precisely, when given a price surface P := [Pg(K;, Tj)]};—;, we define the
corresponding loss as in the set of no-arbitrage conditions in Theorem 2.1.1. The corre-
spondence between each loss and the corresponding condition in Theorem 2.1.1 is shown

below.

Monotonicity in K Condition (1) reflects the fact that a put with a higher strike
always has a payoff that is at least as large as a lower-strike put. Therefore, put prices
must increase with strike. We define a matrix H,,onox) € R™" where each entry is the
violation of the monotonicity condition:

[Hmono(K)]ij = (_aKPE(KMCFJ))J,_ ) for Z?j = 17 cees T (31)

We then define the corresponding loss £,0n0(k) by averaging these violations across the
grid:

n

> Moot ;- (3.2)

1,j=1

1
gmono(K) (P) = ﬁ
Intuitively, each entry is positive only if the put price decreases with strike, signaling a
vertical spread arbitrage opportunity.

Convexity in K Condition (2) is closely linked to the risk-neutral probability distribu-
tion of the underlying asset. By the Breeden—Litzenberger identity [3],

a?(KPE<K7 T) - e_TTfST(K>7

the second derivative of the put price with respect to strike equals the discounted risk-
neutral density fg,, which is necessarily nonnegative. This requirement forces the put
price curve to be convex in strike, ensuring consistency with a valid probability distribu-
tion. The slope constraint, requiring the derivative in strike to lie between zero and ™7,
prevents the price from decreasing too quickly or too slowly, ruling out butterfly or vertical
spread arbitrage and maintaining consistency with the underlying risk-neutral measure.
The convexity violation matrix H o, 1S

[Heonol;; = (—8%KPE(K1-,7}))+ ,fori,j=1,...,n. (3.3)
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H.,., captures where the surface is locally concave, which corresponds to a negative implied
probability density. The corresponding loss is defined by

n

1
econv<P) = ﬁ Z [Hcom)]ij . (34)
i,7=1

Bound Loss Condition (3) provides lower and upper bounds of European puts, which
restrict the put price to lie between its intrinsic value, ("7 K — Sp),, and its maximal
discounted payoff, e " K. We define for 4,5 =1,...,n,

(Hyoundly; = (Pe(Ki, Tj) — eV EK;) , + (max(e " K; — So,0) — Pe(K;,Tj)) . (3.5)

Note that the violations of upper and lower bounds are considered simultaneously. This
measure is still valid because each grid point violates at most one of the two inequalities
in condition (3). The corresponding loss term is defined by

n

gbound<P) = % Z [Hbound]ij . (36)

7,j=1

Derivative Loss Condition (4) enforces an explicit bound on the strike derivative:
O Pp(K,T) < e . The upper bound arises from put-call parity. Violations are quantified
by:

[Hdm]ij = (GKPE(Ki,Tj) — e‘rTj)Jr ,fori,j=1,...,n. (3.7)

The corresponding loss term is

n

1
gderi<P) = ﬁ Z [Hdem']ija (38)
i,7=1

Monotonicity in 7" Condition (5) ensures that a put option with a longer time to
expiration cannot be cheaper than the same option with a shorter time to expiration. This
condition prevents calendar-arbitrage opportunities, as longer-lived options contain more
optionality and therefore must be at least as valuable as shorter-lived counterparts. The
maturity violation matrix Hy,onery € R™*" is defined by

[Hmono(T)] L= (—(9TPE(Ki, CTJ))—F s for Z,j = 1, oo, n. (39)

1
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This is positive whenever a longer-maturity put is cheaper than a shorter-maturity put.

The loss term is then .

1
gmono(T) (P) = ﬁ Z [Hmono(T)]ij . (310)
ij=1
Together, these conditions guarantee that the European put price surface is free of static
arbitrage across both strike and maturity, and is consistent with a valid risk-neutral dis-

tribution of the underlying asset.

Note that this formulation of arbitrage losses relies on approximation of partial derivatives
of the price surface, for which we use central difference schemes, with special treatment to
the boundary points. For simplicity, we denote P*/ := P(K;,Tj) for i, =1,--- ,n.

( _3Pi,1+4Pi,2_P7L,3 . .
24T ity =1
%]~ phitl_pij—1 . .
3pHN —4pu N T 4 Pt T o
\ AT if j =n
( —3PLI44pP23—p3.J e
AR ifi=1,
57~ pitlj_pi=1,] . .
3pN.J_4pN—1.j pN—=2, e
\ TN ifi=n
oPLI _5P2:J 4 4p3:J Pt N
) AR if 1 =1,
.5 i+1,j _gpijy pi—1.j . .
8KKP” ~ L4 QAPK2+P fl<i< n,
—2PNJ45pN—15 _4pN—2J4 ptJ e
N if i =n.

With these approximations, we can measure the arbitrage losses when given a price surface
estimate. We would want to minimize these terms during the sampling process.

3.3 Previous Work

In this section, we describe the overall scheme of previous approach [21] in our current
context of price surface completion. The central idea is that, during the inference sam-
pling, we only allow updates that roughly reduce the arbitrage losses ¢ we defined before.
Formally, suppose x; is the proposed update for the intermediate estimate at inference step
t. We first compute the corresponding losses ¢! el ¢t and (). And

mono(K)? “conv’r “bound> “deri mono
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then compare the current losses with the losses of the previous step t — 1 by computing
this term 3,':

t t
ﬂ — max Emmw(K) giom} Eiound gfleri ZWWLO(T) (3 11)
L it +e bl ettt Tl et +el’ '
mono(K) conv bound deri mono(T)

where € > 0 is a small positive constant to prevent division by zero. To make the terms
well-defined, set the initial values of all loss terms to be 0. This ; can be viewed as the
acceptance ratio at step t. The smaller 5, > 0 is, the more improvements the proposed step
x; makes over the current step x;_; in terms of arbitrage conditions.

The update rule is formulated as follows. First generate a random number u ~ U|0, 1.2] as
the threshold. If the acceptance ratio 8; < u, then this update x; is accepted as the next
sample. Otherwise, the current step is reused. The upper bound 1.2 is chosen so that the
intermediate sample is accepted despite it might be slightly worse in terms of arbitrage
losses. The relaxed upper bound mitigates premature rejection caused by noise in loss
estimation or discretization error in the arbitrage penalties, thereby preventing oscillatory
behavior and improving convergence robustness. In addition, to incorporate the observed
values into the process, hard constraint was employed. In particular, recall that G, is the
set of grid points {(Kj;,T;)} C G that are already known. Define a mask = € {0,1}"*™ by

—

\_41] —

_ {1 if (T, K) € Gons

0 otherwise.

After every update, we fix the values at the corresponding position to be the observed
value. The fundamental reason SBGM can generate surfaces that closely match the ground
truth is that it learns a prior over realistic, arbitrage-free price surfaces. The generated
surfaces match the observed prices and, under this learned prior, produce an arbitrage-free
completion that lies near the true surface in distribution, provided the ground truth is
supported by the training data. The whole algorithm can found in Algorithm 3.

IThe original work is based on volatility surfaces. The no-arbitrage conditions are therefore surrounding
the butterfly loss and calendar losses. Here we presented the adaptation of the method to price-based no-
arbitrage conditions.

23



Algorithm 3: Annealed Langevin Dynamics (ALD) for Arbitrage-free Price Sur-
face Completion

Data: sequence of noise levels {¢;}£ ,, number of correction steps per noise level
M, step size parameter €, trained noise conditional score network sy(-, )

Initialize z, ~ N (¢3 14);

fori=L-1,---,1do

3 Define the step size a; < €

N =

02

4 fort=1,---,M do

5 Sample 2z, ~ N(0, 1,);

6 Define the proposed update xyp, < =; + a;So(xi, i) + V2052

7 Compute the arbitrage loss terms via Eq. (3.2), (3.4), (3.6), (3.8) and
(3.10);

8 Compute the acceptance ratio for the proposed step f; as in Eq. (3.11);

9 Sample a threshold parameter u ~ U[0, 1.2];

/* Accept if the acceptance ratio is small enough */
10 if B, < u then
11 L Ti — Timp;

/* Hard constraint on the observed values */
12 z;  2; © (1 — Z) 4+ zops © =, where © is element-wise multiplication.;

Observant readers may notice that the main update in the method is driven by the learned
model dynamics, whereas the no-arbitrage updates follow a trial-and-error approach. Al-
though the method has been shown to successfully generate arbitrage-free surfaces [21],
this typically requires a large number of sampling steps.

To address this issue, we propose an active correction mechanism applied to intermediate
samples, designed to produce updates of higher quality with respect to arbitrage con-
straints.

Concretely, the sampling procedure follows a predictor—corrector framework. The predictor
step—implemented using either an SDE or ODE solver—advances the sample from one
noise level to the next according to the learned score model. However, due to discretization
error and the finite number of predictor steps, the resulting sample may not fully reflect
the target distribution at the new noise level. This phenomenon is referred to as slow
mixing, meaning that the transition between noise levels is inefficient. By inserting a
corrector step between each predictor step, one ensures that samples are fully perturbed
to the appropriate noise level before continuing the sampling procedure.
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Annealed Langevin Dynamics (ALD) is commonly used as the corrector in the Predic-
tor—Corrector scheme (Algorithm 2). However, the main component of ALD steers samples
using the score network, which is trained primarily to match the data distribution and is
not explicitly informed of desirable structural properties—such as no-arbitrage conditions.

Therefore, the goal of our thesis is to design arbitrage-aware correctors that remain compat-
ible with the predictor—corrector framework while promoting the generation of arbitrage-
free option price surfaces. To understand the effects of our approach, we use the pure
predictor scheme as the benchmark, and evaluate the performance when combined with
our designed correctors.

Known Values Treatment

In guided diffusion—based sampling, the manner in which known values are enforced plays
an important role in both the theoretical consistency of the sampler and its numerical
stability. Although hard constraints—where observed grid points are fixed exactly at ev-
ery iteration—are a natural choice (also used in previous work [21]), they may introduce
discontinuities into the sampling dynamics that are not fully aligned with the stochastic
differential equation (SDE) underlying the diffusion process. In contrast, soft constraints
provide a more principled way to incorporate known values while preserving the smooth
evolution of samples across noise levels.

From a theoretical standpoint, score-based diffusion models assume that samples evolve
according to continuous drift and diffusion terms determined by the learned score. En-
forcing hard constraints can be interpreted as repeatedly projecting the sample onto a
lower-dimensional manifold at selected coordinates, effectively overriding the SDE dynam-
ics at those locations. Since this projection is not accounted for by the learned score, it may
introduce inconsistencies in the sampling trajectory. Soft constraints, on the other hand,
act as a gradual conditioning mechanism and better approximate conditioning on partial
observations within the diffusion framework. In addition, the use of soft constraint fits the
setting of guided diffusion in Equation (2.18). To this end, we introduce a noise-dependent

weighting function
3(L—1
Wobs(t) == exp <—¥) , (3.12)

L
where t € 1,..., L indexes the noise level. Let = € {0, 1}™*" denote the indicator mask of
observed grid locations, for i, =1,...,n,
= . 1 if (E’Kj) Egobs
- 0 otherwise.
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At the end of each step, the current sample x; is updated according to

—_

T = WopsTi © (1 — Z) + (1 — wops ) Tops @ =, (3.13)

where ® denotes elementwise multiplication. This schedule satisfies wops(L) = 1 and de-
cays monotonically as t decreases, ensuring that observed values exert minimal influence
at high noise levels while being increasingly enforced as sampling progresses toward lower
noise regimes. The decay rate a = 3 is chosen to center the transition from prior-driven to
observation-driven sampling near the midpoint of the diffusion trajectory. The exponential
form provides a smooth transition that avoids abrupt changes in constraint strength. Dur-
ing early sampling steps, the sampler can explore globally consistent configurations under
the generative prior with minimal bias from observation (weps ~ 1). By the midpoint,
the observations exert strong influence, anchoring the emerging surface to the known data
before local details are refined by the correctors. In the final steps, wops &~ 0.05, assigning
approximately 95% of the weight to the observations.

Together with the soft constraint, the complete benchmark algorithm can be found in
Algorithm 4.

Algorithm 4: Pure Predictor Scheme: SDE Solver

Data: sequence of noise levels {¢;}~ ,, number of correction steps per noise level
M, step size parameter €, trained noise conditional score network sy(-, )

Initialize z;, ~ N (02 1,);

fori=L-1,---,1do

3 Predictor Step

N =

2
4 Define the step size a; < 6;—5;
L

Sample z; ~ N (0, 1,);
Update the new sample via discretized reverse diffusion in Eq. (2.16):
T Tip1 + (02 — 03)S0(®ig1, Piv1) + /071 — 2
/* Soft constraint on the observed values */
7 Define wyps by Eq.(3.12).;
T WopsTi © (1 — Z) + (1 — Wops)Tops @ =, where © is element-wise
multiplication.;
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3.4 Methodology

We now describe our approach. The main inspiration comes from guided diffusion, where
the sampling procedure is steered not only by the generative model but also by additional
constraints projected onto an appropriate space.

3.4.1 No-Arbitrage Corrector

In our setting, we would like intermediate samples to satisfy the no-arbitrage conditions.
Consequently, the arbitrage losses should decrease throughout the sampling trajectory.

More precisely, we introduce no-arbitrage correctors vy 4, whose purpose is to determine a
descent direction that reduces the arbitrage loss at step t. To estimate the descent direc-
tion, one can apply finite difference and iterate over each dimension for the surface. A naive
approach would compute the gradient of the arbitrage loss by applying finite differences
along every dimension of the surface. However, direct finite-difference gradient computa-
tion requires O(n?) evaluations. This becomes prohibitively expensive in high-dimensional
settings. Instead, we adopt simultaneous perturbation stochastic approximation (SPSA)
to estimate the gradient efficiently [30]. Let ¢(x) denote the arbitrage loss to reduce ,and
H € R™" be the corresponding violation matrix as defined before in (3.1),(3.3),(3.5),(3.7),
and (3.9). We fix a number of trials n.;, and a small positive constant €. For each trial
1 =1, ,Nyia, we sample a random perturbation direction A; € R™*™ and approximate

the gradient by

v (2) = — = A
This is an estimator of =V, ¢(z) and we used Rademacher matrix A; for this thesis, that
is, each element in the matrix A; has 0.5 probability of being +1 or —1 independently [19].

Averaging over trials gives the final corrector direction:

_ 1 Ntrial ;
Tva@) = 3 V(). (3.14)
710, i:1

Intuitively, this is to project the descent direction onto several random directions and
estimate the true descent by their expectation. At the beginning of the sampling process,
arbitrage losses can be very large, which would produce excessively large corrections and
potentially destabilize the surface. To address this, we introduce a normalized weight
matrix using the violation matrix H:

H

W) = | o

(3.15)
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where § = 1078 prevents division by zero. This normalization scales the corrections pro-
portionally to the relative severity of violations, ensuring that updates remain stable and
balanced across the surface.

Finally, the sample is updated using a weight parameter Ay4 > 0:
T4 T+ Avavna(x). (3.16)

Here, vya(x) = vna(z)ya @ W(z) and ® denotes elementwise multiplication, which em-
phasizes corrections where violations are largest while keeping the overall step size con-
trolled.

3.4.2 Physics-informed Correctors

Another projection space we can consider, is to assert the modeling assumption to satisfy
the Black-Scholes PDE. The ideal European put price surface would attain minimal PDE
residual. Formally, the price surface P would satisfy

aP 1y , 0P opP
P = 1
& S(?SQ TS@S r 0, (3.17)

and thus the residual can be defined as

Ha_P 1 0*pP oP

2

22
o P
5 55 T s T

2

It is tempting to apply this residual directly on to the price surface P(K,T). However,
our price surface lies on (K, T') space, but not (.5, t) space. Fortunately, Dupire has shown
under the Black Scholes model and fixed Sy, there is a corresponding PDE in the (K,T)

space:
oP 1 O0*P oP

a_T = §U%V(K7T)K28K2 - (T_Q)Ka_Ka (318>
where 1o
8TP+TK8KP
K T) =

is called local volatility. For a price surface P € R™"™, we define a per-grid-point residual
fori,j=1,...,n,

oP 1, ,0°P op

R(K;,T;; P) == 5

—_(K;,T}). (3.19)
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The global residual can then be expressed as

resid(P) = |R(P)[3 = > |R(K;, Tj; P)P. (3.20)

3,j=1

However, this quantity involves several approximations of partial derivatives. It depends
on the tangents and curvatures of the surface, which are highly unstable for noisy sur-
faces, particularly during the early stages of the sampling process. Consequently, the PDE
residual computed using Dupire’s equation (3.18) can be severely affected by discretization
errors. To mitigate this issue, we employ similar normalization as for vy 4. Define

- 1 & resid €A;) — resid(x — €A;
or(z) = —— resid(z + € )2~7"esz (x —¢€ )Ai7 (3.21)
Ntrial i—1 €

where A; are i.i.d Rademacher matrices in R™"*". To prevent overly large updates and
improve numerical stability, we normalize the gradient and scale it according to the residual
magnitude:

. ;p[(x)
YPI) = @) £ 107

The sample z is then corrected with some weight Ap; > 0 via

(3.22)

T 4 T+ Aprpy.

3.4.3 Physics-informed No-arbitrage Corrector (PINA)

It is obvious that the current setup of the two correctors is agnostic to the noise level.
The size of each corrective update plays a critical role in the sampling dynamics: if the
update is too large, the sample may overshoot and destroy previously accurate progress; if
it is too small, the correction becomes ineffective. Therefore, it is necessary to introduce a
mechanism that modulates the effective strength of the correctors throughout the sampling
process.

In our implementation, both the no-arbitrage corrector vy 4 and the physics-informed cor-
rector vp; are applied throughout the sampling trajectory. Rather than enforcing these
constraints as hard projections at specific stages, we control their influence through normal-
ization and time-dependent annealing of the update magnitude. Specifically, the SPSA-
based gradient estimates are normalized to remove scale dependence, and the resulting
corrections are multiplied by an annealing factor that decays with the diffusion time.
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This design reflects two considerations. First, no-arbitrage conditions constitute hard eco-
nomic constraints that the final generated surfaces must satisfy. Applying vy 4 throughout
sampling, while gradually reducing its magnitude, allows the surface to be steered toward
arbitrage-free regions without destabilizing early noisy samples. Second, for the physics-
informed PDE residual, we observe that this residual is rarely exactly zero even for ground-
truth surfaces, due to discretization error and potential model mismatch. Consequently,
aggressively enforcing vp; near the end of sampling may introduce numerical artifacts or
bias the surface away from the data. By applying vp; in a normalized and annealed man-
ner, its effect remains strongest when the sample is highly noisy and gradually diminishes
as the surface approaches the target distribution. And for this reason, we decide to apply
PlI-corrector and then NA-corrector since NA-correction steers towards the hard arbitrage
constraints.

Overall, this strategy allows both correctors to act as soft guidance mechanisms rather
than hard constraints, stabilizing the sampling process while improving convergence toward
economically and physically meaningful option price surfaces. More precisely, we will add
additional weights wy4(t) and wpy(t) to the correctors, which are defined by

wya(t) = e O, (3.23)

and
wpr(t) = e ™. (3.24)

At early stages of the sampling (¢ ~ 0), both weights are close to 1, allowing the correc-
tors to meaningfully guide the sample towards a realistic, arbitrage-free surface. As the
sampling progresses, the weights decay exponentially, preventing the correctors from pro-
ducing overly large updates once the sample is already near the target distribution. The
decay rate for Pl-corrector, controlled by the exponent factor 5, is chosen empirically to
balance stability and effectiveness across the sampling trajectory. We found that slower
decay for the Pl-corrector would lead to unstable sampling. For the NA-corrector, since
the normalization in (3.15) takes care of the scaling issues and helps stabilize the sampling,
and the decay rate can be smaller than that of the Pl-corrector. This schedule ensures
that both the physics-informed (PI) and no-arbitrage (NA) correctors act primarily in the
early stages, providing structural guidance while maintaining stable convergence. We note
that the choices of the exponential decay factors (here, 5 and 0.1) are empirical and may
not be optimal for all datasets or model configurations. Alternative schedules (e.g. linear
decay, different decay rates, or adaptive schemes) could potentially improve convergence
or sample quality, but the current setting has been found sufficient in our experiments.
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Algorithm 5: SDE Solver + PINA

© o N O

10

11
12
13

14
15
16

17
18

Data: sequence of noise levels {¢;}-,, number of correction steps per noise level
M, step size parameter €, trained noise conditional score network sy(-, -),
weights for PINA correctors Aya, Apr

Initialize x7, ~ N (¢} 14);

fori=L—-1,---,1do

Predictor Step

Sample z; ~ N(0, I);

Update the new sample via discretized reverse diffusion in Eq. (2.16):

| T & Tt (@?H — ©3)so(Tit1, Piv1) + %2+1 — 0}z

Corrector Step

fort=1,---,M do

Sample z, ~ N(0, 1,);

Set Timp < i

/* Attach the zero-maturity boundary */

Let Zymy < concatenate([z;, (So — K)4]);

/* Compute the PINA correctors */

PI Corrector

Set vpr(Zymp) via Eq.(3.22) and weight wp; by Eq.(3.24);

Update using this PI corrector Ty, <= Tymp + wWprAprvpr;

NA Corrector

Set Una(Zimp) via Eq.(3.16) and weight wya by Eq.(3.23);

Update using this NA corrector iy, < Zymp + WNaAANAVN A;

/* Soft constraint on the observed values */

Define wyps by Eq.(3.12).;

T 4 WopsTi © (1 — Z) + (1 — wops ) Tops @ =, where © is element-wise
multiplication.;
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3.4.4 Boundary Treatment

In our experiments, we found that the largest reconstruction errors tend to occur near the
boundaries and corners of the surface. One contributing factor is the discretisation error
inherent in numerical differentiation. To mitigate this, we employed boundary-attentive
finite difference schemes, as discussed in Section 3.2.

Deep out-of-the-money (OTM) European puts correspond to strikes far above the current
underlying price, meaning that the probability of the option expiring in the money is
extremely low. As a result, their theoretical value under any risk-neutral measure is very
close to zero. Negative option prices, however, are economically nonsensical, as they would
imply that a trader could receive money for taking on an obligation to potentially buy the
underlying—creating an immediate arbitrage opportunity.

In practice, our generative model may occasionally produce slightly negative values in these
regions due to noising values close to 0. To maintain economic consistency, we clip the
generated surface from below at zero.

3.4.5 Network Training

For the architecture of the score network sy (-, -), we employed the U-Net architecture in [30],
which is known for its success in semantic segmentation. In particular, we used a simplified
version of the RefineNet architecture for sy(-,-) following [21]. The RefineNet architecture
came from [29] and was known to improve multi-resolution segmentation results with its
ResNet design. Instead, we reduced the number of feature maps for each cascade layer
since price surfaces are much simpler than human faces.

To train such network, there are some hyperparameters to tune, including the noise scales
{o;}L,, sampling step size ¢ and the number of sampling steps M. In this project, we
followed several techniques from [37] to improve the results.

Initial noise scale

Recall that the initial noise scale ¢ should be large enough so that the final noisy samples
are diverse enough to cover low density regions of the data. For this goal, pick ¢ to be as
large as the maximum Euclidean distance between all pairs of training data points. The
minimum noise scale ¢, is set to be 1073,
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Common ratio for the noise scale sequence

The sequence of noise scales {p;}X | is an increasing geometric sequence, with common
ratio denoted by . With fixed ¢; and ¢, it remains to determine the number of noise
levels L. This number can also be controlled by the common ratio v > 1. The closer v is
to 1, the larger L is. Since our price surfaces are of dimension n x n, the common ratio
~v > 0 is selected such that

1
D(VIn(y ~ 1) +37) — 8(Van(y 1) ~ 37) = (3.25)
where ® is the c.d.f. of the standard normal distribution. This derivation of this equation

can be found in [37]. Once 7 is found, since ¢ = p;yE~!, we can find the corresponding
number of noise levels L.

Sampling step size and Number of Sampling steps

There is a connection between the step size € and the number of sampling steps M. The
observation is that since the noise we injected in the diffusion is Gaussian, one can identify

a relationship between ¢ and M [37]: let o = ep?/p? and sy = Var(zy), where ) is
the output of ALD after M steps. Then
2M
SM € 2 2e
= = (1 - _) 72— + (3.26)
Pi 1

2 2
A-¢t(1-5) ) -4 01-35)

The motivation of this is to identify an appropriate step size €, so that after M annealing
steps, the output sample would smoothly transition across noise levels. In other words,
the variance of M-step samples sj; should match that of the noise level p?. Therefore, one
can attempt to select the sampling step M as large as the computational budget allows,
then find the corresponding step size € such that the right hand side of Eq.(3.26) is close
to 1. We applied grid search over € € [107*, 1] for such selection, as recommended in [37]
over using gradient-based optimization methods.

Training Stability

It was found in [37] that the generated image samples sometimes exhibit unstable quality,
despite the steady decrease in objective loss during training the score network. To resolve
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this, they applied exponential moving average (EMA). Suppose 6; denotes the parameters
of the score network sy, (-,-) after the i-th iteration of training, and suppose 6" be an
independent copy of the parameters. The network is updated via ¢’ < nf’ + (1 —n)0; after
each optimization step, where 7 is the momentum parameter, for which we set n = 0.999.
Although it slows down the training process, the sampling was shown to stabilize [37].

3.5 Numerical Experiments

After the model is trained, given a set of option prices on an incomplete grid G, the model
is able to guide the sampling to complete the rest. In this section, we will describe our
experiments, including the data generation, evaluation metrics and numerical results.

3.5.1 Data Generation

To generate a rich collection of training data, we use the Heston model to generate syn-
thetic discrete European put price surfaces. The Heston model is a generalization of the
original Black-Scholes Model, with the relaxation of the constant volatility assumption
[L7]. Instead, Heston assumes the variance variable v; (square of volatility) to follow a
stochastic process:

dSt = T'Stdt -+ \/U_tStdZt17 Sto = S(),

dvy = k(0 — v,)dt + E\/vidZ2 vy, = vy, (3.27)

dZ}dZ? = pdt,

where Z} and Z? are two Brownian motions for the asset price S; and variance v; respec-
tively, with the correlation coefficient p. © is the long term variance, x is the reversion
speed of vy, and £ is the volatility of the volatility. It can then be shown that the European
put Pg(S,v,t) satisfies

0Pg oPp 1 _,0*Pg ~ O0Pg 1., 0*°Pg 0? Py
—+(r—q)S—=+= —V)——+= —rPp = 2
gr TS Gy TS g Tl g vy TS g, e = 0. (328)

with some corresponding boundary conditions [27]. This relaxation on the assumption of

constant volatility provides a more realistic collection of price surfaces. To solve Equa-
tion (3.28), there are no analytical formula. Instead, Monte Carlo methods, numerical
integration [28] and COS method [13] are common numerical methods to solve Equa-
tion (3.28).
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To generate our synthetic training data, we applied numerical integration [2&8], using strikes
K € [60,160] and maturities 7' € [0.1, 1], evenly spaced in 4 x 4, 8 x 8 and 16 x 16 meshes
respectively. We fixed the risk-free rate r = 0.1 and zero dividend g = 0 for simplicity. The
Heston parameters {p, v, k, &, vo} were uniformly sampled from Table 3.1, following [21].

Heston Parameter | Range
p [—0.95, 0]
v [0.05,0.5]
K [0.1,2]
13 [0.05,0.5]
Vo [0.05,0.5]

Table 3.1: Configuration for Heston Parameters

To ensure the instantaneous variance v, is strictly positive, the Feller’s condition 2k7 > &2
was imposed [17]. The final training dataset then contains 100K European put surfaces, for
each mesh after selecting those that satisfy the no-arbitrage conditions in Theorem 2.1.1.

To enable the model to learn the underlying distribution of option price surfaces, it is
trained using the noise-conditioned loss function defined in (2.10). During training, the
model assumes fully observed surfaces, since the objective is to learn the complete joint
distribution of arbitrage-free surfaces rather than to handle partial observations. Sparse
or missing values are introduced only at inference in the numerical experiments, where the
model is conditioned on the observed entries. This procedure ensures that the generated
surfaces remain consistent with available market data while simultaneously satisfying the
prescribed arbitrage conditions. The ground truth is itself a typical surface under the
learned distribution in the synthetic experiments. Therefore, comparing the generated
surfaces to the ground truth provides a meaningful evaluation metric: it quantifies how well
the model recovers a surface that is not only consistent with observations and arbitrage
constraints, but also representative of the underlying distribution from which the true
surface is drawn.

3.5.2 Comparison Metrics
To demonstrate the completion power of the method, we attempted to complete 100 Euro-

pean put surfaces with 40%, 60% and 80% missing values, which are selected randomly. For
the sampling steps M, we picked M € {1,2,5,10,20}, and determined their corresponding
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sequences of noise scales {p;}X | and the step size € according to the discussion in Sec-
tion 3.4.5. The performance metrics include the arbitrage losses £p,ono(i), Leonvs Loound, Lderi
and Cp,ono(r) as defined in Equations (3.2), (3.4), (3.6), (3.8) and (3.10). In addition, we
evaluated the mean relative error (MRE) and mean absolute error (MAE) on the miss-
ing grid points G\Gus. To be more precise, we define the mean relative error and mean
absolute error for a given generated price surface P,y and the ground truth P,... by

1 ‘Pest(KigT’)*Ptrue(Ki;T’)| :
MRE — |g\gobs| Z(Ki’Tj)Eg\gobs ‘Ptrie(Kinj)I : ’ lf Ptrue(Ki’ 7-"7) # O (3 29)
’ 1 > | Pest (B T5) — Prrue (K T (4 orwige '
|G\Gops| 4~ (K:,T;)EG\Gobs [Pest (Ki,Ty)| ’
and 1
MAE = GG > |PulIGT)) = Pl K, T))). (3.30)

(K’L ,Tj ) Eg\gobs

To evaluate the performance in the context of options, we also compare the MRE and
MAE over different moneyness regions. We will mainly investigate the improvement of
PINA correctors in addition to the pure predictor scheme using SDE solver (Algorithm 4).

3.5.3 Numerical Results
Overall Error Metrics

We first validate our proposed models qualitatively. Figures 3.1a, 3.1b and 3.1c show
the European option surfaces where the strike varies between 60 to 160 and the maturity
between 0.1 to 1 on a (K, T) grid of size 4 x 4, 8 x 8 and 16 x 16, respectively. Here, we
compare the European option surfaces generated by SDE solver and SDE+PINA. We can
see that they all show similar result as the ground truth surface.

Figures 3.2, 3.3, and 3.4 show the lowest mean absolute error (MAE) obtained after search-
ing over a predefined pool of NA and PI regularization parameters, Ay4 and Ap; across
different grids. Specifically, for each setting we sample using all combinations of (Aya, Apr)
in the pool and retained the minimum MAE across runs. This presentation emphasizes the
intrinsic capability of the proposed approach, assuming appropriate regularization, rather
than the sensitivity to any single hyperparameter choice. The MAE in each setting remains
stable across different numbers of annealing steps. This indicates that there exists a limit
of such corrections as controlled by M and it seems M = 5 ~ 10 would attain such a limit
for this experiment. In particular, 4 x 4 and 8 x 8 attain lowest MAE of order 10~2 for
40% missing, while 16 x 16 attain lowest MAE of order 1073.
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Figure 3.1: Comparison of generated, clean, and benchmark surfaces across dimensions.
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In Figures 3.2, 3.3, and 3.4, there is a clear trend that the errors increase with the amount of
missing values. This is expected since a lower missing proportion indicates more observed
values to use in the sampling. In addition, in most cases, PINA give lower errors than
the benchmark, indicating the improvements from the PI- and NA- correctors, except for
8 x 8 grid with 40% missing values. In Figures 3.2, 3.3, and 3.4, the gaps between the
benchmark MAE (dotted lines) and the PINA MAE (solid lines) become more narrow as
the missing percentage decreases from 80% to 40%. This shows that the improvement
from PINA corrections depends on the amount of missing values. 80% missing information
attains the greatest improvement from PINA, because more uncertainties are presented in
the initial samples and therefore more guidance is needed for sampling. Also, finer grids
attain lower errors, due to the reduction in discretization errors. Together, 16 x 16 with
40% missing values attained the lowest MAE (close to order of 1073 in Figure 3.4) while
4 x 4 with 80% missing values attained the highest MAE (close to order of 107! in Figure
3.2).

Final Mean Absolute Error vs Annealing Steps SDE Solver + PINA (4x4)

_________________________________________________________ —8— PINA40% Missing
PINA 60% Missing
—&— PINA80% Missing

1 o === Benchmark 80% Missing
.\,—-r—" b Benchmark 60% Missing

=== Benchmark 40% Missing

Final Mean Absolute Error

25 50 75 10.0 12.5 15.0 17.5 20.0
Number of Annealing Steps M

Figure 3.2: European: Final MAE for SDE Solver+PINA (4 x 4)

3.5.4 Performance w.r.t. Moneyness

The use of options is closely related to the moneyness. For European puts, they are
more valuable in in-the-money region (K > S) since their prices are higher. They are
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Final Mean Absolute Error

Final Mean Absolute Error

Final Mean Absoclute Error vs Annealing Steps SDE Solver + PINA (8x8)
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Figure 3.3: European: Final MAE for SDE Solver+PINA (8 x 8)

Final Mean Absolute Error vs Annealing Steps SDE Solver + PINA (16x16)
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Figure 3.4: European: Final MAE for SDE Solver+PINA (16 x 16)
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also valuable in the OTM and ATM regions for hedging as well. For a more detailed
comparison, we consider five moneyness regions for the surface generations according to
Table 3.2. We looked at both the mean absolute errors (MAE) and mean relative errors
(MRE). The error metrics for European option price reconstruction across different levels
of missing data are summarized in Figures 3.5, 3.6 and 3.7 corresponding to 4 x 4, 8 X 8
and 16 x 16 moneyness grids, respectively. Tables 3.3, 3.4, and 3.5 showed the respective
cases numerically. For each missing data percentage (80%, 60%, and 40%), the tables
report both the mean absolute error (MAE) and the mean relative error (MRE) for PINA
and the benchmark method, separated by moneyness categories: deep OTM, OTM, ATM,
ITM, and deep ITM (except for the 4 x 4 grid where only OTM and ITM are available
due to the coarseness of the grid).

In Figures 3.5, 3.6 and 3.7, across all grids, PINA consistently outperforms the benchmark
in terms of both MAE and MRE, except for MRE for 80% missing in Deep OTM regions.
Examining Table 3.5, which presents the 16 x 16 grid, the MAE of PINA is consistently
lower than the benchmark across almost all regions and missing-data levels. In particular,
the Deep OTM region shows a decrease in MAE from 2.45 x 1072 at 80% missing data to
8.47 x 10~* at 40%, while the benchmark remains higher at 2.56 x 1072 to 8.52 x 1074
Similar trends are observed in I'TM and Deep I'TM regions, where PINA achieves MAE as
low as 2.23 x 1073 and MRE around 5.69 x 10~° at 40% missing data. These observations
indicate that PINA is particularly effective at reconstructing larger option prices, where
relative errors are inherently small. Conversely, MRE values in Deep OTM for high missing
percentages are extremely large (e.g., 8.11 x 107 at 80%), which is a direct consequence of
the extremely small option prices in this region (as small as order of 107'3); even minor
absolute deviations are amplified when measured relative to such small values.

Looking at the 8 x 8 grid in Table 3.4, the same pattern emerges. Deep OTM MAE drops
from 4.58 x 1073 at 80% missing to 1.29 x 1072 at 40%, with MRE similarly decreasing from
9.96x10?% to 1.37x1073. ATM and ITM regions show a steady reduction in MAE and MRE,
highlighting that as option values increase toward the money, reconstruction becomes more
accurate both in absolute and relative terms. Here, PINA consistently outperforms the
benchmark, particularly in MAE, reflecting better fidelity to the underlying price surface.

In the coarsest 4 x 4 grid shown in Table 3.3, the differences between PINA and the
benchmark are even more pronounced under high sparsity. For OTM options with 80%
missing data, PINA achieves an MAE of 4.80 x 10~! compared to the benchmark’s 6.91 x
1071, while I'TM options show a similar advantage (2.58 x 10~! (PINA) against 3.40 x 107!
(Benchmark)). The MREs reflect similar patterns: extremely high in OTM at 80% missing
for both methods due to small option values, but PINA maintains lower relative errors than
the benchmark for ITM options. This demonstrates that even on coarse grids, PINA is
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able to reconstruct larger values accurately, whereas extremely small values still pose a
challenge in relative terms.

Table 3.2: Strike (moneyness) Regions for Evaluation

Region Lower Bound Upper Bound

Deep OTM 60 80
OTM 80 95
ATM 95 105
IT™M 105 120
Deep ITM 120 160

Overall, the phenomenon indicated by these tables is that PINA provides robust and
consistent reconstruction across all moneyness regions and missing-data levels, with its
advantages more pronounced for larger option values and finer grids. High relative errors
in Deep OTM regions arise primarily from the small magnitude of option prices rather than
poor model performance, while improvements in MAE and MRE in ATM and I'TM regions
reflect the model’s ability to accurately capture the more substantial price variations. This
could come from our current setting of smallest noise scale 0,,;, = 1072. Reducing this
noise scale and using a finer noise scale could increase the model sensitivity and precision
level, at a much higher computational cost. Finer grids, such as the 16 x 16 mesh, reduce
discretization error and improve MAE, but can slightly increase MRE in OTM regions due
to capturing more extremely small prices. These observations together suggest that both
the absolute and relative performance of PINA is closely tied to the underlying option
value distribution across moneyness.

Table 3.3: MAE and MRE for different missing data percentages and moneyness (4 x 4)

Missing Values 80% 60% 40%

PINA  Benchmark | PINA  Benchmark | PINA  Benchmark
OTM MAE 4.80e-1 6.91e-1 2.54e-2 3.53e-2 6.07e-3 8.39%¢-3
OTM MRE 3.54e+1 1.60e+0 1.71e+1 2.93e+1 1.46e+1 2.79e+1
ITM MAE 2.58e-1 3.40e-1 7.21e-3 1.48e-2 5.29e-3 9.07e-3
ITM MRE 1.02e-2 1.34e-2 2.70e-4 5.54e-4 1.98e-4 3.40e-4
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Table 3.4: MAE and MRE for different missing data percentages and moneyness (8 x 8)

Missing Values 80% 60% 40%
PINA  Benchmark | PINA  Benchmark | PINA Benchmark
DEEP OTM MAE | 4.58¢e-3 4.49e-3 2.77e-3 2.69¢-3 1.29e-3 1.39e-3
DEEP OTM MRE | 9.96e+2 5.19e+2 1.55e+42 1.91e+2 1.37e-3 8.65¢e-1
OTM MAE 2.82e-2 3.72e-2 1.60e-2 1.71e-2 1.22e-2 1.24e-2
OTM MRE 1.02e-1 1.37e-1 7.02e-2 7.20e-2 6.85e-2 6.87¢-2
ATM MAE 1.08e-1 1.53e-1 5.51e-2 6.44e-2 6.78¢-3 6.23¢-3
ATM MRE 2.26e-2 3.25e-2 1.07e-2 1.30e-2 1.39e-3 1.32e-3
ITM MAE 7.06e-2 1.01e-1 2.39e-2 2.92¢-2 6.63e-3 7.05e-3
ITM MRE 4.31e-3 6.19¢-3 1.43e-3 1.76e-3 4.00e-4 4.28¢e-4
DEEP ITM MAE | 1.33e-2 1.51e-2 8.90e-3 9.21e-3 6.01e-3 6.16¢-3
DEEP ITM MRE | 3.80e-4 4.36e-4 2.44e-4 2.49e-4 1.66e-4 1.70e-4

Table 3.5: MAE and MRE for different missing data percentages and moneyness (16 x 16)

Missing Values 80% 60% 40%
PINA  Benchmark | PINA  Benchmark | PINA  Benchmark
DEEP OTM MAE | 2.45e-2 2.56e-2 3.54e-3 4.41e-3 8.47Te-4 8.52e-4
DEEP OTM MRE | 8.11e+7  6.26e+7 8.67e+2 1.72e+5 1.37e+2 1.70e+5
OTM MAE 3.25e-2 3.64e-2 7.09e-3 8.81e-3 1.46e-3 1.54e-3
OTM MRE 4.00e+0 6.20e+0 1.01e+0 1.25e+0 3.10e-1 3.74e-1
ATM MAE 7.29¢-2 8.83e-2 1.20e-2 1.55e-2 1.60e-3 1.70e-3
ATM MRE 2.31e-2 2.94e-2 4.21e-3 5.31e-3 5.23e-4 5.46e-4
ITM MAE 6.75e-2 8.97e-2 1.23e-2 1.61e-2 1.54e-3 1.45e-3
ITM MRE 7.81e-3 1.05e-2 1.48e-3 1.92¢-3 1.77e-4 1.63e-4
DEEP ITM MAE | 3.30e-2 4.86e-2 8.19e-3 1.18e-2 2.23e-3 2.26e-3
DEEP ITM MRE | 9.94e-4 1.48e-3 2.17e-4 3.10e-4 5.69e-5 5.76e-5
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Weight of NA corrector Ay,

The weight Aya should not be too large. We found that using values greater than 0.1
may result in unrealistic and nonsmooth surfaces. It is expected that as the percentage of
missing values decreases from 80% to 20%, the arbitrage losses reduce in general. We tested
different combinations of the weights from Ay, € {107%,1072, 1073} for each mesh. Figures
3.8, 3.9 and 3.10 show the arbitrage losses for 16 x 16 with different missing percentages.

Here we focus on 16 x 16 because it bears the lowest discretization errors from the finite
difference approximation for the derivatives. The general observation here is that NA-
corrector consistently reduces arbitrage losses, with the largest improvement from Ay4 =
107!, Figure 3.11 shows the MAE comparison for the corresponding choice of Ay, with
different number of annealing steps. For 60% — 80% missing, Ay4 = 107! improved the
most in terms of arbitrage losses and MAE. However, Ay4 = 107! increases the MAE for
M > 5, even worse than the benchmark. This indicates that as the percentage of missing
values reduces from 80% to 20%, the optimal choice for Ay 4 reduces as well. Indeed, for
a small stepsize in arbitrage correction, if there are inaccurate steps in vy4, small steps
can be absorbed into the stochastic component in the SDE component. This means that
the inaccurate correction can be corrected by the predictor as well. However, for a large
stepsize Ay in combinations with a large number of annealing steps M, the error can
accumulate and become irreversible.

Region / Model
region  —— DEEP_OTM oM — ATM — MM —— DEEP_TM model  —e— PINA  —x- Benchmark

MAE Trend vs Missing Percentage MRE Trend vs Missing Percentage
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Figure 3.7: European Options: MAE and MRE by Moneyness (16 x 16)
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Weight of PI corrector \p;

For Apr, we also selected from Ap; € {1072,1072,107!}. The choice of Ap; depends on
both the percentages of missing values and the number of annealing steps M. Figures
3.12 and 3.13 show the final MAE and MRE for different choices of A\p; for 16 x 16
with different numbers of annealing steps and missing percentages respectively. Overall,
Apr = 1073 gives the most consistently lower MAE. Compared to the NA-corrector, PI-
corrector needs much smaller stepsize Ap;. In Figure 3.12, both Ap; € {1072, 1071} give
higher MAE than the benchmark, while Ap; = 1073 only gives slightly smaller MAE. As
the number of steps M, the gaps between different Ap; widens, favoring smaller values.
However, in Figure 3.13, \p; = 107! gives lowest MRE for 60% — 80% missing, while
smaller \p; = 1073 gives consistently lower MRE than benchmark for 40% missing. Recall
in Figure 3.7, MAE is mostly influenced by large values (such as option prices in ITM
and ATM) while MRE is mostly influenced by small values (especially prices in Deep
OTM). This indicates that, compared to the benchmark, the PI-corrector improves small
prices and overcorrects the large prices. This indicates that there is a need to work on the
normalization of Pl-correctors. The reason is that the current design of the PI-corrector is
based on a single quantity—the PDE residual. However, the actual magnitude of correction
for each grid point is uniformly scaled by Ap; after normalization, according to (3.22). This
uniform scaling does not account for the varying sensitivity of the option price surface across
different regions.
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Chapter 4

Price Surface Completion for
American Put Options

In this chapter, we focus on American Put option price surfaces completion. Unlike Eu-
ropean options, the arbitrage-free conditions for American options are different, and must
consider the central property of early exercise. In addition, the original framework of us-
ing physics-informed and no-arbitrage correctors is not compatible directly with American
options, because there does not exist a corresponding PDE describing the dynamics of
American puts in the (K,T') space. Indeed, most discussion of American options center
around the early exercise property, which mainly concerns the intermediate space (t,.S)
instead of the (K, T). Therefore, we mainly focus on using no-arbitrage corrector to the
SDE-type predictor to complete American put price surfaces. The structure of this chap-
ter therefore follows: we will first discuss the no-arbitrage conditions for American put
options and arbitrage losses in section 4.3. Then, the main algorithms we tested for Amer-
ican put completion using the no-arbitrage correctors are described. The numerical results
are shown in section at last.

4.1 Pricing American Options

Pricing American options is complex, not only because we need to consider every point
until maturity, but also every potential price movement, which is unknown. One can think
of it as a grocery store. Customers only can see the price tag and the production label but
they probably know nothing about the production pipeline. American options are very
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much like the product, tagged with strike K, maturity 7" and the current spot price Spy;
but its actual value would depend on the production cost as well.

Therefore, as we assume Black-Scholes model, we are assuming the production process in
order to estimate the option price. For European options, things are easier because one just
needs to consider one time point 7' to exercise the option. In the case of American options,
suppose we are at time 0 < ¢t < T" with an unknown spot price S;. If S; is very small, a
put option holder will very likely to exercise the option to attain instant huge profit; on
the other hand, if S, is very large, they may wait for a better chance. Between these two
spot prices, there has to be a striking point that most affects this decision. This spot price
is called the free boundary, denoted by S(t). Note that this boundary is dependent of ¢.
It is the boundary that separates the two regions and it is from this boundary condition
that differentiates American options from European counterparts. It is the critical stock
price below which immediate exercise is better than waiting.

For the following, we assume Black-Scholes Model for convenience. Let S; denote the price
of the underlying asset under the risk-neutral measure Q. We assume the dynamics follow
a geometric Brownian motion:

dSt = T’St dt + O'St th, (41)

where r is the risk-free rate, o > 0 is the volatility, and W, is a Brownian motion. For an
American put option with payoff W(S) = (K — 5),, its arbitrage-free price is given by the
discounted expectation

V, =E%[e T (Sy) | R, (4.2)

where F; is the natural filtration of W;.

4.1.1 Early Exercise and Optimal Stopping

For an American put option, exercising at time ¢ yields the payoff
U(S)=(K—-9),. (4.3)

Since the holder may exercise at any stopping time 7 € [0,7], the arbitrage-free price
satisfies the optimal stopping problem

V(t,S) = sup E© [e_T(T_t)\If(ST) 1S, =9]. (4.4)

T€[0,7T

This induces:
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e a continuation region, where it is optimal to hold the option and V (¢, S) > U(95);

e an exercise region, where immediate exercise is optimal and V' (¢, S) = W(S).

The boundary between these regions is a time-dependent free boundary S (¢).

4.1.2 Connection to the Black-Scholes PDE

In the continuation region, the discounted process e "V (¢,S;) must be a martingale. Ap-
plying 1to’s formula yields the Black—Scholes PDE:

1
OV + 5075055V + 1S9V —rV =0, for S > Sy(1). (4.5)

The terminal condition is

V(t,S) = B(S). (4.6)

But the actual value of the option is different from European put because of the free
boundary condition.
4.1.3 Variational Inequality and the LCP Formulation

For convenience, we first define the Black-Scholes operator

1
LV =0,V + 502528551/ +1rS0sV —rV. (4.7)

The early-exercise constraint requires that the option value dominates its payoft:

V(t,S) > U(S). (4.8)

Continuation vs. Exercise. If at (¢,5) the holder chooses not to exercise, then the
option behaves locally like a European option, and therefore the Black-Scholes PDE must
hold:

LV (t,S)=0 (continuation region). (4.9)

If the holder does exercise immediately, then
V(t,5) = ¥(s),
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and the differential operator applied to V' need not vanish. In fact, substituting the payoff
into the operator yields

LIK-S)=—-r(K-S)—rS=-rK <0,
so the early exercise corresponds to

LV (t,S) <0 (exercise region). (4.10)

Complementarity Condition The option holder must be in one and only one of the
two regimes:

cither V > ¥(S) and LV =0, or V=¥(S) and LV <0.

That means either of the equality holds, depending on the price S. These mutually exclu-
sive conditions can be written compactly as the complementarity condition

(V —w(S)) - LV =0. (4.11)

The Linear Complementarity Problem. Collecting the inequalities and the comple-
mentarity condition yields the Linear Complementarity Problem (LCP):

LV <0,
V> ¥(S), 0<t<T, S>0, (4.12)
(V — \II(S)) LV =0,

with terminal condition V (7', S) = W(S). This system expresses that the option value must
stay above the exercise payoff, must satisfy the Black-Scholes PDE whenever the option is
held, and must violate the PDE precisely when early exercise is optimal. Equation (4.12)
is the standard variational inequality formulation. To solve this, traditional numerical
methods include finite-difference [10], penalty [3!], and projected-SOR numerical methods
[2]. However, these numerical methods work on each (K, T') individually. In our project, we
consider all (K, T) altogether by using SBGMs. To demonstrate this in surface completion,
we now formulate the problem.
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4.2 Problem Formulation

Just like in European case, we assume no dividends here. Suppose we are given a grid of
maturities and strikes G = {(K;,Tj): 4 = 1,--- ,nand j = 1,--- ,m}. Further suppose
we are given observed American Put option prices P4 (k;,T;) in some subset of grid points
Gobs = {(K;,Tj) € G: P4(K;,T;) is known}. Our goal is to estimate the American put
prices at the remaining grid points G\Gus, such that the whole surface is arbitrage-free.
For convenience, we assume same number of strikes and maturities, n = m.

4.3 No Arbitrage Conditions

We first restate the arbitrage-free conditions for American put options from the Chap-
ter 2 for more detailed discussion. In the same principle of constructing no-arbitrage
correctors in the European case, we will translate those arbitrage-free conditions into ar-

bitrage losses. More precisely, when given a price surface Pg := [PE(Ki,E)]ZjZI and
P = [Pa(K;,T})]}—;, we define the corresponding losses, by computing the amount of
violations.

Theorem 4.3.1 (No-arbitrage Conditions for American Put Options) [7/ Suppose
the prices of American Put options P4 with maturity T are given for finitely many strikes

Ky,--- | K,, and that Py is linearly interpolated between these strikes. Assume that the

corresponding European Put prices Pg satisfy the no-arbitrage conditions in Theorem 2.1.1.

Then the American Put price function P4(K,T) is arbitrage-free if and only if:

1. P4(K,T) is increasing in K.

2. PA(K,T) is convex in K.

3. OxPA(K+, T)K — Pa(K,T) > O Po(K+,T)K — Pa(K,T) for all K > 0.
4. max{(K — Sy)+, Pe(K,T)} < P4s(K,T) < Pg(e¢"TK,T).

Here O Pp(K+,T) and Ox PA(K+,T) are the derivatives in K of Pg and Py from the
positive side respectively. For calendar arbitrage, we additionally require:

5. Py(K,T) — Pg(K,T) is non-decreasing in T > 0.
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The idea of deducing these conditions is about assuming their violations and developing
a corresponding portfolio with nonnegative initial profit and arriving at nonnegative final
output, thus creating arbitrage opportunities. The central tool that differentiates this from
European options is the freedom of selecting when to exercise the American options in
long position that allows arbitrage. Their deductions can be found in [7]. In the following,
we will design arbitrage losses and the corresponding correctors. For each no-arbitrage
condition ¢, we define a corresponding violation matrix H, € R™*" whose (i, j)-th entry
measures the pointwise violation of condition ¢ at (K;,T};) € G via a hinge loss.

Monotonicity in K Condition (1) requires the American put price surface P, to satisfy
OxPA(K,T) >0 forall (K,T)€g.

To enforce this inequality during sampling, we penalize its pointwise violations. When-
ever O Po(K,T) < 0, the monotonicity condition is violated, and the magnitude of this
violation is measured by the hinge loss (=0 Pa(K,T)), . Formally, we define the matrix
Hmono(K) e R™"™ by

[Hmono(K)Lj = (=0 Pa(K;,Ty)), , fori,j=1,...,n.

Averaging these penalties over the grid G yields the monotonicity loss

1
Emono(K) = ﬁ Z [Hmono(K)Lj . (413)
/L?]
The remaining arbitrage conditions are enforced analogously by defining constraint-specific
violation matrices and averaging their hinge penalties over the grid G.

Convexity in K Condition (2) requires convexity of P, in the strike, which is equivalent
to

0% PA(K, T) >0 forall (K,T)€G.
Negative second derivatives correspond to violations of convexity. Following the construc-
tion above, these violations are penalized using the hinge loss,

[Hconv]ij = (_a?{KPA<Kz, T}))Jr 5 for Z,j = 1, o, n,

leading to the convexity loss

1
lona(P) = =53 [Heom ] (4.14)
4,J
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Derivative bound for P4, Condition (3) concerns the early-exercise feature of American
options and constrains the rate at which the early-exercise premium increases with the
strike. This condition is equivalent to the pointwise inequality

OxPA(K,T)K — PA(K,T) > 0xPp(K,T)K — Pg(K,T), (K,T)€G.

Violations of this inequality indicate that the marginal benefit of early exercise fails to
increase sufficiently with the strike. Following the same construction as above, we define
the corresponding violation matrix Hge; € R™™ by

Blaerly = (O P (Ko, T)) Ko (K, Ty) =0 Pa (K, T Kt Pa(KL T)) ) o inj =1,
Averaging its entries over the grid yields the derivative loss

1
laeri = — > Hael;; (4.15)
‘7]’

Bounds for P, Condition (4) imposes both an upper and a lower bound on the American
put price, namely,

max { Pg(e""K,T), (K — Sp)+} < Pa(K,T) < e""K, (K,T)€Gg.

Each bound is enforced by penalizing its pointwise violations. Although Condition (4) con-
sists of two separate inequalities, each grid point would violate at most one of the bounds.
We therefore enforce the bounds by penalizing the pointwise violations of each inequal-
ity and summing their magnitudes into a single scalar loss. We define the corresponding
violation matrix Hyouq € R™™" by

[Hbound]ij = (PA(sz,I‘]) - e_TTjKi)+
+ (maX{PE(eTTjKia,-rj)? (Kl - SO)+} - PA<Ki’ 7}))4_ ) Za.] = 17 RN [

The bound loss is then given by

1
gbound = ﬁ Z [Hbound]ij . (416)

1,J
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Monotonicity in 7" Condition (5) rules out calendar arbitrage and requires the Ameri-
can put price to be nondecreasing in maturity. Since the European put surface is assumed
to be arbitrage-free, this condition is equivalent to

OrPA(K,T) > 0rPg(K,T), (K,T)€G.

Violations correspond to situations in which extending maturity reduces the value of the
American option. We define the associated violation matrix Hy,ono(ry € R™*" by

[Hmono(T)]ij = (aTPE(Ku ir]) - 8Tf)A(l(ia T‘]))

L Ly=1....n

The monotonicity-in-7" loss is given by
1

fmono(T) = ﬁ

> Moo - (4.17)

1,J

The numerical approximation of all partial derivatives follows exactly the procedure de-
scribed in the previous section. The collection of violation matrices {H_}.cc provides a
unified representation of arbitrage violations across all conditions, which is subsequently
used to construct the no-arbitrage corrector vy, in (3.16) as in Section 3.4.1. More ex-
plicitly, let ¢(x) denote the arbitrage loss to reduce ,and H € R™™™ be the corresponding
violation matrix as defined above. Fix a number of trials n.,; and a small positive con-
stant €. For each trial i = 1, -+, nya, sample a random perturbation direction A; € R™*"
and approximate the gradient by
l/](\? ([E) — _£($ + gAZ) 2—N€(l‘ — E/Al) AZ
€
with the Rademacher matrix A;. Averaging over trials gives the final corrector direction:

1 Nirial

Z 9, (2). (4.18)

Una(x) =

Nirial

To addition, introduce a normalized weight matrix using the violation matrix H:
H

W) = Lo

(4.19)
where § = 1078 prevents division by zero. Finally, update the sample using a weight

parameter Ay, > O:
T4 x4+ Anavna(z). (4.20)

Here, vya(x) = vna(z)ya @ W(z) and © denotes elementwise multiplication, which em-
phasizes corrections where violations are largest while keeping the overall step size con-
trolled.
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4.4 Physics-informed Correctors

For the physics informed corrector for American puts, we intended to seek any PDEs
or dynamical system that provide geometric structures to the price surface for our use.
However, our discussion on comparing continuation and exercise values revealed that the
pricing of American options lies on the (¢,S) space, which is the space of the pricing
dynamics. In fact, most of the corresponding PDEs, including the Black-Scholes (2.2),
also lie in the (¢,5) space. In addition, the solution to the PDE, the option price, has
to consider both the continuation and exercise values. While the Black-Scholes prices
concerns the discounted future payoffs of the options, we need to consider the exercise
value at every time step. Unfortunately, unlike European options, for which there exists
the Dupire’s Equation (3.18) for the (K,T') space, there does not exist a corresponding
equation for American options in the (K, T') space. As such, for American put options, we
mainly focus on using no-arbitrage correctors to improve price surface completion.

4.5 Methodology

4.5.1 Algorithms

For this section, we will describe the main algorithms we tested for American put option
completion. From the discussion in the European option in the previous chapter, we have
seen improvements from PINA correctors. However, for American options, since we did
not design a Pl-corrector, we look for an alternative corrector to improve the accuracy.
From [39], they discussed the original setting for the predictor-corrector scheme, in which
they used modified Annealed Langevin Dynamics (ALD) as a corrector, complementing
the predictor (either SDE solver or probability flow). The SDE+ALD algorithm is stated
in Algorithm 6. The main idea of ALD is to gradually refine the intermediate sample ac-
cording to the score network to prevent slow mixing. They showed that the ALD corrector,
with an appropriate number of corrector steps, outperformed the predictor-only method
[39]. Therefore, we explored the case where we combined both no-arbitrage corrector and
ALD corrector, to refine the samples from the SDE solver.

Similar to the European case, we use a soft constraint for the observed values: define

_3(L—t)

Wops(t) =€~ T, (4.21)
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as the scaling factor at noise level ¢, so that this begins with 1 at t = L, and monotonically
decreases to 3 at t = 1. Recall that = € {0,1}"*" is the indicator mask defined by

0 otherwise.

- {1 if (T, K;) € Gobe
At the end of each corrector step,

T 4 WopsTi © (1 — Z) + (1 — Wops ) Tops @ =, (4.22)

so that the sample will gradual move towards the observed values. We only enforce the
observed values in the final step of the whole algorithm. The whole algorithm is shown in
Algorithm 7.

Algorithm 6: SDE Solver + Annealed Langevin Dynamics (ALD)

Data: sequence of noise levels {¢;}-,, number of correction steps per noise level
M, step size parameter €, trained noise conditional score network sy(-, ),
weight for NA corrector Ay 4

Initialize x7, ~ N (7 14);

=

2 fori=L—-1,---,1do
3 Predictor Step
2
4 Define the step size a; < e:%;
L

5 Sample z; ~ N(0, I);
Update the new sample via discretized reverse diffusion in Eq.(2.16):
i 4 Ty + (97 — 97)se(Tiv1, Yir1) + /@i — 97z

Corrector Step

8 fort=1,---,M do

9 Sample z; ~ N(0, I,);
10 Define the proposed update @y, = ©; + a;s0(x;, pi) + V2002
11 Tj 4= Tpmp;

/* Soft constraint on the observed values */

12 Define wys by Eq.(4.21).;

13 T WopsTi © (1 = Z) + (1 — Wops)Tops @ =, where © is element-wise
multiplication.;
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Algorithm 7: SDE Solver + ALD + NA

Data: sequence of noise levels {¢;}-,, number of correction steps per noise level
M, step size parameter ¢, trained noise conditional score network sy(+, ),
weight for NA corrector Ay 4

1 Initialize x7, ~ N(p21,);

2 fori=L—-1,---,1do

3 Predictor Step

4

2
Define the step size a; + e%i;
vy’

5 Sample z; ~ N (0, I,);

6 Update the new sample via discretized reverse diffusion in Eq. (2.16):
| T & Tt (SO?H — ©7)50(Tit1, Piv1) + SO?H — 7 zi;

Corrector Step

7

8 fort=1,---,M do

9 Sample z; ~ N (0, I);

10 Define the proposed update i, = x; + a;So(T4, ;) + V2002

11 NA Corrector

12 Set Una(Timp) via Eq. (4.20) and weight wy 4 by equation (4.19);
13 L Update using this NA corrector T,y < Timp + WNAANAVN A;

14 Ti < Tpmp;

/* Soft constraint on the observed values */

15 Define wyps by Eq. (4.21);

16 T = WopsTi © (1 — Z) + (1 — wops)Tops @ =, where © is element-wise
multiplication.;

4.5.2 Experiment Setting

The only two parameters we relaxed are o and 7. We sampled uniformly (o, r) € [0.05, 0. 3]
[0.1,0.3] and consider a uniform grid on (K, T) where K € [80,120] and T € [0.1, 2. O]
generated 100K American put price surfaces on 4 x 4, 8 x 8 and 16 x 16 grlds, using
finite difference methods. In particular, we used the Crank-Nicolson scheme to solve the
Black-Scholes equation, followed by PSOR algorithm to handle the early exercise condition.
Afterwards, we trained a score network using RefineNet and applied reverse diffusion. In
particular, we masked 20%, 40%, 60% and 80% of the pixels as missing data. We employed
the Predictor-Corrector Scheme, using the discretized SDE solver as the predictor, with
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ALD and NA correctors as the corrector, and the latter is weighted by the hyperparameter
Ana. The evaluation of vy 4 can then be reflected by the improvement from the corrections.
Therefore the SDE solver can be considered a benchmark. We applied M steps of corrector
steps (ALD/ ALD+NA) after each predictor step, where M € {1,2,5,10,20,40,80}. Note
that ALD mainly used the trained score network from the training set distribution to un-
dergo sampling, without the awareness of the PDE residual or arbitrage losses. Therefore,
the two correctors could conflict with each other during sampling.

4.6 Numerical Results

We now present our experiments on American options. We first validate our proposed
models qualitatively. Figures 4.1, 4.2 and 4.3 show the American option surfaces where
the strike varies between 80 to 120 and the maturity between 0.1 to 2 on a (K,T) grid
of size 4 x 4, 8 x 8 and 16 x 16, respectively. Here, we compare the American option
surfaces generated by SDE, SDE+ALD, and SDE4+ALD+NA. We can see that they all
show visually similar result as the ground truth surface.

Ground Truth Surface Generated (SDE) Generated (SDE+ALD) Generated (SDE+ALD+NA)

Figure 4.1: American Options: Surface Comparison (4 x 4)

Ground Truth Surface Generated (SDE) Generated (SDE+ALD) Generated (SDE+ALD+NA)

0.0

L0 90 & 1.0
& 5

15 L
Matyp, > 20 80 ety 20 80

Figure 4.2: American Options: Surface Comparison (8 x 8)
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Ground Truth Surface Generated (SDE) Generated (SDE+ALD) Generated (SDE+ALD+NA)

Figure 4.3: American Options: Surface Comparison (16 x 16)

4.6.1 Regional Performance

Figures 4.4, 4.5, and 4.6 present the Mean Absolute Error (MAE) and Mean Relative Error
(MRE) for the benchmark model (pure SDE solver) and the SDE+ALD-+NA model. The
errors are evaluated over different moneyness and maturity regions defined in Tables 4.1 and
4.2, for grid resolutions 4 x4, 8x8, and 16x 16, respectively. For the SDE+ALD+NA model,
the reported errors correspond to the minimum over all choices of Ay4 € {1072,1072, 1071},

Table 4.1: Maturity regions used for error aggregation.

Region Lower Bound Upper Bound

Short 0.10 0.50
Medium 0.50 1.20
Long 1.20 2.00

Table 4.2: Strike (moneyness) regions for evaluation when full strike discretization is avail-
able.

Region Lower Bound Upper Bound

Deep OTM 80 90
OTM 90 95
ATM 95 105
IT™™ 105 110
Deep ITM 110 120

From the figures, we observe that for missing data percentages below 80%, the final MAE
across most regions remains below the order of 1072, When the missing percentage is high
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(60% and 80%), the SDE+ALD+NA model consistently achieves lower MAE than the pure
SDE benchmark. However, in Figure 4.6, for lower missing percentages (20% and 40%),
the improvement is limited in MAE. In some cases the SDE4+ALD-+NA model performs
worse. For example, for 40% missing on the 8 x 8 grid, SDE+ALD+NA exhibits higher
error than the pure SDE solver.

Note that MAE is not scale invariant, unlike MRE. Put prices in shorter maturities and out-
of-the-money regions are much smaller, with minimum close to order of 107'*. Therefore
in Figures 4.5 and 4.6, for 8 x 8 and 16 x 16, the MAE is generally above the order of
10~%, which is much larger than 10~!'. Despite the MAE across different maturity and
moneyness regions being similar orders of magnitudes, MRE is much higher in OTM and
short maturity regions.

The largest MRE values occur in the deep out-of-the-money (OTM) and short-maturity
regions, where MRE ranges from approximately 10~2 to 102. This behavior is expected, as
American put prices in these regions are close to zero. In fact, the smallest true price in the
dataset is on the order of 107!, which leads to large relative errors even when the absolute
error is small. Most training samples have true prices larger than 107, and consequently
the network struggles to capture these extreme low-price outliers. Another contributing
factor is the choice of noise scale in training. The current setup uses a minimum noise
level of o, = 1073, while the American put prices span magnitudes from 10~ to 10%.
This mismatch limits the sensitivity of the score network in low-price regions. Reducing
Omin and further tuning the noise schedule would likely improve precision for small values.
However, in Figure 4.6, for 40% and 20% missing, despite no significant MAE improvement,
SDE4+ALD+NA reduces the MRE in short-maturity and OTM regions. This indicates
that when provided with sufficient observed values, and in lower discretization error, the
correctors are able to cater to the small value regions as well.

Overall, the correctors provide the most significant MAE improvement in regions with
higher moneyness, longer maturities, and higher missing percentages, with the strongest
gains observed for 60% ~ 80% missing on the 8 x 8 grid. Except for the extreme case of 80%
missing, most regions achieve MAE and MRE on the order of 1072 after corrections. The
best-performing regions are in-the-money (ITM and deep ITM) with long maturities. These
results indicate that the current model favors the reconstruction of larger option values,
while predictions of small prices in OTM and short-maturity regions remain challenging
and dependent on factors including discretization errors and observed values.
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MAE Across Strike Regions MRE Across Strike Regions
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=@= 40% Missing
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Figure 4.4: American Options: Regional Error Comparison (4 x 4)
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Figure 4.5: American Options: Regional Error Comparison (8 x 8)

4.6.2 Selection of the Corrector Weight Ay 4
The overall performance for 4 x 4, 8 x 8, and 16 x 16 grids across different choices of Ay 4

can be summarized in Figures 4.7, 4.8, and 4.9 respectively. The figures show the MAE for
each Ay4 € {1073,1072,107} for the weight of the NA corrector, across different numbers
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MAE Across Strike Regions MRE Across Strike Regions
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Figure 4.6: American Options: Regional Error Comparison (16 x 16)

of annealing steps M. Figure 4.10 shows an enlarged MAE comparison for different Ay 4
on the 16 x 16 grid. The MAE of the pure SDE method (dotted lines) are compared with
the MAE of the SDE+ALD method (dotted lines with markers). Note that even if the
points lie on the same line, they represent the final error after adding M correction steps
right after each predictor step, so they do not belong to the same sampling trajectory.

In general, there is a decreasing trend in MAE as the number of annealing steps M in-
creases. This trend is the most apparent for 4 x4 and 8 x8. To compare SDE to SDE+ALD,
with large enough number of annealing steps, SDE+ALD attained lower MAE than SDE
in all cases, except for 20% — 40% missing for 8 x 8 in Figure 4.8. In addition, in Figure
4.10, SDE+ALD attains lower MAE consistently than pure SDE solver for high missing
percentages 60% ~ 80%. This can be explained by the nature of ALD, that the ALD
corrector introduces a stochastic component at each annealing step. This stochastic com-
ponent provides advantages in higher missing values. While this is beneficial in cases with
many missing values, where exploration of the uncertain surface is necessary, it can occa-
sionally perturb already accurate predictions when the number of missing values is small.
This explains why, in the 20% and 40% missing data scenarios, SDE+ALD may perform
slightly worse than pure SDE in Figure 4.10.

To compare SDE+ALD with SDE4+ALD+NA, Figure 4.10 for 16 x 16 gives a clear picture.
For all missing percentages, M > 80 steps gives improvements from the NA correctors in
terms of the MAE for some Ay4. There are no big improvements for smaller M because
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the NA corrector was not designed to reduce the MAE, but the arbitrage losses. For
M > 20 and 60 ~ 80% missing, there is a tendency of NA corrector giving higher MAE for
Ava = 107! indicating over-correction. This could come from two sources: (1) for each
correction step, ALD introduces white noises, and then is corrected by NA according to
no-arbitrage conditions. This could disrupt the correction when the weights of the ALD
and NA are not coherent; (2) Ay4 = 107! gives more improvement over SDE+ALD for
lower missing percentages (20% ~ 40%). Its performance becomes worse than Ays €
{1072,1073} gradually as the proportion of missing values increases to 60% ~ 80%, in
which case lower A\y4 = 107,102 perform the best. This signifies that Ay 4 should be
decreasing with the percentage of missing values. Indeed, when the proportion of missing
data is high, the arbitrage losses are evaluated on a surface with significant uncertainty. In
this case, apparent arbitrage violations may arise from reconstruction noise rather than true
inconsistencies in the option surface. Applying a large NA correction step can then over-
react to these noisy signals, amplifying local errors or distorting nearby regions. Smaller
step sizes are therefore required to ensure that the NA corrector performs gradual and
stable adjustments that reduce arbitrage violations on average rather than enforcing them
too aggressively.

Overall, these results suggest that the optimal choice of Ay 4 depends on the level of missing
data. Larger values of \y4 are more effective when the amount of missing data is small,
while smaller values are preferable as the missing percentage increases.

Mean Absolute Error vs Number of Annealing Steps

“““ SDE+ALD+NA T T T T TS T e e
= 80% Missing 60% Missing === 40% Missing === 20% Missing

Ana (Marker)
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A Ay=10"1

Mean Absolute Error

SDE+ALD
----- SDE
-e- SDE+ALD

T T T T T T
12 5 10 20 40 80
Number of Annealing Steps M

Figure 4.7: American Options: Final MAE Comparison (4 x 4)
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Mean Absolute Error vs Number of Annealing Steps
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Figure 4.8: American Options: Final MAE Comparison (8 x 8)
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4.6.3 Arbitrage Losses
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Figure 4.9: American Options: Final MAE Comparison (16 x 16)

We now look at the arbitrage losses. Figures 4.11, 4.12, 4.13, 4.14, and 4.15 show the
arbitrage losses defined in (4.13), (4.14), (4.15), (4.16), and (4.17), across different numbers
of annealing steps M and different missing percentages for 16 x 16. Here we focus on
16 x 16 grid mainly, since the finer the grid, the less prone to discretization errors the
surfaces become.

First, among the five arbitrage losses, the derivative loss ({g,;) is the largest. This is
because it requires arbitrage-free structures of more neighboring points compared to other
arbitrage losses. We observe that the red dotted line (SDE4+ALD) may not improve the
arbitrage losses in all cases. In fact, in Figures 4.12 and 4.13, SDE+ALD tends to give
higher convexity loss .., and derivative loss 4.,; than the pure SDE solver (black dotted
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Mean Absolute Error vs Annealing Steps (Missing 80%)
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Figure 4.10: American Options: MAE Comparison for 16 x 16

line), except for the 80% missing case. This is because the ALD corrector was mainly driven
by the score network, which learns the price surface distribution while being agnostic to
the arbitrage losses, and it introduces white noises in each corrector step. Therefore, even
with a large number of annealing steps M, the arbitrage losses using SDE+ALD did not
show apparent sign of reduction.

In Figure 4.11, the addition of NA corrector creates oscillations in arbitrage losses for 20% ~
40% missing. The NA corrector does not give lower Cmono(ky In these cases. However, this
is not a sign of failed implementation. These stem from the fact that the NA corrector
considers all the arbitrage losses at the same time, so it prioritized reducing f4.,; among
others, for it being the relatively large arbitrage loss. In fact, in Figure 4.16, we consider
the average of all arbitrage losses, and we can see clearer trend. For Ay4 = 107!, we
observe a steady decreasing trend of average loss as M increases for 20% ~ 40% missing.
It also coheres with our previous conclusion that higher percentage of missing values can

67



work well with higher Ay, as the lowest average loss for 80% missing was obtained by
Anva = 1071, which gives higher arbitrage losses as the percentage of missing values reduces
to 20%. Similar results for 4 x 4 and 8 x 8 are included in the appendix.

monotone_K Loss vs Annealing Steps
~m- Benchmark (SDE Solver + ALD) —@— PINAA,,=0.1 PINAA,; =0.01 —@— PINAA,;=0.001 -+ Benchmark (SDE)

80% Missing

0.0002 -

0.0001 4

Loss Value

Annealin'g Steps M
60% Missing

Loss Value

Annealin'g Steps M
le-6 40% Missing

Loss Value
~

Annealin'g Steps M
le-6 20% Missing

Loss Value

-

Annealing Steps M

Figure 4.11: American Options: Monotonicity in K Loss (16 x 16)
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Figure 4.12: American Options: Convexity in K Loss (16 x 16)
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Figure 4.13: American Options: Derivative Loss (16 x 16)
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Figure 4.14: American Options: Bound Loss (16 x 16)
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Figure 4.15: American Options: Monotonicity in 7" (16 x 16)
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Figure 4.16: American Options: Mean Arbitrage Losses (16 x 16)
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Chapter 5

Conclusions

In this thesis, we investigated several approaches to solve the price surface completion
problem for European and American put options on the strike—maturity space (K,T). We
extended previous work that treats surface completion as an image inpainting problem and
applied it to both European and American options. Working directly with price surfaces
is particularly advantageous for American options, as closed-form solutions do not exist.
However, enforcing arbitrage-free conditions is more nuanced for American options due to
the early-exercise feature, which introduces additional challenges for numerical methods.
The image-based approach mitigates these challenges by treating each surface as a high-
dimensional image. To ensure that the completed surfaces remain economically consistent,
we converted arbitrage-free conditions into loss functions and designed correctors to guide
the sampling process toward no-arbitrage solutions.

For European options, we incorporated physics-informed corrector (PI) into the sampling
process to accelerate convergence, in addition to the no-arbitrage (NA) correctors. We
investigated the tuning of their weights and analyzed their interaction with the stochastic
differential equation (SDE) predictor within a predictor—corrector scheme. The approach
achieved a mean absolute error (MAE) at the 1072 level even with 80% missing values across
different grids, while the no-arbitrage corrector effectively reduced arbitrage violations and
improved sampling efficiency.

For American options, due to the absence of a corresponding PDE in (K,T) space, we
focused on the NA corrector in combination with the Annealed Langevin Dynamics (ALD)
corrector, carefully studying their interactions. We found that the proposed method is
most effective with higher missing proportions and carefully tuned correction weights.

The proposed methodology has several advantages. First, the score-based generative model
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treats price surfaces as images without imposing specific model assumptions. Physics-
informed correctors, when applicable, provide the flexibility to incorporate any PDE-based
knowledge. Second, the NA correctors are purely numerical and can be applied using the
same score model employed in the predictor to actively reduce arbitrage violations. Finally,
compared to previous work on volatility surface completion, the predictor—corrector scheme
allows a substantial reduction in sampling steps; with only 20-40 steps and properly tuned
corrector weights, we can efficiently generate completed surfaces.

We also explored the limitations of this approach. The method is sensitive to the magnitude
of option prices because working directly on price surfaces introduces a wide dynamic
range, requiring finer noise scales for training. Another challenge is the tuning of the
NA corrector weight, Aya, which interacts with the stochastic component in ALD, the
number of annealing steps M, and the imputation of observed values. However, an adaptive
schedule for Aya remains an open question for future work.

Potential future directions include extending the method to American put options in the
(t,S) space. The lack of a PDE in (K, T') space makes the PINA approach incompatible for
American options, but most theoretical results on American options concern the (¢, S) space
due to its natural handling of free-boundary problems. Incorporating physics-informed
residuals into the guided diffusion process in (¢,S) space could enable efficient surface
completion and generation, and could also facilitate identification of the free boundary
using score-based generative models—an area that is computationally challenging with
traditional numerical methods.
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