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Abstract

This report investigates the approximate controllability of parabolic partial differential
equations, focusing on the one-dimensional heat equation and the Fokker-Planck equation
with multiplicative (bilinear) control. Unlike classical additive control, a multiplicative
control acts on the system by multiplying the system’s state variable in either the reaction
or the advection terms.

We will first prove several results about the density of a certain class of functions and
refine certain useful tools about weak derivatives; for instance, the chain rule and quotient
rule.

We will follow a paper to study the heat equation under multiplicative control act-
ing through the reaction term in detail, establishing sufficient conditions for approximate
controllability. We will present code and plots from Python notebook as an intuition.

We will then extend the analysis to multiplicative control of the Fokker-Planck equation
through the advection term, and establish a relationship to the control through the reaction
term, presenting algorithms and conjectures about the approximate controllability of the
Fokker-Planck equation by means of a multiplicative control.
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Chapter 1

Introduction

Numerous fundamental physical phenomena are modelled by Partial Differential Equation
(PDE), including “quantum mechanics, relativity, electromagnetism, optics, fluid mechan-
ics, superconductivity, magneto-hydrodynamics, elasticity, thermodynamics, chemical re-
actions, finance, neuroscience, and many, many more” [20]. For instance, the distribution
of heat may be described by a PDE, in particular, by the heat equation [2¥]

ou
— =A
5 u+ f,

where u(z,t) is the heat distribution, and f(z,t) represents an extra source term providing
(or draining) energy from the environment.

The controllability theory of PDE aims to solve a fundamental problem: Can a system
that is governed by a PDE be guided from a given initial state to a desired target state
within a finite time by appropriately selected control inputs? This problem has both
theoretical significance and important practical application value, due to the fact that so
many phenomena in life are modelled by PDEs. For instance, one may ask the following
question: Is it possible to cool down my bedroom within 5 minutes after I come back
from work in summer? Such a question is eventually a controllability problem of the heat
equation.

Classical results in PDE control theory mainly focus on additive controls, where the
control term is added to the system as an external source or force. In the case of the
classical heat equation, an additive control of the form f(x,t) that acts either internally
or on the boundary is relatively well-studied [28].

In contrast, multiplicative (or bilinear) control has gained increasing attention in recent
years. In multiplicative control, the control term is introduced by multiplying the state
(and/or its derivative) in the partial differential equation. Notice that in this case, the
control effect is linear to both the control and the state itself, while in the additive case,
the control term is independent of the state, thus the name bilinear control.

This type of control is motivated by physical scenarios where control is achieved by
adjusting a parameter of the system (e.g., reaction rate coefficient, diffusion coefficient, or



drift velocity field ). For instance, consider the famous Schrodinger equation that governs
the movement of a particle in one dimension [12]:

ov h? 0*W

th— = ———= + VU,

ot 2m Ox?
where W(x,t) represents the wave function, A is a physical constant, m is the mass of the
particle, and V' (z, t) represents the potential energy given by the surrounding environment.
In this case, we can see that the only control with a physical meaning would have to appear
in the V' term, which multiplies to the state itself.

However, from a mathematical perspective, multiplicative control is far more complex:
the control term and the state are non-linearly coupled, and the superposition principle
no longer applies. Indeed, it is known that exact global controllability is impossible when
the state space has infinite dimension in [1]. In particular, exact global controllability is
impossible for states in the space of square-integrable functions L?(U), which is natural to
a lot of Physics problems; for instance, the wave function in the Schrodinger equation.

With this in mind, it is natural to focus on the approximate controllability rather than
the exact controllability. The term approximate controllability, as its name suggests, aims
to steer the system arbitrarily close to a desired final state, while not necessarily reaching
it exactly.

In particular, we are interested in the following problem:

Suppose we are given a system governed by a PDE and a pair of initial state
and target state, can we find a bilinear control and a final time such that the
final state of the system is arbitrarily close to the target state?

One of the earliest results of multiplicative controls of parabolic equations through the
reaction term was established by Alexander Khapalov [17, 16]. In [17], it is shown that
global approximate controllability may be achieved for any non-negative initial and target
states in a one-dimensional heat equation system, under homogeneous Dirichlet boundary
conditions. In [16], the result is generalized to multi-dimensional semi-linear reaction-
diffusion equations, where a multiplicative control through the reaction term brings the
state arbitrarily close to a target state in arbitrarily small time intervals. For more works
about the multiplicative controls through the reaction term, see [15, 18, &, 21].

On the other hand, another recent trend of study in multiplicative controls considers
the case where the control may appear in the advection term (first-order differentiation);
in particular, a system governed by the Fokker—Planck equation (also known as the Kol-
mogorov forward equation in some different contexts):

ou
ot
where p(x,t) is the drift coefficient and D(x,t) is the diffusion coefficient.

—V(uu) + A(Du),

For example, in [0], it is shown that if the target state satisfies certain conditions, it
may be reached by a multiplicative control on the Kolmogorov forward equation in finite



time. In [5], the author showed that a version of the Fokker-Planck equation is locally
controllable, given that the trajectory is regular enough.

Since the Fokker—Planck equation naturally arises from stochastic processes [22], such
a control may be useful in many situations from physics to engineering; for instance, the
Schrodinger-Bridge problem as in [3], or the density control of large-scale particle swarms
as in [24], etc.

In this report, we will consider two specific problems in one-dimensional space and
establish a relationship between them.

1.1 Notations

In this report, we will use U C R" to denote the spatial domain, which will be open and
Lebesgue measurable. It is not necessarily bounded, unless explicitly specified. We will
use OU to denote its boundary.

We will use x € U to denote a spatial position in the domain U, and ¢t > 0 to denote
the time elapsed after the initialization of the system.

We will use (L*(U), ||| L2(U)) to denote the space of square-integrable functions defined
on U with its norm. A function f € L*(U) is any representative of the equivalent function
class [f] € L*(U), unless otherwise specified.

All the spatial derivatives are treated as weak derivatives, and all the equalities are
understood as equalities of equivalent function class, unless otherwise specified. In one
dimension, we will use u, to denote the first (weak) derivative of u, and u,, to denote the
second (weak) derivative of u. See section 2.1.3 for details about the weak derivatives.

We will use fsy to denote the trace of f on the boundary of U.

For a function y : U x [0,7] — R, we will use y(-,t) : U — R to denote the state at
a time t € [0,T], given by y(-,t)(x) := y(x,t) for all z € U. Also, we will use y|oux (o1
to denote the trace of y on the boundary of U, given by y|avxo1)(t) := y(-,t)|sv for all
t€(0,7).

1.2 Problem Formulation

Problem 1: Approximate Multiplicative Controllability through Reaction Term

Let U CR". Given a pair of initial and target states yo,yqs € L2(U),
and € >0, find 7 >0 and «a:U x [0,7] — R, such that the solution of

% =Ay+ay, Vte (0,T)
Ylouxor) =0, (L1
y(': 0) = Yo,




satisfies |ly(-,T) — ydllL2w) <e.

Specifically, in one-dimension, we consider the following problem restricted to the
bounded spatial domain U = (0, 1):

Problem 2: Approximate Multiplicative Controllability through Reaction Term in

1D

Given a pair of initial and target states yp,ys € L?(0,1), and € >0,
find 77> 0 and «a:(0,1) X [0,7] - R, such that the solution of

% = Yur +ay, Vt € (0,7T),
y(0,8) = y(1,£) = 0, Vt € (0,7), &2
y(,O) = Yo,

satisfies |ly(-,T) — allr200,1) < €.

On the other hand, we consider a special form of the Fokker-Planck equation in one-
dimension:

Problem 3: Approximate Multiplicative Controllability through Advection Term in

1D

Given a pair of initial and target states o, yq € L?(0,1), and € >0,
find 77> 0 and «: (0,1) x [0,7] -+ R, such that the solution of

Y Yo+, VEE(0,7)
y(0,t) = y(1,t) =0, ¥Vt € (0,T) (1.3)
y('a 0) = Yo,

satisfies |ly(-,T) — yallz2001) < €.

1.3 Outline of the Report

In this report, we aim to:

1. In Chapter 2, we will quickly introduce some mathematical preliminaries involved in
this report, including Lebesgue Spaces, weak derivatives, Sobolev Spaces, and some
spectral theory. We will also prove some variants of the product rule (corollary 2.5.3),
chain rule (corollary 2.5.9), and quotient rule (corollary 2.5.5), which will be used
later.



2. In Chapter 3, we will follow Khapalov’s paper [17] and do a more detailed anal-
ysis of the approximate controllability through the reaction term (Problem 2) on
nonnegative states.

3. In Chapter 4, we will establish a relationship between control on reaction and the con-
trol through the advection term. We will firstly establish a necessary and sufficient
condition for the transformation (theorem 4.1.8) without the boundary condition,
then apply it to get several sufficient conditions of transforming Problem 3 to Prob-
lem 2. A recursive pseudo-algorithm 2 is given with the result in view. Also, we
will apply the result on a specific control given by Khapalov [10], and show that
the approximate controllability through the advection term reduces to an Ordinary
Differential Equation (ODE) problem.

4. We also prove an explicit construction of uniform step functions approximation in
LP(a,b) (theorem A.0.8) in the Appendix, which might be useful in other scenarios.



Chapter 2

Mathematical Tools

2.1 Preliminary

2.1.1 Hilbert space

Definition 2.1.1. A normed vector space is a vector space (X, ||-||) over a field F endowed
with a norm (length) function: ||| : X — [0, 00), such that Va,y € X,a € F, it satisfies

1. subadditivity (triangular inequality); i.e. ||z +y|| < ||lz| + [|y]l,
2. absolute homogeneity; i.e. ||a - z|| = |a|||z||, and
3. positive definiteness; i.e. if x # 0, we must have ||z|| > 0.
Definition 2.1.2. Let (X, ||-||) be a normed vector space. A subset S C X is called dense
in X if )
S =X,

where S is the closure of S with respect to the norm [|-||. Namely, for all z € X, € > 0,
there is some y € S, such that ||z —y|| <e.

Definition 2.1.3. A real inner product space is a vector space H over R endowed with
an inner product: (-,-) : H x H — R, such that Yu,v,w € H,a,b € R, it satisfies

1. symmetry; i.e. (v,w) = (w,v),
2. bi-linearity; i.e. (au + bw,v) = a{u,v) + b{w,v), and
3. positive definiteness; i.e. (v,v) > 0, and if v # 0, we must have (v,v) > 0.

Proposition 2.1.1. For every inner product space with (-,-), there is a norm |z| =
Vix, x).

Definition 2.1.4. Let H be an inner product space. Two vectors u,v € H are called
orthogonal if (u,v) = 0.



Definition 2.1.5. Let H be an inner product space. A set {e;}
orthonormal set if

ier © H is called an

. 0 ife#j
Vz,JGI,(eia€j>=5z‘j¢:{1 ifz’ij

Definition 2.1.6. Let H be an inner product space. An orthonormal set{e;},., € H is
called a maximal orthonormal set / orthonormal basis / total orthonormal set
if Span({e;},.;) is dense in H. Namely,

i = Span({e) ).

Definition 2.1.7. A normed vector space X is complete if every Cauchy sequence con-
verges to an element in X with respect to its norm. An inner product space H is called a
Hilbert Space if it is complete with respect to the induced norm.

Theorem 2.1.2 (generalized Fourier series). Let H be a Hilbert space, and {e;},.;, € H

be an orthonormal set, then the following are equivalent:

1. {ei},c; is an orthonormal basis.
2. IfViel,(x,e) =0, then x =0.
3. Ve eH,x=7 (e, x)e;. (Fourier series)

4. Vo € H, ||z))* = 3, [ei, 2)°. (Parseval Identity)

Definition 2.1.8 (ket-bra notation). For a Hilbert space H over R, we use |¢) to represent
an element ¢ € H, and use (¢| to represent the element (¢, ) € H*, where H* is the set of
bounded (or equivalently, continuous) linear operators from H — R.

Theorem 2.1.3 (Riesz-Frechet Representation theorem). Let H be a real Hilbert space,
then H =* H, where the map ® : H — H*; |¢) — (¢| is the canonical bijective
tsometric linear isomorphism.

Remark. Riesz-Frechet Representation theorem says that every element in H* is actually
in the form (¢| for some ¢ € H*.

Corollary 2.1.4. Let H be a Hilbert space, for any (countable) orthornormal basis {wy} ¢,
of H, we have that ), ; |wi) (wi| = 1, where 1 is the identity map on H.

Proof. Consider any |¢) € H,

(Z |wr) (Wk|> ¢) = Z | ) (W @)

kel kel

=5 (i Be)

kel

= [9)



2.1.2 Lebesgue Spaces

Definition 2.1.9. We denote the by A Lebesgue measure on R™. We denote fU fdX\ by
fU f(z)dz for any measurable function f on any measurable set U C R™.

We will here define the Lebesgue Spaces and state some useful theorems. Detailed
treatment can be found in [9, 23].

Definition 2.1.10. Let U C R" be Lebesgue measurable. We define

LHU) = {f U —>R|/ |f(z)|dw < oo}.
U
Definition 2.1.11. Let U C R" be Lebesgue measurable, and 1 < p < oco. We define
LP(U) = {f U — R|fP e /ll(U)}.

In addition, we define the functional

oy = ([ pr(x)ldx);

for any measurable function f: U — R.

Remark. We see that
LAU) = {f:U—=R|ff € L'(U)}

_ {f:U—>R[/U\fp(:c)|dx<oo}

{1 U= R|Ifl ) < oo}
Definition 2.1.12. The essential supremum of a function v : U — R is

esssup f:=1inf{M e R: [{z: f(z) > M}| =0}.
Definition 2.1.13. Let U C R" be Lebesgue measurable. We define
LPU) :={f:U — Rlesssup f < oo} .
In addition, we define the functional
||f||5oo(U) = esssup f

for any measurable function f: U — R.

Definition 2.1.14. Two measurable functions f,g : U — R are said to be equal almost
everywhere if {z € U : f(z) # g(x)} has measure zero.



Proposition 2.1.5. For any 1 < p < oo, we have || f —g||Lp(U) =0 <= f =g almost
everywhere.

Definition 2.1.15. For any 1 < p < oo, if we identify f,g € LP(U) by f~g < f=g
almost everywhere, we get the quotient space

L) = LrU)/~ = A{lf]: f € £2(U)}
to be the collection of all equivalent function classes [f] in LP(U).

Theorem 2.1.6 (Fischer-Riesz). For any 1 < p < oo, we have the space (L?, ||| 5)) is a
Banach space, where ||[f]|| s = [l zo) for any representative f € [f]. One can check
this norm is well-defined.

Theorem 2.1.7 (inner product on space of square-integrable functions). The space L*(U)
is a Hilbert space, where || f|| 12 ts induced by the inner product

1[5y = [ F@ate)de
for any representative f € [f],g € [g]. One can check this inner-product is well-defined.

In the following sections, we will abuse the notation in a standard way and use f €
LP(U) and [f] € LP(U) interchangeably. In particular, we write f € LP(U) to mean f is a
representative of [f] € LP(U), namely, f € LP(U). This is due to the fact that whenever
we have f € L£P(U), we will have a unique [f] € LP(U). On the other hand, whenever we
have [f] € LP(U) and any two representatives fi, fo € LP(U) of the same equivalent class
[f], they are identical almost everywhere, and thus the difference is not detectable if we
are working with integrals. Also, we may just write [|-[|, for |[-[[ ;5. Il sy When the
context is clear. We will be more careful when this is not the case. Please refer to chapter
7 of [23] for a more detailed explanation.

Theorem 2.1.8 (Holder’s Inequality). Let 1 < p < oco. Suppose % +% =1, then Vf €
LP(U),g € LU(U), fge LY (U) and

||f9||L1(U) < ||f||LP(U)||g||Lq(U)’

We will also use the following result in [23, Theorem 6.10 and Corollary 6.12], which is
sometimes known as the “Fundamental Theorem of Lebesgue Integral Calculus”, a gener-
alization of the usual Fundamental Theorem of Calculus.

Theorem 2.1.9 (Fundamental Theorem of Lebesgue Integral Calculus). A function f :
[a,b] — R is absolutely continuous if and only if there is a Lebesgue integrable function g,
such that Vx € [a,b], f(z) = f(a) + [ g(t)dt. In this case, f is differentiable a.e., and

f(z) = g(x) for a.e. x € [a,b].



2.1.3 Sobolev Spaces

We will here define the weak derivatives, Sobolev Spaces and state some useful theorems.
Detailed treatment can be found in [27, 7].

Definition 2.1.16. Let U,V C R" be open, we say that V' is compactly contained in
UitV CV CU, and V is compact. We write this as V CcC U.

Definition 2.1.17. The locally summable spaces are

LY (U):=4{u:U—=R:VYV CcCcUuelLl(V)}.

loc

Definition 2.1.18. We say some property holds in L (U), if VV' CC U, it holds in LP(V).

loc

For instance, let (fn)zo:1 g Llpoc<U) and f = Lfoc(U% then fn — f in L?OC(U> if fn - f
in LP(V), YV cC U.

Definition 2.1.19. Let U C R™ be Lebesgue measurable. We define the set of test
functions
CXU) :={p € C(U) : Supp(f) C U and is compact},

where

Supp(¢) :=A{z € U : ¢(z) # 0}.

Definition 2.1.20. Let U C R" be Lebesgue measurable, and o € N be an n tuple. For
u,v € L .(U), we say v is the a'-weak derivative of u if

loc
Vo € C;O(U),/ uD®pdx = (—1)|a/v¢dx,

U U
where D¢ := 021 ... 05"¢, and |af == Y"1 | a;.

If such a v exists, we say that D*u = v or u, = v in the weak sense. Otherwise, u
does not possess a o’ weak derivative. One can check that if a weak derivative exists, it
is unique almost everywhere.

Definition 2.1.21. Let U C R" be Lebesgue measurable, and k¥ € N. We define W*(U)
to be the set of functions whose o weak derivatives exist for all || < k.

Let 1 < p < oo. We define
WhP(U) == {u e WH{U) :V|a| < k, D*u € L*(U)},
where D%y € LP(U) is the o' weak derivative of u.
In particular, we define H*(U) := W*2(U).
Definition 2.1.22. Let k € N,;1 < p < oo,u € W*(U). The Sobolev norm of u is

1/p
(Zm\gk ||D°‘u||’£p(U)> ) 1<p<oo ‘

<k €8 SUP, ey [ D u(@)| = maxiq <p [[ DU poo gy, P = 00

HUHWIW(U) :

One can check that these are well-defined norms when restricted to the space W*?(U), if
we identify u,v € L, .(U) by u ~ v <= u = v almost everywhere, similar to above.

Indeed, u € WFP(U) <= [wllyrnry < o0

10



Theorem 2.1.10 (Completeness of Sobolev Spaces). Let U C R" be Lebesgue measurable,
and 1 < p < oo, we have that WYP(U) is a Banach space with respect to the Sobolev norm.
In particular, H'(U) is a Hilbert space.

Theorem 2.1.11 (Characterization of Sobolev Spaces using Absolute Continuity). Let
p €[0,00), and U C R™ be Lebesque measurable. Suppose u € LP(U), then u € WIP(U), if
and only if u has a representative u that is absolutely continuous on almost all line segments
in U parallel to the coordinate azes and whose (classical) partial derivatives belong to LP(U).

[27, Theorem 2.1.4]

The proof of the above theorem implies that

Corollary 2.1.12. Let p € [0,00), and U = (a,b) C R. Suppose u € LP(a,b), then
u € WP(a,b), if and only if u has a representative U that is absolutely continuous, whose
(classical) derivative 2@ belongs to LP(a,b). In this case, “-u is a representative of the

) dx
weak derivative u,,.

The above corollary, in addition to the Fundamental Theorem of Lebesgue Integral
Calculus 2.1.9, provides a way of identifying the normal and weak derivatives in the case of
1 dimension. In view of the following result, for any v € W1?(a,b), we will always consider
the continuous representative of it. We will provide the proof for completeness.

Corollary 2.1.13 (Fundamental Theorem of Lebesgue Integral and Weak Derivative). Let
p € [0,00], and U = (a,b) C RL. Suppose u € LP(a,b), then the following are equivalent:

1. ue WhP(a,b),

2. u has a representative u that is absolutely continuous, whose (classical) derivative
Ly (defined almost everywhere) belongs to LP(a,b),

3. w has a representative u, and there is a Lebesgue integrable function g € LP(a,b),
such that Va € [a,b], u(z) = u(a) + [ g(t)dt.

In this case, %a = g almost everywhere, and is a representative of u,.

Proof. For p € [1,00), the equivalence of 1. and 2. directly follows from the previous
result.

Now assume p = 00.

Suppose 1. holds, since U is bounded, we have u,u, € L*®(a,b) C L'(a,b), which
means u € Wh(a,b). Thus, u has a representative u that is absolutely continuous, whose
(classical) derivative L@ belongs to L'(a,b). Also, it is a representative of u, € L>(a, b).
Thus -£a belongs to L>(a, b) as well.

On the other hand, suppose 2. holds, then since U is bounded, 0,u, belongs to
L>(a,b) C L*(a,b). Thus, u € W"'(a,b), its weak derivative u, exists, with <L being a
representative of u,. Since the weak derivative is unique, u, € L*>(a,b), so u € H->*(U).

2. < 3. is always true by the Fundamental Theorem of Lebesgue Integral Calculus
(theorem 2.1.9). O

11



Definition 2.1.23. Let U C R" be Lebesgue measurable, Hy(U) C H'(U) is the closure
(with respect to ||| ;1) of HY(U) N C(U).

Remark. H}(U) are the functions in H'(U) that vanishes at boundaries.

Proposition 2.1.14. Let U = (0,1) C R, in this case,

H(0,1) = {u cu,u, € L2(U) 2 limu(z) = limu(z) = O} .

x—0 rz—1

Definition 2.1.24. We define Q7 := (0,1) x (0,7") to be the time-space domain.

2.2 Maximum Principle

In this section, we will state a variation of the maximum principle for the heat equation
that would be used in Chapter 3. We will here sketch a proof for the continuous case
following Theorem 7.1.9 of [7], and one may follow the steps of Theorem 8.1 in [11] to see
the general case for weak solutions.

Theorem 2.2.1 (Maximum principle). [7] Let o € L*(a,b) be a non-positive function.
For a continuously twice differentiable solution y(x,t) to yy = Yz + oy with initial state
y(-,0) = yo > 0, we have that

Vo € U,t - (O,T), 0 < y(%t) < Hy()”oo

Proof. We know y attains a minimum by the Extreme Value Theorem in U x [0, T] (since
y is continuous).

First, we show that Vo € U,t € (0,7),0 < y(z,t). Suppose not, then since y(-,0) =
yo(+) > 0, and ygpy = 0, the minimum must be attained in U x (0,7]. At that minimum,
Yer > 0,y < 0, since it must be a local minimum of (-, ¢) in the open interior U. Since it is
a global minimum of y(z, ), we must have y; = 0. Thus we have 0 = y; = y,. + a(x)y > 0,
which is a contradiction.

Similarly, if it attains a maximum in the interior or at ¢ = T', we will have a contradiction
of 0 > yy = Yur + a(x)y < 0. Thus the maximum must be on the boundary. Since yg > 0
and ypy = 0, we must have Vo € U,t € (0,T), y(x,t) < ||lyoll - O

Corollary 2.2.2. Let o € L*®(a,b) be a function, with C := ||| ,,. For a continuously
twice differentiable solution y(x,t) to yy = Yse + ay with initial state y(-,0) = yo > 0, we
have that

Vr e Ut e (0,T), 0<y(z,t) < eyl (2.1)
Proof. If Va, a(x) < 0, then this is trivially true from the above theorem, since 1 < e“".

Otherwise, consider z(z,t) := e~ “y(x,t). Note z = yo

12



Since a(x) — C < 0 a.e., we can apply the above theorem, and have Vo € U,t € (0,7),0 <
2(2,1) < 20l = 0l o, thus Yz € U,t € (0,T),0 < y(,t) < e[|yl - 0

2.3 Ket-Bra Notation on function Spaces

We will now extend the ket-bra notation to our function spaces. Note that it is an abuse
of notation to simplify some later calculations in chapter 3, and would require more careful
treatment in a formal proof.

Definition 2.3.1. For a function w € L%*(a,b),x € (a,b), we will abuse the notation
(x|w) = (w|z) to represent the evaluation map w(zx).

Remark. Notice that this is not the inner product on L?(U), since the evaluation map,
though linear, is not bounded. Thus, it does not live in the dual space, and the Riesz-
Frechet Representation theorem does not apply.

Definition 2.3.2. We will use the Dirac-delta function d(z — r) to represent the Dirac
point measure J,. Namely, for any function f : (a,b) — R, we have

d d . ; )
/ f(z)é(x —r)dz ::/ F(x)ds, = {f( ) 1€ (cd)

0 otherwise.

Proposition 2.3.1. For functions {wy},-, C L*(a,b) that form an (countable) orthonor-
mal basis, we (by abusing the notation) have

Vz,r € (a,b), Zwk(r)wk(m) =4(r — x).

k=1

Proof. Consider any function u = >, | {wy, uywy, € L*(0,1), we have that
wi(r)wg(x) |u(z)de = wi(z)u(x)dx wi(r)

=D {wn uywi(r)
= <Z (W, U)W 7">

13



Proposition 2.3.2. Vx,r € (a,b), we have (by abusing notation) (r|l|x) = o(r —x). We
thus write (r|x) == §(r — z).

Proof. Consider any (countable) orthonormal basis {wy},-, € L*(0,1), we have

S(r—x) = wi(r)wi(x)

2.4 Approximation Theorems

This section will aim to prove a result (proposition 2.4.3) about the density of strictly
positive step functions in nonnegative functions in L?(a,b), in a constructive way. The
result will be useful later in Chapter 3.

Remark. The density of step functions in LP(a, b) is relatively well-known, by the regularity
of Lebesgue measure. Although that could also be used to prove the result we want, it is
not constructive, and the step sizes are not necessarily uniform. Also, it needs to be more
carefully treated when we add the restriction that the approximation functions shall be
strictly positive, which is essential to a later proof.

With that in mind, we proved an explicit formula (theorem A.0.8) to approximate any
f € LP(a,b) arbitrarily well, where the step sizes are also uniform. We will not distract
the reader here, and we will directly use the result in proving the following lemmas. We
have included it in Appendix A for the sake of completeness. Interested readers may find
the proof there.

Lemma 2.4.1. Given any non negative function g # 0 € L*(0, 1), we can find a sequence of
positive functions {gy} € L*(0,1) such that VK > 1, inf,c o1y gr(z) > 0, and limy_o0 g, = g
in L*(0,1).

>+ >0.

Bl
=

Proof. Let g, := g + % It is easy to see that inf,c(o 1) gr(2) = infc1) g(z) +

14



In addition,

AN
i ||g—gk||2:(/o (1) das)

[]

Lemma 2.4.2. Given any positive function g € L*(0,1) such that ¢ := inf e 1) g(z) > 0,
we can find a sequence of piecewise constant positive functions {gi},-, € L*(0,1) such that
limg oo g1 = g in L2(0,1).

Proof. Consider gi(x) := 25:1 Xiw;_1,0) @)k [0 g(a’)da’, where x; == j/k.

Tj—1

gr(x) Zk;*/ " it g(z")dx

i1 z'€(0,1)
=k =* 1 inf g(z")
k «'e(0,1)
=c

>0

Thus g is positive. The convergence is by theorem A.0.8. O]

Proposition 2.4.3. Given any non-negative function g # 0 € L*(0,1), we can find se-
quence of piecewise constant positive functions {gy}re, € L*(0,1) such that limy_ gx = ¢
in L2(0,1).

Proof. By the above lemmas. O

2.5 Weak Derivative Calculus

We here aim to list and prove certain results for weak derivatives that will be used in
Chapter 4:

1. Product rule and Quotient rule.
2. Chain rule.

3. Fundamental Theorem of Calculus.

15



Proposition 2.5.1 (Local Product Rule for Weak Derivatives). Let U C R"™ be Lebesgue
measurable, given any p € [1,00], and any u € WP(U), v € W,oX(U), then uwv € WEP(U)

loc loc

with the it weak derivative 0;(uv) = udjv + vOyu. [25, Proposition 4.1.17]

Proposition 2.5.2. Let U C R" be Lebesque measurable, |a| < n. For u,v € L (U),

loc
suppose vly = D®(uly) on every V. CC U, then v is the o' weak derivative of u on U

globally. 1.e. v = D%u.

Proof. Consider any ¢ € C.(U), we have that Supp(¢) CC U, so we can find a Supp(¢) CC
V cCc U. Now,

/Uqﬁvda::/Vgévda::(—nal/‘/Do‘¢vd:1::(_1)la/UDa¢vdx’

since v|y = D*(uly) and ¢ is constantly 0 outside of V. O

Corollary 2.5.3 (Product Rule for Weak Derivatives). Let U C R" be Lebesque measur-
able, given any p € [1,00], and any u € W'P(U), v € Wh>(U), then uwv € W'P(U) with
the i'™" weak derivative 9;(uv) = ud;v + voyu. Also,

p—1
Julhwsowy < (1477 ) llhwrs ol

[25, Corollary 4.1.18]

Remark. The original statement in [25] claims that [[uv|ly,@y < [l [V]we @)
which is in general not true.

Proof. We firstly note that [[uvl| ) < [[ull oo [0l oo 1) Also, for alli € [n], by the above
proposition 2.5.2, we have that 0;(uv) = ud;v + vO;u exists globally in U. In addition,

||(uv)i||LP(U) < JJudw + UaiuHLp(U)
< HuaiUHLP(U) + HvaiuHLP(U)

< ”uHLP(U)”aiUHL"O(U) + ”aiuHLP(U)”UHLOO(U)

< Q.

This shows that (uv); € LP(U). Since this holds for all 7 € [n], we have uv € W'(U). In
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addition,

|=

P

||UU||WLP(U) = <||UU||IZP(U) + Z ||(Uv>i||[£p(U)>
i=1

< vl oy + D 1)l oo
i=1

< HUHLP(U)HUHLOO(U) + Z (HUHLp(U)HaiUHLoo(U) + ”aiuHLP(U)HUHLOO(U))
i=1

< ||u||LP(U) (HUHLOO(U) + Z ||aiU||L°°(U)) + <Z ||8iu||LP(U)> ||U||LO<>(U)
i=1 i=1

1

n P
p—1
< HUHLP(U)HUHWLOO(U) +nor (Z ||aiu||:zp(U)) ”U“Loo(U)

=1
p—1
< HUHWLP(U)“UHWLOO(U) +n “uHWLp(U)HUHWLOO(U)
p—1
= (12" ) Iullyroon IV lroeoy
0

Proposition 2.5.4 (Product Rule for Weak Derivatives of Bounded Functions). Given
any p € [1,00], and any u,v € WHP(U) N L>®(U), then uvv € WHP(U)N L®(U) with the i™"
weak derivative 0;(uv) = udyv + vou. [2, Proposition 9.4])

Corollary 2.5.5 (Quotient Rule for Weak Derivatives of Bounded Functions - Necessary
Condition). Giwen any p € [1,00], and any u,v € W'P(U) N L>(U), such that * €
WLP(U) N L=(U), then we have the it weak derivative is 0;(%) = 2rueuoiv,

02

Proof. Since vy = u, we have by product rule that

Oiu = 0; <E>U + E(’?iv

0, . 8v
&(%) _ O . ud;v

Oiuv — ud;
ai(g> _ uUUQu v

[]

Remark. Notice that in the above proof, it is very important that we know * € WhP(U)N
L>(U) to begin with. i.e. The weak derivative already exists and is in the required space.
Thus, this is only a necessary condition. Indeed, consider the simple counter-example given
in [1], where two functions can both be weakly differentiable, but their quotient is not.

Proposition 2.5.6 (Local Chain Rule for Weak Derivatives). Given any p € [1,00].
Suppose u € VVlzf(U) Suppose F € CY(R) has bounded derivative F', then the post-
composition F o u lies in WEP(U) and its it weak derivative is given by 9;(F o u) =

(F'owu) - Q. [25, Proposition 4.1.21]
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Remark. Since < is not C*(R) (around 0), the quotient rule does not hold in general. Also,
although €%, 22 € C1(R), they don’t have a bounded derivative. To this end, we will modify
the previous chain rule to get a variation that will weaken the assumption of the behaviour

of F over the entire real line.

Proposition 2.5.7 (Local Chain Rule Variation for Weak Derivatives). Given any p €
[1,00]. Suppose u € W,oP(U). Suppose F'€ CY(I) has bounded derivative F’, where I C R

loc
is an open interval that contains the closure of u’s essential image. 1i.e.

ﬂ{J CR:(U\u(J)) has measure 0} C 1.

The post-composition Fou lies in W,oP(U) and its it™" weak derivative is given by 0;(Fou) =

(F'ou) - Ou.

Proof. Write I = (a,b), where a < b € RU {zxo0}. WLOG, by redefining u on a measure
zero set, we can assume u(z) € J for all x € U for some J C I.

Since J C I, we can find some & > 0, such that J C [a+d,b—d]. Indeed, if a € R, then
J is bounded below, and inf,. j z is achieved by some z1, since J is closed. Since I is open,
we can find 6; > 0, such that (x; —éy,21 +61) C I. ThusVe € J, z — 6§ > 1 — 01 > a.
If a = —o0, we can pick any &, > 0, and we always have Vx € J, x — §; > a. Similarly, we
can pick §; > 0, such that Vo € J, x + dy < b. Now pick § := min(d;,d2) > 0, we have
J Cla+4d,0—14].

Consider the function
x, a+o<z<b—90
g(z) = b—0esO=0 g >p—§
a+56%(“’_a_5), r<a+d

We can check that g is well defined and continuous, and

1, a+d<z<b-—9§
g(@) =4 est=9  z>p—4
e3@=a=8) 4 g4+ §

is also continuous and bounded by 1. Thus ¢ € C'(R). In addition, g is monotone
increasing and Vx € R, g(x) € (a,b) = I.

Now consider the composition G := F o g, which is well-defined. Since F' € C'(I) has
bounded derivative F’, we have some M > 0, such that Vs € I, |F'(s)| < M. We have by
calculus chain rule that G € C*(R), with |G'(s)| = |F'(g(s))g'(s)| = |F"(g(s))||¢'(s)| < M,
which is also bounded. Thus by the above chain rule, we have G ou € W,2P(U), and its i*"
weak derivative id given by

0;(Gou) = (G ou) - du.
However, for any x € U, we have u(z) € J C [a+d,b — 6], so g(u(z)) = u(z), and

(G o u)(x) = F(g(u(x))) = Flu(x)) = (F o u)(x).
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Also,

1
(G ou)(z) = G'(u(x)) = F'(g(u(z)))dlatz)] = F'(u(z)) = (F' o u)(z).
Thus Gou = Fou,and G'ou = F'ou.
This proves F ou € W,oP(U), and its i weak derivative id given by

[

Remark. Notice that the above proof requires that I is a connected interval, and J C I to
find such a 6 > 0.

Corollary 2.5.8 (Chain Rule Variation for Weak Derivatives). Given any p € [1,00].
Suppose v € WHP(U). Suppose F € CY(I) has bounded derivative F’', where I C R 1is

an open interval that contains the closure of u’s essential image, and the post-composition
Foue LP(U). In this case, F ou lies in WYP(U) and its it weak derivative is given by
61(F @) u) = (F/ o u) . &u

Proof. Since u € W(U) € WLP(U), we have that F ou € WLP(U), with 9;(F o u) =

loc loc

(F'ou)-0yu. Thus, (F'ou)-d;u is the global i" weak derivative of Flou by proposition 2.5.2.
Now let M > 0 be such that Vs € I, F'(s) < M. Suppose p < 00,

1F 0wl = I1F o ullfe, +ZH o u) - Oiullp )

< [|F o ullZo ZMP||3U||
1€[n]

< IF 0wl + MPlullyn,

< Q.

Suppose p = 0o, we have

| £ o UHWLOO(U) = ||F OUHLoo(U) + Z [(F" o) - az‘UHLoo(U)

i€[n]

< 1F o ull poorry + Z M{|0sul| oo 1)
i€[n]

< ||Fo UHLOO(U) + MH“HwLoo(U)

< 0.

Thus, F ou € WhP(U). O

Notice that we always get Flou € LP(U) if we assume U is bounded and other assump-
tions hold. Indeed, we have the following corollary.
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Corollary 2.5.9 (Chain Rule Variation for Weak Derivatives on Bounded Domain). Given
any p € [1,00]. Suppose u € W'P(U), where U C R™ is a bounded open set. Suppose
F € CY(I) has bounded derivative F', where I C R is an open interval that contains the
closure of u’s essential image. In this case, Fou lies in WYP(U) and its i'™" weak derivative
is given by 0;(F ou) = (F' ou) - Qyu. In addition, when p = oo, the above holds true even
when U is not assumed to be bounded.

Proof. Let M > 0 be such that Vs € I, |F'(s)] < M. Fix any s € I, and consider any
t # s € I. By the Mean Value Theorem, there is r € (min(s,t), max(s,t)) such that
F'(r) = PU=EE)  Thus F(t) = F(s) + F'(r)(t — 5), and

[E@)] < [F(s)| + [F'(r)(t = s)]
|E(s)] + M|t — s]
|F(s)] + M|t| + M|s|.

IA N CIA

Let C := |F(s)| + M|s| < oo, we have Vt € I, |F(t)] < C + M]t|.

Suppose p < oo, we have
IF ol = [ IPut@)Pas
< [ 10+ Mut)as
< /U #1(C? + M|u(x)[)dx

_ / 1P + / NP ()P
U U

= 2"71CPU| + 277 M ([l )

< o0,

since u € WHP(U) C LP(U), and U is bounded.
Now suppose p = oo, we have
1 0 tl| poo (1) = ess sup [F(u(x))]

@) zelU

<esssupC + M|u(x)|
zelU

= C + M esssup |u(z)|
zeU

= C + Mlul| oo 1y

< Q.
Thus, Fowu € LP(U) and satisfies the above corollary. O

Corollary 2.5.10. Given any p € [1,00]. Suppose v € WH>(U). In this case, u*,e" both
lie in WH(U) and their it weak derivative is given by 0;(u?) = 2udju, d;(e*) = e“Ou.
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Proof. Let M := ||lul|, < co. Notice that the essential image of u lies in [—M, M], which
is contained in the open interval I := (—2M,2M) C R.

Both F(s) := s G(s) := e* are in C'(I), and F'(s) = 2s and G'(s) = e* are bounded
by 4M, e*™ on I, respectively. O
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Chapter 3

Global Nonnegative Controllability
through the Reaction Term in 1D

In this chapter, we will follow the idea in [17] to show nonnegative approximate control
lability for problem 2. We will first restrict the target states to a dense subset S C
L?*(0,1), and then use the Maximum Principle and some spectral analysis to acquire some
estimates on the solution to eq. (1.2). Lastly, we will design a control and show exponential
convergence using the previous results.

3.1 Approximation
In this section, we aim to show that the following set S is dense in the set of non-negative
functions in space of square-integrable functions.

Definition 3.1.1. Consider the set S of functions g € L?*(0, 1) that satisfies the following:

1. nonzero non-negative continuously differentiable,
2. vanish at z =0, 1,

3. whose second derivatives are piecewise continuous with finitely many discontinuities
of the first kind (jump or removable), and

4. the function «, defined by a.(z) := { o@ 9(@) 7 0 is in L*>(0,1).

0 if g(x)

Notice that such a ¢ that satisfies 1. and 3. is always in (0, 1) by corollary 2.1.13.

Lemma 3.1.1. Given any piecewise constant positive function g = Z?:l QG X[zj_1,2;) €
LQ(O, 1) with jumps at 0 = z1 < 13 < -+ < x, = 1 and o; > 0 being constants, we can
find a sequence of continuous bounded piecewise linear positive functions {gx};" € L*(0,1)
such that
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1. limy 00 gx = g in L?(0,1), and

2. for all k > 1, lim, o gx(x) = lim,_,; gr(z) = 0.

Proof. Notice that inf,c(o1) g(z) = minjen) a; > 0, and sup,¢ (o 1) 9(*) = max;epn a; < 0.

For each k£ > 1, let

11
€ 1= mlﬂ(Ea 1 1I<n]1£n(x] zj-1)) >0
Consider
glz; — ) + 9(33j+6k)2;;9($]'—€k) (x—z;+e) I <j<n,|z—z<e
@) g(::)x ifrg=0<2x<¢
x) =
Gk 9(1;C€k)(1_x) fl—-g<r<l=n
g(x) otherwise

Namely, it is the function where we shrink each constant part by €, at the beginning and
end, and then we connect them linearly.

Suppose 31 < j <i < n, |z — x4, |z — ;| < €, then

T — ¥ = |; — ;]
<z =z + |z — )
< 2¢;
< 2 min (x; — x;_1)
~ 4 1<i<n

< T — Ti-1,

a contradiction. Thus, g, is well-defined. Also, for each 1 < j < n, we have that

glx; +€) —glr; —¢€
g(r; — ex) + (=, k)2€kg( ’ k)((%‘—ﬁk)—ﬂfﬁrﬁk)
Tj + —glz; —
:g(%—Gk)—Fg( J €k>2 g( J Ek)o
€k
= g(z; — €),

g(z; +ex) — g(x; — ex)

g(z; —€p) + 5 ((z; + €x) — xj + €)
€k
26k
=g(x; — &)+ g(z; + &) — 9(v; — &)
= g(7; + ),

23



Also,

g(ﬁk)

(1= —er) =91 —er).

€k = g(ek)a

g(1 —e)
€k

By gluing lemma, g is continuous. It is also easy to see that g, vanishes at 0, 1.

In the first case where 31 < j < n, |z — z;| < € , we have that

_a:—xj—l—ek QS—ZUj—FEk

gr(z) = (1 2. Jg(x; —ex) + 2%, g(z; + €)
T — T+ €. . - T —x;+ € . -
2 ( 2o sty 900+ —— —— Inf (@)
_ i o(i
Jonf 9()
> 0.

Thus, it is positive and bounded below by inf,c( 1) g(x). Similarly, it is bounded above by
SUPze(0,1) g(x) < oo.

In the second case, if 0 < z < ¢, since g(ex) > 0, we have that

0< 8%y = gr(z) < g(ek)ek =g(ex) < sup g(x) < oo.
€k k 2€(0,1)

Thus it is positive and bounded.

Similarly, in the third case, we can see that if 1 — ¢, < 2 < 1, we still have gx(z) being
positive and bounded.

In the forth case, we have gi(z) = g(z), so gr(x) is bounded above by sup,¢ 1) 9(x) <
0o, and below by infgc (1) g(z) > 0.

Thus we have that g, is positive and bounded above by sup,¢ 1) g(x) < 0.

In addition, since limj_,o, € = 0, point-wise convergence is also easy to see. By A.0.5,
it also converges in L?(0,1). O

Remark. The density of the continuous functions that satisfies 1. and 2. is a well-known
fact in measure theory (Lusin’s Theorem [9]). What we really need from this construction
is property 3., which will be crucial later.

Lemma 3.1.2. Given any continuous bounded piecewise linear positive functions g €
Wg(0,1) € L*0,1) with “turning points” at 0 = x; < Ty < -+ < x, = 1 such that
lim, 0 g(x) = lim,; g(x) = 0, we can find a sequence of continuously differentiable
bounded positive functions {gr};” C S such that limy_ gr = g in L*(0,1).

Proof. Define g, by replacing each angle generated by the corresponding adjacent straight
lines of the graphs around the “turning point” x; (other than z; = 0,2, = 1), by an arc
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with radius 7, := min (}C, g, 411 ming <, (x; — :vj_l)), and tangent to the lines. For each

angle, this arc is unique, with its centre located on the bisector of the angle.

Notice that g still vanishes at 0,1, since we did not change anything from ¢ around

0, 1. In addition, it is still bounded below and above by the bounds of the original function,
thus positive and bounded. It is continuously differentiable because now it is formed only
by straight lines and their tangent arcs. Its second derivative is either 0 (on the straight
line) or finite and continuous (on the arc), with finitely many discontinuities of the first
kind only at the 2(n — 1) points where the lines and arcs connect.

d2

mgk(z)
T2—TiTn—1+7k] gy (2)
compact) intervals [zo — rg, o + ri| U [zg + rg, 23 — 1] U -+ [2p1 — T, X1 + 7x). By

Lastly, sup,¢; < 00, since it is piecewise continuous on closed (thus

d‘LQQ gk( )
9x(2)

construction, for all z € (0,27 — 7] U [mn 1+ 76, 1), gr(x) = g(x) is linear, so

05 = 0. Thus, infae (o, ufer14re) is g("g ) — 0 < co. This shows dw;j(’“( 2 e 17(0,1).

Thus we have Vk > 1,g, € S.
It is easy to see that each g is bound above by sup,¢ 1) 9(7) < oo, and gx(z) — g(z)
point-wise, since limy_,, 7 = 0, and thus by A.0.5, it also converges in L?(0, 1). O

Theorem 3.1.3. Any non-negative element g € L*(0, 1) can be approzimated by a sequence
of functions {gr}r.; C S. Namely, S is dense in L*(0,1).

Proof. This directly follows from proposition 2.4.3 and the previous lemmas. n

Remark. Thus in the following sections, we can always assume that the target function yy
is in S as defined in 3.1.1.

3.2 Operator and Eigenfunctions

Here we will state some results about the Spectral problem associated to the differential
operator. A more detailed analysis can be found in [7, 11, 26]. In particular, in view of [7,
Theorem 6.3.4], we will always consider a weak solution w € H}(0,1) of w4 (a(z) —N)w =
0 to be in H?*(0,1), since the constant coefficient function 1 € C*([0,1]) c C'([0,1]).
Namely, w,, make sense as the second weak derivative.

Proposition 3.2.1. Let o € L*(0,1), consider the eigenvalues N, and orthonormalized
eigenfunctions wy, € HL(0,1) of the spectral problem w,, + a(r)w = Aw, we have that
HO‘HLw(o,l) >N > X >, and im0 Ay = —00. Also, {wy e, forms an orthornormal
basis for L*(U).

Proof. Tt is known that if we order the eigenvalues by their absolute value, we have
limy oo [Ak] = oo for any second-order linear spectral problem. See Theorem 6.5.1 of
[7] for the case « is smooth, and the general case may be found in Theorem 8.37 of [11].

In addition, suppose for contradiction that there is some eigenvalue A, > ||| Lo0(0,1)>
we must have that (wg)z = (A — @)wp > 0 a.e.. By Theorem 4.1.6 in [11], wy will be
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(weakly) convex and thus non-decreasing, and thus we cannot have the boundary condition
wi(0) = wi(1) = 0 unless wy, = 0. Thus a contradiction with wy being an eigen-function,
and we have V&, ||| oo g1) = Ak-

Since the absolute value of w, — oo, but it is bounded above, we have that it must
tend to negative infinity, thus completing the proof. m

Proposition 3.2.2. Let w € H}(0,1),a € L>(0,1), consider the orthonormalized eigen-
functions wy(x) of the spectral problem wy, + a(x)w = Iw, then wi(x) are also the or-
thonormalized eigenfunctions of wy, + B(x)w = Nw, where 5 = o+ ¢ for some constant c.
In addition, the corresponding eigenvalues are X, = \g + c.

Proof.
(wk):rx + Oé(l')CUk = )\kwk
(Wk )z + ()W + cwp, = A, + cwy
(Wi)zz + B(@)wp = (Mg + ¢)wi
Thus wy, is still an eigenfunction, with corresponding eigenvalue A\;, = A\, + c. m

3.3 Solution to the Initial Boundary Problem

We will here establish an explicit form of the solution to eq. (1.2), and provide some
estimates on some of its terms. For the simplicity of calculation, we will use the ket-bra
notation with the Dirac-delta function. Please refer to chapter 5 and 6 of [7] to see how
this could be rigorously done. Similar as above, we will always consider the weak solution
y(z,t) of eq. (1.2) to be in L*(H?(0,1)). Namely, y,, makes sense as second weak derivative
for the spatial variable.

Proposition 3.3.1. Let w € Hj(0,1), consider the eigenvalues A, and orthonormalized
eigenfunctions wi(x) of the spectral problem wy, + a(x)w = A\w, where Ay > Xy > ..., then

- fj ([t Jta)

= Z (wr Yo) L2(0, 1)Wk>( ) (3.1)

— Zemlwm(wﬂyo)(x)

is a solution to eq. (1.2).
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Proof. Since wy, € HJ, we can directly see that

o0

0.0 =3 ([ st yntryir 0

k=1 0

_ ie)‘kt ( /0 1 yo(r)wk(r)dr)()
— 0,

y(1,1) = i ([ wlrrntorar Jouty
= 0.

In addition,

o0

0 =3 ([ wtrrentrrar Jeuta

In addition,



Thus we have

- d? - d
A A

MWk Y0) 12001y (dd22 (@ >+&%wk( ))

M (Wi, yo) 12 (0,1 MWk (Z)

g

1

Il
N~

t-
Thus y(z,t) == oo, e/\kt(fol yo(r)wk(r)dr) wi(z) is a solution to eq. (1.2). O

Proposition 3.3.2. For any n > 1, where {wg}]" forms an orthonormal basis, let

Ze)"“t( / w(r )m) R(2). (3.2)

then
vt >0, [[r( )]y < e lyoll,.

Proof.

Ir (-, Hz L2(0 1)

(o)
)\ t Ait
*{wr|yo)w § e w]ly()
j=n
o0

£2(0,1)
djk
= #{wrlyo) Z e (w;lyo) (w M
k_
=) e (wilyo)?
k=n
00
< 62)\nt Z <Wk|y0>2
k=1
=" " (yolwe) (welyo)
k=1

1

3o ol

= " (yolyo)

= (™" lyoll,)”
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Corollary 3.3.3. Let y(x,t) :=> -, e/\kt<f01 yo(r)wk(r)dr)wk(x), where {wy};" forms an

orthonormal basis, then ||y(-,t)|l, < e*||yoll,

Definition 3.3.1. Given a € L>(0, 1), consider the following rescaled norm on H{ (0, 1):

oll sy o) = ( / (W2(@) + (~o(2) + c>u2<x>>dx) :

where ¢ > |||, 1) is a positive number.

Remark. One can show that the above norm is equivalent to [[u|z1(,). Namely, there is
C1,C5 > 0, such that

Yu € Hy(0,1), ClHU“Hl(o,l) < HUHHg(o,l) < CZHUHHl(o,l)'
Proposition 3.3.4. Let y(z,t) := > ;| e)‘kt<f01 yo(r)wk(r)dr>wk(x) as in eq. (3.1), then

[y Dl ey < CullyC Dl gao,n) < C@Ollvolly, where Cs is a positive constant associated
with the continuous embedding H}(0,1) C C[0,1] and the function C(t) is nondecreasing.

Proof. The first inequality follows from Morrey’s inequality [7, Theorem 5.7.4] and the
definition of Holder norms. We now focus on the second inequality.

Notice that limy_,o(c — A\ )e* = 0, so it is bounded. Namely, there is some

C(t) € R, such that Yk > 0, (c — A\p)e*M < C2(t).
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Thus [ly(-, )l 30,1
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3.4 Designing the Control

{—yfﬁ if ya # 0

Lemma 3.4.1. Consider yq; € S as defined in 3.1.1, and o, = ‘ €
0 if ya =10
L>(0,1). We have that wy, = va(@) o qp eigenfunction for the spectral problem vy, + a.y,

= lyalls
with associated eigenvalue A\, = 0.

Proof. wy, ,, + oy, = Ye=lt) _ v @i g p () £ 0 which is everywhere on

lvale — va(@) Tvallz
(0,1).
In addition, [|w, [l, = || 45 = Juale — 1 0

Lemma 3.4.2. Let w € H}(0,1), consider the orthonormalized eigenfunctions wy(x) of
the spectral problem wy, + o (x)w = Aw. We have that Ym # k., w,, changes sign in (0,1),
where wy, s as in the above lemma.

Proof. Suppose we have w,,, being non-negative. Then by orthonormality, we have fol Wi (T)wy, (x) =
0. However, wy, (z) is by construction positive everywhere in (0, 1), thus w,,(x) = 0 almost
everywhere, which is not an eigenfunction, thus a contradiction.

Similarly, w,, cannot be non-positive. O

Theorem 3.4.3. Let w € H}(0,1), consider the orthonormalized eigenfunctions wy(x) of
the spectral problem w,, + . (z)w = Aw. We have that k., = 1 and thus Ay = 0, where wy,
1 as in above, and Ay > Ay > .. ..

Proof. Suppose kx > 1, then we have w; changes sign in (0, 1), and thus we can find a
positive yo € L?(0, 1), such that fol yo(z)wi (z)dx < 0.

Consider « := a,, — A1, then we know that wg(z) are still the eigenfunctions of w,, +
a(r)w, = \w, and the corresponding eigenvalues are Ay — Ap.

Thus the solution for problem 1.2 is

[e. 9]

oto.t) = 3o [ () Yoo

k=1

= /01 yo(r)wy (r)drw(x) + i ekt </01 yo(T)wk(T)dr> wi ()

Since Vk > 2, A1 > Ay, we have limy o y(z,t) = fol Yo(r)wi(r)drwi(z) < 0 for some
z € (0,1) such that wy(x) > 0.

However, this contradicts the maximum principle eq. (2.1).

Thus we must have kx = 1 and thus A\; = 0. O
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Lemma 3.4.4. Consider a := «, + a, with o, wy, A as in above, and a € R. Let y(z,t)
be the solution as in eq. (3.1), we have that

ly(-t

) - yd||2 <

o T 6(/\2+(I)t||y0||2

e [ o)t -

Proof. Notice that from above, we have that for all Kk > 2, A\, < Ay =0

f; perar ( / (el ()

= e
-~

1

yo

) + ie Awta)t </1 o(r )wk(r)dr> wi(x)

r)dr |wi(z) + r(z,t),

o)
o)

i ( / (el ()

In addition,

ly(-,2)

_dez

IN

([ mrent Yo 1.0 |

([ vt Yo =]+,

([ mprar) 25—+,
([ wiorenteran) =l [ 25|+ 1o,
([ mtrrntryir) =l + .01

([ e yntryir) =l + 05 332

O

Lemma 3.4.5. Let w € H}(0,1), consider the orthonormalized eigenfunctions wy(x) of
the spectml problem wy, + o (x)w = Aw. Consider any yo € S as defined in 3.1.1, we have

fo Yol

Proof. This is easy since both yo(x) and wg.(x) are positive in (0, 1).

Theorem 3.4.6. Consider the setting as above, let a := %ln <

x)dx > 0, where w; = wy. s as in the above.

llyall,

I yowldx> , we have that

dim {ly(T) = yall, = 0

32



Proof. By the above lemma, a > 0 is well-defined.

ly(-, T) = yally < + Ry,

1
w/mmmm—mm
0

[yall 1
=l | yowidz — ||yl
fO y0w1d$ 0

+ e e lyoll

yall,
fol Yowrdx

_ ||yd|l2”y0”2 2T
fol Yowrdx

Notice that we have Ay < Ay =0, so

=0+ e lyoll

tim (- T) — yully = Jim [ Wallaltolle ) sz
T—o00 T 550 fo yowldx

]

Theorem 3.4.7 (Approximate Controllability of the Heat Equation in 1D). For any non-
negative ug, uqg € L?(0,1) with uy # 0, and € > 0, there is a T (e, up,ug) > 0 and multi-
plicative control o € L*>®(Qr), such that for the solution 3.1 to the problem 1.2, we have
[u(-,T) — uall, <. [15]

Proof. Since the set S as in definition 3.1.1 is dense in the non-negative functions in L2(0, 1)
by theorem 3.1.3, we can approximate uq by yg € S arbitrarily close with [Juq — yall, < 3e€.
Pick a(z,t) := a.(x) + a(T) as from above, we have by previous result that

Jim [Ju,T) = yall, = 0,

and thus we can find a 7' big enough so that [Ju(-,T) — yall, < 3€, 0 [[u(-,T) — uagll, < €
holds by triangular inequality. O

This also suggests an easy numerical algorithm:
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Algorithm 1: Approximate Multiplicative Control through Reaction Term
Data: Initial state yo € L?(0,1), target state y4 € L?(0,1), both positive, and final
time T’
Result: Multiplicative control « for Problem 2
x < partition of [0, 1];
f(z) <= numerical approximation of yg,,(z);
if y4(z) # 0 then

f(@) .
L Oé(x) < ~ alz)’

else

L afz)
n( yoyddl‘)

a() o) +

return o

To serve as an intuitive picture, we have implemented this algorithm in Python, and
plotted the following easy example, with final time 7" = 2. See Appendix B.

yo(x) = 82%(1 — z),

ya(z) = sin(nz). (3.3)

Evolution: u(x,t) = ud(x)

12 = t=0.00 =133
—_— =0.22 t=1.56
— t=0.44 t=1.78
1.0 4 =—— t=067 t=2.00

e £=0.89 * Target ud

0.2 1

0.0 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3.1: Evolution of control through the reaction term, method 1

Also, we plotted the L?(0,1) difference towards the target state.
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L2 Error to Target over Time

0.25 1
0.20 1
0.15 -
0.10 1
0.05 -
0.00 -
‘ T ‘ T ‘ T ‘ T ‘
0.00 0.25 0.50 0.75 1.00 125 1.50 L75 2.00
Time t

Figure 3.2: Difference towards the target state, method 1
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Chapter 4

Control through Advection Term via
Transformation to Reaction Term

We now want to consider the multiplicative controllability through the Advection Term,
as defined in problem 3.

4.1 Transformation between control through Advec-
tion Term and Reaction Term

4.1.1 Sturm-Liouville Theory for Continuous Functions

We will here show the motivation of our approach by examining a transformation for
continuously differentiable functions. All the partial derivatives in this section shall be un-
derstood as normal calculus derivatives, and the equalities of functions shall be understood
as pointwise.

Proposition 4.1.1. Given yo € C%(0,1), and a control o € C*(0,1) for the advection
term linear initial problem Vx € (0,1),t € (0,7,

%(3}, t) = Yaa (2, 1) + () ye (2, 1)
y(@,0) = yo()
then there is a control 3 := —iozz — %ozcﬂ € C(0,1) that solves the the reaction term linear
initial problem Vx € (0,1),t € (0,7T),
9y

a(x,t) = Uge (2, 1) + B(x)u(z, 1)
u(,0) = go(w)er I 2O,
where ¢ € (0,1), and y satisfies for any (z,t) € (0,1) x (0,T),

u(z,t) = y(z,t)e% J& alz)dz
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Proof. Consider w(z) := e2 /S @@ then we have

Y = uw
wy(z) = —%a(gy)eéff a(Z)dz
= —a(@u()
Wy (T) = %loﬂ(:c)e 2Jle@ds _ 2 (p)em2 [ @
- Lt - Jaututo)

= (uwy + uw), + a(vw, + uw)
= UWgy + UpWy + UpWy + Ugpw + a(x) (uw, + uzw)

= Wlge + (2w, + aw)uy + (Wer + qwy)u
o (o o) & (L 1
= Wlyy 5 W oaw | Uy 10 W~ 5w — gaaw |u

10yt (—ta? - L
= Wlyy - Uy ——a” — =, |wu
45 2

= w(Uyy + Pu).

Notice that y; = ww since w is independent of ¢. Since w > 0, dividing both sides by w
gives
Ut = Ugy + ﬂu

as desired. In addition, the boundary conditions follow by that u(z, t) = y(z, t)ez Jo ®()dz,
[l

Proposition 4.1.2. Given any (3 : (0,1) = R, we have that o € C*(0,1) is a solution to

the Riccati equation
1 1
Bz) = =20 (x) = sau(z)

4 2
if and only if q(z) € C*(0,1) is a nonzero solution to
Gaa () + f(2)q(2) = 0,

where o = 2%”.

Proof. Suppose f(z) = —ta?(x) — La,(z). Define g(z) := ez /@ for any ¢ € (0,1).
Similar to above, we can see that ¢,(z) = fa(z)q(z), and ¢, (z) = 10*(2)q(z)+30,(x)q(x).
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On the other hand, suppose ¢, (z)+5(x)q(z) = 0, with ¢(z) # 0. Define a(x) := QC’;(—(;”’)),
then

1 L) 1 gl - 2
1@ ge@ =00 T2 e
7*(x)

We notice that the proofs in both of the above propositions require

1. Product rule and Quotient rule;
2. Chain rule, so that we have d%ef(“‘) = ef(f”)%f;

3. Fundamental Theorem of Calculus, so that we have <L ([* a(2)d) = a(x).
We thus invoke results discussed in Section 2.5 in the next section to get a result for weak

derivatives.

4.1.2 Transformation of Control

Theorem 4.1.3. Given yy,yq € L*(0,1), and T > 0. Consider all spatial derivatives below
as weak derivatives, and all equalities as equalities of equivalent function classes in space
of square-integrable functions, we have

1. Suppose there is a control o € Wh>(0,1) such that ¥t € (0,T),

y(-,t) € H*(0,1),

yt('=t> - ymﬂ( 7t) + Oéyx( 7t)7

y('a()) =% (4.1)
y(,T) = ya,



then there are == —30*—3a, € L>(0,1), and g := (x — ez )e a(i)‘””) e W2>(0,1),

such that

(a) B is a control for

u(-,t) € H*(0,1),
() = Uge (-, 1) + Pul-, t),
u(-,0) = yoq, (42)
u(+,T) = yaq,
(b)
Qzx + Bq - 07 (43>

and
1 2,00
(C) P eWw (07 1)
In this case, we note o = 2%9”.

2. Conversely, suppose there is ¢ € W»*°(0,1), 8 € L>(0,1) such that

(a) [ is a control for eq. (4.2)

(b) eg. (4.3) Gue + Bg =0 holds
1 2,00

(¢c) 3 € W»(0,1),

then o := 2% € W1°(0,1) is a control for eq. (4.1)

When 1 or 2 holds, u(x,t) = q(z)y(z,t) a.e..

Proof. 1 is true by following the earlier proof for o € C'*(0, 1), and noticing that the con-
ditions for product rule 2.5.3, chain rule 2.5.9, and the Fundamental Theorem of Lebesgue

Integral Calculus with Weak Derivative 2.1.13 are all satisfied when we want to use them.

We will focus on the proof of 2.
Let .
ylz,t) = u(z,t)—.
(#.0) = o)
By construction, y(-,0) = yo,y(-,T) = yq. By linearity of the partial derivative, we have
1

yt('7t> = Ut('ﬂf)g?

since %1 does not depend on t. Since 1,q,% e Wh(0,1) N L>(0,1), by the necessary
condition of the quotient rule 2.5.5, we have

q/, q? q?




Also, by product rule 2.5.3 on qx,i € W1>(0,1), we have %’ € Wh*(0,1), and

@ oz 1 Gz @
()% -5
q9/: q q) . q q

Notice that this show a 1= 2% € W>(0,1) as well.

qx

In addition, since ¢, <1> = —2 € W1°(0,1)NL>(0, 1), by the necessary condition

q q
of the quotient rule 2.5.5, we have

<1> Q<%%>x— e

q

Now, since u(-,t) € H?(0,1) C H'(0,1), and é € Wh>°(0,1), by the product rule 2.5.3, we
have y(-,t) € H'(0,1), and

0ol 1) = (3) )+ Sl

e
Since u, (-, t),u(-,t) € W1(0,1), and %, (%) € Wh>(0,1), again by product rule 2.5.3 and

linearity of weak derivatives, we have y,(-,t) € H*(0,1), and

1 1 1 1
Yua t) = <_) u(-,t) + (_) Uy ',t + <_> Uy '7t + —Ugs '>t
(-, ) . m( ) .). (-, ) ). (-t) . ()
2q2_(hmq 4z 1
= S = Al ) — 2%, () + — ()t
7 (-t) " (,t) . (t)

1 ¢ Qe

This shows y(-,t) € H*(0,1).

Now take oo = 2%””, we have

1 ¢ @ Gz (-, 0)q — u(-, 1) gy
= (Ugzz '7tq_u'7tQmm__2_mu '7t _Q_Uw '7t + 2=
(Uga(-,t) (1) )q2 " (1) " (1) . ”

= q2 .
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Now applying the fact that ¢, + g = 0 and u(-,t) = wg. (-, ) + Sfu(-, t), we have

Yoz + QY =

e
= p
q
_ ut('at)
q
= yt('7t>
This completes the proof of 2. m

The above theorem establishes the if and only if relationship between the control of the
advection term with (a), (b), and (c). We will now investigate when the latter holds true.

Khapalov’s result 3.4.7 gives an approximate control of (a) eq. (4.2), so we will examine
the conditions (b) eq. (4.3), and (c) first.

Theorem 4.1.4. Consider a linear system
&= A(t)x + h(t),

where A(t) is an n x n matriz, h(t) is an n-vector, whose elements are integrable on
every finite interval. For any initial condition xo, there is a unique absolutely continuous
solution x(t), such that (0) = xo, and z(t) = fot A(s)z(s) + h(s)ds. (This is a corollary
of Carathéodory’s Existence Theorem (5.1) and Theorem 5.3, listed on page 30 of [17])

Corollary 4.1.5. Suppose § € L>*(0,1), then for any q(0),q.(0) € R, there is always a
unique solution q € W*°°(0,1) satisfying

in the weak sense, where we consider q,q, € WH=(0,1) to be their absolute continuous
representatives as in corollary 2.1.13.

Proof. Extend 8 by B(x) := {g(x), ze (0, 1).
, 0.w.

Consider A(z) := (_ BO(I) é) h(z) =0, and yo = (5%) € R2,

Notice that for any finite interval [0, 1] C I C R, we have
R R 1
[|-8]ax < [ J5laz = [ 181 <181, 01 < o
I R 0
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and [, 1dz = |I| < oo, [,0dz = 0 < o0, so it satisfies the condition in the above theorem.

We have that there is a unique absolutely continuous solution y(z) = (gl Eg) , such that
2

y(O) = Yo, and a:vy = A(:L’)y a.e..

Notice that for any € > 0, y1,y> are both absolutely continuous on (—¢,1 + ¢€). In
particular, yi,y, are both continuous on the compact set [0,1] C (—e€,1 + €), so they
achieve their minimums and maximums in [0, 1]. Thus, they are bounded on (0,1) C [0, 1],
which means y;,y2 € L>(0,1).

Now take ¢ := y;, we have that ¢ is absolutely continuous, and its normal derivative
%q(aj) = yo(x) a.e.. By the Fundamental Theorem of Lebesgue Integral Calculus with
Weak Derivative 2.1.13, we have that ¢ € W1>°(0, 1), with the weak derivative ¢, = Y2l (0,1)-

Similarly, we have g, = u2|(01) is absolutely continuous, and its normal derivative

Lg.(z) = —=B(@)y(z) = —B(x)q(z) ae., so ¢ € WH(0,1), with the weak derivative
This shows ¢ € W2>(0, 1), and satisfies q,, + 8q = 0. O

This guarantees that for any initial condition that we would like, and any control 5 we
have for (a) eq. (4.2), we can always find a solution ¢ to (b) eq. (4.3). The problem would
be if there is any initial condition that yields a ¢ that satisfies (c¢). The current condition
% € W2>(0,1) is relatively hard to check, so we aim for an easier representation of the
condition.

Proposition 4.1.6. Given any p € [1,00], u € WE>(U). Suppose + € L>(U); namely,
u 1s bounded away from 0, then % lies in Wh>°(U), and its i weak derivative is given by
0,(%) = —%. Also, in this case, u does not change sign.

Proof. Suppose, for contradiction, that u changes sign. By corollary 2.1.13, u € WH>°(U)
has a continuous representative.

By the Intermediate Value Theorem, there must be some zy € U, such that u(xzy) = 0.
Now lim,_,,, %L = 00, which contradicts that % € L*(U). This shows u does not change
sign.

— |1

Let M := ”E”Loo(U)

u(z) € [57,N] for a.e. 2 € U. Let I := (57,2N) D [57, N], which is an open interval in

< oo, N = HuHLOO(U). Suppose first u is always positive, then

2M M
R that contains the closure of u’s essential image. Since F(s) := + € C'(I) and has a
bounded derivative |F'(s)| = |—%| < 4M? < oo, by the modified chain rule 2.5.9, we have
the result.

If u is always negative, we have u(z) € [-N, —4;] for a.e. € U, and we get our result
similarly. n

Corollary 4.1.7. Given any p € [1,00|, v € W?*(U). We have that % lies in W2 (U)
if and only if% € L>®(U); namely, u is bounded away from 0. In this case, u does not
change sign.
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Proof. (= ): Clearly 1 € W% (U) implies - € L>®(U) by definition.

(<= ): By the above proposition, we have that 1 € W=(U) with 0;(2) = —2%. By
the corollary of the modified chain rule 2.5.9, we have # € Wh(U) as well. Since each
dyu € Wh>(U), by the product rule 2.5.3, we have that 0;(1) € Wh>(U).

Since this hold for all i € [n], we have that £+ € W2>(U). O

The above corollary provides a sufficient and necessary condition for (c), and we have
the following result.

Theorem 4.1.8 (Necessary and Sufficient Condition for Transformation). Given yo,yq €
L?*(0,1), and T > 0. Consider all spatial derivatives below as weak derivatives, and all
equalities equivalent classes in L*(0,1), we have that there is a control « € WH>(0,1) for

y(-t) € H*(0,1),

yt('a t) = ymc(at) + ayaz('at)?

y6.0) = 4
y('7T) = Yd;

u(-,t) € H*(0,1),

(s, 1) = uge (-, 1) + Sul-, 1),

u(+,0) = yog, (42)
u(aT) = Y44,

where ¢ € W%>(0,1) is the unique solution (given by Carathéodory’s Existence Theorem,)
to

Gz + Bg=0 (4.3),
satisfying

1 (o]
JELT0), (4.4)

; — Y
In this case, u(z,t) = y(z,t)q(z) a.e., and ov = 2.

In particular, for homogeneous Dirichlet boundary conditions,
u(z,t) = q(z)y(z,t) =0 <= y(z) =0

when 5 € L>(0,1) eq. (4.4) holds. Thus, the above result establishes a transformation
between Equation (1.3) and Equation (1.2).

Corollary 4.1.9 (Sufficient Condition for Transformation of Approximate Control). Given
Yo,ya € L*(0,1), and e > 0, T > 0. Consider all spatial derivatives below as weak deriva-
tives, and all equalities equivalent classes in L*(0,1). Suppose for all € > 0, there are

43



g€ L>0,1),¢(0),q.(0) € R, M > 0 such that 5 is a control for
U(,t) € H2(07 1)7
ut('at) = uxx(vt) + 5“(71;)7
U’(7O) = Yodq,

€
Ju(-,T) — deHL2(0,1) < M

(4.5)

where ¢ € W%>(0,1) is the unique solution (given by Carathéodory’s Existence Theorem)
to

Gze + B =0,
satisfying
Gz + PBg=0 (4.3),
and
.

then o := 2% € W*(0,1) is a control for

(4.7)
ly(-T) — val <e.

Proof. This follows directly from the above result, and the only thing we need to check is
the approximate part.

Indeed, suppose |[u(-,T) = yaqll 201y < 77- Take y(z,t) 1= u(z,t) 5 o as before.

1 2
) 1 wyaq
y(. T) = ya S S
Iy 1) =wallzaony = | |ul- 1) ==
1 1 2
g/ =(u(-,T) = yaq)| da
o 19
17 2
<= \u — yaq| dx
q L°°Ol)
1 2
= ||= (-, T) = yaqll72(01)
41l L>=(0,1)
1| €\2
<l - (GF)
q1lL>=(0,1) M
<e2
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Remark. The above Corollary reduces Problem 3 to Problem 2 and finding appropriate
initial conditions for ¢. One may design an algorithm that picks a certain gy € W2>(0, 1)
that is bounded away from 0, find a control fy for eq. (4.5) with gy (which is possible for
any M if Problem 2 is solvable as in 3.4.7). Find ¢; such that eq. (4.3) hold with Sy, and
then find 3 that solves eq. (4.5) with ¢;. Recursively, one have a sequence of (g;, 3;) that
solves eq. (4.5), with (git1, 5;) solves eq. (4.3).

Whether this sequence will eventually converge to a desired (¢, $) or not is worth further
studying.

Algorithm 2: Approximate Multiplicative Control through Advection Term
Data: Initial state yo € L*(0, 1), target state yq € L*(0, 1), both non-negative,
tolerance €
Result: Multiplicative control « for Problem 3
q < a function in W2°(0, 1) that is bounded way from 0;

M « ||

q
Up < Yo4;

Uq < Yaq;

€y ﬁ,

repeat

B < control of Problem 2 with [lu(-,T) — ual[12(g 1) < €03

L(0,1)

q(0),¢'(0) < appropriate value;
q < solution to eq. (4.3);

M« ||*

q
Uop < Yog;

€0 ﬁ;

Uq < Ya4q,;

u <— solution to eq. (1.2);
until [Ju(-, T) = udll 1201y < €03
o %”;

return o

I

Lo(0,1)

An interesting study would be on for what 3 such a g that satisfies eq. (4.3) and eq. (4.4)
exists. That would give us a criterion on what kind of control 8 through the reaction Term
may be transformed to a control a through the Advection Term using the above algorithm.

In particular, it would be nice if the ¢;’s are uniformly bounded away from 0 by a fixed
ﬁ for the corresponding family of (;, which will give the approximate controllability that
we want.

We will here state a sufficient but not necessary condition on :

Proposition 4.1.10. Suppose 5 € L>*(0,1) satisfies 5(x) < 0 a.e., then for any q(0) >
0,q.(0) > 0, the unique (continuous in view of corollary 2.1.13) solution to

Gz +Pq=0 (4.3)
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will satisfy

< —— < 00.
Lo (U) q(0)

F
q

Proof. WLOG, we can redefine § on a measure null set so that for all x € (0,1), 5(z) <0.

Since ¢ is continuous and ¢(0) > 0, there must be some neighbourhood (0, z) such that
g > 0. Let zp := sup{z € (0,1), such that ¢(x) > 0}. Since 5 < 0, we must have g,, > 0
on the entire (0, zo).

By Theorem 4.1.6 in [14], ¢ will be (weakly) convex and thus non-decreasing and strictly
positive on (0, zg).

Suppose for contradiction that xy # 1, then we must have ¥6 > 0,3z € (x¢,z0 +
9), such that g(x) < 0 by choice of xy. By continuity of ¢, we must have ¢(xy) < 0, which
contradicts ¢ being non-decreasing and strictly positive on (0, o).

Thus we have shown zy = 1, and ¢ is non-decreasing and strictly positive on (0, 1).

L

Namely, < ©) < 00. ]

1
Lo )
Corollary 4.1.11 (Transformation of Non-positive Control). Given yo,yq € L*(0,1), and
e >0, T >0. Consider all spatial derivatives below as weak derivatives, and all equalities
equivalent classes in L*(0,1). Suppose there is q(0) > 0, such that for any € > 0 there is
some ¢ (0) > 0, and a non-positive 5 € L>(0,1) such that 5 is a control for

u(-,t) € H*(0,1),
() = Ugp (-, t) + Pul-, t),
u(-,0) = yog, (48)

Ju(-,T) — deHL?(o,l) < q(0)e,

where ¢ € W%>(0,1) is the unique solution (given by Carathéodory’s Existence Theorem,)
to

Gor +Pg =0 (4.3),
then there is a control o := 24 € Whee(0,1) for

y('7t) € HZ(O’ 1)a
yt('7t) = yzx('7t> + Ofy;v(" t)7
y<',0) = Yo

ly(,T) — yall <e.

(4.7)

Proof. Take M = q(l—o) > 0, and apply corollary 4.1.9. n
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4.2 A Control on Nonnegative States

In this section, we will apply the above result to transform a particular control through
the reaction Term to the advection term using corollary 4.1.11. Notice that the results
stated in the above section are more general, and may be used to transform other types of
controls through the reaction Term.

Although Khapalov’s result 3.4.7 guarantees approximate controllability of the reaction
term problem in (a), it is not necessarily non-positive. However, another more result from
Khapalov may be used to evaluate this problem. Also, in this case, we may be released
from the recursive algorithm described in Algorithm 2.

Theorem 4.2.1. [16, Theorem 3.2] Given T > 0 and bounded U C R". Let v, €
W2(U) N H*(U) be such that v.(z) < L < 0 a.e. in U for some constant L. Then
for any ug € H{(U),uq € L*(U) and € > 0, we can find a T, € (0,T), such that all
solutions to

uy = Au + vu,

ulov 0,1y = 0, (1.1)
u(+,0) = up,
with the control )
v(x) = iv*(x)

satisfy
[u(-, T) — €™ uoll 2y < €

Notice that the control v here will always be negative, which allows us to apply corol-
lary 4.1.11.

In addition, when ug,uy are such that Z;’Eg < C < 1 a.e. for some constant C, it
immediate that v,(z) := In (%) < In(C) < In(1) = 0, and the final estimate becomes
Vs Uq
a6, T2) = ol = [[u(T2) = 2a| = u(e )~ ] < e

which is the condition of approximate controllability of Problem 1. Indeed, as a direct
result, we have the following Theorem:

Theorem 4.2.2. [10, Theorem 3.1] Given T' > 0 and bounded U C R™. Consider any pair
of initial and target states ug € HY(U),uq € L*(U) such that

uq(x)

<
O<Cl_ uo(l’)

< <1 ae.

Ud

for some positive constants c1,cs. In addition, suppose ¢ € W2e(U) N H*(U), then for
any € > 0, we can find a T, € (0,T), such that all solutions to eq. (1.1) with the control

o(z) = Ti*ln (“d(""”)) (4.9)

uo ()
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satisfy
Ju(, T%) — udll oy < €

To serve as an intuitive picture, we also implemented this control in Python, for the
simple example eq. (3.3). Notice that for this control, Khapalov’s analysis suggests the
final error will be proportional to T, [16, equation 3.32 4 3.33|, so we selected a final time
T, = 0.0001. See Appendix B.

Evolution: u(x,t) = ud(x)

1.2
1.0
0.8
=
% 0.6
=1
0.4 /l /
= t=0.00000 t=0.00007
— t=0.00001 t=0.00008 \
0.2 4 — t=0.00002 t=0.00009
— 1=0.00003 t=0.00010
— t=0.00004 == Target ud
0.0 4 —— t=0.00006

T T T T T T
0.0 0.2 0.4 0.6 0.8 L0

wr

Figure 4.1: Evolution of control through the reaction term, method 2

Also, we plotted the L?*(0,1) difference towards the target state.

L2 Error to Target over Time

0.25 4

0.20 4

0.15 4

[Ju(-t) - ud]|_2

o

e

o
L

0.05 4

0.00 4

T T T T T T
0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Time t

Figure 4.2: Difference towards the target state, method 2
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In view of the above theorem, we can apply the transformation 4.1.8 and aim to get
the following result for the simple case U = (0, 1).

Conjecture 1. Given T > 0 and U = (0,1) C R. Consider any pair of initial and target
states yo € HY(U),yq € L*(U) such that

0<e < <ecp<1ae (4.10)

for some positive constants c¢1,cy. For any € > 0, we can find a T, € (0,T) and a control
a € Wh(U), such that all solutions to

Yt = Yzz + Yy,
y(+,0) = yo (1.3)
y(0,t) = y(1,t) =0,
satisfy
ly(-,T) — yd||L2(U) < e

Proof. We here sketch a proof for the claimed result, but a more detailed analysis on
Khapalov’s construction and the Comparison Theorems for ODEs is desired to complete
the last step.

n (ydm) va(®) _ .

. 3 2 . . .

Consider v,(x) := vo(w) vo(e) , which by assumption, is zero on a measure
0, 0.W.

null set, and no greater than Incy < 0 elsewhere.

Notice that for any constant s > 0, we still have sv.(x) < 0 a.e.. Also, for any

q € L>(U), if we again take u = yg, we have that {¢ = 2 a.e., so the assumption
0<e < ZZ—E;E; < ¢ < 1 a.e. always holds, and v, defined above satisfies v, = In <Z;’—Eg>a.e.,

independent of the choice of q.
From the proof of the above theorem [16, equation 3.32 4+ 3.33], any solution u to

uy = Au + vu,

ulov 0,1y = 0,
u(+,0) = o,

with the control
v(x) = sv.(x)

satisfies

2 2

1
u<'7 ;) — Uq

1 v
u(" g) —€

1 9
< C=|luoll a1 0.1y
L2(U) s

L2(U)

for some constant C' > 0 independent of s and q.

In addition, if o) < 00, i.e. ¢ is bounded away from 0, we have y(x,t) = 0 <=
L>(0,1

u(z,t) = y(x,t)q(x) = 0, so the boundary conditions are preserved.

1
q
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In view of corollary 4.1.11, it suffices to find s > 0, ¢(0) > 0, ¢,(0) > 0, such that

1
O~ ol o) < (a(0)6)”

2

1 (Nvoall o) €’

- — | <= 4.11
where ¢ is the unique solution to

We note that by the product rule (corollary 2.5.3),

2 2
1 ||yo€I||H1(o,1) < 1 2||y0||H1(0,1)||Q||le°°(0,1)
s q(0) T8 q(0)

2
:2” HQ HQHWLOO(OJ)
5ol o) q(0)

2

2
S||?JO||H1(0,1)

Or, equivalently,

4
q(0)

where Hyonl(O’l) is a constant independent of ¢, and ¢,, + sv,q = 0 if and only if <$> +

sv*ﬁ = 0. Thus, it suffices to show that for all ¢y > 0, there is s > 0, ¢,(0) > 0, such that

)
Wl,oo(OJ)

L2
Sl < €0, (4.12)
where ¢ is the unique solution to the ODE
Gz + sv.q = 0, ¢(0) =1, q,(O) = ¢(0). (4.13)
Take €y := 57—=>—— will give us the original result we want. O]
HyOIIHl(Oyl)

Remark. Studying eq. (4.13) and showing eq. (4.12) by studying the ODE will complete
the proof of the above conjecture, and it is the most straightforward and easiest approach.
In the case that it is actually not true, one may go back to eq. (4.11) and study that
problem.

The following more general result may be found in more detail in section 3.3 of [16].

Theorem 4.2.3 (Non-negative Controllability through Reaction Term). Given any T > 0
and bounded U C R™ such that OU is C3tl2) smooth. For any € > 0, and any pair of
initial and target states hg, hq € L*(U), which are nonnegative (almost everywhere) in U
and hg # 0. There is a control

0, t e (0,t)

v(-,t) = t;“jtl, t € [t,to)

Yo t e [tg,tg],

tyg—to’
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to

hy = Ah + vh,
hlovx () =0, (1.1)
h(-,0) = hy,
where hy € CX(U) is such that hy # 0, Yo € U, hg(z) > 0, and th— ha ) < €.

Also,

1. t; € (0,T) is arbitrary, h € CQ(U X (B,tl]) for any g € (0,t1), and
h(-,t;) >0, a.e. in U°,
h('7t1)|aU =0.
2. There is v > 1 such that Vo € Supp(hq), vh(z,t1) > hg(x) + 1.

3. There is ty € (t1,T) such that ||h(-,t2) —7h(-,t1)||C(U) < § for some o € (0,1),

which results in
Vx € Supp(hg), h(x,ts) > ha(z).

4. Define

then
Iha = eh(eto)llo(g) < o° + 0+ oA t)llea (o),

and v, <0 for allz € U.
5. There is t3 € (t2,T) that satisfies
1R t3) — " h(:, ta)l 2y < 0
By taking any €¢1,0 so small such that
€1 +o+ ]U]% <02 +o0+ afth(-,tl)HCg(U» < €,
we have that the control v satisfies
1A, t3) = hall Loy <€

Remark. 1f we again take y = g for some g € L>°(U) that is positively bounded away from

0, when ¢ — 0, we have
hd—|— %(72
Vo =In | —=—
h("tQ) +o

— In (%)
Y

:m<wﬂ»>
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yd+%02
y('7t2)+0

With this in mind, we may define v, := In < > instead, which will be independent

of the choice of q.

1

In addition, if we take v > 1 such that Va € Supp(ya), vy(z,t1) = ya(z) + ||,

Y

L= (U)
we have

1
Vo € Supp(ha), vh(z,t1) = ha(z) + q(x) p

Thus, the choice of v can be made only dependent on g, 14, and not on gq.

> ha(z) + 1.

L= (U)

Conjecture 2. Given any nonnegative yo,yq € L*(0,1), and T > 0. For any € > 0, there
is T* € (0,T) and a multiplicative control o € L>((0,1) x (0,7%)) on the system

Yt = Yoz T QYyq,
y(-,0) = yo (1.3)
y(0,y) = y(1,t) =0,
such that
ly(-, T) — yd||L2(o,1) <€

We will propose such a control a through the Advection Term, although a more detailed
analysis on Khapalov’s construction would be necessary to address some concerns that will
be discussed below.

1. Pick any ¢, € (0,T). Let
a(+,t) =0

be constantly zero for ¢t € (0, ). With the same argument as in Khapalov’s construc-
tion [16], by the smoothing effect and a strong maximum principle, y € C?([0,1] x (3, t1])
for any g € (0,¢;), and

y(-,t1) > 0, a.e.in (0,1),
y<07t1) - y<17tl) = 0.

2. Pick v > 1 such that Vo € Supp(va), vy(z,t1) > ya(z) + M. This is possible for any
M > 0, since y(-,t;) > 0, a.e. in (0,1).

We note that for any to € (¢1,T) such that v = tlnll < 72, we have that w =

tin_vtl < 7. Let
cos (wxr — %
ale) = M(cos (%)2) ’
we have ¢, () = —wz% = —vq(z). Namely, ¢,z +vg =0in U.
In addition,
cos (w— %
o) = o) <
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Namely, ||1

4.1.8.
Taking u(x,t) = y(z,t)q(x), we recover step 2 of Khapalov’s construction.

< M. Thus, ¢ satisfies the requirement of the transformation

Leo(U)

3. Pick ty € (t1,T) as in step 3 of Khapalov’s, and define

. t) e ¢ () - wsin(wx— )
(z,) '_2q(:1;) =2 cos (wx —

)

o|E (NIE

onte [tl,tg).
We have that y(-,t)g = u(-,t) on t € [t1,t5] by the transformation 4.1.8.

( e %02 )
Vg :=In|[ ——7— |,
y('7t2) +o

5. Select a t3 € (t2,T) by modifying the argument before.

4. Define

which will be negative.

Notice that in the case that we can pick v > 1 such that yy(z,t1) > ya(x) and tin_”tl < 72,
we can always apply our transformation However, this is only a sufficient condition for the
transformation. When tl% > 72, that does not mean the transformation does not work,
and it might be worth further studylng One may apply some results form ODE theory to

achieve a better result.
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Chapter 5

Conclusion

As a conclusion, we studied the multiplicative controls through the reaction term or through
the advection term. Following Khapalov’s approach, we have seen that approximate (mul-
tiplicative) controllability through the reaction term may be achieved for any pair of non-
negative initial and final states, with more than one possible control.

We also established a transform between the multiplicative control through the reaction
term and the multiplicative control through the advection term, using some variation of
useful results on weak derivatives. With the transformation, we proposed an algorithm that
will exploit the approximate controllability through the reaction term to achieve control
through the advection term.

There are several possible directions that may follow this research. First, we can study
the ODE eq. (4.3) more carefully to conclude about the convergence of the algorithm 2.
Second, we aim to study eq. (4.12) better, to complete the proof of the two conjectures
in Section 4.2. Third, it would be interesting to generalize the transformation to higher
dimensions and see if similar results will apply. Fourth, we can further weaken the require-
ment, and only require the solution to be a weak solution to the system (instead of a strong
solution in terms of weak derivatives, as is currently done). Lastly, we can try to impose
different boundary conditions and analyze how the transform would behave in those cases.
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Appendix A

Density of Uniform Step Functions -
A constructive proof

Theorem A.0.1 (Lebesgue Monotone Convergence). Let (X, A, u) be a measure space.
Let f, : X — [0,00] be measurable functions with 0 < f; < fo < .-+ < o0. Let f(x) :=
limy, o0 fu(x), then f: X — [0,00] is measurable, and

lim [ fudy = / Fdy
X X

n—oo

Lemma A.0.2 (Fatou’s). Let (X, A, u) be a measure space. Let f, : X — [0,00] be
measurable functions. Then

/(liminf fo)dp < liminf/ fndp
X b

Theorem A.0.3 (Lebesgue Dominated Convergence). Let (X, A, ) be a measure space.
Let f, : X — C be measurable functions, defined almost everywhere on X, such that
f(z) = lim, o fn(x) is defined almost everywhere for x € X. If there is 0 < g(x) €
LX), such that for almost everywhere x € X,¥n € N, |f.(z)| < g(z), then f € L(X),
and

i [ fudp = [ S, im [ 17 = fildn =0

Theorem A.0.4 (Lebesgue differentiation). Let \ denote the Lebesgue measure, let |A| =
A"(A) denote the volume of A C R"™ under the Lebesgue measure. Consider a family of
subsets V such that

de > 0, such that VA € V,3B a ball, such that A C B,|A| > ¢|B].

For A > z, let A — x denote the limit where the diameter of A shrinks to 0; namely, A
“shrinks” to x. If f is Lebesque integrable, we have

) 1
A_};{gevm/jqf(x)dx = f(x), a.e..
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Proposition A.0.5. Given any bounded domain U, any function g € L>®(U), and a
sequence of functions {gx}r, such that it converges point-wise to g almost everywhere. If
dM > 0, such that Vk > 1,esssupy g < M, esssupy g < M, then we have that it also
converges in ||| sy, for any 1 < p < oco.

Proof. We have that limy_, gr(z) = g(z) a.e.. Consider fi.(z) := |g(x) — gr(2)|", we have
that limg_,o frx(x) =0, a.e., and

V> 1,0 < fi(z) < (lg(@)| + |gn(2)])" < (M + M)" = (2M)", a.e

Notice that [,,(2M)Pdx = (2M)P|U] < oo, so (2M )P € L} (U).
Thus fr — 0 satisfies Lebesgue’s dominated convergence theorem.

Jin lg = 0y = Jim ([ lote) - oo
= lim </ fk(x)dx>p
k—o00
k—oco

hm fr(z dx)p

k—o0

(
£

]

Corollary A.0.6. Consider any 1 < p < oo. Given any function g € LP(U), and a se-
quence of functions { gy }r._, such that it converges point-wise to g a.e., andVk > 1,|gx(x)| <
|g(x)]a.e., then we have that it also converges in ||| o

Proof. Consider fi.(z) := |g(z) — gr(z)|’, we have that lim;_, fr(z) = 0,a.e.and Vk >
1,0 < fe(z) < 2°|g(x)[". Notice that [, 2P|g(x)["dz = 229l Loy < o0, and thus fi — 0
satisfies Lebesgue’s dominated convergence theorem as above. O]

We will prove a lemma that would be useful to show convergence of functions in |- 1,
It is a generalization of the Riesz’s Lemma in [10].

Lemma A.0.7. Consider any 1 < p < oco. Given any function g € L*(U), and a sequence
of functions {gx}r—, in LP(U), such that it converges point-wise to g almost everywhere,
and iminfy |Gkl 1o iry < (19l pogrys then we have that it also converges in ||-|| o
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Proof. Consider

hi(2) = 2" (|g(@)” + |gr(2) ") — lg(2) — gr(2) .
By triangle inequality, 0 < |g(x) — gr(x)] < |g(x)| + |gr(x)|, and (-)P is increasing and
convex in RT, so

l9(x) — gr(@)” < (lg(=)] + |ge()])"

o (Lo + Lge))
(3lat0) + 3lonco

< 2p<%|g(x)|p + %|9k(x)|p)

=271 (|g(2)[” + (g (2)[").
Thus hy > 0 for any k£ > 0. In addition,
liminf hy(x) = lIm hy(z)
k k—o00

= 2p*1<klim lg(z)|” + lim |gk(:13)]p> — lim |g(z) — gr(z)["
— 00 k—oo k—o0

= 22"Y(|g(x) " + |g(x)") = 0
= 2p|g(-77)’p7

almost everywhere. By Fatou’s Lemma, we have that
2p||9||[£p(U) - /U2p|g(x)|de
= / lim inf hy(x)dz
vk
< lim inf/ hy.(z)dx
k U
—timinf [ 27 (lg(@)" + lgu(@)") - lo(0) - gu(o)'da
U
— or-! / lg(x) P + 2 lim in / |9k ()| da: + lim inf / (=lg(2) = g(@)[")dw
U v v
= 2" gllzo ) + 2 lim inf [lgi |7y ) + liminf <_”g N g’“HZT"UQ
< 2p—1”g||1£p(U) + 2p_1HgHI£P(U) + hmkinf (—Ilg - gk“iza(U))
= 279117y — limsup [lg — gell 7o 0r)-
) . ()
Subtracting QPHQHLIJ(U) from both sides, we get
0 < —limsup llg —gx 7o)
0> limksup 19 = 9 ll7r 1)
> limkinf lg — ng]zP(U)

> 0.
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Thus limy_ ||g — gk||]zp(U) = limsup, [|g — gk”ip(U) = liminfy |lg — gk”ip(U) = 0. O

Remark. The proof is inspired by the proof of Scheffé’s Lemma, which is a special case of
Riesz’s Lemma.[19]

Theorem A.0.8. Given any a < b € R and any function g € LP(a,b), we can find a
sequence of piecewise constant (step) functions {gx},., € LP(a,b) such that limg_,eo gr = g

in LP(a,b). In addition, we can let them have uniform step size hy, = %%, with the explicit

— Tk
form
k

1 i
() := ZX[xjhxj)(a:)h—k/ g(2)dx’,

j=1 Tj—1

(b—a)j

where xj = a+ jhy = a + .

Proof. For any z € (a,b), k > 0, we can find some Uy, := [x§k), :L‘gli)l] 5 x. Notice that

k) (k
ks 1 {Uk C B(z, max(z — xg ),x§.+)1 — 1)),

Ukl = e = 3B )| = 3| Bl 2, — 2)| = 4| Bla max(z — 2,2, - 2))

Thus it satisfies the Lebesgue differentiation theorem, and we have that

1 7
lim g(z) = lim —/ g(z")dx'

k—o00 k—oo hy ).
J
1
= lim — 2" )dx'
Uy |Up| ng( )

= g(z) a.e.

Thus gx(z) — g(x) point-wise almost everywhere, and it suffices to show that lim infy, || gx|| Lr(ap) =
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||g||Lp(a’b), and then apply lemma A.0.7. Notice that for any k, we have that

1 I / / ’
Z X[% 1,%;) hk (27 )diE

loehinin = | a
ooz |1 e b
— Z/ h_/ g(2")dz'| dx
j=1 Y Ti-1 k Jzj_y
k 1 p Tj p
= Z(ZL‘] :Ej—l) (h_) / g(_r’)daj‘/
j=1 SR
k 1 p Tj p
:}jm(ﬁ) [ o) aa
j=1 B e
k 1 p—1 x; p
<> () /’r<>HM)
j=1 \NF -1
k 1 p—1 Tj 1/p zj ;Dp;l P
<3 (—) (/ \g(:c')]pdx’> (/ \Hp—ldx’) 218
j=1 . Tj-1 Tj1
k 1 p—1 T
=2 <h_> / |g($/)|pd$/> (2 — ;)"
j=1 \'%k zj-1
k 1 p—1 T
—ZX;) /|mwwyw
j=1 \'F Tj—1
k

—Z[ﬂ(WW

j—1

L/qlg )P da’

= 90Zs 0y
Thus lminf [|ge|| 1245 < 19l 12(ap): and by lemma A.0.7, we have that limyoo g = g. O

Remark. The first claim in theorem A.0.8 that step functions are dense in LP(U) is relatively
well-known, and is usually proven by the regularity of the Lebesgue measure. However, the
proof is not constructive, and the step sizes are not necessarily uniform. Here, we provide
a version that achieves uniform steps, and give an explicit formulation of them.
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Appendix B

Python Code for Control Through
Reaction Term

Code for tools.py that implements some basic tools:

import numpy as np
import logging

logger = logging.getLogger ("pde_simulator")
logger.setLevel (logging.DEBUG)

import numpy as np
from scipy.integrate import solve_ivp
from scipy.interpolate import interpld

def compute_derivatives(y: np.ndarray, dx: float) -> tuple[np.ndarray,
< np.ndarray]:

nimnn

Compute y_x and y_zx using central differences.

Parameters:

y : ndarray

Function values on grid
dz : float

Grid spacing

Returns:

y_x, y_xr @ ndarray
First and second derivatives
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nmnn

y_x = np.gradient(y, dx)
y_xx = np.gradient(y_x, dx)
return y_x, y_XX

def compute_L2_norm(y: np.ndarray, x: np.ndarray) -> float:

nimnn

Compute L2 norm: [[yl[_2 = sqrt(int_0"1 y~2 dz)

mnmnn

return float(np.sqrt(np.trapezoid(y**2, x)))

def compute_L2_inner_product(yl: np.ndarray, y2: np.ndarray, x:
- np.ndarray) -> float:

nimnn

Compute L2 immer product: <yl, y2> = tnt_0"1 yl*y2 dz

mnmnn

return float(np.trapezoid(yl*y2, x))
Code for pde_simulator.py that implements the simulator of the pde:

import numpy as np

from scipy.integrate import solve_ivp

from scipy.integrate._ivp.ivp import OdeResult
from typing import Callable

import logging

import fipy as fp

import matplotlib.pyplot as plt

from tools import *

logger = logging.getLogger ("pde_simulator")
logger.setLevel (logging . DEBUG)

def plot_evolution(sol, x: np.ndarray, ud_vals: np.ndarray, T: float,
< plot_times=None):

nimnn

Plot the evolution of u(z,t) and compare with target ud.
mnmnn

# Determine times to plot
if plot_times is None:
plot_times = np.linspace(0, T, 10)

# Create figure with subplots
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fig = plt.figure(figsize=(16, 10))

# Subplot 1: Snapshots at different times
axl = plt.subplot(2, 2, 1)
colors = plt.cm.viridis(np.linspace(0, 0.9, len(plot_times)))

for i, t in enumerate(plot_times):
u_t = sol.sol(t)
axl.plot(x, u_t, color=colors[i], linewidth=2,
label=f't={t:.5f}', alpha=0.7)

axl.plot(x, ud_vals, 'r--', linewidth=3, label='Target ud', alpha=0.9)
axl.set_xlabel('x', fontsize=12)

axl.set_ylabel('u(x,t)', fontsize=12)

axl.set_title('Evolution: u(x,t) - ud(x)', fontsize=14,

- fontweight='bold"')

axl.legend(fontsize=9, ncol=2)

axl.grid(True, alpha=0.3)

# Subplot 2: Error over time
ax2 = plt.subplot(2, 2, 2)
t_error = np.linspace(0, T, 100)
errors = []

for t in t_error:
u_t = sol.sol(t)
error = compute_L2_norm(u_t - ud_vals, x)
errors.append(error)

ax2.plot(t_error, errors, 'b-', linewidth=2.5)
ax2.set_xlabel('Time t', fontsize=12)
ax2.set_ylabel('||u(-,t) - ud||_2', fontsize=12)
ax2.set_title('L2 Error to Target over Time', fontsize=14,
- fontweight='bold"')

ax2.grid(True, alpha=0.3)

ax2.axhline(y=0, color='r', linestyle='--', alpha=0.5)

# Subplot 3: Initial vs Final vs Target
ax3 = plt.subplot(2, 2, 3)

u_initial = sol.s0l(0)

u_final = sol.so0l(T)

ax3.plot(x, u_initial, 'b-', linewidth=2.5, label='Initial u0O',
< alpha=0.8)
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ax3.plot(x, u_final, 'g-', linewidth=2.5, label=f'Final u(-,T)"',
< alpha=0.8)

ax3.plot(x, ud_vals, 'r--', linewidth=2.5, label='Target ud',

< alpha=0.8)

ax3.set_xlabel('x', fontsize=12)

ax3.set_ylabel('u(x)', fontsize=12)

ax3.set_title('Initial -+ Final vs Target', fontsize=14,

< fontweight='bold')

ax3.legend(fontsize=11)

ax3.grid(True, alpha=0.3)

# Subplot 4: Heatmap

ax4 = plt.subplot(2, 2, 4)

t_plot = np.linspace(0, T, 200)

u_plot = np.array([sol.sol(t) for t in t_plot])

im = ax4.contourf(x, t_plot, u_plot, levels=50, cmap='RdBu_r')
ax4.set_xlabel('x', fontsize=12)

ax4.set_ylabel('t', fontsize=12)

ax4.set_title('Space-Time Evolution', fontsize=14, fontweight='bold')
plt.colorbar(im, ax=ax4, label='u(x,t)')

plt.tight_layout ()
plt.show()

print (f"\nFinal L2 error: ||u(-,T) - udl|_2 = {errors[-1]:.6e}")

class PDESolver:

nimnn

Simulates the problem:

u_t = u_zz + al(z)u_z + b(z)u
nimnn

def init__(self, nx=100, 1=0, r=1):

nmnn

Initialize solver on domain [l, r].

Parameters:

nr : wnt
Number of spatial grid points
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def

—

l, » : float
Left and right endpoints, default [0, 1]

nmnn

self.1 =1
self.r = r
self.x = np.linspace(l, r, nx)

self.dx = self.x[1] - self.x[0]
self .nx = nx

solve(self, u0: Callable | np.ndarray, a: Callable | np.ndarray,
b: Callable | np.ndarray, T: float,

method='BDF', rtol=1le-6, atol=1e-8):
Solve u_t = u_zz + a(z)u_z + b(z)u using Method of Lines with
-~ scipy.

Parameters:
u0 : ndarray or callable
Initial condition
a : ndarray or callable
Coefficient a(z)
b : ndarray or callable
Coefficient b(z)
T : float
Final time
method : str
Integration method ('BDF', 'RK45', 'Radau')
BDF %s best for stiff problems
rtol, atol : float
Relative and absolute tolerances

Returns:
sol : OdeSolution object
Solution with sol.t (times) and sol.y (solution at each
<~  time)
# Convert inputs to arrays
if callable(u0):
u0_vals = uO(self.x)
else:
u0_vals = np.asarray(u0)
if len(uO_vals) != self.nx:
x_temp = np.linspace(0, 1, len(uO_vals))
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u0_vals = np.interp(self.x, x_temp, uO_vals)

if callable(b):
b_vals = b(self.x)
else:
b_vals = np.asarray(b)
if len(b_vals) != self .nx:
x_temp = np.linspace(0, 1, len(b_vals))
b_vals = np.interp(self.x, x_temp, b_vals)

if callable(a):
a_vals = a(self.x)
else:
a_vals = np.asarray(a)
if len(a_vals) != self .nx:
x_temp = np.linspace(0, 1, len(a_vals))
a_vals = np.interp(self.x, x_temp, a_vals)

# Define RHS function for Method of Lines

def rhs(t, u):
"tiCompute du/dt = u_zx + a*u_z + b*u with zero Dirichlet
AN BC mimnn
dudt = np.zeros_like(u)

# If the reaction term b(xz) dominates, use central
— dtfferences
if np.max(np.abs(b_vals)) > np.max(np.abs(a_vals)):

# Interior points: central differences

for i in range(1l, self.nx - 1):
u_xx = (uli+1] - 2*uli] + ul[i-1]) / self.dx**2
u_x = (uli+1] - uli-1]) / (2*self.dx)
dudt[i] = u_xx + a_vals[i]l*u_x + b_vals[il*ulil

# If the advection term a(z) dominates, use upwind scheme
else:
for i in range(1l, self.nx - 1):
u_xx = (u[i+1] - 2*uli] + uli-1]) / self.dx**2
# Upwind scheme for u_x based on sign of a
if a_vals[i] >= O:
u_x = (uli] - uli-1]) / self.dx # Backward
— difference
else:
u_x = (uli+1] - ul[il) / self.dx # Forward
— difference
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dudt[i] = u_xx + a_vals[il*u_x + b_vals[i]*uli]

# Boundary conditions: zero Dirichlet (u = 0 at boundaries)
dudt [0] = O
dudt[-1] = 0

return dudt

# Solve using scipy's solve_1vp
sol = solve_ivp(

rhs,

(o, T1,

uO_vals,

method=method,

rtol=rtol,

atol=atol,

dense_output=True

return sol

def solve_with_fipy(self, u0, a, b, T, nt=100):
nnn
Solve u_t = u_zz + a(z)u_z + b(z)u with FiPy
Returns an OdeResult object compatible with solve_tvp
# Create mesh
mesh = fp.Grid1D(nx=self .nx, Lx=1.0)
x = mesh.cellCenters[0] .value

# Create wvariable
u = fp.CellVariable(mesh=mesh, name="u")

# Set wnitial condition
if callable(u0):
u.setValue(uO(x))
else:
if len(u0) !'= len(x):
u.setValue(np.interp(x, self.x, u0))
else:
u.setValue(u0)

# Get coefficients - must match mesh size
if callable(a):
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a_vals = a(x)

else:
if len(a) !'= len(x):
a_vals = np.interp(x, self.x, a)
else:
a_vals = a

if callable(b):
b_vals = b(x)
else:
if len(b) !'= len(x):
b_vals = np.interp(x, self.x, b)
else:
b_vals

b

# Create CellVartable for b coefficient
b_cell = fp.CellVariable(mesh=mesh, value=b_vals)

# Create FacelVariable for convection coefficient
a_face = fp.FaceVariable(mesh=mesh, value=a_vals)

# Define PDE: u_t = u_xzz + a*u_x + b*u

eq = (fp.TransientTerm() ==
fp.DiffusionTerm(coeff=1.0) +
fp.ConvectionTerm(coeff=a_face) +
fp.ImplicitSourceTerm(coeff=b_cell))

# Apply boundary conditions
u.constrain(0, mesh.facesLeft)
u.constrain(0, mesh.facesRight)

# Time stepping

dt = T / nt

times = [0]

solutions = [u.value.copy()]

for step in range(nt):
eq.solve(var=u, dt=dt)
times.append((step + 1) * dt)
solutions.append(u.value.copy())

# Convert to numpy arrays

np.array(times)

np.array(solutions).T # Transpose to match solve_tvp format
-~ (nz, nt)

<
o
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# Create OdeResult object (compatible with solve_ivp)
sol = OdeResult(

t=t,

Y=y,

sol=None, # No dense output for now

t_events=None,

y_events=None,

nfev=nt,

njev=0,

nlu=nt,

status=0,

message='Integration successful.',

success=True

# Add dense_output interpolation function

from scipy.interpolate import interpld

sol.sol = interpld(t, y, kind='cubic', axis=1,
fill_value='extrapolate', assume_sorted=True)

return sol

Code for reaction_contorl.py that implements the two control methods through reaction
term:

import matplotlib.pyplot as plt
from pde_simulator import *

logger = logging.getLogger ("pde_simulator")
logger.setLevel (logging . DEBUG)

import numpy as np

class ReactionControlSolver (PDESolver) :
Solves the control problem: steer u0 to ud via the PDE
u_t = u_zz + a(z)u

nimnn

def compute_alpha(self, ud: Callable | np.ndarray, u0: Callable |

- np.ndarray, T: float) -> tuplel[np.ndarray, np.ndarray, dict]:
Compute a(z) = -(ud)_zz/ud + In(//ud//_2 / int_0"1 uO*omega dz) /
- T

72



where omega = ud / [[ud//_2

Parameters:

ud : ndarray or callable
Target function

u0 : ndarray or callable
Initial condition

T : float
Final time

Returns:
alpha : ndarray
Coefficient alpha(z)
omega : mndarray
Normalized target
wnfo : dict
Diagnostic information
# Convert to arrays 1f needed
if callable(ud):
ud_vals = ud(self.x)
else:
ud_vals = np.asarray(ud)
if len(ud_vals) != self.nx:
x_temp = np.linspace(0, 1, len(ud_vals))
ud_vals = np.interp(self.x, x_temp, ud_vals)

if callable(u0):

u0_vals = uO(self.x)
else:
u0_vals = np.asarray(u0)
if len(uO_vals) != self.nx:

X_temp = np.linspace(0, 1, len(uO_vals))
u0_vals = np.interp(self.x, x_temp, uO_vals)

# Compute L2 morm of wud
norm_ud = compute_L2_norm(ud_vals, self.x)

# Compute omega = ud / [[ud//[_2
omega = ud_vals / norm_ud

# Compute integral int_0"1 u0 * omega dz
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def

integral_uO_omega = compute_L2_inner_product(u0O_vals, omega,
~ self.x)

# Compute derivatives of ud
ud_x, ud_xx = compute_derivatives(ud_vals, self.dx)

# Compute -ud_zz/ud (handle diviston by zero)
with np.errstate(divide='ignore', invalid='ignore'):
neg_ud_xx_over_ud = -ud_xx / ud_vals
neg_ud_xx_over_ud = np.nan_to_num(neg_ud_xx_over_ud, nan=0.0,
posinf=0.0, neginf=0.0)

# Compute logarithmic term

if integral_uO_omega <= O:
print (f"Warning: integral uO*omega = {integral_uO_omega:.6f}
— <= O“)
print("This may cause issues. Setting log term to 0.")
log_term = 0.0

else:
log_term = np.log(norm_ud / integral_uO_omega) / T

# Compute a(zx)
alpha = neg_ud_xx_over_ud + log_term

# Store diagnostic info

info = {
'norm_ud': norm_ud,
'integral_uO_omega': integral_uO_omega,
'log_term': log_term,
'ud_vals': ud_vals,
'omega': omega

return alpha, omega, info

compute_v(self, ud: Callable | np.ndarray, u0: Callable |
np.ndarray, T: float) -> tuple[np.ndarray, dict]:

nmnn

Compute v(z) = ln(ud/u0) / T

Parameters:

ud : ndarray or callable
Target function

u0 : ndarray or callable
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Inttzal condition
T : float
Final time

Returns:
v : ndarray

Coefficient v(z)
wnfo : dict

Diagnostic information
nimnn
# Convert to arrays i1f meeded
if callable(ud):

ud_vals = ud(self.x)
else:
ud_vals = np.asarray(ud)
if len(ud_vals) != self.nx:

x_temp = np.linspace(0, 1, len(ud_vals))
ud_vals = np.interp(self.x, x_temp, ud_vals)

if callable(u0):
u0_vals = uO(self.x)
else:
u0_vals = np.asarray(u0)
if len(uO_vals) != self.nx:
x_temp = np.linspace(0, 1, len(uO_vals))
u0_vals = np.interp(self.x, x_temp, uO_vals)

# Compute v(z) = In(ud/u0) / T, adding a small positive offset to
< avoid log(0) or division by 0O

# Avoid first and last wvalues to avoid 0 boundary conditions

v = np.zeros(self.nx)

v[1:-1] = np.log(ud_vals[1:-1] / uO_vals[i:-1]) / T

# Approzimate boundary values by linear interpolation

v[0] = v[1] - (v[2] - v[1]) * (self.x[0] - self.x[1]) / (self.x[2]
—~ - self.x[1])

v[i-1] = v[-2] + (v[-2] - v[-3]) * (self.x[-1] - self.x[-2]) /

< (self.x[-2] - self.x[-3])

# Handle any remaining NaN or Inf values
v = np.nan_to_num(v, nan=-1e-10, posinf=0.0, neginf=-1e-10)

max_v = np.max(v[i:-1])
if max_v >= O:
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print ("Error: Method 'compute_v' requires v(x) < 0, but v(x) =
— ", max_v, " >= 0")

print (f"Max value of v(x) = {max_v:.6f}")
# Store diagnostic info
info = {

'ud_vals': ud_vals,

'uO_vals': uO_vals,

'max_v': max_v

return v, info

def run_reaction_control_problem(u0: Callable | np.ndarray, ud: Callable |
— np.ndarray,

T: float, nx=100, plot_times=None,

— control_method='1"', method='BDF'):

mnmnn

Complete workflow: compute b(z), solve PDE, and visualize.

Parameters:

u0 : callable or array
Initial condition

ud : callable or array
Target condition

T : float
Final time
nr : nt

Number of spatial grid points
plot_times : array-like or None
Spectific times to plot. If None, uses 10 evenly spaced times.
mnmnn
# Initialize solver
solver = ReactionControlSolver (nx=nx)
X = solver.x

if control_method == '1':
# Compute coefficient b(z)
print ("Computing coefficient b(x) from target ud...")
b, __, info = solver.compute_alpha(ud, u0, T)

# Print dtagnostic info
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print (f"\nDiagnostic Information:")
print(f" [|ud||_2 = {info['norm_ud']:.6£f}")
print(f" int_0"1 uO*omega dx = {info['integral_uO_omega']:.6f}")
print(f" 1In(|lud||_2 / int_0"1 uO*omega dx) / T =
-~ {info['log_term']:.6f}")
print(f" max|b(x)| = {np.max(np.abs(b)):.6f}")
elif control_method == '2':
# Compute coefficient b(z)
print ("Computing coefficient b(x) from target ud...")
b, info = solver.compute_v(ud, u0, T)

# Print dtagnostic info

print (f"\nDiagnostic Information:")

print(f" max b(x) = {info['max_v']:.6f}")

print(f" max|b(x)| = {np.max(np.abs(b)):.6f}")
else:

raise ValueError(f"Invalid method: {method}")

# Set a(x) = 0
a = np.zeros_like(x)

# Solve PDE
print (f"\nSolving PDE from t=0 to t={T}...")
sol = solver.solve(u0, a, b, T, method=method)

print(f" Integration successful!")
print(f" Number of time steps taken: {len(sol.t)}")
print(f" Final time reached: {sol.t[-1]:.6f}")

# Prepare target wvalues
if callable(ud):
ud_vals = ud(x)
else:
ud_vals = info['ud_vals']

# Create visualizations
plot_evolution(sol, x, ud_vals, T, plot_times)

# Plot coefficient b(z)

plt.plot(x, b, 'b-', linewidth=2.5, label='b(x)')
plt.axhline(y=0, color='k', linestyle='--', alpha=0.3)
plt.xlabel('x', fontsize=12)

plt.title('Coefficient b(x)', fontsize=13, fontweight='bold')
plt.legend(fontsize=9, ncol=2)

plt.grid(True, alpha=0.3)
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return solver, sol, b, info

# EXAMPLE USAGE

if __name__ == "__main__":
print ("="*60)
print ("PDE Control Problem: Steering u0O -+ ud")

print ("="*60)

# Example 1:

print("\n" + "=”*60)

print ("Example 1: Parabola initial -+ Sine target")
print ("="%60)

u0 = lambda x: x*(1-x) # Parabola
ud = lambda x: np.sin(np.pi*x)
T=1.0

solver, sol, a, info = run_reaction_control_problem(u0O, ud, T, nx=150)

# Exzample 2: Different target

pI‘ll’lt (Il\nll + II=II*60)

print ("Example 2: Asymmetric initial -+ Sine target")
print ("="%60)

u0 = lambda x: 8*xx*x*(1-x) # Asymmetric
ud = lambda x: np.sin(np.pi*x)
T=2

solver, sol, a, info = run_reaction_control_problem(u0O, ud, T, nx=150)

print("\n" + "="*60)
print ("Complete! Modify uO, ud, and T for your specific problem.")
print ("="*60)

# Ezample 3: Different method

print("\n" + "=”*60)

print ("Example 3: Asymmetric initial - Sine target, method 2")
print ("="%60)

u0 = lambda x: 8*x*x*(1-x)
ud = lambda x: np.sin(np.pi*x)
# T =1
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# solver, sol, a, info = run_reaction_control_problem(u0, ud, T,
-~ nx=150, method='2")

T =0.01 # want very small T for this method

solver, sol, a, info = run_reaction_control_problem(u0O, ud, T, nx=150,
— control_method='2")

T = 0.0001 # want very small T for this method

solver, sol, a, info = run_reaction_control_problem(u0O, ud, T, nx=150,
— control_method='2")
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Glossary

advection term The term with first-order spatial derivative in a second-order parabolic
partial differential equation 2

control The part of a system which has the freedom to be designed so that the system
behaves in a desired way 1, 2

dense A property of a subset in a space, where any element in the space can be approxi-
mated by a element in the set with arbitrarily small difference 6, 22

equivalent function class A set of functions that have the same value almost everywhere
with respect to the Lebesgue measure ix, 3, 9, 38, 80

final state The final state that the system ends with, at time 7" 2
Hilbert Space A complete inner product space ix, 7

initial state The initial state that the system starts from, at time 0 1, 2

inner product space A vector space that is equipped with an inner product 6, 80
ket-bra notation A notation for elements and linear functionals 7, 13, 26

Lebesgue integrable Measurable functions with finite integral on a given domain, with
respect to the Lebesgue measure 80

normed vector space A vector space that is equipped with a norm 6

reaction term The term with no derivative in a second-order parabolic partial differential
equation 2

space of square-integrable functions The collection of equivalent function classes that
are square Lebesgue integrable in the given domain 2, 3, 9, 22, 38

target state The target state that we wish to send the system to 1, 2
weak derivative A representative of an equivalent function class that satisfies intergra-

tion by parts formula for all test functions 3, 10, 38
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