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Abstract

This report investigates the approximate controllability of parabolic partial differential
equations, focusing on the one-dimensional heat equation and the Fokker-Planck equation
with multiplicative (bilinear) control. Unlike classical additive control, a multiplicative
control acts on the system by multiplying the system’s state variable in either the reaction
or the advection terms.

We will first prove several results about the density of a certain class of functions and
refine certain useful tools about weak derivatives; for instance, the chain rule and quotient
rule.

We will follow a paper to study the heat equation under multiplicative control act-
ing through the reaction term in detail, establishing sufficient conditions for approximate
controllability. We will present code and plots from Python notebook as an intuition.

We will then extend the analysis to multiplicative control of the Fokker-Planck equation
through the advection term, and establish a relationship to the control through the reaction
term, presenting algorithms and conjectures about the approximate controllability of the
Fokker-Planck equation by means of a multiplicative control.
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Chapter 1

Introduction

Numerous fundamental physical phenomena are modelled by Partial Differential Equation
(PDE), including “quantum mechanics, relativity, electromagnetism, optics, fluid mechan-
ics, superconductivity, magneto-hydrodynamics, elasticity, thermodynamics, chemical re-
actions, finance, neuroscience, and many, many more” [20]. For instance, the distribution
of heat may be described by a PDE, in particular, by the heat equation [28]

∂u

∂t
= ∆u+ f,

where u(x, t) is the heat distribution, and f(x, t) represents an extra source term providing
(or draining) energy from the environment.

The controllability theory of PDE aims to solve a fundamental problem: Can a system
that is governed by a PDE be guided from a given initial state to a desired target state
within a finite time by appropriately selected control inputs? This problem has both
theoretical significance and important practical application value, due to the fact that so
many phenomena in life are modelled by PDEs. For instance, one may ask the following
question: Is it possible to cool down my bedroom within 5 minutes after I come back
from work in summer? Such a question is eventually a controllability problem of the heat
equation.

Classical results in PDE control theory mainly focus on additive controls, where the
control term is added to the system as an external source or force. In the case of the
classical heat equation, an additive control of the form f(x, t) that acts either internally
or on the boundary is relatively well-studied [28].

In contrast, multiplicative (or bilinear) control has gained increasing attention in recent
years. In multiplicative control, the control term is introduced by multiplying the state
(and/or its derivative) in the partial differential equation. Notice that in this case, the
control effect is linear to both the control and the state itself, while in the additive case,
the control term is independent of the state, thus the name bilinear control.

This type of control is motivated by physical scenarios where control is achieved by
adjusting a parameter of the system (e.g., reaction rate coefficient, diffusion coefficient, or
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drift velocity field ). For instance, consider the famous Schrödinger equation that governs
the movement of a particle in one dimension [12]:

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ,

where Ψ(x, t) represents the wave function, ℏ is a physical constant, m is the mass of the
particle, and V (x, t) represents the potential energy given by the surrounding environment.
In this case, we can see that the only control with a physical meaning would have to appear
in the V term, which multiplies to the state itself.

However, from a mathematical perspective, multiplicative control is far more complex:
the control term and the state are non-linearly coupled, and the superposition principle
no longer applies. Indeed, it is known that exact global controllability is impossible when
the state space has infinite dimension in [1]. In particular, exact global controllability is
impossible for states in the space of square-integrable functions L2(U), which is natural to
a lot of Physics problems; for instance, the wave function in the Schrödinger equation.

With this in mind, it is natural to focus on the approximate controllability rather than
the exact controllability. The term approximate controllability, as its name suggests, aims
to steer the system arbitrarily close to a desired final state, while not necessarily reaching
it exactly.

In particular, we are interested in the following problem:

Suppose we are given a system governed by a PDE and a pair of initial state
and target state, can we find a bilinear control and a final time such that the
final state of the system is arbitrarily close to the target state?

One of the earliest results of multiplicative controls of parabolic equations through the
reaction term was established by Alexander Khapalov [17, 16]. In [17], it is shown that
global approximate controllability may be achieved for any non-negative initial and target
states in a one-dimensional heat equation system, under homogeneous Dirichlet boundary
conditions. In [16], the result is generalized to multi-dimensional semi-linear reaction-
diffusion equations, where a multiplicative control through the reaction term brings the
state arbitrarily close to a target state in arbitrarily small time intervals. For more works
about the multiplicative controls through the reaction term, see [15, 18, 8, 21].

On the other hand, another recent trend of study in multiplicative controls considers
the case where the control may appear in the advection term (first-order differentiation);
in particular, a system governed by the Fokker–Planck equation (also known as the Kol-
mogorov forward equation in some different contexts):

∂u

∂t
= −∇(µu) + ∆(Du),

where µ(x, t) is the drift coefficient and D(x, t) is the diffusion coefficient.

For example, in [6], it is shown that if the target state satisfies certain conditions, it
may be reached by a multiplicative control on the Kolmogorov forward equation in finite
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time. In [5], the author showed that a version of the Fokker-Planck equation is locally
controllable, given that the trajectory is regular enough.

Since the Fokker–Planck equation naturally arises from stochastic processes [22], such
a control may be useful in many situations from physics to engineering; for instance, the
Schrodinger-Bridge problem as in [3], or the density control of large-scale particle swarms
as in [24], etc.

In this report, we will consider two specific problems in one-dimensional space and
establish a relationship between them.

1.1 Notations

In this report, we will use U ⊆ Rn to denote the spatial domain, which will be open and
Lebesgue measurable. It is not necessarily bounded, unless explicitly specified. We will
use ∂U to denote its boundary.

We will use x ∈ U to denote a spatial position in the domain U , and t > 0 to denote
the time elapsed after the initialization of the system.

We will use (L2(U), ∥·∥L2(U)) to denote the space of square-integrable functions defined

on U with its norm. A function f ∈ L2(U) is any representative of the equivalent function
class [f ] ∈ L2(U), unless otherwise specified.

All the spatial derivatives are treated as weak derivatives, and all the equalities are
understood as equalities of equivalent function class, unless otherwise specified. In one
dimension, we will use ux to denote the first (weak) derivative of u, and uxx to denote the
second (weak) derivative of u. See section 2.1.3 for details about the weak derivatives.

We will use f∂U to denote the trace of f on the boundary of U .

For a function y : U × [0, T ] → R, we will use y(·, t) : U → R to denote the state at
a time t ∈ [0, T ], given by y(·, t)(x) := y(x, t) for all x ∈ U . Also, we will use y|∂U×(0,T )

to denote the trace of y on the boundary of U , given by y|∂U×(0,T )(t) := y(·, t)|∂U for all
t ∈ (0, T ).

1.2 Problem Formulation

Problem 1: Approximate Multiplicative Controllability through Reaction Term

Let U ⊆ Rn. Given a pair of initial and target states y0, yd ∈ L2(U),
and ϵ > 0, find T > 0 and α : U × [0, T ]→ R, such that the solution of

∂y

∂t
= ∆y + αy, ∀t ∈ (0, T )

y|∂U×(0,T ) = 0,

y(·, 0) = y0,

(1.1)
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satisfies ∥y(·, T )− yd∥L2(U) < ϵ.

Specifically, in one-dimension, we consider the following problem restricted to the
bounded spatial domain U = (0, 1):

Problem 2: Approximate Multiplicative Controllability through Reaction Term in
1D

Given a pair of initial and target states y0, yd ∈ L2(0, 1), and ϵ > 0,
find T > 0 and α : (0, 1)× [0, T ]→ R, such that the solution of

∂y

∂t
= yxx + αy, ∀t ∈ (0, T ),

y(0, t) = y(1, t) = 0, ∀t ∈ (0, T ),

y(·, 0) = y0,

(1.2)

satisfies ∥y(·, T )− yd∥L2(0,1) < ϵ.

On the other hand, we consider a special form of the Fokker-Planck equation in one-
dimension:

Problem 3: Approximate Multiplicative Controllability through Advection Term in
1D

Given a pair of initial and target states y0, yd ∈ L2(0, 1), and ϵ > 0,
find T > 0 and α : (0, 1)× [0, T ]→ R, such that the solution of

∂y

∂t
= yxx + αyx, ∀t ∈ (0, T )

y(0, t) = y(1, t) = 0, ∀t ∈ (0, T )

y(·, 0) = y0,

(1.3)

satisfies ∥y(·, T )− yd∥L2(0,1) < ϵ.

1.3 Outline of the Report

In this report, we aim to:

1. In Chapter 2, we will quickly introduce some mathematical preliminaries involved in
this report, including Lebesgue Spaces, weak derivatives, Sobolev Spaces, and some
spectral theory. We will also prove some variants of the product rule (corollary 2.5.3),
chain rule (corollary 2.5.9), and quotient rule (corollary 2.5.5), which will be used
later.
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2. In Chapter 3, we will follow Khapalov’s paper [17] and do a more detailed anal-
ysis of the approximate controllability through the reaction term (Problem 2) on
nonnegative states.

3. In Chapter 4, we will establish a relationship between control on reaction and the con-
trol through the advection term. We will firstly establish a necessary and sufficient
condition for the transformation (theorem 4.1.8) without the boundary condition,
then apply it to get several sufficient conditions of transforming Problem 3 to Prob-
lem 2. A recursive pseudo-algorithm 2 is given with the result in view. Also, we
will apply the result on a specific control given by Khapalov [16], and show that
the approximate controllability through the advection term reduces to an Ordinary
Differential Equation (ODE) problem.

4. We also prove an explicit construction of uniform step functions approximation in
Lp(a, b) (theorem A.0.8) in the Appendix, which might be useful in other scenarios.
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Chapter 2

Mathematical Tools

2.1 Preliminary

2.1.1 Hilbert space

Definition 2.1.1. A normed vector space is a vector space (X, ∥·∥) over a field F endowed
with a norm (length) function: ∥·∥ : X → [0,∞), such that ∀x, y ∈ X, a ∈ F, it satisfies

1. subadditivity (triangular inequality); i.e. ∥x+ y∥ ≤ ∥x∥+ ∥y∥,

2. absolute homogeneity; i.e. ∥a · x∥ = |a|∥x∥, and

3. positive definiteness; i.e. if x ̸= 0, we must have ∥x∥ > 0.

Definition 2.1.2. Let (X, ∥·∥) be a normed vector space. A subset S ⊆ X is called dense
in X if

S̄ = X,

where S̄ is the closure of S with respect to the norm ∥·∥. Namely, for all x ∈ X, ϵ > 0,
there is some y ∈ S, such that ∥x− y∥ < ϵ.

Definition 2.1.3. A real inner product space is a vector space H over R endowed with
an inner product: ⟨·, ·⟩ : H ×H → R, such that ∀u, v, w ∈ H, a, b ∈ R, it satisfies

1. symmetry; i.e. ⟨v, w⟩ = ⟨w, v⟩,

2. bi-linearity; i.e. ⟨au+ bw, v⟩ = a⟨u, v⟩+ b⟨w, v⟩, and

3. positive definiteness; i.e. ⟨v, v⟩ ≥ 0, and if v ̸= 0, we must have ⟨v, v⟩ > 0.

Proposition 2.1.1. For every inner product space with ⟨·, ·⟩, there is a norm ∥x∥ =√
⟨x, x⟩.

Definition 2.1.4. Let H be an inner product space. Two vectors u, v ∈ H are called
orthogonal if ⟨u, v⟩ = 0.
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Definition 2.1.5. Let H be an inner product space. A set {ei}i∈I ⊆ H is called an
orthonormal set if

∀i, j ∈ I, ⟨ei, ej⟩ = δij :=

{
0 if i ̸= j
1 if i = j

.

Definition 2.1.6. Let H be an inner product space. An orthonormal set{ei}i∈I ⊆ H is
called a maximal orthonormal set / orthonormal basis / total orthonormal set
if Span({ei}i∈I) is dense in H. Namely,

H = Span({ei}i∈I).

Definition 2.1.7. A normed vector space X is complete if every Cauchy sequence con-
verges to an element in X with respect to its norm. An inner product space H is called a
Hilbert Space if it is complete with respect to the induced norm.

Theorem 2.1.2 (generalized Fourier series). Let H be a Hilbert space, and {ei}i∈I ⊆ H
be an orthonormal set, then the following are equivalent:

1. {ei}i∈I is an orthonormal basis.

2. If ∀i ∈ I, ⟨x, ei⟩ = 0, then x = 0.

3. ∀x ∈ H, x =
∑

i∈I ⟨ei, x⟩ei. (Fourier series)

4. ∀x ∈ H, ∥x∥2 =
∑

i∈I |⟨ei, x⟩|
2. (Parseval Identity)

Definition 2.1.8 (ket-bra notation). For a Hilbert space H over R, we use |ϕ⟩ to represent
an element ϕ ∈ H, and use ⟨ϕ| to represent the element ⟨ϕ, ·⟩ ∈ H∗, where H∗ is the set of
bounded (or equivalently, continuous) linear operators from H → R.

Theorem 2.1.3 (Riesz-Frechet Representation theorem). Let H be a real Hilbert space,
then H ∼=∗ H, where the map Φ : H → H∗; |ϕ⟩ 7→ ⟨ϕ| is the canonical bijective
isometric linear isomorphism.

Remark. Riesz-Frechet Representation theorem says that every element in H∗ is actually
in the form ⟨ϕ| for some ϕ ∈ H∗.

Corollary 2.1.4. Let H be a Hilbert space, for any (countable) orthornormal basis {ωk}k∈I
of H, we have that

∑
k∈I |ωk⟩ ⟨ωk| = 1, where 1 is the identity map on H.

Proof. Consider any |ϕ⟩ ∈ H,(∑
k∈I

|ωk⟩ ⟨ωk|

)
|ϕ⟩ =

∑
k∈I

|ωk⟩⟨ωk, ϕ⟩

=
∑
k∈I

⟨ωk, ϕ⟩|ωk⟩

= |ϕ⟩
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2.1.2 Lebesgue Spaces

Definition 2.1.9. We denote the by λ Lebesgue measure on Rn. We denote
∫
U
fdλ by∫

U
f(x)dx for any measurable function f on any measurable set U ⊆ Rn.

We will here define the Lebesgue Spaces and state some useful theorems. Detailed
treatment can be found in [9, 23].

Definition 2.1.10. Let U ⊆ Rn be Lebesgue measurable. We define

L1(U) :=

{
f : U → R|

∫
U

|f(x)|dx <∞
}
.

Definition 2.1.11. Let U ⊆ Rn be Lebesgue measurable, and 1 ≤ p <∞. We define

Lp(U) :=
{
f : U → R|f p ∈ L1(U)

}
.

In addition, we define the functional

∥f∥Lp(U) :=

(∫
U

|fp(x)|dx
) 1

p

for any measurable function f : U → R.

Remark. We see that

Lp(U) =
{
f : U → R|f p ∈ L1(U)

}
=

{
f : U → R|

∫
U

|fp(x)|dx <∞
}

=
{
f : U → R

∣∣∣∥f∥Lp(U) <∞
}
.

Definition 2.1.12. The essential supremum of a function u : U → R is

ess sup f := inf {M ∈ R : |{x : f(x) > M}| = 0} .

Definition 2.1.13. Let U ⊆ Rn be Lebesgue measurable. We define

L∞(U) := {f : U → R| ess sup f <∞} .

In addition, we define the functional

∥f∥L∞(U) := ess sup f

for any measurable function f : U → R.

Definition 2.1.14. Two measurable functions f, g : U → R are said to be equal almost
everywhere if {x ∈ U : f(x) ̸= g(x)} has measure zero.
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Proposition 2.1.5. For any 1 ≤ p ≤ ∞, we have ∥f − g∥Lp(U) = 0 ⇐⇒ f = g almost
everywhere.

Definition 2.1.15. For any 1 ≤ p ≤ ∞, if we identify f, g ∈ Lp(U) by f ∼ g ⇐⇒ f = g
almost everywhere, we get the quotient space

Lp(U) := Lp(U)/∼ = {[f ] : f ∈ Lp(U)}

to be the collection of all equivalent function classes [f ] in Lp(U).

Theorem 2.1.6 (Fischer-Riesz). For any 1 ≤ p ≤ ∞, we have the space (Lp, ∥·∥Lp(U)) is a
Banach space, where ∥[f ]∥Lp(U) := ∥f∥Lp(U) for any representative f ∈ [f ]. One can check
this norm is well-defined.

Theorem 2.1.7 (inner product on space of square-integrable functions). The space L2(U)
is a Hilbert space, where ∥f∥L2(U) is induced by the inner product

⟨[f ], [g]⟩L2(U) :=

∫
U

f(x)g(x)dx,

for any representative f ∈ [f ], g ∈ [g]. One can check this inner-product is well-defined.

In the following sections, we will abuse the notation in a standard way and use f ∈
Lp(U) and [f ] ∈ Lp(U) interchangeably. In particular, we write f ∈ Lp(U) to mean f is a
representative of [f ] ∈ Lp(U), namely, f ∈ Lp(U). This is due to the fact that whenever
we have f ∈ Lp(U), we will have a unique [f ] ∈ Lp(U). On the other hand, whenever we
have [f ] ∈ Lp(U) and any two representatives f1, f2 ∈ Lp(U) of the same equivalent class
[f ], they are identical almost everywhere, and thus the difference is not detectable if we
are working with integrals. Also, we may just write ∥·∥p for ∥·∥Lp(U), ∥·∥Lp(U) when the
context is clear. We will be more careful when this is not the case. Please refer to chapter
7 of [23] for a more detailed explanation.

Theorem 2.1.8 (Holder’s Inequality). Let 1 ≤ p ≤ ∞. Suppose 1
p
+ 1

q
= 1, then ∀f ∈

Lp(U), g ∈ Lq(U), fg ∈ L1(U) and

∥fg∥L1(U) ≤ ∥f∥Lp(U)∥g∥Lq(U).

We will also use the following result in [23, Theorem 6.10 and Corollary 6.12], which is
sometimes known as the “Fundamental Theorem of Lebesgue Integral Calculus”, a gener-
alization of the usual Fundamental Theorem of Calculus.

Theorem 2.1.9 (Fundamental Theorem of Lebesgue Integral Calculus). A function f :
[a, b]→ R is absolutely continuous if and only if there is a Lebesgue integrable function g,
such that ∀x ∈ [a, b], f(x) = f(a) +

∫ x

a
g(t)dt. In this case, f is differentiable a.e., and

f ′(x) = g(x) for a.e. x ∈ [a, b].
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2.1.3 Sobolev Spaces

We will here define the weak derivatives, Sobolev Spaces and state some useful theorems.
Detailed treatment can be found in [27, 7].

Definition 2.1.16. Let U, V ⊆ Rn be open, we say that V is compactly contained in
U if V ⊆ V̄ ⊆ U , and V̄ is compact. We write this as V ⊂⊂ U .

Definition 2.1.17. The locally summable spaces are

Lp
loc(U) := {u : U → R : ∀V ⊂⊂ U, u ∈ Lp(V )} .

Definition 2.1.18. We say some property holds in Lp
loc(U), if ∀V ⊂⊂ U , it holds in Lp(V ).

For instance, let (fn)
∞
n=1 ⊆ Lp

loc(U) and f ∈ Lp
loc(U), then fn → f in Lp

loc(U) if fn → f
in Lp(V ), ∀V ⊂⊂ U.

Definition 2.1.19. Let U ⊆ Rn be Lebesgue measurable. We define the set of test
functions

C∞
c (U) := {ϕ ∈ C∞(U) : Supp(f) ⊆ U and is compact} ,

where
Supp(ϕ) := {x ∈ U : ϕ(x) ̸= 0}.

Definition 2.1.20. Let U ⊆ Rn be Lebesgue measurable, and α ∈ Nn be an n tuple. For
u, v ∈ L1

loc(U), we say v is the αth-weak derivative of u if

∀ϕ ∈ C∞
c (U),

∫
U

uDαϕdx = (−1)|α|
∫
U

vϕdx,

where Dαϕ := ∂α1
x1

. . . ∂αn
xn
ϕ, and |α| :=

∑n
i=1 αi.

If such a v exists, we say that Dαu = v or uα = v in the weak sense. Otherwise, u
does not possess a αth weak derivative. One can check that if a weak derivative exists, it
is unique almost everywhere.

Definition 2.1.21. Let U ⊆ Rn be Lebesgue measurable, and k ∈ N. We define W k(U)
to be the set of functions whose αth weak derivatives exist for all |α| ≤ k.

Let 1 ≤ p ≤ ∞. We define

W k,p(U) :=
{
u ∈W k(U) : ∀|α| ≤ k, Dαu ∈ Lp(U)

}
,

where Dαu ∈ Lp(U) is the αth weak derivative of u.

In particular, we define Hk(U) := W k,2(U).

Definition 2.1.22. Let k ∈ N, 1 ≤ p ≤ ∞, u ∈ W k(U). The Sobolev norm of u is

∥u∥Wk,p(U) :=


(∑

|α|≤k ∥Dαu∥pLp(U)

)1/p
, 1 ≤ p <∞∑

|α|≤k ess supx∈U |Dαu(x)| ∼= max|α|≤k ∥Dαu∥L∞(U), p =∞
.

One can check that these are well-defined norms when restricted to the space W k,p(U), if
we identify u, v ∈ L1

loc(U) by u ∼ v ⇐⇒ u = v almost everywhere, similar to above.
Indeed, u ∈ W k,p(U) ⇐⇒ ∥u∥Wk,p(U) <∞.
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Theorem 2.1.10 (Completeness of Sobolev Spaces). Let U ⊆ Rn be Lebesgue measurable,
and 1 ≤ p ≤ ∞, we have that W 1,p(U) is a Banach space with respect to the Sobolev norm.
In particular, H1(U) is a Hilbert space.

Theorem 2.1.11 (Characterization of Sobolev Spaces using Absolute Continuity). Let
p ∈ [0,∞), and U ⊆ Rn be Lebesgue measurable. Suppose u ∈ Lp(U), then u ∈ W 1,p(U), if
and only if u has a representative ū that is absolutely continuous on almost all line segments
in U parallel to the coordinate axes and whose (classical) partial derivatives belong to Lp(U).
[27, Theorem 2.1.4]

The proof of the above theorem implies that

Corollary 2.1.12. Let p ∈ [0,∞), and U = (a, b) ⊆ R. Suppose u ∈ Lp(a, b), then
u ∈ W 1,p(a, b), if and only if u has a representative ū that is absolutely continuous, whose
(classical) derivative d

dx
ū belongs to Lp(a, b). In this case, d

dx
ū is a representative of the

weak derivative ux.

The above corollary, in addition to the Fundamental Theorem of Lebesgue Integral
Calculus 2.1.9, provides a way of identifying the normal and weak derivatives in the case of
1 dimension. In view of the following result, for any u ∈ W 1,p(a, b), we will always consider
the continuous representative of it. We will provide the proof for completeness.

Corollary 2.1.13 (Fundamental Theorem of Lebesgue Integral and Weak Derivative). Let
p ∈ [0,∞], and U = (a, b) ⊆ R1. Suppose u ∈ Lp(a, b), then the following are equivalent:

1. u ∈ W 1,p(a, b),

2. u has a representative ū that is absolutely continuous, whose (classical) derivative
d
dx
ū (defined almost everywhere) belongs to Lp(a, b),

3. u has a representative ū, and there is a Lebesgue integrable function g ∈ Lp(a, b),
such that ∀x ∈ [a, b], ū(x) = ū(a) +

∫ x

a
g(t)dt.

In this case, d
dx
ū = g almost everywhere, and is a representative of ux.

Proof. For p ∈ [1,∞), the equivalence of 1. and 2. directly follows from the previous
result.

Now assume p =∞.

Suppose 1. holds, since U is bounded, we have u, ux ∈ L∞(a, b) ⊂ L1(a, b), which
means u ∈ W 1,1(a, b). Thus, u has a representative ū that is absolutely continuous, whose
(classical) derivative d

dx
ū belongs to L1(a, b). Also, it is a representative of ux ∈ L∞(a, b).

Thus d
dx
ū belongs to L∞(a, b) as well.

On the other hand, suppose 2. holds, then since U is bounded, ∂xū, belongs to
L∞(a, b) ⊆ L1(a, b). Thus, u ∈ W 1,1(a, b), its weak derivative ux exists, with d

dx
ū being a

representative of ux. Since the weak derivative is unique, ux ∈ L∞(a, b), so u ∈ H1,∞(U).

2. ⇐⇒ 3. is always true by the Fundamental Theorem of Lebesgue Integral Calculus
(theorem 2.1.9).

11



Definition 2.1.23. Let U ⊆ Rn be Lebesgue measurable, H1
0 (U) ⊆ H1(U) is the closure

(with respect to ∥·∥H1) of H1(U) ∩ C∞
c (U).

Remark. H1
0 (U) are the functions in H1(U) that vanishes at boundaries.

Proposition 2.1.14. Let U = (0, 1) ⊆ R1, in this case,

H1
0 (0, 1) =

{
u : u, ux ∈ L2(U) : lim

x→0
u(x) = lim

x→1
u(x) = 0

}
.

Definition 2.1.24. We define QT := (0, 1)× (0, T ) to be the time-space domain.

2.2 Maximum Principle

In this section, we will state a variation of the maximum principle for the heat equation
that would be used in Chapter 3. We will here sketch a proof for the continuous case
following Theorem 7.1.9 of [7], and one may follow the steps of Theorem 8.1 in [11] to see
the general case for weak solutions.

Theorem 2.2.1 (Maximum principle). [7] Let α ∈ L∞(a, b) be a non-positive function.
For a continuously twice differentiable solution y(x, t) to yt = yxx + αy with initial state
y(·, 0) = y0 ≥ 0, we have that

∀x ∈ U, t ∈ (0, T ), 0 ≤ y(x, t) ≤ ∥y0∥∞.

Proof. We know y attains a minimum by the Extreme Value Theorem in Ū × [0, T ] (since
y is continuous).

First, we show that ∀x ∈ U, t ∈ (0, T ), 0 ≤ y(x, t). Suppose not, then since y(·, 0) =
y0(·) ≥ 0, and y∂U = 0, the minimum must be attained in U × (0, T ]. At that minimum,
yxx > 0, y < 0, since it must be a local minimum of y(·, t) in the open interior U . Since it is
a global minimum of y(x, ·), we must have yt = 0. Thus we have 0 = yt = yxx+α(x)y > 0,
which is a contradiction.

Similarly, if it attains a maximum in the interior or at t = T , we will have a contradiction
of 0 ≥ yt = yxx + α(x)y < 0. Thus the maximum must be on the boundary. Since y0 ≥ 0
and y∂U = 0, we must have ∀x ∈ U, t ∈ (0, T ), y(x, t) ≤ ∥y0∥∞.

Corollary 2.2.2. Let α ∈ L∞(a, b) be a function, with C := ∥α∥∞. For a continuously
twice differentiable solution y(x, t) to yt = yxx + αy with initial state y(·, 0) = y0 ≥ 0, we
have that

∀x ∈ U, t ∈ (0, T ), 0 ≤ y(x, t) ≤ eCt∥y0∥∞. (2.1)

Proof. If ∀x, α(x) ≤ 0, then this is trivially true from the above theorem, since 1 ≤ eCt.

Otherwise, consider z(x, t) := e−Cty(x, t). Note z0 = y0

zt(x, t) = −Ce−Cty(x, t) + e−Ctyt(x, t)

= −Ce−Cty(x, t) + e−Ctyxx(x, t) + e−Ctα(x)y(x, t)

= zxx(x, t) + (α(x)− C)z(x, t)

12



Since α(x)−C ≤ 0 a.e., we can apply the above theorem, and have ∀x ∈ U, t ∈ (0, T ), 0 ≤
z(x, t) ≤ ∥z0∥∞ = ∥y0∥∞, thus ∀x ∈ U, t ∈ (0, T ), 0 ≤ y(x, t) ≤ eCt∥y0∥∞.

2.3 Ket-Bra Notation on function Spaces

We will now extend the ket-bra notation to our function spaces. Note that it is an abuse
of notation to simplify some later calculations in chapter 3, and would require more careful
treatment in a formal proof.

Definition 2.3.1. For a function ω ∈ L2(a, b), x ∈ (a, b), we will abuse the notation
⟨x|ω⟩ = ⟨ω|x⟩ to represent the evaluation map ω(x).

Remark. Notice that this is not the inner product on L2(U), since the evaluation map,
though linear, is not bounded. Thus, it does not live in the dual space, and the Riesz-
Frechet Representation theorem does not apply.

Definition 2.3.2. We will use the Dirac-delta function δ(x − r) to represent the Dirac
point measure δr. Namely, for any function f : (a, b)→ R, we have∫ d

c

f(x)δ(x− r)dx :=

∫ d

c

f(x)dδr =

{
f(r) r ∈ (c, d)

0 otherwise.

Proposition 2.3.1. For functions {ωk}∞k=1 ⊂ L2(a, b) that form an (countable) orthonor-
mal basis, we (by abusing the notation) have

∀x, r ∈ (a, b),
∞∑
k=1

ωk(r)ωk(x) = δ(r − x).

Proof. Consider any function u =
∑∞

k=1 ⟨ωk, u⟩ωk ∈ L2(0, 1), we have that∫ b

a

(
∞∑
k=1

ωk(r)ωk(x)

)
u(x)dx =

∞∑
k=1

(∫ b

a

ωk(x)u(x)dx

)
ωk(r)

=
∞∑
k=1

⟨ωk, u⟩ωk(r)

=

〈
∞∑
k=1

⟨ωk, u⟩ωk

∣∣∣∣∣r
〉

= ⟨u|r⟩
= u(r)

=

∫ b

a

δ(r − x)u(x)dx
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Proposition 2.3.2. ∀x, r ∈ (a, b), we have (by abusing notation) ⟨r|1|x⟩ = δ(r − x). We
thus write ⟨r|x⟩ := δ(r − x).

Proof. Consider any (countable) orthonormal basis {ωk}∞k=1 ∈ L2(0, 1), we have

δ(r − x) =
∞∑
k=1

ωk(r)ωk(x)

=
∞∑
k=1

⟨r|ωk⟩⟨ωk|x⟩

= ⟨r|
∞∑
k=1

|ωk⟩ ⟨ωk||x⟩

= ⟨r|1|x⟩

2.4 Approximation Theorems

This section will aim to prove a result (proposition 2.4.3) about the density of strictly
positive step functions in nonnegative functions in L2(a, b), in a constructive way. The
result will be useful later in Chapter 3.

Remark. The density of step functions in Lp(a, b) is relatively well-known, by the regularity
of Lebesgue measure. Although that could also be used to prove the result we want, it is
not constructive, and the step sizes are not necessarily uniform. Also, it needs to be more
carefully treated when we add the restriction that the approximation functions shall be
strictly positive, which is essential to a later proof.

With that in mind, we proved an explicit formula (theorem A.0.8) to approximate any
f ∈ Lp(a, b) arbitrarily well, where the step sizes are also uniform. We will not distract
the reader here, and we will directly use the result in proving the following lemmas. We
have included it in Appendix A for the sake of completeness. Interested readers may find
the proof there.

Lemma 2.4.1. Given any non negative function g ̸= 0 ∈ L2(0, 1), we can find a sequence of
positive functions {gk} ∈ L2(0, 1) such that ∀K ≥ 1, infx∈(0,1) gk(x) > 0, and limk→∞ gk = g
in L2(0, 1).

Proof. Let gk := g + 1
k
. It is easy to see that infx∈(0,1) gk(x) = infx∈(0,1) g(x) +

1
k
≥ 1

k
> 0.
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In addition,

lim
k→∞
∥g − gk∥2 =

(∫ 1

0

(
1

k

)2

dx

) 1
2

= lim
k→∞

((
1

k

)2
) 1

2

= lim
k→∞

1

k
= 0

Lemma 2.4.2. Given any positive function g ∈ L2(0, 1) such that c := infx∈(0,1) g(x) > 0,
we can find a sequence of piecewise constant positive functions {gk}∞k=1 ∈ L2(0, 1) such that
limk→∞ gk = g in L2(0, 1).

Proof. Consider gk(x) :=
∑k

j=1 χ[xj−1,xj)(x)k
∫ xj

xj−1
g(x′)dx′, where xj := j/k.

gk(x) ≥ k ∗
∫ xj

xj−1

inf
x′∈(0,1)

g(x′)dx

= k ∗ 1
k

inf
x′∈(0,1)

g(x′)

= c

> 0

Thus gk is positive. The convergence is by theorem A.0.8.

Proposition 2.4.3. Given any non-negative function g ̸= 0 ∈ L2(0, 1), we can find se-
quence of piecewise constant positive functions {gk}∞k=1 ∈ L2(0, 1) such that limk→∞ gk = g
in L2(0, 1).

Proof. By the above lemmas.

2.5 Weak Derivative Calculus

We here aim to list and prove certain results for weak derivatives that will be used in
Chapter 4:

1. Product rule and Quotient rule.

2. Chain rule.

3. Fundamental Theorem of Calculus.
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Proposition 2.5.1 (Local Product Rule for Weak Derivatives). Let U ⊆ Rn be Lebesgue
measurable, given any p ∈ [1,∞], and any u ∈W 1,p

loc (U), v ∈ W 1,∞
loc (U), then uv ∈ W 1,p

loc (U)
with the ith weak derivative ∂i(uv) = u∂iv + v∂iu. [25, Proposition 4.1.17]

Proposition 2.5.2. Let U ⊆ Rn be Lebesgue measurable, |α| ≤ n. For u, v ∈ L1
loc(U),

suppose v|V = Dα(u|V ) on every V ⊂⊂ U , then v is the αth weak derivative of u on U
globally. i.e. v = Dαu.

Proof. Consider any ϕ ∈ Cc(U), we have that Supp(ϕ) ⊂⊂ U , so we can find a Supp(ϕ) ⊂⊂
V ⊂⊂ U . Now,∫

U

ϕvdx =

∫
V

ϕvdx = (−1)|α|
∫
V

Dαϕvdx = (−1)|α|
∫
U

Dαϕvdx,

since v|V = Dα(u|V ) and ϕ is constantly 0 outside of V .

Corollary 2.5.3 (Product Rule for Weak Derivatives). Let U ⊆ Rn be Lebesgue measur-
able, given any p ∈ [1,∞], and any u ∈ W 1,p(U), v ∈ W 1,∞(U), then uv ∈ W 1,p(U) with
the ith weak derivative ∂i(uv) = u∂iv + v∂iu. Also,

∥uv∥W 1,p(U) ≤
(
1 + n

p−1
p

)
∥u∥W 1,p(U)∥v∥W 1,∞(U).

[25, Corollary 4.1.18]

Remark. The original statement in [25] claims that ∥uv∥W 1,p(U) ≤ ∥u∥W 1,p(U)∥v∥W 1,∞(U),
which is in general not true.

Proof. We firstly note that ∥uv∥Lp(U) ≤ ∥u∥Lp(U)∥v∥L∞(U). Also, for all i ∈ [n], by the above
proposition 2.5.2, we have that ∂i(uv) = u∂iv + v∂iu exists globally in U . In addition,

∥(uv)i∥Lp(U) ≤ ∥u∂iv + v∂iu∥Lp(U)

≤ ∥u∂iv∥Lp(U) + ∥v∂iu∥Lp(U)

≤ ∥u∥Lp(U)∥∂iv∥L∞(U) + ∥∂iu∥Lp(U)∥v∥L∞(U)

<∞.

This shows that (uv)i ∈ Lp(U). Since this holds for all i ∈ [n], we have uv ∈ W 1,p(U). In
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addition,

∥uv∥W 1,p(U) =

(
∥uv∥pLp(U) +

n∑
i=1

∥(uv)i∥pLp(U)

) 1
p

≤ ∥uv∥Lp(U) +
n∑

i=1

∥(uv)i∥Lp(U)

≤ ∥u∥Lp(U)∥v∥L∞(U) +
n∑

i=1

(
∥u∥Lp(U)∥∂iv∥L∞(U) + ∥∂iu∥Lp(U)∥v∥L∞(U)

)
≤ ∥u∥Lp(U)

(
∥v∥L∞(U) +

n∑
i=1

∥∂iv∥L∞(U)

)
+

(
n∑

i=1

∥∂iu∥Lp(U)

)
∥v∥L∞(U)

≤ ∥u∥Lp(U)∥v∥W 1,∞(U) + n
p−1
p

(
n∑

i=1

∥∂iu∥pLp(U)

) 1
p

∥v∥L∞(U)

≤ ∥u∥W 1,p(U)∥v∥W 1,∞(U) + n
p−1
p ∥u∥W 1,p(U)∥v∥W 1,∞(U)

=
(
1 + n

p−1
p

)
∥u∥W 1,p(U)∥v∥W 1,∞(U).

Proposition 2.5.4 (Product Rule for Weak Derivatives of Bounded Functions). Given
any p ∈ [1,∞], and any u, v ∈W 1,p(U)∩L∞(U), then uv ∈ W 1,p(U)∩L∞(U) with the ith

weak derivative ∂i(uv) = u∂iv + v∂iu. [2, Proposition 9.4])

Corollary 2.5.5 (Quotient Rule for Weak Derivatives of Bounded Functions - Necessary
Condition). Given any p ∈ [1,∞], and any u, v ∈ W 1,p(U) ∩ L∞(U), such that u

v
∈

W 1,p(U) ∩ L∞(U), then we have the ith weak derivative is ∂i
(
u
v

)
= ∂iuv−u∂iv

v2
.

Proof. Since v u
v
= u, we have by product rule that

∂iu = ∂i

(u
v

)
v +

u

v
∂iv

∂i

(u
v

)
v =

∂iuv − u∂iv

v

∂i

(u
v

)
=

∂iuv − u∂iv

v2

Remark. Notice that in the above proof, it is very important that we know u
v
∈ W 1,p(U)∩

L∞(U) to begin with. i.e. The weak derivative already exists and is in the required space.
Thus, this is only a necessary condition. Indeed, consider the simple counter-example given
in [4], where two functions can both be weakly differentiable, but their quotient is not.

Proposition 2.5.6 (Local Chain Rule for Weak Derivatives). Given any p ∈ [1,∞].
Suppose u ∈ W 1,p

loc (U). Suppose F ∈ C1(R) has bounded derivative F ′, then the post-
composition F ◦ u lies in W 1,p

loc (U) and its ith weak derivative is given by ∂i(F ◦ u) =
(F ′ ◦ u) · ∂iu. [25, Proposition 4.1.21]

17



Remark. Since 1
x
is not C1(R) (around 0), the quotient rule does not hold in general. Also,

although ex, x2 ∈ C1(R), they don’t have a bounded derivative. To this end, we will modify
the previous chain rule to get a variation that will weaken the assumption of the behaviour
of F over the entire real line.

Proposition 2.5.7 (Local Chain Rule Variation for Weak Derivatives). Given any p ∈
[1,∞]. Suppose u ∈ W 1,p

loc (U). Suppose F ∈ C1(I) has bounded derivative F ′, where I ⊆ R
is an open interval that contains the closure of u’s essential image. i.e.⋂

{J ⊆ R : (U \ u−1(J)) has measure 0} ⊂ I.

The post-composition F ◦u lies in W 1,p
loc (U) and its ith weak derivative is given by ∂i(F ◦u) =

(F ′ ◦ u) · ∂iu.

Proof. Write I = (a, b), where a < b ∈ R ∪ {±∞}. WLOG, by redefining u on a measure
zero set, we can assume u(x) ∈ J for all x ∈ U for some J ⊂ I.

Since J ⊂ I, we can find some δ > 0, such that J ⊂ [a+ δ, b− δ]. Indeed, if a ∈ R, then
J is bounded below, and infx∈J̄ x is achieved by some x1, since J̄ is closed. Since I is open,
we can find δ1 > 0, such that (x1 − δ1, x1 + δ1) ⊂ I. Thus ∀x ∈ J, x − δ1 ≥ x1 − δ1 ≥ a.
If a = −∞, we can pick any δ2 > 0, and we always have ∀x ∈ J, x− δ1 ≥ a. Similarly, we
can pick δ1 > 0, such that ∀x ∈ J, x + δ2 < b. Now pick δ := min(δ1, δ2) > 0, we have
J ⊂ [a+ δ, b− δ].

Consider the function

g(x) :=


x, a+ δ ≤ x ≤ b− δ

b− δe
1
δ
(b−x−δ), x ≥ b− δ

a+ δe
1
δ
(x−a−δ), x ≤ a+ δ

.

We can check that g is well defined and continuous, and

g′(x) =


1, a+ δ ≤ x ≤ b− δ

e
1
δ
(b−x−δ), x > b− δ

e
1
δ
(x−a−δ), x < a+ δ

is also continuous and bounded by 1. Thus g ∈ C1(R). In addition, g is monotone
increasing and ∀x ∈ R, g(x) ∈ (a, b) = I.

Now consider the composition G := F ◦ g, which is well-defined. Since F ∈ C1(I) has
bounded derivative F ′, we have some M > 0, such that ∀s ∈ I, |F ′(s)| ≤ M . We have by
calculus chain rule that G ∈ C1(R), with |G′(s)| = |F ′(g(s))g′(s)| = |F ′(g(s))||g′(s)| ≤M ,
which is also bounded. Thus by the above chain rule, we have G ◦u ∈ W 1,p

loc (U), and its ith

weak derivative id given by
∂i(G ◦ u) = (G′ ◦ u) · ∂iu.

However, for any x ∈ U , we have u(x) ∈ J ⊂ [a+ δ, b− δ], so g(u(x)) = u(x), and

(G ◦ u)(x) = F (g(u(x))) = F (u(x)) = (F ◦ u)(x).
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Also,

(G′ ◦ u)(x) = G′(u(x)) = F ′(g(u(x)))�����:1
g′(u(x)) = F ′(u(x)) = (F ′ ◦ u)(x).

Thus G ◦ u = F ◦ u, and G′ ◦ u = F ′ ◦ u.
This proves F ◦ u ∈ W 1,p

loc (U), and its ith weak derivative id given by

∂i(F ◦ u) = ∂i(G ◦ u) = (G′ ◦ u) · ∂iu = (F ′ ◦ u) · ∂iu.

Remark. Notice that the above proof requires that I is a connected interval, and J̄ ⊆ I to
find such a δ > 0.

Corollary 2.5.8 (Chain Rule Variation for Weak Derivatives). Given any p ∈ [1,∞].
Suppose u ∈ W 1,p(U). Suppose F ∈ C1(I) has bounded derivative F ′, where I ⊆ R is
an open interval that contains the closure of u’s essential image, and the post-composition
F ◦ u ∈ Lp(U). In this case, F ◦ u lies in W 1,p(U) and its ith weak derivative is given by
∂i(F ◦ u) = (F ′ ◦ u) · ∂iu.

Proof. Since u ∈ W 1,p(U) ⊆ W 1,p
loc (U), we have that F ◦ u ∈ W 1,p

loc (U), with ∂i(F ◦ u) =
(F ′◦u)·∂iu. Thus, (F ′◦u)·∂iu is the global ith weak derivative of F ◦u by proposition 2.5.2.

Now let M > 0 be such that ∀s ∈ I, F ′(s) ≤M . Suppose p <∞,

∥F ◦ u∥pW 1,p(U) = ∥F ◦ u∥
p
Lp(U) +

∑
i∈[n]

∥(F ′ ◦ u) · ∂iu∥pLp(U)

≤ ∥F ◦ u∥pLp(U) +
∑
i∈[n]

Mp∥∂iu∥pLp(U)

≤ ∥F ◦ u∥pLp(U) +Mp∥u∥pW 1,p(U)

<∞.

Suppose p =∞, we have

∥F ◦ u∥W 1,∞(U) = ∥F ◦ u∥L∞(U) +
∑
i∈[n]

∥(F ′ ◦ u) · ∂iu∥L∞(U)

≤ ∥F ◦ u∥L∞(U) +
∑
i∈[n]

M∥∂iu∥L∞(U)

≤ ∥F ◦ u∥L∞(U) +M∥u∥W 1,∞(U)

<∞.

Thus, F ◦ u ∈ W 1,p(U).

Notice that we always get F ◦u ∈ Lp(U) if we assume U is bounded and other assump-
tions hold. Indeed, we have the following corollary.
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Corollary 2.5.9 (Chain Rule Variation for Weak Derivatives on Bounded Domain). Given
any p ∈ [1,∞]. Suppose u ∈ W 1,p(U), where U ⊂ Rn is a bounded open set. Suppose
F ∈ C1(I) has bounded derivative F ′, where I ⊆ R is an open interval that contains the
closure of u’s essential image. In this case, F ◦u lies in W 1,p(U) and its ith weak derivative
is given by ∂i(F ◦ u) = (F ′ ◦ u) · ∂iu. In addition, when p =∞, the above holds true even
when U is not assumed to be bounded.

Proof. Let M > 0 be such that ∀s ∈ I, |F ′(s)| < M . Fix any s ∈ I, and consider any
t ̸= s ∈ I. By the Mean Value Theorem, there is r ∈ (min(s, t),max(s, t)) such that

F ′(r) = F (t)−F (s)
t−s

. Thus F (t) = F (s) + F ′(r)(t− s), and

|F (t)| ≤ |F (s)|+ |F ′(r)(t− s)|
≤ |F (s)|+M |t− s|
≤ |F (s)|+M |t|+M |s|.

Let C := |F (s)|+M |s| <∞, we have ∀t ∈ I, |F (t)| ≤ C +M |t|.
Suppose p <∞, we have

∥F ◦ u∥pLp(U) =

∫
U

|F (u(x))|pdx

≤
∫
U

|C +M |u(x)||pdx

≤
∫
U

2p−1(Cp +Mp|u(x)|p)dx

=

∫
U

2p−1Cpdx+

∫
U

2p−1Mp|u(x)|pdx

= 2p−1Cp|U |+ 2p−1Mp∥u∥pLp(U)

<∞,

since u ∈ W 1,p(U) ⊂ Lp(U), and U is bounded.

Now suppose p =∞, we have

∥F ◦ u∥L∞(U) = ess sup
x∈U

|F (u(x))|

≤ ess sup
x∈U

C +M |u(x)|

= C +M ess sup
x∈U

|u(x)|

= C +M∥u∥L∞(U)

<∞.

Thus, F ◦ u ∈ Lp(U) and satisfies the above corollary.

Corollary 2.5.10. Given any p ∈ [1,∞]. Suppose u ∈ W 1,∞(U). In this case, u2, eu both
lie in W 1,∞(U) and their ith weak derivative is given by ∂i(u

2) = 2u∂iu, ∂i(e
u) = eu∂iu.
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Proof. Let M := ∥u∥∞ <∞. Notice that the essential image of u lies in [−M,M ], which
is contained in the open interval I := (−2M, 2M) ⊂ R.

Both F (s) := s2, G(s) := es are in C1(I), and F ′(s) = 2s and G′(s) = es are bounded
by 4M, e2M on I, respectively.
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Chapter 3

Global Nonnegative Controllability
through the Reaction Term in 1D

In this chapter, we will follow the idea in [17] to show nonnegative approximate control
lability for problem 2. We will first restrict the target states to a dense subset S ⊆
L2(0, 1), and then use the Maximum Principle and some spectral analysis to acquire some
estimates on the solution to eq. (1.2). Lastly, we will design a control and show exponential
convergence using the previous results.

3.1 Approximation

In this section, we aim to show that the following set S is dense in the set of non-negative
functions in space of square-integrable functions.

Definition 3.1.1. Consider the set S of functions g ∈ L2(0, 1) that satisfies the following:

1. nonzero non-negative continuously differentiable,

2. vanish at x = 0, 1,

3. whose second derivatives are piecewise continuous with finitely many discontinuities
of the first kind (jump or removable), and

4. the function α∗ defined by α∗(x) :=

{
gxx(x)
g(x)

if g(x) ̸= 0

0 if g(x) = 0
is in L∞(0, 1).

Notice that such a g that satisfies 1. and 3. is always in W 1(0, 1) by corollary 2.1.13.

Lemma 3.1.1. Given any piecewise constant positive function g =
∑n

j=1 αjχ[xj−1,xj) ∈
L2(0, 1) with jumps at 0 = x1 < x2 < · · · < xn = 1 and αj > 0 being constants, we can
find a sequence of continuous bounded piecewise linear positive functions {gk}∞1 ∈ L2(0, 1)
such that

22



1. limk→∞ gk = g in L2(0, 1), and

2. for all k ≥ 1, limx→0 gk(x) = limx→1 gk(x) = 0.

Proof. Notice that infx∈(0,1) g(x) = minj∈[n] αj > 0, and supx∈(0,1) g(x) = maxj∈[n] αj <∞.

For each k ≥ 1, let

ϵk := min(
1

k
,
1

4
min
1<j≤n

(xj − xj−1)) > 0.

Consider

gk(x) :=


g(xj − ϵk) +

g(xj+ϵk)−g(xj−ϵk)

2ϵk
(x− xj + ϵk) if ∃1 < j < n, |x− xj| ≤ ϵk

g(ϵk)
ϵk

x if x0 = 0 < x ≤ ϵk
g(1−ϵk)

ϵk
(1− x) if 1− ϵk ≤ x < 1 = x1

g(x) otherwise

.

Namely, it is the function where we shrink each constant part by ϵk at the beginning and
end, and then we connect them linearly.

Suppose ∃1 ≤ j < i ≤ n, |x− xi|, |x− xj| ≤ ϵk, then

xi − xj = |xi − xj|
≤ |x− xi|+ |x− xj|
≤ 2ϵk

≤ 2

4
min
1<l≤n

(xl − xl−1)

< xi − xi−1,

a contradiction. Thus, gk is well-defined. Also, for each 1 < j < n, we have that

g(xj − ϵk) +
g(xj + ϵk)− g(xj − ϵk)

2ϵk
((xj − ϵk)− xj + ϵk)

= g(xj − ϵk) +
g(xj + ϵk)− g(xj − ϵk)

2ϵk
0

= g(xj − ϵk),

g(xj − ϵk) +
g(xj + ϵk)− g(xj − ϵk)

2ϵk
((xj + ϵk)− xj + ϵk)

= g(xj − ϵk) +
g(xj + ϵk)− g(xj − ϵk)

2ϵk
2ϵk

= g(xj − ϵk) + g(xj + ϵk)− g(xj − ϵk)

= g(xj + ϵk),
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Also,

g(ϵk)

ϵk
ϵk = g(ϵk),

g(1− ϵk)

ϵk
(1− (1− ϵk)) = g(1− ϵk).

By gluing lemma, gk is continuous. It is also easy to see that gk vanishes at 0, 1.

In the first case where ∃1 < j < n, |x− xj| < ϵk , we have that

gk(x) = (1− x− xj + ϵk
2ϵk

)g(xj − ϵk) +
x− xj + ϵk

2ϵk
g(xj + ϵk)

≥ (1− x− xj + ϵk
2ϵk

) inf
x̃∈(0,1)

g(x̃) +
x− xj + ϵk

2ϵk
inf

x̃∈(0,1)
g(x̃)

= inf
x̃∈(0,1)

g(x̃)

> 0.

Thus, it is positive and bounded below by infx∈(0,1) g(x). Similarly, it is bounded above by
supx∈(0,1) g(x) <∞.

In the second case, if 0 < x < ϵk, since g(ϵk) > 0, we have that

0 <
g(ϵk)

ϵk
x = gk(x) <

g(ϵk)

ϵk
ϵk = g(ϵk) ≤ sup

x∈(0,1)
g(x) <∞.

Thus it is positive and bounded.

Similarly, in the third case, we can see that if 1− ϵk < x < 1, we still have gk(x) being
positive and bounded.

In the forth case, we have gk(x) = g(x), so gk(x) is bounded above by supx∈(0,1) g(x) <
∞, and below by infx∈(0,1) g(x) > 0.

Thus we have that gk is positive and bounded above by supx∈(0,1) g(x) <∞.

In addition, since limk→∞ ϵk = 0, point-wise convergence is also easy to see. By A.0.5,
it also converges in L2(0, 1).

Remark. The density of the continuous functions that satisfies 1. and 2. is a well-known
fact in measure theory (Lusin’s Theorem [9]). What we really need from this construction
is property 3., which will be crucial later.

Lemma 3.1.2. Given any continuous bounded piecewise linear positive functions g ∈
W 1

0 (0, 1) ⊆ L2(0, 1) with “turning points” at 0 = x1 < x2 < · · · < xn = 1 such that
limx→0 g(x) = limx→1 g(x) = 0, we can find a sequence of continuously differentiable
bounded positive functions {gk}∞1 ⊆ S such that limk→∞ gk = g in L2(0, 1).

Proof. Define gk by replacing each angle generated by the corresponding adjacent straight
lines of the graphs around the “turning point” xj (other than x1 = 0, xn = 1), by an arc
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with radius rk := min
(
1
k
, C
2
, 1
4
min1<j≤n(xj − xj−1)

)
, and tangent to the lines. For each

angle, this arc is unique, with its centre located on the bisector of the angle.

Notice that gk still vanishes at 0, 1, since we did not change anything from g around
0, 1. In addition, it is still bounded below and above by the bounds of the original function,
thus positive and bounded. It is continuously differentiable because now it is formed only
by straight lines and their tangent arcs. Its second derivative is either 0 (on the straight
line) or finite and continuous (on the arc), with finitely many discontinuities of the first
kind only at the 2(n− 1) points where the lines and arcs connect.

Lastly, supx∈[x2−rk,xn−1+rk]

d2

dx2
gk(x)

gk(x)
<∞, since it is piecewise continuous on closed (thus

compact) intervals [x2 − rk, x2 + rk] ∪ [x2 + rk, x3 − rk] ∪ · · · [xn−1 − rk, xn−1 + rk]. By

construction, for all x ∈ (0, x1 − rk] ∪ [xn−1 + rk, 1), gk(x) = g(x) is linear, so
d2

dx2
gk(x)

gk(x)
=

0
g(x)

= 0. Thus, infx∈(0,x1−rk]∪[xn−1+rk,1)

d2

dx2
gk(x)

gk(x)
= 0 < ∞. This shows

d2

dx2
gk(x)

gk(x)
∈ L∞(0, 1).

Thus we have ∀k ≥ 1, gk ∈ S.

It is easy to see that each gk is bound above by supx∈(0,1) g(x) <∞, and gk(x)→ g(x)
point-wise, since limk→∞ rk = 0, and thus by A.0.5, it also converges in L2(0, 1).

Theorem 3.1.3. Any non-negative element g ∈ L2(0, 1) can be approximated by a sequence
of functions {gk}∞k=1 ⊂ S. Namely, S is dense in L2(0, 1).

Proof. This directly follows from proposition 2.4.3 and the previous lemmas.

Remark. Thus in the following sections, we can always assume that the target function yd
is in S as defined in 3.1.1.

3.2 Operator and Eigenfunctions

Here we will state some results about the Spectral problem associated to the differential
operator. A more detailed analysis can be found in [7, 11, 26]. In particular, in view of [7,
Theorem 6.3.4], we will always consider a weak solution ω ∈ H1

0 (0, 1) of ωxx+(α(x)−λ)ω =
0 to be in H2(0, 1), since the constant coefficient function 1 ∈ C∞([0, 1]) ⊂ C1([0, 1]).
Namely, ωxx make sense as the second weak derivative.

Proposition 3.2.1. Let α ∈ L∞(0, 1), consider the eigenvalues λk and orthonormalized
eigenfunctions ωk ∈ H1

0 (0, 1) of the spectral problem ωxx + α(x)ω = λω, we have that
∥α∥L∞(0,1) ≥ λ1 > λ2 > . . . , and limk→∞ λk = −∞. Also, {ωk}∞k=1 forms an orthornormal

basis for L2(U).

Proof. It is known that if we order the eigenvalues by their absolute value, we have
limk→∞ |λk| = ∞ for any second-order linear spectral problem. See Theorem 6.5.1 of
[7] for the case α is smooth, and the general case may be found in Theorem 8.37 of [11].

In addition, suppose for contradiction that there is some eigenvalue λk > ∥α∥L∞(0,1),
we must have that (ωk)xx = (λk − α)ωk > 0 a.e.. By Theorem 4.1.6 in [14], ωk will be
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(weakly) convex and thus non-decreasing, and thus we cannot have the boundary condition
ωk(0) = ωk(1) = 0 unless ωk = 0. Thus a contradiction with ωk being an eigen-function,
and we have ∀k, ∥α∥L∞(0,1) ≥ λk.

Since the absolute value of ωk → ∞, but it is bounded above, we have that it must
tend to negative infinity, thus completing the proof.

Proposition 3.2.2. Let ω ∈ H1
0 (0, 1), α ∈ L∞(0, 1), consider the orthonormalized eigen-

functions ωk(x) of the spectral problem ωxx + α(x)ω = λω, then ωk(x) are also the or-
thonormalized eigenfunctions of ωxx + β(x)ω = λ′ω, where β = α+ c for some constant c.
In addition, the corresponding eigenvalues are λ′

k = λk + c.

Proof.

(ωk)xx + α(x)ωk = λkωk

(ωk)xx + α(x)ωk + cωk = λkωk + cωk

(ωk)xx + β(x)ωk = (λk + c)ωk

Thus ωk is still an eigenfunction, with corresponding eigenvalue λ′
k = λk + c.

3.3 Solution to the Initial Boundary Problem

We will here establish an explicit form of the solution to eq. (1.2), and provide some
estimates on some of its terms. For the simplicity of calculation, we will use the ket-bra
notation with the Dirac-delta function. Please refer to chapter 5 and 6 of [7] to see how
this could be rigorously done. Similar as above, we will always consider the weak solution
y(x, t) of eq. (1.2) to be in L2(H2(0, 1)). Namely, yxx makes sense as second weak derivative
for the spatial variable.

Proposition 3.3.1. Let ω ∈ H1
0 (0, 1), consider the eigenvalues λk and orthonormalized

eigenfunctions ωk(x) of the spectral problem ωxx +α(x)ω = λω, where λ1 > λ2 > . . . , then

y(x, t) :=
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

=
∞∑
k=1

eλkt⟨ωk, y0⟩L2(0,1)ωk(x)

=
∞∑
k=1

eλkt|ωk⟩⟨ωk|y0⟩(x)

(3.1)

is a solution to eq. (1.2).
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Proof. Since ωk ∈ H1
0 , we can directly see that

y(0, t) =
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(0)

=
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
0

= 0,

y(1, t) =
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(1)

= 0.

In addition,

y(x, 0) =
∞∑
k=1

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

=

∫ 1

0

y0(r)
∞∑
k=1

ωk(r)ωk(x)dr

=

∫ 1

0

y0(r)δ(r − x)dr

= y0(x).

In addition,

yt =
d

dt

(
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

)

=
∞∑
k=1

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

d

dt
eλkt

=
∞∑
k=1

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)λke

λkt

=
∞∑
k=1

λke
λkt⟨ωk, y0⟩L2(0,1)ωk(x)

yx =
d

dx

(
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

)

=
∞∑
k=1

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
d

dx
ωk(x)

=
∞∑
k=1

eλkt⟨ωk|y0⟩L2(0,1)

d

dx
ωk(x).

27



Thus we have

yxx + αyx =
∞∑
k=1

eλkt⟨ωk, y0⟩L2(0,1)

d2

dx2
ωk(x) +

∞∑
k=1

eλkt⟨ωk, y0⟩L2(0,1)α
d

dx
ωk(x)

=
∞∑
k=1

eλkt⟨ωk, y0⟩L2(0,1)

(
d2

dx2
ωk(x) + α

d

dx
ωk(x)

)
=

∞∑
k=1

eλkt⟨ωk, y0⟩L2(0,1)λkωk(x)

= yt.

Thus y(x, t) :=
∑∞

k=1 e
λkt
(∫ 1

0
y0(r)ωk(r)dr

)
ωk(x) is a solution to eq. (1.2).

Proposition 3.3.2. For any n ≥ 1, where {ωk}∞1 forms an orthonormal basis, let

r(x, t) :=
∞∑
k=n

eλkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x). (3.2)

then
∀t ≥ 0, ∥r(·, t)∥2 ≤ eλnt∥y0∥2.

Proof.

∥r(·, t)∥22 = ⟨r(·, t), r(·, t)⟩L2(0,1)

=

〈
∞∑
k=n

eλkt⟨ωk|y0⟩ωk,
∞∑
j=n

eλjt⟨ωj|y0⟩ωj

〉
L2(0,1)

=
∞∑
k=n

eλkt⟨ωk|y0⟩
∞∑
j=n

eλjt⟨ωj|y0⟩
��������:δjk
⟨ωk, ωj⟩L2(0,1)

=
∞∑
k=n

e2λkt⟨ωk|y0⟩2

≤ e2λnt

∞∑
k=1

⟨ωk|y0⟩2

= e2λnt

∞∑
k=1

⟨y0|ωk⟩⟨ωk|y0⟩

= e2λnt⟨y0|
��

���
��*

1∞∑
k=1

|ωk⟩ ⟨ωk||y0⟩

= e2λnt⟨y0|y0⟩

=
(
eλnt∥y0∥2

)2
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Corollary 3.3.3. Let y(x, t) :=
∑∞

k=1 e
λkt
(∫ 1

0
y0(r)ωk(r)dr

)
ωk(x), where {ωk}∞1 forms an

orthonormal basis, then ∥y(·, t)∥2 ≤ eλ1t∥y0∥2

Definition 3.3.1. Given α ∈ L∞(0, 1), consider the following rescaled norm on H1
0 (0, 1):

∥u∥H1
0 (0,1)

:=

(∫ 1

0

(u2
x(x) + (−α(x) + c)u2(x))dx

) 1
2

,

where c > ∥α∥L∞(0,1) is a positive number.

Remark. One can show that the above norm is equivalent to ∥u∥H1(0,1). Namely, there is
C1, C2 > 0, such that

∀u ∈ H1
0 (0, 1), C1∥u∥H1(0,1) ≤ ∥u∥H1

0 (0,1)
≤ C2∥u∥H1(0,1).

Proposition 3.3.4. Let y(x, t) :=
∑∞

k=1 e
λkt
(∫ 1

0
y0(r)ωk(r)dr

)
ωk(x) as in eq. (3.1), then

∥y(·, t)∥C[0,1] ≤ C∗∥y(·, t)∥H1
0 (0,1)

≤ C(t)∥y0∥2, where C∗ is a positive constant associated

with the continuous embedding H1
0 (0, 1) ⊂ C[0, 1] and the function C(t) is nondecreasing.

Proof. The first inequality follows from Morrey’s inequality [7, Theorem 5.7.4] and the
definition of Holder norms. We now focus on the second inequality.

Notice that limk→∞(c− λk)e
2λk = 0, so it is bounded. Namely, there is some

C(t) ∈ R, such that ∀k ≥ 0, (c− λk)e
2λkt ≤ C2(t).
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Now we have∫ 1

0

cy2(x, t)− yt(x, t)y(x, t)dx

=

∫ 1

0

(cy(x, t)− yt(x, t))y(x, t)dx

=

∫ 1

0

(
∞∑
k=1

(c− λk)e
λkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

)
y(x, t)dx

=

∫ 1

0

∞∑
k,j=1

(c− λk)e
λkt

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)e

λjt

(∫ 1

0

y0(r)ωj(r)dr

)
ωj(x)dx

=
∞∑

k,j=1
����������:

δjk∫ 1

0

ωk(x)ωj(x)dx(c− λk)e
λkt+λjt

(∫ 1

0

y0(r)ωk(r)dr

)(∫ 1

0

y0(r)ωj(r)dr

)

=
∞∑
k=1

(c− λk)e
2λkt

(∫ 1

0

y0(r)ωk(r)dr

)(∫ 1

0

y0(r)ωk(r)dr

)
=

∞∑
k=1

(c− λk)e
2λkt

∫ 1

0

∫ 1

0

y0(r)y0(r
′)ωk(r)ωk(r

′)drdr′

≤C2(t)
∞∑
k=1

∫ 1

0

∫ 1

0

y0(r)y0(r
′)ωk(r)ωk(r

′)drdr′

=C2(t)

∫ 1

0

∫ 1

0

y0(r)y0(r
′)

�
���

���
��*

δ(r − r′)
∞∑
k=1

ωk(r)ωk(r
′)drdr′

=C2(t)

∫ 1

0

y0(r)y0(r)dr

=C2(t)∥y0∥22.
Thus

∥y(·, t)∥2H1
0 (0,1)

=

∫ 1

0

(y2x(x, t) + (−α(x) + c)y2(x))dx

=

∫ 1

0

−y(x, t)yxx(x, t) + (−α(x) + c)y2(x, t)dx

=

∫ 1

0

y(x, t)(α(x)y(x, t)− yt(x, t)) + (−α(x) + c)y2(x, t)dx

=

∫ 1

0

α(x)(y2(x, t)− y2(x, t))dx+

∫ 1

0

cy2(x, t)− yt(x, t)y(x, t)dx

=

∫ 1

0

cy2(x, t)− yt(x, t)y(x, t)dx

= C2(t)∥y0∥22
Thus ∥y(·, t)∥H1

0 (0,1)
≤ C(t)∥y0∥2
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3.4 Designing the Control

Lemma 3.4.1. Consider yd ∈ S as defined in 3.1.1, and α∗ :=

{
−ydxx

yd
if yd ̸= 0

0 if yd = 0
∈

L∞(0, 1). We have that ωk∗ :=
yd(x)
∥yd∥2

is an eigenfunction for the spectral problem yxx+α∗y,

with associated eigenvalue λk∗ = 0.

Proof. ωk∗xx + α∗ωk∗ = ydxx(x)
∥yd∥2

− ydxx(x)
yd(x)

yd(x)
∥yd∥2

= 0 if ydx(x) ̸= 0, which is everywhere on

(0, 1).

In addition, ∥ωk∗∥2 =
∥∥∥ yd(x)
∥yd∥2

∥∥∥
2
=

∥yd∥2
∥yd∥2

= 1

Lemma 3.4.2. Let ω ∈ H1
0 (0, 1), consider the orthonormalized eigenfunctions ωk(x) of

the spectral problem ωxx+α∗(x)ω = λω. We have that ∀m ̸= k∗, ωm changes sign in (0, 1),
where ωk∗ is as in the above lemma.

Proof. Suppose we have ωm being non-negative. Then by orthonormality, we have
∫ 1

0
ωm(x)ωk∗(x) =

0. However, ωk∗(x) is by construction positive everywhere in (0, 1), thus ωm(x) = 0 almost
everywhere, which is not an eigenfunction, thus a contradiction.

Similarly, ωm cannot be non-positive.

Theorem 3.4.3. Let ω ∈ H1
0 (0, 1), consider the orthonormalized eigenfunctions ωk(x) of

the spectral problem ωxx + α∗(x)ω = λω. We have that k∗ = 1 and thus λ1 = 0, where ωk∗

is as in above, and λ1 > λ2 > . . . .

Proof. Suppose k∗ > 1, then we have ω1 changes sign in (0, 1), and thus we can find a

positive y0 ∈ L2(0, 1), such that
∫ 1

0
y0(x)ω1(x)dx < 0.

Consider α := α∗ − λ1, then we know that ωk(x) are still the eigenfunctions of ωxx +
α(x)ωx = λω, and the corresponding eigenvalues are λk − λ1.

Thus the solution for problem 1.2 is

y(x, t) =
∞∑
k=1

e(λk−λ1)t

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

=

∫ 1

0

y0(r)ω1(r)drω1(x) +
∞∑
k=2

e(λk−λ1)t

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

Since ∀k ≥ 2, λ1 > λ1, we have limt→∞ y(x, t) =
∫ 1

0
y0(r)ω1(r)drω1(x) < 0 for some

x ∈ (0, 1) such that ω1(x) > 0.

However, this contradicts the maximum principle eq. (2.1).

Thus we must have k∗ = 1 and thus λ1 = 0.
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Lemma 3.4.4. Consider α := α∗ + a, with α∗, ωk, λk as in above, and a ∈ R. Let y(x, t)
be the solution as in eq. (3.1), we have that

∥y(·, t)− yd∥2 ≤
∣∣∣∣eat ∫ 1

0

y0(x)ω1(x)dx− ∥yd∥2

∣∣∣∣+ e(λ2+a)t∥y0∥2

Proof. Notice that from above, we have that for all k ≥ 2, λk < λ1 = 0

y(x, t) =
∞∑
k=1

e(λk+a)t

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

= eat
(∫ 1

0

y0(r)ω1(r)dr

)
ω1(x) +

∞∑
k=2

e(λk+a)t

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

= eat
(∫ 1

0

y0(r)ω1(r)dr

)
ω1(x) + r(x, t),

r(x, t) :=
∞∑
k=2

e(λk+a)t

(∫ 1

0

y0(r)ωk(r)dr

)
ωk(x)

In addition,

∥y(·, t)− yd∥2 =
∥∥∥∥eat(∫ 1

0

y0(r)ω1(r)dr

)
ω1 + r(·, t)− yd

∥∥∥∥
2

≤
∥∥∥∥eat(∫ 1

0

y0(r)ω1(r)dr

)
ω1 − yd

∥∥∥∥
2

+ ∥r(·, t)∥2

=

∥∥∥∥eat(∫ 1

0

y0(r)ω1(r)dr

)
yd
∥yd∥2

− yd

∥∥∥∥
2

+ ∥r(·, t)∥2

=

∣∣∣∣eat(∫ 1

0

y0(r)ω1(r)dr

)
− ∥yd∥2

∣∣∣∣∥∥∥∥ yd
∥yd∥2

∥∥∥∥
2

+ ∥r(·, t)∥2

=

∣∣∣∣eat(∫ 1

0

y0(r)ω1(r)dr

)
− ∥yd∥2

∣∣∣∣+ ∥r(·, t)∥2
≤
∣∣∣∣eat(∫ 1

0

y0(r)ω1(r)dr

)
− ∥yd∥2

∣∣∣∣+ e(λ2+a)t∥y0∥2 3.3.2

Lemma 3.4.5. Let ω ∈ H1
0 (0, 1), consider the orthonormalized eigenfunctions ωk(x) of

the spectral problem ωxx +α∗(x)ω = λω. Consider any y0 ∈ S as defined in 3.1.1, we have∫ 1

0
y0(x)ω1(x)dx > 0, where ω1 = ωk∗ is as in the above.

Proof. This is easy since both y0(x) and ωk∗(x) are positive in (0, 1).

Theorem 3.4.6. Consider the setting as above, let a := 1
T
ln
(

∥yd∥2∫ 1
0 y0ω1dx

)
, we have that

lim
T→∞

∥y(·, T )− yd∥2 = 0
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Proof. By the above lemma, a > 0 is well-defined.

∥y(·, T )− yd∥2 ≤
∣∣∣∣eaT ∫ 1

0

y0(x)ω1(x)dx− ∥yd∥2

∣∣∣∣+ e(λ2+a)T∥y0∥2

=

∣∣∣∣∣ ∥yd∥2∫ 1

0
y0ω1dx

∫ 1

0

y0ω1dx− ∥yd∥2

∣∣∣∣∣+ eaT eλ2T∥y0∥2

= 0 +
∥yd∥2∫ 1

0
y0ω1dx

eλ2T∥y0∥2

=

(
∥yd∥2∥y0∥2∫ 1

0
y0ω1dx

)
eλ2T

Notice that we have λ2 < λ1 = 0, so

lim
T→∞

∥y(·, T )− yd∥2 = lim
T→∞

(
∥yd∥2∥y0∥2∫ 1

0
y0ω1dx

)
eλ2T = 0.

Theorem 3.4.7 (Approximate Controllability of the Heat Equation in 1D). For any non-
negative u0, ud ∈ L2(0, 1) with u0 ̸= 0, and ϵ > 0, there is a T (ϵ, u0, ud) > 0 and multi-
plicative control α ∈ L∞(QT ), such that for the solution 3.1 to the problem 1.2, we have
∥u(·, T )− ud∥2 ≤ ϵ. [15]

Proof. Since the set S as in definition 3.1.1 is dense in the non-negative functions in L2(0, 1)
by theorem 3.1.3, we can approximate ud by yd ∈ S arbitrarily close with ∥ud − yd∥2 <

1
2
ϵ.

Pick α(x, t) := α∗(x) + a(T ) as from above, we have by previous result that

lim
T→∞

∥u(·, T )− yd∥2 = 0,

and thus we can find a T big enough so that ∥u(·, T )− yd∥2 ≤
1
2
ϵ, so ∥u(·, T )− ud∥2 ≤ ϵ

holds by triangular inequality.

This also suggests an easy numerical algorithm:
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Algorithm 1: Approximate Multiplicative Control through Reaction Term

Data: Initial state y0 ∈ L2(0, 1), target state yd ∈ L2(0, 1), both positive, and final
time T

Result: Multiplicative control α for Problem 2
x← partition of [0, 1];
f(x)← numerical approximation of ydxx(x);
if yd(x) ̸= 0 then

α(x)← − f(x)
yd(x)

;

else
α(x)← 0;

a← 1
T
ln
(

∥yd∥22∫ 1
0 y0yddx

)
;

α(x)← α(x) + a;
return α

To serve as an intuitive picture, we have implemented this algorithm in Python, and
plotted the following easy example, with final time T = 2. See Appendix B.

y0(x) = 8x2(1− x),

yd(x) = sin(πx).
(3.3)

Figure 3.1: Evolution of control through the reaction term, method 1

Also, we plotted the L2(0, 1) difference towards the target state.
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Figure 3.2: Difference towards the target state, method 1
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Chapter 4

Control through Advection Term via
Transformation to Reaction Term

We now want to consider the multiplicative controllability through the Advection Term,
as defined in problem 3.

4.1 Transformation between control through Advec-

tion Term and Reaction Term

4.1.1 Sturm-Liouville Theory for Continuous Functions

We will here show the motivation of our approach by examining a transformation for
continuously differentiable functions. All the partial derivatives in this section shall be un-
derstood as normal calculus derivatives, and the equalities of functions shall be understood
as pointwise.

Proposition 4.1.1. Given y0 ∈ C2(0, 1), and a control α ∈ C1(0, 1) for the advection
term linear initial problem ∀x ∈ (0, 1), t ∈ (0, T ),

∂y

∂t
(x, t) = yxx(x, t) + α(x)yx(x, t)

y(x, 0) = y0(x)

then there is a control β := −1
4
α2 − 1

2
αx ∈ C(0, 1) that solves the the reaction term linear

initial problem ∀x ∈ (0, 1), t ∈ (0, T ),

∂y

∂t
(x, t) = uxx(x, t) + β(x)u(x, t)

u(x, 0) = y0(x)e
1
2

∫ x
c α(x̃)dx̃,

where c ∈ (0, 1), and y satisfies for any (x, t) ∈ (0, 1)× (0, T ),

u(x, t) = y(x, t)e
1
2

∫ x
c α(z)dz.
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Proof. Consider w(x) := e−
1
2

∫ x
c α(x̃)dx̃, then we have

y = uw

wx(x) = −
1

2
α(x)e−

1
2

∫ x
c α(x̃)dx̃

= −1

2
α(x)w(x)

wxx(x) =
1

4
α2(x)e−

1
2

∫ x
c α(z)dz − 1

2
αx(x)e

− 1
2

∫ x
c α(x̃)dx̃

=
1

4
α2(x)w(x)− 1

2
αx(x)w(x)

∂y

∂t
= yxx + αyx

= (uwx + uxw)x + α(uwx + uxw)

= uwxx + uxwx + uxwx + uxxw + α(x)(uwx + uxw)

= wuxx + (2wx + αw)ux + (wxx + αwx)u

= wuxx +

(
2

(
−1

2
αw

)
+ αw

)
ux +

(
1

4
α2w − 1

2
αxw −

1

2
ααw

)
u

= wuxx + 0 · ux +

(
−1

4
α2 − 1

2
αx

)
wu

= w(uxx + βu).

Notice that yt = utw since w is independent of t. Since w > 0, dividing both sides by w
gives

ut = uxx + βu

as desired. In addition, the boundary conditions follow by that u(x, t) = y(x, t)e
1
2

∫ x
c α(z)dz.

Proposition 4.1.2. Given any β : (0, 1) → R, we have that α ∈ C1(0, 1) is a solution to
the Riccati equation

β(x) = −1

4
α2(x)− 1

2
αx(x)

if and only if q(x) ∈ C2(0, 1) is a nonzero solution to

qxx(x) + β(x)q(x) = 0,

where α = 2 qx
q
.

Proof. Suppose β(x) = −1
4
α2(x) − 1

2
αx(x). Define q(x) := e

1
2

∫ x
c α(x̃)dx̃ for any c ∈ (0, 1).

Similar to above, we can see that qx(x) =
1
2
α(x)q(x), and qxx(x) =

1
4
α2(x)q(x)+ 1

2
αx(x)q(x).
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Thus, qx(x)
q(x)

= 1
2
α(x). Also,

qxx(x) + β(x)q(x) =
1

4
α2(x)q(x) +

1

2
αx(x)q(x) + β(x)q(x)

= q(x)

(
1

4
α2(x) +

1

2
αx(x) + β(x)

)
= 0.

On the other hand, suppose qxx(x)+β(x)q(x) = 0, with q(x) ̸= 0. Define α(x) := 2 qx(x)
q(x)

,
then

−1

4
α2(x)− 1

2
αx(x) = −

1

4
4
q2x(x)

q2(x)
− 1

2
2
qxx(x)q(x)− q2x(x)

q2(x)

= −q2x(x) + qxx(x)q(x)− q2x(x)

q2(x)

= −qxx(x)q(x)

q2(x)

= −−β(x)q(x)q(x)
q2(x)

= β(x).

We notice that the proofs in both of the above propositions require

1. Product rule and Quotient rule;

2. Chain rule, so that we have d
dx
ef(x) = ef(x) d

dx
f ;

3. Fundamental Theorem of Calculus, so that we have d
dx

(∫ x

c
α(x̃)dx̃

)
= α(x).

We thus invoke results discussed in Section 2.5 in the next section to get a result for weak
derivatives.

4.1.2 Transformation of Control

Theorem 4.1.3. Given y0, yd ∈ L2(0, 1), and T > 0. Consider all spatial derivatives below
as weak derivatives, and all equalities as equalities of equivalent function classes in space
of square-integrable functions, we have

1. Suppose there is a control α ∈ W 1,∞(0, 1) such that ∀t ∈ (0, T ),

y(·, t) ∈ H2(0, 1),

yt(·, t) = yxx(·, t) + αyx(·, t),
y(·, 0) = y0

y(·, T ) = yd,

(4.1)
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then there are β := −1
4
α2− 1

2
αx ∈ L∞(0, 1), and q :=

(
x 7→ e

1
2

∫ x
c α(x̃)dx̃

)
∈ W 2,∞(0, 1),

such that

(a) β is a control for

u(·, t) ∈ H2(0, 1),

ut(·, t) = uxx(·, t) + βu(·, t),
u(·, 0) = y0q,

u(·, T ) = ydq,

(4.2)

(b)
qxx + βq = 0, (4.3)

and

(c) 1
q
∈ W 2,∞(0, 1).

In this case, we note α = 2 qx
q
.

2. Conversely, suppose there is q ∈ W 2,∞(0, 1), β ∈ L∞(0, 1) such that

(a) β is a control for eq. (4.2)

(b) eq. (4.3) qxx + βq = 0 holds

(c) 1
q
∈ W 2,∞(0, 1),

then α := 2 qx
q
∈ W 1,∞(0, 1) is a control for eq. (4.1)

When 1 or 2 holds, u(x, t) = q(x)y(x, t) a.e..

Proof. 1 is true by following the earlier proof for α ∈ C1(0, 1), and noticing that the con-
ditions for product rule 2.5.3, chain rule 2.5.9, and the Fundamental Theorem of Lebesgue
Integral Calculus with Weak Derivative 2.1.13 are all satisfied when we want to use them.
We will focus on the proof of 2.

Let

y(x, t) := u(x, t)
1

q(x)
.

By construction, y(·, 0) = y0, y(·, T ) = yd. By linearity of the partial derivative, we have

yt(·, t) = ut(·, t)
1

q
,

since 1
q
does not depend on t. Since 1, q, 1

q
∈ W 1,∞(0, 1) ∩ L∞(0, 1), by the necessary

condition of the quotient rule 2.5.5, we have(
1

q

)
x

=
0− qx
q2

= −qx
q2
.
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Also, by product rule 2.5.3 on qx,
1
q
∈ W 1,∞(0, 1), we have qx

q
∈ W 1,∞(0, 1), and(

qx
q

)
x

=
qxx
q
− qx

(
1

q

)
x

=
qxx
q

+
q2x
q2
.

Notice that this show α := 2 qx
q
∈ W 1,∞(0, 1) as well.

In addition, since qx
q
, q,
(

1
q

)
x
=

− qx
q

q
∈ W 1,∞(0, 1)∩L∞(0, 1), by the necessary condition

of the quotient rule 2.5.5, we have

(
1

q

)
xx

=
q
(

−qx
q

)
x
− −qx

q
qx

q2

=
−q
(

qxx
q
− q2x

q2

)
+ qx

q
qx

q2

=
2q2x − qxxq

q3
.

Now, since u(·, t) ∈ H2(0, 1) ⊂ H1(0, 1), and 1
q
∈ W 1,∞(0, 1), by the product rule 2.5.3, we

have y(·, t) ∈ H1(0, 1), and

yx(·, t) =
(
1

q

)
x

u(·, t) + 1

q
ux(·, t)

=
ux(·, t)q − u(·, t)qx

q2
.

Since ux(·, t), u(·, t) ∈W 1(0, 1), and 1
q
,
(

1
q

)
x
∈ W 1,∞(0, 1), again by product rule 2.5.3 and

linearity of weak derivatives, we have yx(·, t) ∈ H1(0, 1), and

yxx(·, t) =
(
1

q

)
xx

u(·, t) +
(
1

q

)
x

ux(·, t) +
(
1

q

)
x

ux(·, t) +
1

q
uxx(·, t)

=
2q2x − qxxq

q3
u(·, t)− 2

qx
q2
ux(·, t) +

1

q
uxx(·, t)

= (uxx(·, t)q − u(·, t)qxx)
1

q2
− 2

q2x
q3
u(·, t)− 2

qx
q2
ux(·, t).

This shows y(·, t) ∈ H2(0, 1).

Now take α = 2 qx
q
, we have

yxx + αyx

= (uxx(·, t)q − u(·, t)qxx)
1

q2
− 2

q2x
q3
u(·, t)− 2

qx
q2
ux(·, t) + 2

qx
q

ux(·, t)q − u(·, t)qx
q2

=
uxx(·, t)q − u(·, t)qxx

q2
.
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Now applying the fact that qxx + βq = 0 and ut(·, t) = uxx(·, t) + βu(·, t), we have

yxx + αyx =
uxx(·, t)q − u(·, t)qxx

q2

=
uxx(·, t)q + βu(·, t)q

q2

=
uxx(·, t) + βu(·, t)

q

=
ut(·, t)

q

= yt(·, t).

This completes the proof of 2.

The above theorem establishes the if and only if relationship between the control of the
advection term with (a), (b), and (c). We will now investigate when the latter holds true.

Khapalov’s result 3.4.7 gives an approximate control of (a) eq. (4.2), so we will examine
the conditions (b) eq. (4.3), and (c) first.

Theorem 4.1.4. Consider a linear system

ẋ = A(t)x+ h(t),

where A(t) is an n × n matrix, h(t) is an n-vector, whose elements are integrable on
every finite interval. For any initial condition x0, there is a unique absolutely continuous
solution x(t), such that x(0) = x0, and x(t) =

∫ t

0
A(s)x(s) + h(s)ds. (This is a corollary

of Carathéodory’s Existence Theorem (5.1) and Theorem 5.3, listed on page 30 of [13])

Corollary 4.1.5. Suppose β ∈ L∞(0, 1), then for any q(0), qx(0) ∈ R, there is always a
unique solution q ∈W 2,∞(0, 1) satisfying

qxx + βq = 0 eq. (4.3)

in the weak sense, where we consider q, qx ∈ W 1,∞(0, 1) to be their absolute continuous
representatives as in corollary 2.1.13.

Proof. Extend β by β̂(x) :=

{
β(x), x ∈ (0, 1)

0, o.w.
.

Consider A(x) :=

(
0 1

−β̂(x) 0

)
, h(x) := 0, and y0 =

(
q(0)
qx(0)

)
∈ R2.

Notice that for any finite interval [0, 1] ⊂ I ⊂ R, we have∫
I

∣∣∣−β̂∣∣∣dx ≤ ∫
R

∣∣∣β̂∣∣∣dx =

∫ 1

0

|β|dx ≤ ∥β∥L∞(0,1) <∞,
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and
∫
I
1dx = |I| <∞,

∫
I
0dx = 0 <∞, so it satisfies the condition in the above theorem.

We have that there is a unique absolutely continuous solution y(x) =

(
y1(x)
y2(x)

)
, such that

y(0) = y0, and ∂xy = A(x)y a.e..

Notice that for any ϵ > 0, y1, y2 are both absolutely continuous on (−ϵ, 1 + ϵ). In
particular, y1, y2 are both continuous on the compact set [0, 1] ⊂ (−ϵ, 1 + ϵ), so they
achieve their minimums and maximums in [0, 1]. Thus, they are bounded on (0, 1) ⊂ [0, 1],
which means y1, y2 ∈ L∞(0, 1).

Now take q := y1, we have that q is absolutely continuous, and its normal derivative
d
dx
q(x) = y2(x) a.e.. By the Fundamental Theorem of Lebesgue Integral Calculus with

Weak Derivative 2.1.13, we have that q ∈ W 1,∞(0, 1), with the weak derivative qx = y2|(0,1).

Similarly, we have qx = y2|(0,1) is absolutely continuous, and its normal derivative
d
dx
qx(x) = −β(x)y1(x) = −β(x)q(x) a.e., so qx ∈ W 1,∞(0, 1), with the weak derivative

(qx)x = −βq.

This shows q ∈ W 2,∞(0, 1), and satisfies qxx + βq = 0.

This guarantees that for any initial condition that we would like, and any control β we
have for (a) eq. (4.2), we can always find a solution q to (b) eq. (4.3). The problem would
be if there is any initial condition that yields a q that satisfies (c). The current condition
1
q
∈ W 2,∞(0, 1) is relatively hard to check, so we aim for an easier representation of the

condition.

Proposition 4.1.6. Given any p ∈ [1,∞], u ∈ W 1,∞(U). Suppose 1
u
∈ L∞(U); namely,

u is bounded away from 0, then 1
u
lies in W 1,∞(U), and its ith weak derivative is given by

∂i(
1
u
) = −∂iu

u2 . Also, in this case, u does not change sign.

Proof. Suppose, for contradiction, that u changes sign. By corollary 2.1.13, u ∈ W 1,∞(U)
has a continuous representative.

By the Intermediate Value Theorem, there must be some x0 ∈ U , such that u(x0) = 0.
Now limx→x0

1
u
= ∞, which contradicts that 1

u
∈ L∞(U). This shows u does not change

sign.

Let M :=
∥∥ 1
u

∥∥
L∞(U)

< ∞, N := ∥u∥L∞(U). Suppose first u is always positive, then

u(x) ∈ [ 1
M
, N ] for a.e. x ∈ U . Let I := ( 1

2M
, 2N) ⊃ [ 1

M
, N ], which is an open interval in

R that contains the closure of u’s essential image. Since F (s) := 1
s
∈ C1(I) and has a

bounded derivative |F ′(s)| =
∣∣− 1

s2

∣∣ ≤ 4M2 <∞, by the modified chain rule 2.5.9, we have
the result.

If u is always negative, we have u(x) ∈ [−N,− 1
M
] for a.e. x ∈ U , and we get our result

similarly.

Corollary 4.1.7. Given any p ∈ [1,∞], u ∈ W 2,∞(U). We have that 1
u
lies in W 2,∞(U)

if and only if 1
u
∈ L∞(U); namely, u is bounded away from 0. In this case, u does not

change sign.
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Proof. ( =⇒ ): Clearly 1
u
∈ W 2,∞(U) implies 1

u
∈ L∞(U) by definition.

( ⇐= ): By the above proposition, we have that 1
u
∈ W 1,∞(U) with ∂i(

1
u
) = −∂iu

u2 . By
the corollary of the modified chain rule 2.5.9, we have 1

u2 ∈ W 1,∞(U) as well. Since each
∂iu ∈W 1,∞(U), by the product rule 2.5.3, we have that ∂i(

1
u
) ∈ W 1,∞(U).

Since this hold for all i ∈ [n], we have that 1
u
∈ W 2,∞(U).

The above corollary provides a sufficient and necessary condition for (c), and we have
the following result.

Theorem 4.1.8 (Necessary and Sufficient Condition for Transformation). Given y0, yd ∈
L2(0, 1), and T > 0. Consider all spatial derivatives below as weak derivatives, and all
equalities equivalent classes in L2(0, 1), we have that there is a control α ∈W 1,∞(0, 1) for

y(·, t) ∈ H2(0, 1),

yt(·, t) = yxx(·, t) + αyx(·, t),
y(·, 0) = y0

y(·, T ) = yd,

(4.1)

if and only if there are β ∈ L∞(0, 1), q(0), qx(0) ∈ R such that β is a control for

u(·, t) ∈ H2(0, 1),

ut(·, t) = uxx(·, t) + βu(·, t),
u(·, 0) = y0q,

u(·, T ) = ydq,

(4.2)

where q ∈ W 2,∞(0, 1) is the unique solution (given by Carathéodory’s Existence Theorem)
to

qxx + βq = 0 (4.3),

satisfying
1

q
∈ L∞(0, 1). (4.4)

In this case, u(x, t) = y(x, t)q(x) a.e., and α = 2 qx
q
.

In particular, for homogeneous Dirichlet boundary conditions,

u(x, t) = q(x)y(x, t) = 0 ⇐⇒ y(x) = 0

when 1
q
∈ L∞(0, 1) eq. (4.4) holds. Thus, the above result establishes a transformation

between Equation (1.3) and Equation (1.2).

Corollary 4.1.9 (Sufficient Condition for Transformation of Approximate Control). Given
y0, yd ∈ L2(0, 1), and ϵ > 0, T > 0. Consider all spatial derivatives below as weak deriva-
tives, and all equalities equivalent classes in L2(0, 1). Suppose for all ϵ > 0, there are
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β ∈ L∞(0, 1), q(0), qx(0) ∈ R,M > 0 such that β is a control for

u(·, t) ∈ H2(0, 1),

ut(·, t) = uxx(·, t) + βu(·, t),
u(·, 0) = y0q,

∥u(·, T )− ydq∥L2(0,1) <
ϵ

M
,

(4.5)

where q ∈ W 2,∞(0, 1) is the unique solution (given by Carathéodory’s Existence Theorem)
to

qxx + βq = 0,

satisfying
qxx + βq = 0 (4.3),

and ∥∥∥∥1q
∥∥∥∥
∞

< M, (4.6)

then α := 2 qx
q
∈ W 1,∞(0, 1) is a control for

y(·, t) ∈ H2(0, 1),

yt(·, t) = yxx(·, t) + αyx(·, t),
y(·, 0) = y0

∥y(·, T )− yd∥ < ϵ.

(4.7)

Proof. This follows directly from the above result, and the only thing we need to check is
the approximate part.

Indeed, suppose ∥u(·, T )− ydq∥L2(0,1) <
ϵ
M
. Take y(x, t) := u(x, t) 1

q(x)
as before.

∥y(·, T )− yd∥2L2(0,1) =

∫ 1

0

∣∣∣∣u(·, T )1q − ydq

q

∣∣∣∣2dx
≤
∫ 1

0

∣∣∣∣1q (u(·, T )− ydq)

∣∣∣∣2dx
≤
∥∥∥∥1q
∥∥∥∥2
L∞(0,1)

∫ 1

0

|u(·, T )− ydq|2dx

=

∥∥∥∥1q
∥∥∥∥2
L∞(0,1)

∥u(·, T )− ydq∥2L2(0,1)

<

∥∥∥∥1q
∥∥∥∥2
L∞(0,1)

( ϵ

M

)2
≤ ϵ2.
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Remark. The above Corollary reduces Problem 3 to Problem 2 and finding appropriate
initial conditions for q. One may design an algorithm that picks a certain q0 ∈ W 2,∞(0, 1)
that is bounded away from 0, find a control β0 for eq. (4.5) with q0 (which is possible for
any M if Problem 2 is solvable as in 3.4.7). Find q1 such that eq. (4.3) hold with β0, and
then find β1 that solves eq. (4.5) with q1. Recursively, one have a sequence of (qi, βi) that
solves eq. (4.5), with (qi+1, βi) solves eq. (4.3).

Whether this sequence will eventually converge to a desired (q, β) or not is worth further
studying.

Algorithm 2: Approximate Multiplicative Control through Advection Term

Data: Initial state y0 ∈ L2(0, 1), target state yd ∈ L2(0, 1), both non-negative,
tolerance ϵ

Result: Multiplicative control α for Problem 3
q ← a function in W 2,∞(0, 1) that is bounded way from 0;

M ←
∥∥∥1
q

∥∥∥
L∞(0,1)

;

u0 ← y0q;
ud ← ydq;
ϵ0 ← ϵ

M
;

repeat
β ← control of Problem 2 with ∥u(·, T )− ud∥L2(0,1) < ϵ0;

q(0), q′(0)← appropriate value;
q ← solution to eq. (4.3);

M ←
∥∥∥1
q

∥∥∥
L∞(0,1)

;

u0 ← y0q;
ϵ0 ← ϵ

M
;

ud ← ydq;
u← solution to eq. (1.2);

until ∥u(·, T )− ud∥L2(0,1) < ϵ0;

α← qx
q
;

return α

An interesting study would be on for what β such a q that satisfies eq. (4.3) and eq. (4.4)
exists. That would give us a criterion on what kind of control β through the reaction Term
may be transformed to a control α through the Advection Term using the above algorithm.

In particular, it would be nice if the qi’s are uniformly bounded away from 0 by a fixed
1
M

for the corresponding family of βi, which will give the approximate controllability that
we want.

We will here state a sufficient but not necessary condition on β:

Proposition 4.1.10. Suppose β ∈ L∞(0, 1) satisfies β(x) ≤ 0 a.e., then for any q(0) >
0, qx(0) ≥ 0, the unique (continuous in view of corollary 2.1.13) solution to

qxx + βq = 0 (4.3)
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will satisfy ∥∥∥∥1q
∥∥∥∥
L∞(U)

≤ 1

q(0)
<∞.

Proof. WLOG, we can redefine β on a measure null set so that for all x ∈ (0, 1), β(x) ≤ 0.

Since q is continuous and q(0) > 0, there must be some neighbourhood (0, x) such that
q > 0. Let x0 := sup {x ∈ (0, 1), such that q(x) > 0}. Since β ≤ 0, we must have qxx ≥ 0
on the entire (0, x0).

By Theorem 4.1.6 in [14], q will be (weakly) convex and thus non-decreasing and strictly
positive on (0, x0).

Suppose for contradiction that x0 ̸= 1, then we must have ∀δ > 0, ∃x ∈ (x0, x0 +
δ), such that q(x) ≤ 0 by choice of x0. By continuity of q, we must have q(x0) ≤ 0, which
contradicts q being non-decreasing and strictly positive on (0, x0).

Thus we have shown x0 = 1, and q is non-decreasing and strictly positive on (0, 1).

Namely,
∥∥∥1
q

∥∥∥
L∞(U)

≤ 1
q(0)

<∞.

Corollary 4.1.11 (Transformation of Non-positive Control). Given y0, yd ∈ L2(0, 1), and
ϵ > 0, T > 0. Consider all spatial derivatives below as weak derivatives, and all equalities
equivalent classes in L2(0, 1). Suppose there is q(0) > 0, such that for any ϵ > 0 there is
some qx(0) ≥ 0, and a non-positive β ∈ L∞(0, 1) such that β is a control for

u(·, t) ∈ H2(0, 1),

ut(·, t) = uxx(·, t) + βu(·, t),
u(·, 0) = y0q,

∥u(·, T )− ydq∥L2(0,1) < q(0)ϵ,

(4.8)

where q ∈ W 2,∞(0, 1) is the unique solution (given by Carathéodory’s Existence Theorem)
to

qxx + βq = 0 (4.3),

then there is a control α := 2 qx
q
∈ W 1,∞(0, 1) for

y(·, t) ∈ H2(0, 1),

yt(·, t) = yxx(·, t) + αyx(·, t),
y(·, 0) = y0

∥y(·, T )− yd∥ < ϵ.

(4.7)

Proof. Take M = 1
q(0)

> 0, and apply corollary 4.1.9.

46



4.2 A Control on Nonnegative States

In this section, we will apply the above result to transform a particular control through
the reaction Term to the advection term using corollary 4.1.11. Notice that the results
stated in the above section are more general, and may be used to transform other types of
controls through the reaction Term.

Although Khapalov’s result 3.4.7 guarantees approximate controllability of the reaction
term problem in (a), it is not necessarily non-positive. However, another more result from
Khapalov may be used to evaluate this problem. Also, in this case, we may be released
from the recursive algorithm described in Algorithm 2.

Theorem 4.2.1. [16, Theorem 3.2] Given T > 0 and bounded U ⊊ Rn. Let v∗ ∈
W 2,∞(U) ∩ H2(U) be such that v∗(x) ≤ L < 0 a.e. in U for some constant L. Then
for any u0 ∈ H1

0 (U), ud ∈ L2(U) and ϵ > 0, we can find a T∗ ∈ (0, T ), such that all
solutions to

ut = ∆u+ vu,

u|∂U×(0,T ) = 0,

u(·, 0) = u0,

(1.1)

with the control

v(x) :=
1

T∗
v∗(x)

satisfy
∥u(·, T∗)− ev∗u0∥L2(U) ≤ ϵ.

Notice that the control v here will always be negative, which allows us to apply corol-
lary 4.1.11.

In addition, when u0, ud are such that ud(x)
u0(x)

≤ C < 1 a.e. for some constant C, it

immediate that v∗(x) := ln
(

ud(x)
u0(x)

)
≤ ln(C) < ln(1) = 0, and the final estimate becomes

∥u(·, T∗)− ev∗u0∥L2(U) =

∥∥∥∥u(·, T∗)−
ud

u0

u0

∥∥∥∥ = ∥u(·, T∗)− ud∥ ≤ ϵ,

which is the condition of approximate controllability of Problem 1. Indeed, as a direct
result, we have the following Theorem:

Theorem 4.2.2. [16, Theorem 3.1] Given T > 0 and bounded U ⊊ Rn. Consider any pair
of initial and target states u0 ∈ H1

0 (U), ud ∈ L2(U) such that

0 < c1 ≤
ud(x)

u0(x)
≤ c2 < 1 a.e.

for some positive constants c1, c2. In addition, suppose ud

u0
∈ W 2,∞(U) ∩ H2(U), then for

any ϵ > 0, we can find a T∗ ∈ (0, T ), such that all solutions to eq. (1.1) with the control

v(x) :=
1

T∗
ln

(
ud(x)

u0(x)

)
(4.9)

47



satisfy
∥u(·, T∗)− ud∥L2(U) ≤ ϵ.

To serve as an intuitive picture, we also implemented this control in Python, for the
simple example eq. (3.3). Notice that for this control, Khapalov’s analysis suggests the
final error will be proportional to T∗ [16, equation 3.32 + 3.33], so we selected a final time
T∗ = 0.0001. See Appendix B.

Figure 4.1: Evolution of control through the reaction term, method 2

Also, we plotted the L2(0, 1) difference towards the target state.

Figure 4.2: Difference towards the target state, method 2
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In view of the above theorem, we can apply the transformation 4.1.8 and aim to get
the following result for the simple case U = (0, 1).

Conjecture 1. Given T > 0 and U = (0, 1) ⊊ R. Consider any pair of initial and target
states y0 ∈ H1

0 (U), yd ∈ L2(U) such that

0 < c1 ≤
yd(x)

y0(x)
≤ c2 < 1 a.e. (4.10)

for some positive constants c1, c2. For any ϵ > 0, we can find a T∗ ∈ (0, T ) and a control
α ∈ W 1,∞(U), such that all solutions to

yt = yxx + αyx,

y(·, 0) = y0

y(0, t) = y(1, t) = 0,

(1.3)

satisfy
∥y(·, T )− yd∥L2(U) ≤ ϵ.

Proof. We here sketch a proof for the claimed result, but a more detailed analysis on
Khapalov’s construction and the Comparison Theorems for ODEs is desired to complete
the last step.

Consider v∗(x) :=

{
ln
(

yd(x)
y0(x)

)
, yd(x)

y0(x)
< c2,

0, o.w.
, which by assumption, is zero on a measure

null set, and no greater than ln c2 < 0 elsewhere.

Notice that for any constant s > 0, we still have sv∗(x) < 0 a.e.. Also, for any
q ∈ L∞(U), if we again take u = yq, we have that ud

u0
= yd

y0
a.e., so the assumption

0 < c1 ≤ ud(x)
u0(x)

≤ c2 < 1 a.e. always holds, and v∗ defined above satisfies v∗ = ln
(

ud(x)
u0(x)

)
a.e.,

independent of the choice of q.

From the proof of the above theorem [16, equation 3.32 + 3.33], any solution u to

ut = ∆u+ vu,

u|∂U×(0,T ) = 0,

u(·, 0) = u0,

with the control
v(x) := sv∗(x)

satisfies ∥∥∥∥u(·, 1s)− ud

∥∥∥∥2
L2(U)

=

∥∥∥∥u(·, 1s)− ev∗
∥∥∥∥2
L2(U)

≤ C
1

s
∥u0∥2H1(0,1)

for some constant C > 0 independent of s and q.

In addition, if
∥∥∥1
q

∥∥∥
L∞(0,1)

<∞, i.e. q is bounded away from 0, we have y(x, t) = 0 ⇐⇒
u(x, t) = y(x, t)q(x) = 0, so the boundary conditions are preserved.
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In view of corollary 4.1.11, it suffices to find s > 0, q(0) > 0, qx(0) ≥ 0, such that

C
1

s
∥u0∥2H1(0,1) < (q(0)ϵ)2.

Or, equivalently,

1

s

(
∥y0q∥H1(0,1)

q(0)

)2

<
ϵ2

C
, (4.11)

where q is the unique solution to

qxx + sv∗q = 0, q(0) = q(0), q′(0) = qx(0).

We note that by the product rule (corollary 2.5.3),

1

s

(
∥y0q∥H1(0,1)

q(0)

)2

≤ 1

s

(
2∥y0∥H1(0,1)∥q∥W 1,∞(0,1)

q(0)

)2

=
2

s
∥y0∥2H1(0,1)

(
∥q∥W 1,∞(0,1)

q(0)

)2

=
2

s
∥y0∥2H1(0,1)

∥∥∥∥ q

q(0)

∥∥∥∥2
W 1,∞(0,1)

,

where ∥y0∥2H1(0,1) is a constant independent of q, and qxx+sv∗q = 0 if and only if
(

q
q(0)

)
xx
+

sv∗
q

q(0)
= 0. Thus, it suffices to show that for all ϵ0 > 0, there is s > 0, qx(0) ≥ 0, such that

1

s
∥q∥2W 1,∞(0,1) ≤ ϵ0, (4.12)

where q is the unique solution to the ODE

qxx + sv∗q = 0, q(0) = 1, q′(0) = qx(0). (4.13)

Take ϵ0 :=
ϵ2

2C∥y0∥2H1(0,1)

will give us the original result we want.

Remark. Studying eq. (4.13) and showing eq. (4.12) by studying the ODE will complete
the proof of the above conjecture, and it is the most straightforward and easiest approach.
In the case that it is actually not true, one may go back to eq. (4.11) and study that
problem.

The following more general result may be found in more detail in section 3.3 of [16].

Theorem 4.2.3 (Non-negative Controllability through Reaction Term). Given any T > 0
and bounded U ⊊ Rn such that ∂U is C3+⌊n

2
⌋ smooth. For any ϵ > 0, and any pair of

initial and target states h0, h̃d ∈ L2(U), which are nonnegative (almost everywhere) in U
and h0 ̸= 0. There is a control

v(·, t) =


0, t ∈ (0, t1)
ln γ
t2−t1

, t ∈ [t1, t2)
vσ

t3−t2
, t ∈ [t2, t3],
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to

ht = ∆h+ vh,

h|∂U×(0,T ) = 0,

h(·, 0) = h0,

(1.1)

where hd ∈ C∞
c (U) is such that hd ̸= 0, ∀x ∈ U, hd(x) ≥ 0, and

∥∥∥hd − h̃d

∥∥∥
L2(U)

< ϵ1.

Also,

1. t1 ∈ (0, T ) is arbitrary, h ∈ C2
(
Ū × (β, t1]

)
for any β ∈ (0, t1), and

h(·, t1) > 0, a.e. in U o,

h(·, t1)|∂U = 0.

2. There is γ > 1 such that ∀x ∈ Supp(hd), γh(x, t1) ≥ hd(x) + 1.

3. There is t2 ∈ (t1, T ) such that ∥h(·, t2)− γh(·, t1)∥C(Ū) < σ
2
for some σ ∈ (0, 1),

which results in
∀x ∈ Supp(hd), h(x, t2) ≥ hd(x).

4. Define

vσ := ln

(
hd +

1
2
σ2

h(·, t2) + σ

)
∈ C2

(
Ū
)
,

then
∥hd − evσh(·, t2)∥C(Ū) < σ2 + σ + σγ∥h(·, t1)∥C2(Ū),

and vσ < 0 for all x ∈ U .

5. There is t3 ∈ (t2, T ) that satisfies

∥h(·, t3)− evσh(·, t2)∥L2(U) < σ.

By taking any ϵ1, σ so small such that

ϵ1 + σ + |U |
1
2

(
σ2 + σ + σγ∥h(·, t1)∥C2(Ū)

)
< ϵ,

we have that the control v satisfies

∥h(·, t3)− hd∥L2(U) < ϵ.

Remark. If we again take y = h
q
for some q ∈ L∞(U) that is positively bounded away from

0, when σ → 0, we have

vσ = ln

(
hd +

1
2
σ2

h(·, t2) + σ

)
→ ln

(
hd

h(·, t2)

)
= ln

(
yd

y(·, t2)

)
.
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With this in mind, we may define vσ := ln
(

yd+
1
2
σ2

y(·,t2)+σ

)
instead, which will be independent

of the choice of q.

In addition, if we take γ > 1 such that ∀x ∈ Supp(yd), γy(x, t1) ≥ yd(x) +
∥∥∥1
q

∥∥∥
L∞(U)

,

we have

∀x ∈ Supp(hd), γh(x, t1) ≥ hd(x) + q(x)

∥∥∥∥1q
∥∥∥∥
L∞(U)

≥ hd(x) + 1.

Thus, the choice of v can be made only dependent on y0, yd, and not on q.

Conjecture 2. Given any nonnegative y0, yd ∈ L2(0, 1), and T > 0. For any ϵ > 0, there
is T ∗ ∈ (0, T ) and a multiplicative control α ∈ L∞((0, 1)× (0, T ∗)) on the system

yt = yxx + αyx,

y(·, 0) = y0

y(0, y) = y(1, t) = 0,

(1.3)

such that
∥y(·, T ∗)− yd∥L2(0,1) < ϵ.

We will propose such a control α through the Advection Term, although a more detailed
analysis on Khapalov’s construction would be necessary to address some concerns that will
be discussed below.

1. Pick any t1 ∈ (0, T ). Let
α(·, t) := 0

be constantly zero for t ∈ (0, t1). With the same argument as in Khapalov’s construc-
tion [16], by the smoothing effect and a strong maximum principle, y ∈ C2([0, 1]× (β, t1])
for any β ∈ (0, t1), and

y(·, t1) > 0, a.e. in (0, 1),

y(0, t1) = y(1, t1) = 0.

2. Pick γ > 1 such that ∀x ∈ Supp(yd), γy(x, t1) ≥ yd(x) +M . This is possible for any
M > 0, since y(·, t1) > 0, a.e. in (0, 1).

We note that for any t2 ∈ (t1, T ) such that v = ln γ
t2−t1

< π2, we have that ω =√
ln γ
t2−t1

< π. Let

q(x) :=
cos
(
ωx− ω

2

)
M cos

(
ω
2

) ,

we have qxx(x) = −ω2 cos (ωx−
ω
2 )

M cos (ω
2 )

= −vq(x). Namely, qxx+ vq = 0 in U .

In addition,

inf
x∈(0,1)

q(x) =
cos
(
ω − ω

2

)
M cos

(
ω
2

) =
1

M
.
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Namely,
∥∥∥1
q

∥∥∥
L∞(U)

≤ M . Thus, q satisfies the requirement of the transformation

4.1.8.
Taking u(x, t) = y(x, t)q(x), we recover step 2 of Khapalov’s construction.

3. Pick t2 ∈ (t1, T ) as in step 3 of Khapalov’s, and define

α(x, t) := 2
qx(x)

q(x)
= −2ω

sin
(
ωx− ω

2

)
cos
(
ωx− ω

2

)
on t ∈ [t1, t2).

We have that y(·, t)q = u(·, t) on t ∈ [t1, t2] by the transformation 4.1.8.

4. Define

vσ := ln

(
yd +

1
2
σ2

y(·, t2) + σ

)
,

which will be negative.

5. Select a t3 ∈ (t2, T ) by modifying the argument before.

Notice that in the case that we can pick γ > 1 such that γy(x, t1) > yd(x) and
ln γ
t2−t1

< π2,
we can always apply our transformation. However, this is only a sufficient condition for the
transformation. When ln γ

t2−t1
≥ π2, that does not mean the transformation does not work,

and it might be worth further studying. One may apply some results form ODE theory to
achieve a better result.
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Chapter 5

Conclusion

As a conclusion, we studied the multiplicative controls through the reaction term or through
the advection term. Following Khapalov’s approach, we have seen that approximate (mul-
tiplicative) controllability through the reaction term may be achieved for any pair of non-
negative initial and final states, with more than one possible control.

We also established a transform between the multiplicative control through the reaction
term and the multiplicative control through the advection term, using some variation of
useful results on weak derivatives. With the transformation, we proposed an algorithm that
will exploit the approximate controllability through the reaction term to achieve control
through the advection term.

There are several possible directions that may follow this research. First, we can study
the ODE eq. (4.3) more carefully to conclude about the convergence of the algorithm 2.
Second, we aim to study eq. (4.12) better, to complete the proof of the two conjectures
in Section 4.2. Third, it would be interesting to generalize the transformation to higher
dimensions and see if similar results will apply. Fourth, we can further weaken the require-
ment, and only require the solution to be a weak solution to the system (instead of a strong
solution in terms of weak derivatives, as is currently done). Lastly, we can try to impose
different boundary conditions and analyze how the transform would behave in those cases.
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Appendix A

Density of Uniform Step Functions -
A constructive proof

Theorem A.0.1 (Lebesgue Monotone Convergence). Let (X,A, µ) be a measure space.
Let fn : X → [0,∞] be measurable functions with 0 ≤ f1 ≤ f2 ≤ · · · ≤ ∞. Let f(x) :=
limn→∞ fn(x), then f : X → [0,∞] is measurable, and

lim
n→∞

∫
X

fndµ =

∫
X

fdµ

Lemma A.0.2 (Fatou’s). Let (X,A, µ) be a measure space. Let fn : X → [0,∞] be
measurable functions. Then∫

X

(lim inf fn)dµ ≤ lim inf

∫
X

fndµ

Theorem A.0.3 (Lebesgue Dominated Convergence). Let (X,A, µ) be a measure space.
Let fn : X → C be measurable functions, defined almost everywhere on X, such that
f(x) := limn→∞ fn(x) is defined almost everywhere for x ∈ X. If there is 0 ≤ g(x) ∈
L1(X), such that for almost everywhere x ∈ X,∀n ∈ N, |fn(x)| ≤ g(x), then f ∈ L1(X),
and

lim
n→∞

∫
X

fndµ =

∫
X

fdµ, lim
n→∞

∫
X

|f − fn|dµ = 0.

Theorem A.0.4 (Lebesgue differentiation). Let λ denote the Lebesgue measure, let |A| =
λn(A) denote the volume of A ⊆ Rn under the Lebesgue measure. Consider a family of
subsets V such that

∃c > 0, such that ∀A ∈ V ,∃B a ball, such that A ⊆ B, |A| ≥ c|B|.

For A ∋ x, let A → x denote the limit where the diameter of A shrinks to 0; namely, A
“shrinks” to x. If f is Lebesgue integrable, we have

lim
A→x,A∈V

1

|A|

∫
A

f(x)dx = f(x), a.e..
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Proposition A.0.5. Given any bounded domain U , any function g ∈ L∞(U), and a
sequence of functions {gk}∞k=1 such that it converges point-wise to g almost everywhere. If
∃M > 0, such that ∀k ≥ 1, ess supU gk ≤ M, ess supU g ≤ M , then we have that it also
converges in ∥·∥Lp(U), for any 1 ≤ p <∞.

Proof. We have that limk→∞ gk(x) = g(x) a.e.. Consider fk(x) := |g(x)− gk(x)|p, we have
that limk→∞ fk(x) = 0, a.e., and

∀k ≥ 1, 0 ≤ fk(x) ≤ (|g(x)|+ |gk(x)|)p ≤ (M +M)p = (2M)p, a.e.,

Notice that
∫
U
(2M)pdx = (2M)p|U | <∞, so (2M)p ∈ L1(U).

Thus fk → 0 satisfies Lebesgue’s dominated convergence theorem.

lim
k→∞
∥g − gk∥Lp(U) = lim

k→∞

(∫
U

|g(x)− gk(x)|pdx
) 1

p

= lim
k→∞

(∫
U

fk(x)dx

) 1
p

=

(
lim
k→∞

∫
U

fk(x)dx

) 1
p

=

(∫
U

lim
k→∞

fk(x)dx

) 1
p

=

(∫
U

0dx

) 1
p

= 0.

Corollary A.0.6. Consider any 1 ≤ p < ∞. Given any function g ∈ Lp(U), and a se-
quence of functions {gk}∞k=1 such that it converges point-wise to g a.e., and ∀k ≥ 1, |gk(x)| ≤
|g(x)|a.e., then we have that it also converges in ∥·∥Lp(U).

Proof. Consider fk(x) := |g(x)− gk(x)|p, we have that limk→∞ fk(x) = 0, a.e.and ∀k ≥
1, 0 ≤ fk(x) ≤ 2p|g(x)|p. Notice that

∫
U
2p|g(x)|pdx = 2p∥g∥Lp(U) < ∞, and thus fk → 0

satisfies Lebesgue’s dominated convergence theorem as above.

We will prove a lemma that would be useful to show convergence of functions in ∥·∥Lp(U).
It is a generalization of the Riesz’s Lemma in [10].

Lemma A.0.7. Consider any 1 ≤ p <∞. Given any function g ∈ Lp(U), and a sequence
of functions {gk}∞k=1 in Lp(U), such that it converges point-wise to g almost everywhere,
and lim infk ∥gk∥Lp(U) ≤ ∥g∥Lp(U), then we have that it also converges in ∥·∥Lp(U).
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Proof. Consider

hk(x) := 2p−1(|g(x)|p + |gk(x)|p)− |g(x)− gk(x)|p.
By triangle inequality, 0 ≤ |g(x)− gk(x)| ≤ |g(x)| + |gk(x)|, and (·)p is increasing and
convex in R+, so

|g(x)− gk(x)|p ≤ (|g(x)|+ |gk(x)|)p

= 2p
(
1

2
|g(x)|+ 1

2
|gk(x)|

)p

≤ 2p
(
1

2
|g(x)|p + 1

2
|gk(x)|p

)
= 2p−1(|g(x)|p + |gk(x)|p).

Thus hk ≥ 0 for any k ≥ 0. In addition,

lim inf
k

hk(x) = lim
k→∞

hk(x)

= 2p−1
(
lim
k→∞
|g(x)|p + lim

k→∞
|gk(x)|p

)
− lim

k→∞
|g(x)− gk(x)|p

= 2p−1(|g(x)|p + |g(x)|p)− 0

= 2p|g(x)|p,
almost everywhere. By Fatou’s Lemma, we have that

2p∥g∥pLp(U) =

∫
U

2p|g(x)|pdx

=

∫
U

lim inf
k

hk(x)dx

≤ lim inf
k

∫
U

hk(x)dx

= lim inf
k

∫
U

2p−1(|g(x)|p + |gk(x)|p)− |g(x)− gk(x)|pdx

= 2p−1

∫
U

|g(x)|pdx+ 2p−1 lim inf
k

∫
U

|gk(x)|pdx+ lim inf
k

∫
U

(−|g(x)− gk(x)|p)dx

= 2p−1∥g∥pLp(U) + 2p−1 lim inf
k
∥gk∥pLp(U) + lim inf

(
−∥g − gk∥pLp(U)

)
≤ 2p−1∥g∥pLp(U) + 2p−1∥g∥pLp(U) + lim inf

k

(
−∥g − gk∥pLp(U)

)
= 2p∥g∥pLp(U) − lim sup

k
∥g − gk∥pLp(U).

Subtracting 2p∥g∥Lp(U) from both sides, we get

0 ≤ − lim sup
k
∥g − gk∥pLp(U)

0 ≥ lim sup
k
∥g − gk∥pLp(U)

≥ lim inf
k
∥g − gk∥pLp(U)

≥ 0.
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Thus limk→∞ ∥g − gk∥pLp(U) = lim supk ∥g − gk∥pLp(U) = lim infk ∥g − gk∥pLp(U) = 0.

Remark. The proof is inspired by the proof of Scheffé’s Lemma, which is a special case of
Riesz’s Lemma.[19]

Theorem A.0.8. Given any a < b ∈ R and any function g ∈ Lp(a, b), we can find a
sequence of piecewise constant (step) functions {gk}∞k=1 ∈ Lp(a, b) such that limk→∞ gk = g
in Lp(a, b). In addition, we can let them have uniform step size hk =

b−a
k
, with the explicit

form

gk(x) :=
k∑

j=1

χ[xj−1,xj)(x)
1

hk

∫ xj

xj−1

g(x′)dx′,

where xj := a+ jhk = a+ (b−a)j
k

.

Proof. For any x ∈ (a, b), k ≥ 0, we can find some Uk := [x
(k)
j , x

(k)
j+1] ∋ x. Notice that

∀k ≥ 1,

{
Uk ⊆ B(x,max(x− x

(k)
j , x

(k)
j+1 − x)),

|Uk| = hk ≥ 1
2
|B(x, hk)| = 1

2

∣∣∣B(x, x
(k)
j+1 − x

(k)
j )
∣∣∣ ≥ 1

2

∣∣∣B(x,max(x− x
(k)
j , x

(k)
j+1 − x))

∣∣∣ .

Thus it satisfies the Lebesgue differentiation theorem, and we have that

lim
k→∞

gk(x) = lim
k→∞

1

hk

∫ x
(k)
j+1

x
(k)
j

g(x′)dx′

= lim
Uk→x

1

|Uk|

∫
Uk

g(x′)dx′

= g(x) a.e.

Thus gk(x)→ g(x) point-wise almost everywhere, and it suffices to show that lim infk ∥gk∥Lp(a,b) ≤
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∥g∥Lp(a,b), and then apply lemma A.0.7. Notice that for any k, we have that

∥gk∥pLp(a,b) =

∫ b

a

∣∣∣∣∣
k∑

j=1

χ[xj−1,xj)(x)
1

hk

∫ xj

xj−1

g(x′)dx′

∣∣∣∣∣
p

dx

=
k∑

j=1

∫ xj

xj−1

∣∣∣∣∣ 1hk

∫ xj

xj−1

g(x′)dx′

∣∣∣∣∣
p

dx

=
k∑

j=1

(xj − xj−1)

(
1

hk

)p
∣∣∣∣∣
∫ xj

xj−1

g(x′)dx′

∣∣∣∣∣
p

=
k∑

j=1

hk

(
1

hk

)p
∣∣∣∣∣
∫ xj

xj−1

g(x′) · 1dx′

∣∣∣∣∣
p

≤
k∑

j=1

(
1

hk

)p−1
(∫ xj

xj−1

|g(x′) · 1|dx′

)p

≤
k∑

j=1

(
1

hk

)p−1
(∫ xj

xj−1

|g(x′)|pdx′

)1/p(∫ xj

xj−1

|1|
p

p−1dx′

) p−1
p

p

2.1.8

=
k∑

j=1

(
1

hk

)p−1
(∫ xj

xj−1

|g(x′)|pdx′

)
(xj − xj−1)

p−1

=
k∑

j=1

(
1

hk

)p−1
(∫ xj

xj−1

|g(x′)|pdx′

)
hp−1
k

=
k∑

j=1

∫ xj

xj−1

|g(x′)|pdx′

=

∫ b

a

|g(x′)|pdx′

= ∥g∥pLp(a,b).

Thus lim inf ∥gk∥L2(a,b) ≤ ∥g∥L2(a,b), and by lemma A.0.7, we have that limk→∞ gk = g.

Remark. The first claim in theorem A.0.8 that step functions are dense in Lp(U) is relatively
well-known, and is usually proven by the regularity of the Lebesgue measure. However, the
proof is not constructive, and the step sizes are not necessarily uniform. Here, we provide
a version that achieves uniform steps, and give an explicit formulation of them.

63



Appendix B

Python Code for Control Through
Reaction Term

Code for tools.py that implements some basic tools:

import numpy as np

import logging

logger = logging.getLogger("pde_simulator")

logger.setLevel(logging.DEBUG)

import numpy as np

from scipy.integrate import solve_ivp

from scipy.interpolate import interp1d

def compute_derivatives(y: np.ndarray, dx: float) -> tuple[np.ndarray,

np.ndarray]:↪→

"""

Compute y_x and y_xx using central differences.

Parameters:

-----------

y : ndarray

Function values on grid

dx : float

Grid spacing

Returns:

--------

y_x, y_xx : ndarray

First and second derivatives
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"""

y_x = np.gradient(y, dx)

y_xx = np.gradient(y_x, dx)

return y_x, y_xx

def compute_L2_norm(y: np.ndarray, x: np.ndarray) -> float:

"""

Compute L2 norm: ||y||_2 = sqrt(int_0^1 y^2 dx)

"""

return float(np.sqrt(np.trapezoid(y**2, x)))

def compute_L2_inner_product(y1: np.ndarray, y2: np.ndarray, x:

np.ndarray) -> float:↪→

"""

Compute L2 inner product: <y1, y2> = int_0^1 y1*y2 dx

"""

return float(np.trapezoid(y1*y2, x))

Code for pde simulator.py that implements the simulator of the pde:

import numpy as np

from scipy.integrate import solve_ivp

from scipy.integrate._ivp.ivp import OdeResult

from typing import Callable

import logging

import fipy as fp

import matplotlib.pyplot as plt

from tools import *

logger = logging.getLogger("pde_simulator")

logger.setLevel(logging.DEBUG)

def plot_evolution(sol, x: np.ndarray, ud_vals: np.ndarray, T: float,

plot_times=None):↪→

"""

Plot the evolution of u(x,t) and compare with target ud.

"""

# Determine times to plot

if plot_times is None:

plot_times = np.linspace(0, T, 10)

# Create figure with subplots
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fig = plt.figure(figsize=(16, 10))

# Subplot 1: Snapshots at different times

ax1 = plt.subplot(2, 2, 1)

colors = plt.cm.viridis(np.linspace(0, 0.9, len(plot_times)))

for i, t in enumerate(plot_times):

u_t = sol.sol(t)

ax1.plot(x, u_t, color=colors[i], linewidth=2,

label=f't={t:.5f}', alpha=0.7)

ax1.plot(x, ud_vals, 'r--', linewidth=3, label='Target ud', alpha=0.9)

ax1.set_xlabel('x', fontsize=12)

ax1.set_ylabel('u(x,t)', fontsize=12)

ax1.set_title('Evolution: u(x,t) → ud(x)', fontsize=14,

fontweight='bold')↪→

ax1.legend(fontsize=9, ncol=2)

ax1.grid(True, alpha=0.3)

# Subplot 2: Error over time

ax2 = plt.subplot(2, 2, 2)

t_error = np.linspace(0, T, 100)

errors = []

for t in t_error:

u_t = sol.sol(t)

error = compute_L2_norm(u_t - ud_vals, x)

errors.append(error)

ax2.plot(t_error, errors, 'b-', linewidth=2.5)

ax2.set_xlabel('Time t', fontsize=12)

ax2.set_ylabel('||u(·,t) - ud||_2', fontsize=12)

ax2.set_title('L2 Error to Target over Time', fontsize=14,

fontweight='bold')↪→

ax2.grid(True, alpha=0.3)

ax2.axhline(y=0, color='r', linestyle='--', alpha=0.5)

# Subplot 3: Initial vs Final vs Target

ax3 = plt.subplot(2, 2, 3)

u_initial = sol.sol(0)

u_final = sol.sol(T)

ax3.plot(x, u_initial, 'b-', linewidth=2.5, label='Initial u0',

alpha=0.8)↪→
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ax3.plot(x, u_final, 'g-', linewidth=2.5, label=f'Final u(·,T)',
alpha=0.8)↪→

ax3.plot(x, ud_vals, 'r--', linewidth=2.5, label='Target ud',

alpha=0.8)↪→

ax3.set_xlabel('x', fontsize=12)

ax3.set_ylabel('u(x)', fontsize=12)

ax3.set_title('Initial → Final vs Target', fontsize=14,

fontweight='bold')↪→

ax3.legend(fontsize=11)

ax3.grid(True, alpha=0.3)

# Subplot 4: Heatmap

ax4 = plt.subplot(2, 2, 4)

t_plot = np.linspace(0, T, 200)

u_plot = np.array([sol.sol(t) for t in t_plot])

im = ax4.contourf(x, t_plot, u_plot, levels=50, cmap='RdBu_r')

ax4.set_xlabel('x', fontsize=12)

ax4.set_ylabel('t', fontsize=12)

ax4.set_title('Space-Time Evolution', fontsize=14, fontweight='bold')

plt.colorbar(im, ax=ax4, label='u(x,t)')

plt.tight_layout()

plt.show()

print(f"\nFinal L2 error: ||u(·,T) - ud||_2 = {errors[-1]:.6e}")

class PDESolver:

"""

Simulates the problem:

u_t = u_xx + a(x)u_x + b(x)u

"""

def __init__(self, nx=100, l=0, r=1):

"""

Initialize solver on domain [l, r].

Parameters:

-----------

nx : int

Number of spatial grid points
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l, r : float

Left and right endpoints, default [0, 1]

"""

self.l = l

self.r = r

self.x = np.linspace(l, r, nx)

self.dx = self.x[1] - self.x[0]

self.nx = nx

def solve(self, u0: Callable | np.ndarray, a: Callable | np.ndarray,

b: Callable | np.ndarray, T: float,↪→

method='BDF', rtol=1e-6, atol=1e-8):

"""

Solve u_t = u_xx + a(x)u_x + b(x)u using Method of Lines with

scipy.↪→

Parameters:

-----------

u0 : ndarray or callable

Initial condition

a : ndarray or callable

Coefficient a(x)

b : ndarray or callable

Coefficient b(x)

T : float

Final time

method : str

Integration method ('BDF', 'RK45', 'Radau')

BDF is best for stiff problems

rtol, atol : float

Relative and absolute tolerances

Returns:

--------

sol : OdeSolution object

Solution with sol.t (times) and sol.y (solution at each

time)↪→

"""

# Convert inputs to arrays

if callable(u0):

u0_vals = u0(self.x)

else:

u0_vals = np.asarray(u0)

if len(u0_vals) != self.nx:

x_temp = np.linspace(0, 1, len(u0_vals))
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u0_vals = np.interp(self.x, x_temp, u0_vals)

if callable(b):

b_vals = b(self.x)

else:

b_vals = np.asarray(b)

if len(b_vals) != self.nx:

x_temp = np.linspace(0, 1, len(b_vals))

b_vals = np.interp(self.x, x_temp, b_vals)

if callable(a):

a_vals = a(self.x)

else:

a_vals = np.asarray(a)

if len(a_vals) != self.nx:

x_temp = np.linspace(0, 1, len(a_vals))

a_vals = np.interp(self.x, x_temp, a_vals)

# Define RHS function for Method of Lines

def rhs(t, u):

"""Compute du/dt = u_xx + a*u_x + b*u with zero Dirichlet

BC"""↪→

dudt = np.zeros_like(u)

# If the reaction term b(x) dominates, use central

differences↪→

if np.max(np.abs(b_vals)) > np.max(np.abs(a_vals)):

# Interior points: central differences

for i in range(1, self.nx - 1):

u_xx = (u[i+1] - 2*u[i] + u[i-1]) / self.dx**2

u_x = (u[i+1] - u[i-1]) / (2*self.dx)

dudt[i] = u_xx + a_vals[i]*u_x + b_vals[i]*u[i]

# If the advection term a(x) dominates, use upwind scheme

else:

for i in range(1, self.nx - 1):

u_xx = (u[i+1] - 2*u[i] + u[i-1]) / self.dx**2

# Upwind scheme for u_x based on sign of a

if a_vals[i] >= 0:

u_x = (u[i] - u[i-1]) / self.dx # Backward

difference↪→

else:

u_x = (u[i+1] - u[i]) / self.dx # Forward

difference↪→
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dudt[i] = u_xx + a_vals[i]*u_x + b_vals[i]*u[i]

# Boundary conditions: zero Dirichlet (u = 0 at boundaries)

dudt[0] = 0

dudt[-1] = 0

return dudt

# Solve using scipy's solve_ivp

sol = solve_ivp(

rhs,

[0, T],

u0_vals,

method=method,

rtol=rtol,

atol=atol,

dense_output=True

)

return sol

def solve_with_fipy(self, u0, a, b, T, nt=100):

"""

Solve u_t = u_xx + a(x)u_x + b(x)u with FiPy

Returns an OdeResult object compatible with solve_ivp

"""

# Create mesh

mesh = fp.Grid1D(nx=self.nx, Lx=1.0)

x = mesh.cellCenters[0].value

# Create variable

u = fp.CellVariable(mesh=mesh, name="u")

# Set initial condition

if callable(u0):

u.setValue(u0(x))

else:

if len(u0) != len(x):

u.setValue(np.interp(x, self.x, u0))

else:

u.setValue(u0)

# Get coefficients - must match mesh size

if callable(a):
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a_vals = a(x)

else:

if len(a) != len(x):

a_vals = np.interp(x, self.x, a)

else:

a_vals = a

if callable(b):

b_vals = b(x)

else:

if len(b) != len(x):

b_vals = np.interp(x, self.x, b)

else:

b_vals = b

# Create CellVariable for b coefficient

b_cell = fp.CellVariable(mesh=mesh, value=b_vals)

# Create FaceVariable for convection coefficient

a_face = fp.FaceVariable(mesh=mesh, value=a_vals)

# Define PDE: u_t = u_xx + a*u_x + b*u

eq = (fp.TransientTerm() ==

fp.DiffusionTerm(coeff=1.0) +

fp.ConvectionTerm(coeff=a_face) +

fp.ImplicitSourceTerm(coeff=b_cell))

# Apply boundary conditions

u.constrain(0, mesh.facesLeft)

u.constrain(0, mesh.facesRight)

# Time stepping

dt = T / nt

times = [0]

solutions = [u.value.copy()]

for step in range(nt):

eq.solve(var=u, dt=dt)

times.append((step + 1) * dt)

solutions.append(u.value.copy())

# Convert to numpy arrays

t = np.array(times)

y = np.array(solutions).T # Transpose to match solve_ivp format

(nx, nt)↪→
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# Create OdeResult object (compatible with solve_ivp)

sol = OdeResult(

t=t,

y=y,

sol=None, # No dense output for now

t_events=None,

y_events=None,

nfev=nt,

njev=0,

nlu=nt,

status=0,

message='Integration successful.',

success=True

)

# Add dense_output interpolation function

from scipy.interpolate import interp1d

sol.sol = interp1d(t, y, kind='cubic', axis=1,

fill_value='extrapolate', assume_sorted=True)

return sol

Code for reaction contorl.py that implements the two control methods through reaction
term:

import matplotlib.pyplot as plt

from pde_simulator import *

logger = logging.getLogger("pde_simulator")

logger.setLevel(logging.DEBUG)

import numpy as np

class ReactionControlSolver(PDESolver):

"""

Solves the control problem: steer u0 to ud via the PDE

u_t = u_xx + a(x)u

"""

def compute_alpha(self, ud: Callable | np.ndarray, u0: Callable |

np.ndarray, T: float) -> tuple[np.ndarray, np.ndarray, dict]:↪→

"""

Compute a(x) = -(ud)_xx/ud + ln(||ud||_2 / int_0^1 u0*omega dx) /

T↪→
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where omega = ud / ||ud||_2

Parameters:

-----------

ud : ndarray or callable

Target function

u0 : ndarray or callable

Initial condition

T : float

Final time

Returns:

--------

alpha : ndarray

Coefficient alpha(x)

omega : ndarray

Normalized target

info : dict

Diagnostic information

"""

# Convert to arrays if needed

if callable(ud):

ud_vals = ud(self.x)

else:

ud_vals = np.asarray(ud)

if len(ud_vals) != self.nx:

x_temp = np.linspace(0, 1, len(ud_vals))

ud_vals = np.interp(self.x, x_temp, ud_vals)

if callable(u0):

u0_vals = u0(self.x)

else:

u0_vals = np.asarray(u0)

if len(u0_vals) != self.nx:

x_temp = np.linspace(0, 1, len(u0_vals))

u0_vals = np.interp(self.x, x_temp, u0_vals)

# Compute L2 norm of ud

norm_ud = compute_L2_norm(ud_vals, self.x)

# Compute omega = ud / ||ud||_2

omega = ud_vals / norm_ud

# Compute integral int_0^1 u0 * omega dx
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integral_u0_omega = compute_L2_inner_product(u0_vals, omega,

self.x)↪→

# Compute derivatives of ud

ud_x, ud_xx = compute_derivatives(ud_vals, self.dx)

# Compute -ud_xx/ud (handle division by zero)

with np.errstate(divide='ignore', invalid='ignore'):

neg_ud_xx_over_ud = -ud_xx / ud_vals

neg_ud_xx_over_ud = np.nan_to_num(neg_ud_xx_over_ud, nan=0.0,

posinf=0.0, neginf=0.0)

# Compute logarithmic term

if integral_u0_omega <= 0:

print(f"Warning: integral u0*omega = {integral_u0_omega:.6f}

<= 0")↪→

print("This may cause issues. Setting log term to 0.")

log_term = 0.0

else:

log_term = np.log(norm_ud / integral_u0_omega) / T

# Compute a(x)

alpha = neg_ud_xx_over_ud + log_term

# Store diagnostic info

info = {

'norm_ud': norm_ud,

'integral_u0_omega': integral_u0_omega,

'log_term': log_term,

'ud_vals': ud_vals,

'omega': omega

}

return alpha, omega, info

def compute_v(self, ud: Callable | np.ndarray, u0: Callable |

np.ndarray, T: float) -> tuple[np.ndarray, dict]:↪→

"""

Compute v(x) = ln(ud/u0) / T

Parameters:

-----------

ud : ndarray or callable

Target function

u0 : ndarray or callable
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Initial condition

T : float

Final time

Returns:

--------

v : ndarray

Coefficient v(x)

info : dict

Diagnostic information

"""

# Convert to arrays if needed

if callable(ud):

ud_vals = ud(self.x)

else:

ud_vals = np.asarray(ud)

if len(ud_vals) != self.nx:

x_temp = np.linspace(0, 1, len(ud_vals))

ud_vals = np.interp(self.x, x_temp, ud_vals)

if callable(u0):

u0_vals = u0(self.x)

else:

u0_vals = np.asarray(u0)

if len(u0_vals) != self.nx:

x_temp = np.linspace(0, 1, len(u0_vals))

u0_vals = np.interp(self.x, x_temp, u0_vals)

# Compute v(x) = ln(ud/u0) / T, adding a small positive offset to

avoid log(0) or division by 0↪→

# Avoid first and last values to avoid 0 boundary conditions

v = np.zeros(self.nx)

v[1:-1] = np.log(ud_vals[1:-1] / u0_vals[1:-1]) / T

# Approximate boundary values by linear interpolation

v[0] = v[1] - (v[2] - v[1]) * (self.x[0] - self.x[1]) / (self.x[2]

- self.x[1])↪→

v[-1] = v[-2] + (v[-2] - v[-3]) * (self.x[-1] - self.x[-2]) /

(self.x[-2] - self.x[-3])↪→

# Handle any remaining NaN or Inf values

v = np.nan_to_num(v, nan=-1e-10, posinf=0.0, neginf=-1e-10)

max_v = np.max(v[1:-1])

if max_v >= 0:
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print("Error: Method 'compute_v' requires v(x) < 0, but v(x) =

", max_v, " >= 0")↪→

print(f"Max value of v(x) = {max_v:.6f}")

# Store diagnostic info

info = {

'ud_vals': ud_vals,

'u0_vals': u0_vals,

'max_v': max_v

}

return v, info

def run_reaction_control_problem(u0: Callable | np.ndarray, ud: Callable |

np.ndarray,↪→

T: float, nx=100, plot_times=None,

control_method='1', method='BDF'):↪→

"""

Complete workflow: compute b(x), solve PDE, and visualize.

Parameters:

-----------

u0 : callable or array

Initial condition

ud : callable or array

Target condition

T : float

Final time

nx : int

Number of spatial grid points

plot_times : array-like or None

Specific times to plot. If None, uses 10 evenly spaced times.

"""

# Initialize solver

solver = ReactionControlSolver(nx=nx)

x = solver.x

if control_method == '1':

# Compute coefficient b(x)

print("Computing coefficient b(x) from target ud...")

b, __, info = solver.compute_alpha(ud, u0, T)

# Print diagnostic info
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print(f"\nDiagnostic Information:")

print(f" ||ud||_2 = {info['norm_ud']:.6f}")

print(f" int_0^1 u0*omega dx = {info['integral_u0_omega']:.6f}")

print(f" ln(||ud||_2 / int_0^1 u0*omega dx) / T =

{info['log_term']:.6f}")↪→

print(f" max|b(x)| = {np.max(np.abs(b)):.6f}")

elif control_method == '2':

# Compute coefficient b(x)

print("Computing coefficient b(x) from target ud...")

b, info = solver.compute_v(ud, u0, T)

# Print diagnostic info

print(f"\nDiagnostic Information:")

print(f" max b(x) = {info['max_v']:.6f}")

print(f" max|b(x)| = {np.max(np.abs(b)):.6f}")

else:

raise ValueError(f"Invalid method: {method}")

# Set a(x) = 0

a = np.zeros_like(x)

# Solve PDE

print(f"\nSolving PDE from t=0 to t={T}...")

sol = solver.solve(u0, a, b, T, method=method)

print(f" Integration successful!")

print(f" Number of time steps taken: {len(sol.t)}")

print(f" Final time reached: {sol.t[-1]:.6f}")

# Prepare target values

if callable(ud):

ud_vals = ud(x)

else:

ud_vals = info['ud_vals']

# Create visualizations

plot_evolution(sol, x, ud_vals, T, plot_times)

# Plot coefficient b(x)

plt.plot(x, b, 'b-', linewidth=2.5, label='b(x)')

plt.axhline(y=0, color='k', linestyle='--', alpha=0.3)

plt.xlabel('x', fontsize=12)

plt.title('Coefficient b(x)', fontsize=13, fontweight='bold')

plt.legend(fontsize=9, ncol=2)

plt.grid(True, alpha=0.3)
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return solver, sol, b, info

# ==================== EXAMPLE USAGE ====================

if __name__ == "__main__":

print("="*60)

print("PDE Control Problem: Steering u0 → ud")

print("="*60)

# Example 1:

print("\n" + "="*60)

print("Example 1: Parabola initial → Sine target")

print("="*60)

u0 = lambda x: x*(1-x) # Parabola

ud = lambda x: np.sin(np.pi*x)

T = 1.0

solver, sol, a, info = run_reaction_control_problem(u0, ud, T, nx=150)

# Example 2: Different target

print("\n" + "="*60)

print("Example 2: Asymmetric initial → Sine target")

print("="*60)

u0 = lambda x: 8*x*x*(1-x) # Asymmetric

ud = lambda x: np.sin(np.pi*x)

T = 2

solver, sol, a, info = run_reaction_control_problem(u0, ud, T, nx=150)

print("\n" + "="*60)

print("Complete! Modify u0, ud, and T for your specific problem.")

print("="*60)

# Example 3: Different method

print("\n" + "="*60)

print("Example 3: Asymmetric initial → Sine target, method 2")

print("="*60)

u0 = lambda x: 8*x*x*(1-x)

ud = lambda x: np.sin(np.pi*x)

# T = 1
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# solver, sol, a, info = run_reaction_control_problem(u0, ud, T,

nx=150, method='2')↪→

T = 0.01 # want very small T for this method

solver, sol, a, info = run_reaction_control_problem(u0, ud, T, nx=150,

control_method='2')↪→

T = 0.0001 # want very small T for this method

solver, sol, a, info = run_reaction_control_problem(u0, ud, T, nx=150,

control_method='2')↪→
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Glossary

advection term The term with first-order spatial derivative in a second-order parabolic
partial differential equation 2

control The part of a system which has the freedom to be designed so that the system
behaves in a desired way 1, 2

dense A property of a subset in a space, where any element in the space can be approxi-
mated by a element in the set with arbitrarily small difference 6, 22

equivalent function class A set of functions that have the same value almost everywhere
with respect to the Lebesgue measure ix, 3, 9, 38, 80

final state The final state that the system ends with, at time T 2

Hilbert Space A complete inner product space ix, 7

initial state The initial state that the system starts from, at time 0 1, 2

inner product space A vector space that is equipped with an inner product 6, 80

ket-bra notation A notation for elements and linear functionals 7, 13, 26

Lebesgue integrable Measurable functions with finite integral on a given domain, with
respect to the Lebesgue measure 80

normed vector space A vector space that is equipped with a norm 6

reaction term The term with no derivative in a second-order parabolic partial differential
equation 2

space of square-integrable functions The collection of equivalent function classes that
are square Lebesgue integrable in the given domain 2, 3, 9, 22, 38

target state The target state that we wish to send the system to 1, 2

weak derivative A representative of an equivalent function class that satisfies intergra-
tion by parts formula for all test functions 3, 10, 38
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