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Abstract

In recent years, applying machine learning algorithms to create a stock picking strategy
has become popular. This essay highlights several innovations in this area and compares
the general ideas with proposed improvements presented in this essay. Firstly, we use
daily data between Jan.1st 2014 and Dec.31st 2018 on S&P 500 index to create lagged
return features and generate labels according to the performance of each stock. After
training Deep Neural Network (DNN), Random Forest (RAF), XGBoost and Support
Vector Machine (SVM), daily one-day-ahead trading signals are generated based on the
probability forecast of a stock to outperform its cross-sectional median. We long n stocks
with the highest probabilities and short the lowest n stocks. To make further improvement,
we compare ‘Day-Trading’, ‘Normal-Trading’, ‘Vertical Ensemble Model’ and ‘Horizontal
Ensemble Model’, and try to reduce dimension of the models for the purpose of increasing
a running speed. Moreover, we make an attempt to combine classification models and
regression models, such as Recurrent Neural Network, which helps increase the annualized
return by almost 25.8%. Finally, we duplicate the same ideas on Chinese Stock Market
but only ‘long’ the highest 2n stocks without taking a ‘short’ position. Although we can
earn a profit using this strategy, the efficiency on the Chinese market is lower than that
on the U.S. market.
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Chapter 1

Introduction

Data mining is a process of finding hidden patterns within data using automatic or semi-
automatic learning algorithms. The accelerating development of computer technology and
machine learning has generated increasing research interests in the innovative solution to
traditional challenges in social sciences. In particular, machine learning (ML) techniques
have shown impressive performance in solving real life classification problems in many
different areas such as communications, internet traffic analysis, medical imaging, astron-
omy, document analysis, biology and time series analysis(Gerlein, 2016).[11] In term of
finance applications, especially in the equity market, finding effective investment strategies
based on computer science theoretical algorithms is becoming more popular in recent years.

Financial trading of securities using technical and quantitative analysis has been tra-
ditionally modelled by statistical techniques for time series analysis such as ARMA and
ARIMA models, and more sophisticated ARCH models (Engle, 1982) [10]. In contrast
to these statistical approaches, complex models coming from the ML field have emerged
attempting to predict future movements of securities’ prices [4]. The extensive litera-
ture has shown how some ML techniques specializing in classification and regression tasks
have been shown to be well-suited for a quantitative analysis in the financial industry, as
their capabilities of finding hidden patterns in large amounts of financial data may help in
derivatives pricing, risk management and financial forecasting. In this essay, we compare
prediction accuracies of our investment strategy based on different machine learning mod-
els and methods and make some innovations to improve the return rates.
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1.1 Investment Strategy with Classification Models

Regression and classification are categorized under the same umbrella of supervised ma-
chine learning. Both share the same concept of utilizing known datasets (referred to as
training datasets) to make predictions. In supervised learning, an algorithm is employed to
learn a mapping function from a set of input variables, X, to an output variable, y; that is
y = f(X), where X = (x1, x2, ..., xp). The objective of such a problem is to approximate
the mapping function f as accurately as possible such that whenever there is a new input
data x0, the output variable y for the dataset can be predicted. The main difference be-
tween classification models and regression models is that the output variable in regression
is numerical (or continuous) while that for classification is categorical (or discrete).

Most relevant researches about the investment strategy using machine learning models
and methods mainly focus on classification models. Takeuchi and Lee (2013) [23] develop
an enhanced momentum strategy on the U.S. stock market using the data from 1965 until
2009. They apply deep neural networks (DNN) as classifiers to calculate the probability
for each stock to outperform the cross-sectional median return of all stocks in the holding
month t + 1. Using standardized cumulative returns produces annualized returns of 45.93
percent in the out-of-sample testing period from 1990 until 2009. Heaton et al. (2016) [12]
discuss the application of deep learning to financial prediction and classification, which is
able to exploit empirical data to find the function relationship between an output variable
and a group of input variables, that are not predicted by existing financial economic theory.
Krauss and Huck (2016) [16] apply four kinds of classification models and their ensemble
models to predict the probability of outperforming a cross-sectional median performance in
next period, which shows the best result is obtained by Tree-based models. Culkin and Das
(2017)[6] train a deep learning neural network to calculate option prices, which achieves a
high degree of accuracy compared to the Black-Scholes option pricing formula. Nobre and
Ferreira Neves(2018)[20] present an expert system in the financial area that combines Prin-
cipal Component Analysis (PCA), Discrete Wavelet Transform (DWT), Extreme Gradient
Boosting (XGBoost) and a Multi-Objective Optimization Genetic Algorithm (MOO-GA)
in order to achieve high returns with a low level of risk.



1.2 Investment Strategy with Regression Models

Regression algorithms attempt to estimate the mapping function f from the input vari-
ables X to a numerical or continuous output variable. In financial applications, regression
models are often used to predict the specific prices for next period, so that investors can
make decisions according to the predicted return rates.

Kazema and Sharifia (2013) [14] apply forecasting model based on a chaotic mapping,
firefly algorithm, and a SVR to predict the stock market price, which gives a better result
than using an ARIMA-type model. Wang and Wang (2016) [24] attempt to improve the
forecasting accuracy of crude oil price fluctuations by combining Multilayer perception and
Elman recurrent neural networks (ERNN) with a stochastic time effective function. Naik
and Mohan(2019) [18] collect data from India National Stock Exchange and use RNN with
LSTM to forecast future stock returns for the purpose of gaining a higher excess trading
profit.

In this essay, we also use supervised machine learning models to perform predictions of
stocks return and find an investment strategy. Instead of only using classification models
or only using regression models, we combine them with the goal to improve the excess
return and the corresponding Sharpe Ratio. Also, PCA is used to reduce the dimension of
the model for the purpose of decreasing the required computational time.



Chapter 2

Data and Features Generation

2.1 Data Collection

Motivated by computational feasibility, market efficiency, and liquidity, we choose the
S&P 500 index in U.S. stock market and the CSI 300 index in Chinese stock market as our
objects. The S&P 500 index consists of the leading 500 companies in the U.S. stock market,
accounting for approximately 80 percent of available market capitalization. The CSI 300
index is a capitalization-weighted stock market index designed to replicate the performance
of top 300 stocks traded in the Shanghai and Shenzhen stock exchanges. Firstly, we set
the sample period range from January 2014 to December 2018. Secondly, following Krauss
and Stubinger (2015) [17],we obtain all month end constituent lists for both the S&P 500
index and the CSI 300 index from Wind Financial Terminal. We consolidate these lists
into one binary matrix, indicating whether the stock is a constituent of the index in the
subsequent month or not. Finally, for all stocks having been a constituent of the index,
we collect all of the daily transaction data for every stock, which include transaction date,
volume, open price, close price and adjusted closing price.

2.2 Training and Testing Set

For the whole dataset from January 2014 to December 2018, training set is defined from
January 2015 to December 2017 while the records in 2014 are used as basis to calculate
return rates. We use the building models to test the data in 2018 between January 1st to
December 31st and split the datasets using the same argument in both markets.
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2.3 Features and Labels Generation

Features: For each stock in both markets, we generate features using their daily ad-
justed closing price. Let

(
P S
t

)
t∈T denote the price process of stock S, then we define

simple return rates RS
t,m for each stock S over m periods using the equation as RS

t,m =
PS
t

PS
t−m
− 1. To capture useful information as much as possible, we consider the periods

m ∈
{

(1, 2, 3, ..., 20) ∪ (40, 60, 80, . . . , 240)
}

. Normally, there are 20 trading days in one
month, so m ∈ (1, 2, 3, ..., 20) represents the lagged returns for each trading day in last
month. Similarly, m ∈ (40, 60, 80, ..., 240) takes records for returns in each month during
the last year. As a result, we generate a total 31 features for each stock on every trading
day.

Labels: We consider classification machine learning models at the initial step, so we
need to generate a pair of binary labels for every record. If the one-period return Rs

t+1,1 is
larger than the corresponding cross-sectional median, that means this stock outperforms
and the label Y s

t+1 = 1. Otherwise, we set the label as 0. For a testing purpose, we
also should forecast a probability Pst+1|t for each stock S to outperform the cross-sectional
median in period t+1. After we get the predicted probability, we can compare the predicted
label and the true label.



Chapter 3

Models Construction

3.1 Deep Neural Network

The deep neural network normally includes three parts, one input layer, one or more hidden
layers, and one output layer[16]. In a fully connected feed-forward network, each node is
connected to every node in the next layer. Associated with each edge between the ith node
in the previous layer and the jth node in the current layer l is a weight w

(l)
ij . In order to

find optimal weightings w :=
{

w(l)
}
l:=1→L

between nodes in a fully connected feed forward

network with L layers, we seek to minimize a cross-entropy function of the form:

E(w) = −
Ntest∑
n=1

en(w), en(w) :=
K∑
k=1

ykn ln (ŷkn) (3.1)

For clarity of exposition, we drop the subscript n. Here K denotes the total number
of classes. The binary target vector y and binary output vector ŷ have a 1 − of − ns
encoding for each symbol, where ns is the number of classes per symbol, so that each state
associated with a symbol can be interpreted as a probabilistic weighting. Put formally,
yk ∈ {0, 1},∀k ∈ K and

∑
k∈K,yk = 1,∀i where Ki is the set of ns class indices associated

with symbol i [9]. To ensure analytic gradient functions under the cross-entropy error
measure, each of the nodes associated with the ith symbol in the output layer are activated
with a softmax function of the form:
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ŷk := φsoftmax

(
s(L)
)

=
exp

(
s
(L)
k

)
∑

j∈Ki
exp

(
s
(L)
j

) , ∀k ∈ Ki (3.2)

The gradient of the likelihood function w.r.t.s then takes simple form:

∂e(w)

∂s
(L)
k

= ŷk − yk (3.3)

and in a fully connected feed-forward network s
(l)
k is the weighted sum of outputs from

the previous layer l − 1 that connect to node j in layer l:

s
(l)
j =

nl−1∑
i

w
(l)
ij x

(l−1)
i + bias

(l)
j (3.4)

Here nl is the number of nodes in layer l. For each node i in the (l − 1)th layer, the
recursion relation for the back propagation using conjugate gradients is:

δ
(l−1)
i =

n(l)∑
j=1

δ
(l)
j w

(l)
ij σ

(
s
(l−1)
i

)(
1− σ

(
s
(l−1)
i

))
(3.5)

where we have used the analytic form of the derivative of the sigmoid function:

σ′(v) = σ(v)(1− σ(v)) (3.6)

which is used to activate all hidden layer nodes.

A trained feed-forward network can be used to predict the outputs states of all symbols,
given any observation as an input. In this essay, the number of nodes in every layer is 31-
31-16-8-2; the dropout ratio is 0.2 in input layer and 0.4 in hidden layers; the activation
is ’softmax’; the loss function is ’categorical crossentropy’; the optimizer is ’adam’; the
shrinkage parameter is 0.00001; the epoch is 400 and use ’early stopping’ to decide the
ending point.



3.2 Random Forest

The random forest classifier consists of a combination of tree classifiers where each classi-
fier is generated using a random vector sampled independently from the input vector, and
each tree casts a unit vote for the most popular class to classify an input vector Breiman
(1999)[22]. The random forest classifier used for this study consists of using randomly
selected features or a combination of features at each node to grow a tree.

Following the logic in Krauss(2017)[16], we draw a random subset from the original
training data. Then, we grow a modified decision tree to this sample. There are some
important parameters needed to be selected. We select mRAF features at random from the
p features upon every split. We grow the tree to the maximum depth of JRAF . The final
output is an ensemble of BRAF random forest trees, so that classification can be performed
via a majority vote. Sub-sampling substantially reduces variance of (low bias) trees and
the random feature selection decorrelates them. We have three tuning parameters, i.e.,
the number of trees BRAF , their maximum depth JRAF , and the number of features to
randomly select mRAF . Random forests are not prone to overfit, so we can choose a high
BRAF of 800 trees. We fix the maximum depth JRAF at 20 and the number of features in
sub-sampling mRAF at b√pc.

3.3 XGBoost

In boosting, the trees are built sequentially such that each subsequent tree aims at reducing
the errors of the previous tree. Each tree learns from its predecessors and updates the
residual errors. Hence, the tree that grows next in the sequence will learn from an updated
version of the residuals. The base learners in boosting are weak learners in which the
bias is high, and the predictive power is just slightly better than random guessing. Each of
these weak learners contributes some vital information to prediction, enabling the boosting
technique to produce a strong learner in the end by effectively combining these weak
learners. The final strong learner is expected to bring down both the bias and the variance.

In contrast to bagging techniques like Random Forest, in which trees are grown to
their maximum extent, boosting makes use of trees with fewer splits. Such small trees,
which are not very deep, are highly interpretative. Parameters like the number of trees or
iterations, the rate at which the gradient boosting learns, and the depth of the tree, could
be optimally selected through cross-validation technique, such as k-fold cross validation.



Having a large number of trees might lead to overfitting. So, it is necessary to carefully
choose the stopping criteria in the boosting procedure. Boosting consists of three simple
steps:

• An initial model F0 is defined to predict the target variable y. This model will be
associated with the residual (y–F0).

• A new model h1 is fit to the residuals from the previous step

• Now, F0 and h1 are combined to give F1, the boosted version of F0. The mean
squared error from F1 will be lower than that from F0:

F1(x) < −F0(x) + h1(x) (3.7)

To improve the performance of F1, we could model after the residuals of F1 and create
a new model F2:

F2(x) < −F1(x) + h2(x) (3.8)

It can be done for m iterations, until the residuals have been minimized as much as
possible:

Fm(x) < −Fm−1(x) + hm(x) (3.9)

Here, the additive learners do not disturb the functions created in the previous steps.
Instead, they impart information of their own to bring down the errors.

For MSE, the change observed would be roughly exponential. Instead of fitting hm(x)
on the residuals, fitting it on the gradient of the loss function, or the step along which loss
occurs, would make this process generic and applicable across all loss functions.

Gradient descent helps us minimize any differentiable function. Earlier, the regression
tree for hm(x) predicted the mean residual at each terminal node of the tree. In gradient
boosting, the average gradient component would be computed.

For each node, there is a factor γ with which hm(x) is multiplied. This accounts for the
difference in impact of each branch of the split. Gradient boosting helps in predicting the
optimal gradient for the additive model, unlike the classical gradient descent techniques
which reduce error in the output at each iteration.

The following steps are involved in the gradient boosting procedure:



• F0(x) is to be defined as (initialize the boosting algorithm):

Fo(x) = argminγ

n∑
i=1

L (yi, γ) (3.10)

• The gradient of the loss function is computed iteratively:

γim = −α

[
∂
(
L (y0) , F (x)

)
∂F
(
xj
) ]

F (x)=Fm−1(x)

, where α is the learning rate (3.11)

• Each hm(x) is fit on the gradient obtained at each step. The multiplicative factor γm
for each terminal node is derived and the boosted model Fm(x) is defined:

Fm(x) = Fm−1(x) + γmhm(x) (3.12)

XGBoost stands for eXtreme Gradient Boosting, which is a popular implementation
of gradient boosting. It has an option to penalize complex models through both L1 and
L2 regularization. Regularization helps in preventing overfitting. XGBoost has a strong
ability to deal with missing data and it has a distributed weighted quantile sketch algorithm
to effectively handle weighted data. Moreover, for faster computing, XGBoost can make
use of multiple cores on the CPU. This is possible because of a block structure in its
system design. Data is sorted and stored in in-memory units called blocks. Unlike other
algorithms, this enables the data layout to be reused by subsequent iterations, instead
of computing it again. This feature is also useful for steps like split finding and column
sub-sampling. In this eassy, we use the following set of parameters: the number of trees
or boosting iterations MXGB = 100 , the depth of the tree JXGB = 3 , the learning rate
λXGB = 0.1, and the subset of features to use at each split mXGB = 16.

3.4 Support Vector Machines

SVMs are based on statistical learning theory and have the aim of determining the location
of decision boundaries that produce the optimal separation of classes. In a two-class pattern
recognition problem where classes are linearly separable, the SVMs select the one linear
decision boundary that leaves the greatest margin between the two classes. The margin
is defined as the sum of the distances to the hyperplane from the closest points of the
two classes (Vapnik 1995). This problem of maximizing the margin can be solved using



standard Quadratic Programming (QP) optimization techniques. The data points that are
closest to the hyperplane are used to measure the margin. Therefore, these data points are
termed ‘support vectors’ and are always small in number [21].

If the two classes are not linearly separable, the SVMs try to find the hyperplane that
maximizes the margin, while at the same time, minimizing a quantity proportional to
the number of misclassification errors. The trade-off between margin and misclassification
error is controlled by a positive user-defined parameter C. SVMs can also be extended to
handle nonlinear decision surfaces. Boser et al. (1992)[3] proposed a method for projecting
the input data into a high-dimensional feature space through some nonlinear mapping, and
formulating a linear classification problem in that feature space. Kernel functions are used
to reduce the computational cost of dealing with a high-dimensional feature space. SVMs
were initially designed for binary (two-class) problems[21]. When dealing with multiple
classes, an appropriate multi-class method is needed. Techniques such as ‘one against one’
and the ‘one against the rest’ are in frequent use for the multi-class problems. In this essay,
we select a kernel width γ = 0.8 and a regularization parameter C = 3000.

3.5 Recurrent Neural Network

RNN is a class of artificial neural networks where connections between nodes form a directed
graph along a temporal sequence. This allows it to exhibit temporal dynamic behavior.
Unlike feedforward neural networks, RNNs can use their internal state (memory) to process
sequences of inputs.

LSTM networks, which are used in this essay are a deep and recurrent model of neural
networks. LSTM introduces the memory cell, a unit of computation that replaces tradi-
tional artificial neurons in the hidden layer of the network (Figure 3.1). Recurrent networks
differ from the traditional feed-forward networks in the sense that they do not only have
neural connections on a single direction, in other words, neurons can pass data to a previ-
ous or the same layer. In which case, data doesn’t flow on a single way, and the practical
effects for that is the existence of short term memory, in addition to long term memory
that neural networks already have in consequence of training[19]. LSTM were introduced
by Sepp Hochreiter and Jürgen Schmidhuberand [24], it aimed at a better performance by
tackling the vanishing gradient issue that recurrent networks would suffer when dealing
with long data sequences. It does so by keeping the error flow constant through special
units called ”gates” which allows for weights adjustments as well as truncation of the gra-



dient when its information is not necessary.

In this essay, we add four LSTM layers, unit number in each layer is set as 136, Dropout
is 0.2. In the output layer, the type of optimizer used can greatly affect how fast the
algorithm converges to the minimum value. Also, it is important that there is some notion
of randomness to avoid getting stuck in a local minimum and not reach the global minimum.
We choose to use Adam optimizer, which combines the perks of two other optimizers:
ADAgrad and RMSprop.

Figure 3.1: LSTM Architecture



Chapter 4

Strategy and Results

4.1 Basic Investment Strategy

In classification models, we select four representative models: Deep Neural Network(DNN),
Random Forest(RAF), XGBoost and Support Vector Machine(SVM). As mentioned be-
fore, we set Jan.1st, 2015 - Dec.31st, 2017 as the training set and Jan.1st, 2018 to Dec.31st,
2018 as our test set.

The basic investment strategy is :

Step 1: For each period t+1 in the test set, we forecast the probability
(
PSt+1|t

)
a

for each

stock S to outperform its cross-sectional median, where a ∈ (DNN,RAF,XGBoost, SVM).

Step 2: Sorting all stocks in descending order results in 4 rankings for 4 models so
that we could go long the top n stocks and short the bottom n ones according to every
model, where n ∈ (10, 20, 50, 100). By the results in DeMiguel (2007) [7], we choose a
Näıve portfolio strategy (1/N Portfolio Strategy) to decide the weight for each stock.

In the basic investment strategy, we rebalance and reconstruct the portfolio every trad-
ing day. As a result, we get different daily returns each day. Following Avellaneda and
Lee (2010)[1], we define the transaction costs of 0.05 percent per share per half-turn. To
compare the efficiency and profitability, there are some measurements that need to be
explained:

• Daily return for each stock S:

RS
t =

P S
t

P S
t−1
− 1, (4.1)
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where P is the price, S is the stock name and t is the date.

• Average Daily return:

Rt,a =

∑
S∈constituents in day tR

S
t,a

number of constituents in day t
. (4.2)

• Annualized return for model a:

Ra =
∏

t∈all trading days in 2018

(1 +Rt,a)− 1, (4.3)

where a ∈ (DNN, RAF, XGBoost, SVM).

• Standard Deviation for model a:

σa =

√∑
t∈all trading days in 2018(Rt,a − R̄t,a)2

N − 1
, (4.4)

After using parameters mentioned above in each model, the results are shown below:

Before Fees After Fees
DNN RAF XGBoost SVM DNN RAF XGBoost SVM

Mean Return 1.0708 1.4774 1.6988 1.6734 0.2943 0.6981 0.9132 0.8925
Excess Return 1.0117 1.4127 1.6327 1.6027 0.2267 0.6277 0.8312 0.8034

St.D 0.3981 0.3786 0.3771 0.3846 0.3981 0.3786 0.3771 0.3846
Sharpe Ratio 2.5413 3.7324 4.3208 4.1672 0.5694 1.6580 2.2042 2.0889

Table 4.1: Annualized Return for n=10 (long 10, short 10)

Before Fees After Fees
DNN RAF XGBoost SVM DNN RAF XGBoost SVM

Mean Return 0.9664 1.2447 1.4563 1.4412 0.2012 0.4641 0.6812 0.5887
Excess Return 0.9012 1.1774 1.3887 1.3779 0.1312 0.3884 0.5318 0.5124

St.D 0.3887 0.3612 0.3677 0.3654 0.3887 0.3612 0.3677 0.3654
Sharpe Ratio 2.3185 3.2596 3.7767 3.7709 0.3375 1.0753 1.4463 1.4023

Table 4.2: Annualized Return for n=20 (long 20, short 20)



Before Fees After Fees
DNN RAF XGBoost SVM DNN RAF XGBoost SVM

Mean Return 0.8142 1.1128 1.3327 1.2901 0.1832 0.3017 0.5642 0.5331
Excess Return 0.7312 1.0324 1.2701 1.2375 0.1271 0.2315 0.5001 0.4565

St.D 0.3633 0.3488 0.3500 0.3497 0.3633 0.3488 0.3500 0.3497
Sharpe Ratio 2.0126 2.9599 3.6288 3.5387 0.3498 0.6637 1.4289 1.3054

Table 4.3: Annualized Return for n=50 (long 50, short 50)

Before Fees After Fees
DNN RAF XGBoost SVM DNN RAF XGBoost SVM

Mean Return 0.7001 0.9981 1.2775 1.2335 0.1125 0.3388 0.4988 0.4622
Excess Return 0.6135 0.9273 1.2012 1.1781 0.0432 0.2701 0.4117 0.3882

St.D 0.3565 0.3461 0.3517 0.3442 0.3565 0.3461 0.3517 0.3442
Sharpe Ratio 1.7209 2.6793 3.4154 3.4197 0.1212 0.7804 1.1686 1.1278

Table 4.4: Annualized Return for n=100 (long 100, short 100)

Figure 4.1: Annualized Mean Return after fees for different models



Figure 4.2: Standard Deviation for different models

Figure 4.3: Sharpe Ratio after fees for different models

From the results above, we can draw the conclusions that:

• XGBoost’s performance is the best, which has the highest return rate and the high-
est Sharpe Ratio, which means XGBoost helps us to make the best profit with the
relative minimum risk. SVM is also a good model for this dataset and its perfomance
is just a little bit worse than that of XGBoost. However, DNN does not show an
acceptable result, since the returns are only 60% of the best return. From Chen
(2016) [5], we can know that TREE-based models(such as GBDT and XGBoost) are
more robust when we apply them to different datasets;



• Since we need to rebalance and reconstruct our portfolio every day, the transaction
fee dominates the net returns and has a relative big influence on the final perfor-
mance. As the results shown above, the returns decreased dramatically after we
include transaction fees even though we can still still gain profits, albeit lower;

• From the figures, the mean returns decrease when the portfolio includes more stocks
while the standard deviations of the returns remain almost the same with more stocks.
After ranking all stocks according to their forecasting probabilities, the portfolio in-
cludes more stocks means it has to contain more stocks with lower outperformed
probabilities, which might lead to a lower return. The results are reasonable.

• When we only long top 10 and short the last 10 stocks in our portfolio, the best
return rate after considering transaction fees is 0.9132 with the highest Sharpe ratio
of 2.2042.

4.2 Day Trading and Normal Trading

Day trading is speculation in securities, specifically buying and selling financial instru-
ments within the same trading day, such that all positions are closed before the market
closes for the trading day. The methods of quick trading contrast with the long-term trades
underlying buy and hold and value investing strategies. Day traders exit positions before
the market closes to avoid unmanageable risks and negative price gaps between one day’s
close and the next day’s price at the open. By Bitvai (2014)[2], we get the information that
day trading can make a better profit in some cases. Motivated by this idea, we compare
the results between ’day trading’ and the previous normal trading. The main difference
is whether holding the portfolio overnight, so the buying price for ’day trading’ is today’s
open price while the normal trading is yesterday’s adjusted close price.

According to the comparisons between different models, we select XGBoost with n = 10
as our main model. By keeping all other features unchanged, we only change the return

formula as RS
t,dt =

PS
t,close

PS
t,open

− 1. Following the same logic, we long the top 10 and short

the bottom 10 according to the forecasting probabilities. The comparisons for these two
trading strategies are shown below:



Before Fees After Fees
Day Trading Normal Trading Day Trading Normal Trading

Mean Return 1.2862 1.6988 0.4437 0.9132
Excess Return 1.2101 1.6321 0.3753 0.8312

St.D 0.3962 0.3771 0.3962 0.3771
Sharpe Ratio 3.0543 4.3208 0.9451 2.2042

Table 4.5: Day Trading v.s. Normal Trading by XGBoost (n=10)

From the results above, day trading’s return is less than that of normal trading, and
the difference between them is quite large. Including transaction costs, the day trading
can only achieve an excess return of 0.3753, while the excess return of normal trading is
0.8312. So we may not regard the day trading as a good strategy unless the investor do
not want their money to be in the market overnight.

4.3 Label Improvements using Different Methods

In this part, we try some innovations on label generation. According to the generation
directions, vertical ensemble model and horizontal ensemble model are defined differently.

4.3.1 Vertical Ensemble Model

Insider trading is the trading of a public company’s stock or other securities based on
material nonpublic information about the company[25]. Under Weak efficient market or
Semi-strong efficient market, the nonpublic or private information can significantly help
insider make huge profits. Normally, the private information owners are likely to trade
before the signals show up in the market, leading to some early fluctuations which cannot
be discerned by conventional investors.

In order to capture the early fluctuations in the market induced by insider trading, we
use the last three days’ forecasting probabilities instead of only using the probability of
t(only the previous day) to predict the performance of t+1(next period). Since this kind of
model considers a vertical time line, we regard it as ‘Vertical Ensemble Model’. Moreover,
only using one day probability for prediction may hide the ‘trend’ for the stock and can
also be disturbed by the presence of an ‘extreme event’. As a result, we use a Grid Search



with the step-length of 0.1 for giving different weights for
(
P S
t−1|t−2, P

S
t|t−1, P

S
t+1|t

)
. It is

worth mentioning that we assume weight
(
P S
t+1|t

)
> 0.5 and distribute the other different

weights for
(
P S
t−1|t−2, P

S
t|t−1

)
. After distributing different weights, we tried 20 weights com-

binations. The best weight combination is
(
P S
t−1|t−2, P

S
t|t−1, P

S
t+1|t

)
= (0.1, 0.3, 0.6). The

excess returns and Sharpe Ratios for different combinations are shown below:

Figure 4.4: Excess Return and Sharpe Ratio after fees for different Vertical Ensemble
Models

Similarly, we only show the detailed results from using XGBoost and n = 10:

Before Fees After Fees
Best Weights Only t Best Weights Only t

Mean Return 1.8379 1.6988 1.0121 0.9132
Excess Return 1.7718 1.6321 0.9327 0.8312

St.D 0.3802 0.3771 0.3802 0.3771
Sharpe Ratio 4.6602 4.3208 2.4532 2.2042

Table 4.6: Best Weights v.s. Only t by XGBoost (n=10)



Comparing results under XGBoost model with n = 10, we find that the vertical ensem-
ble model shows us a much better performance on excess return and risk measurement.
After removing the influence of transaction costs, the ensemble model with the best weight
combination increases the excess return by 10% than the model that only considers the
probability of t. At the same time, the best weights combination also achieves a higher
Sharpe Ratio at 2.4532. Thus, the vertical ensemble model is able to help capture the early
fluctuations in the market.

4.3.2 Horizontal Ensemble Model

According to Dietterich(2000)[8], there are several reasons for the success of ensemble
models. From Krauss(2007)[16], we receive useful information that Simple Ensemble
Model is the best in three types of Ensemble models. Motivated by their researches,
we consider to use Simple Ensemble model which defines the forecasting probability as

P S,ENS
t+1|t = 1

4

(
P S,DNN
t+1|t + P S,RAF

t+1|t + P S,XGB
t+1|t + P S,SVM

t+1|t

)
. Since this step is a combination of

four probabilities from different models in the same day, we define the Simple Ensemble
model as ‘Horizontal Ensemble Model’. However, this kind of the horizontal ensemble
model does not have a better performance compared to XGBoost with ‘Best Weights’ in
the last part. So we do not consider this Horizontal Ensemble Model any further. The
comparisons are shown below:

Before Fees After Fees
Best Weights(XGB) H-Ensemble Best Weights(XGB) H-Ensemble

Mean Return 1.8379 1.5142 1.0121 0.8761
Excess Return 1.7718 1.4681 0.9327 0.8071

St.D 0.3802 0.3790 0.3802 0.3790
Sharpe Ratio 4.6602 3.8736 2.4532 2.1296

Table 4.7: XGBoost (Best Weights) v.s. Horizontal Ensemble Model

4.4 Combinations of Classification and Further Re-

gression

From the classification machine learning models, such as DNN, Random Forest, XGBoost
and SVM, we can only get the output of 0 or 1 and the probability for output 1 as well.



From the regression machine learning model, such as RNN(Recurrent Neural Network),
we have the ability to know the specific prediction prices for the next term. From Kamijo
and Tanigawa(2012)[13], RNN can work well when it is used to predict time series data,
especially stock prices. In this essay, we consider combining a classification model and a
regression model in order to improve the return rates. Our new strategy follows these steps:

Step 1: Apply XGBoost with best weights (classification model) to select the top 10
and the last 10 stocks, totally 20 stocks, for each trading day, which can be regarded as a
‘stock pool’.

Step 2: After getting a ‘candidate pool’, use RNN and LSTM approach to predict the
prices for these 20 stocks in order to forecast tomorrow’s return rates.

Step 3: When we obtain ‘tomorrow’s returns for these 20 stocks’, select top 5 and last
5 according to their return ranks to create a new investment portfolio.

After switching to the new investment portfolio, we improve our return significantly and
reduce capital use at the same time. Considering the relative slow running speed, we only
compare the results of the last 30 trading days and convert the results to an annualized
level. Sample size of 30 is already a valid statistical big sample which can show the main
features in some extent. The comparison is shown as following:

After Fees
Only Classification After Regression

Mean Return 1.0121 1.3328
Excess Return 0.9327 1.1713

St.D 0.3802 0.4107
Sharpe Ratio 2.4532 2.8520

Table 4.8: Only Classification v.s. After Regression

As the results shown above, the combination with a regression model (RNN-LSTM)
moves the excess return from 0.9327 to 1.1713, increasing almost by 25.8%. Meanwhile,
the Sharpe Ratio also performs better than that from only using classification models.



4.5 Reduce dimension by PCA

PCA is a statistical procedure that uses an orthogonal transformation to convert a set
of observations of possibly correlated variables (entities each of which takes on various
numerical values) into a set of values of linearly uncorrelated variables called principal
components. Although we get a better return rate by using RNN-LSTM in the last sec-
tion, the running time increases by almost 20 times. There is a general trade-off between
the number of features (model accuracy) and computational speed. So we use a build-in
function to apply PCA for the purpose of selecting the most important features from the
original 31 features. This step is able to increase the running speed without losing much
accuracy. In this essay, we try to keep the first 5, 10, 12, 15 and 20 features according to
their importance. After re-running the model, we get the results as follows:

Num. of Features 5 10 12 15 20 31
Running Time/min(s) 5.6 8.3 9.2 11.7 13.2 17.6

Accuracy 0.5643 0.6042 0.6103 0.6237 0.6574 0.6632
Excess Return 0.3238 0.5997 0.8002 0.9190 1.1328 1.1713
Sharpe Ratio 1.4245 2.0134 2.4398 2.5344 2.8832 2.8520

Table 4.9: Different numbers of Features

According to the results above, selecting 20 features instead of the original 31 features
can lead to similar excess return and Sharpe Ratio but reduces the running time by about
4.4 minutes. So it is a good idea to keep the main features by using a PCA. The final 20
features are:

m ∈ (1, 2, 3, 4, 5, 7, 9, 10, 12, 15, 18, 20, 40, 60, 80, 100, 140, 160, 200, 220)



Chapter 5

Strategy in Chinese Stock Market

5.1 Comparisons among Classification Models

In the U.S. Equity market, investor may choose long or short position according to their
own judgment. However, there is only one position in Chinese Stock Market, which means
investors can only long stocks. Given this main difference, we slightly change our strategy
with only going long the top 2n stocks instead of going long the top n stocks and short
the bottom n ones, where n ∈ (10, 20, 50, 100) to adapt to the Chinese Market. Similarly,
we set the data from Jan.1st, 2015 to Dec.31st, 2017 as the training set and Jan.1st, 2018
to Dec.31st, 2018 as the test set.

Following the same steps used for the U.S. market, the annualized returns and risk
measurement of 2n = 20 portfolio, before and after transaction costs are shown below:

Before Fees After Fees
DNN RAF XGBoost SVM DNN RAF XGBoost SVM

Mean Return 0.9637 1.0208 1.3132 1.2124 0.2141 0.3013 0.5912 0.5027
Excess Return 0.8822 0.9487 1.2682 1.1567 0.1567 0.2012 0.5082 0.4234

St.D 0.3331 0.3892 0.3894 0.3846 0.3331 0.3892 0.3894 0.3846
Sharpe Ratio 2.6485 2.2585 3.2585 3.0075 0.4704 0.5169 1.3051 1.1009

Table 5.1: Annualized Return for n=10 (long 20, CSI300)

Same as the results in the S&P500, XGBoost’s performance is the best and SVM also
shows a good result. Moreover, the results show that we can still generate positive profit

23



in the Chinese Stock Market with only a long position, but the profit is less than that in
the U.S. market.

5.2 Vertical Ensemble Model

Similarly, we use Grid Search with the step-length of 0.1 for giving different weights

for
(
P S
t−1|t−2, P

S
t|t−1, P

S
t+1|t

)
. It is worth mentioning that we assume weight

(
P S
t+1|t

)
>

0.5 and distribute the other different weights for
(
P S
t−1|t−2, P

S
t|t−1

)
. After distributing

different weights, we tried 20 weights combinations. The best weight combination is(
P S
t−1|t−2, P

S
t|t−1, P

S
t+1|t

)
= (0.2, 0.2, 0.6). The excess returns and Sharpe Ratios for dif-

ferent combinations are shown below:

Figure 5.1: Results after fees for different Vertical Ensemble Models(CSI300)

Similarly, we only show the detailed results from using XGBoost and 2n = 20 below:



Before Fees After Fees
Best Weights Only t Best Weights Only t

Mean Return 1.4623 1.3132 0.9012 0.7882
Excess Return 1.3727 1.2682 0.8227 0.7001

St.D 0.3802 0.3894 0.3802 0.3894
Sharpe Ratio 3.6105 3.2585 2.1637 1.7979

Table 5.2: Best Weights v.s. Only t by XGBoost (2n=20, CSI300)

In order to capture some early insider-trading signals, we apply the vertical ensemble
model and are able to improve the results by almost 17.5% in return rates.

5.3 Reduce dimension by PCA

Following the strategy process for the U.S. market, we try to keep the first 5, 10, 12, 15,
20 features according to their importance. Despite that the whole return rates are lower
than those in the U.S. market, PCA can increase the running speed substaintially. The
results are:

Num. of Features 5 10 12 15 20 31
Running Time/min(s) 6.2 9.1 11.5 12.5 14.1 19.1

Accuracy 0.4997 0.5012 0.5299 0.5963 0.6607 0.6993
Excess Return 0.2278 0.4588 0.6612 0.7288 0.7982 0.8227
Sharpe Ratio 0.7813 1.1265 1.4211 1.6652 2.0049 2.1637

Table 5.3: Results for Different numbers of Features

From the result above, we still choose to keep the first 20 features instead of the original
31 features. In this step, we get a similar excess return and Sharpe Ratio while we are able
to reduce the running time by about 5 minutes. The selected 20 features are:

m ∈ (1, 2, 3, 4, 5, 6, 10, 12, 15, 16, 18, 20, 40, 60, 80, 100, 140, 160, 180, 220)

5.4 Combination with Regression Model

According to the results from the PCA, we only use 20 features for the purpose of increasing
running speed. To adapt this procedure to Chinese Market, we also apply classification



models to select the top 20 stocks, for each trading day, which can be regarded as a ‘stock
pool’. After getting a ‘pool’, we use RNN-LSTM model to predict the price for these 20
stocks for the purpose of forecasting the return. When we get ‘tomorrow’s returns for these
20 stocks’, we select top10 according to their return ranks. By doing this, we are able to
improve our return rates and reduce the use of capital as follows:

After Fees
Only Classification After Regression

Mean Return 0.8721 1.0001
Excess Return 0.7982 0.9221

St.D 0.3894 0.3885
Sharpe Ratio 2.0049 2.3735

Table 5.4: Only Classification v.s. After Regression (CSI300)



Chapter 6

Conclusion

6.1 Summary

In this essay, we create and improve the investment strategy for the U.S. stock market
following the steps shown in the Figure 6.1.

1. Apply four basic models of DNN, RAF, XGB and SVM to get the initial results,
including mean return, excess return, standard deviation and Sharpe Ratio.

2. Motivated by the idea of a day trading, we compare the results between the day
trading and the normal trading. Since the performance of the day trading is worst
than that of the normal trading, we continue to focus on the normal trading in the
following steps.

3. Vertical ensemble model and horizontal ensemble model are defined to make creation
on labels. The vertical model improves the return rates while horizontal do not show
any substantial increased in returns.

4. The combination of the classification models and the regression model helps us gen-
erate more accurate predictions and PCA is beneficial at reducing the running time
without losing much accuracy.

5. As a result, in the U.S. stock market, we achieve the best annualized excess return of
1.1328 and the best Sharpe Ratio of 2.8832. In the Chinese stock market, the final
best excess return is 0.9221 and the according Sharpe Ratio is 2.3735.
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Figure 6.1: Flow Chart for Investment Strategy

6.2 Improvements and Future Work

Compared with the traditional trading strategy or investment strategy, the investment
strategy in this essay shows the improvements and innovations in the following aspects:

1. Instead of only using the forecasting probability of the previous trading day, we
consider the last three days’ probabilities together. By distributing different weights
to the last three days, we capture some early fluctuations in the market brought from
Insider-Trading, which can help investors to make extra profits. In the U.S. market,
the return increases by 12.21% after applying the best weights combination. In the
Chinese market, the return increases by 17.51%. Here, the vertical ensemble model
is more efficient in the Chinese market.



2. Most of researches about the investment strategy are either based on classification
models or regression models. In this paper, we make a combination of classification
and regression models, which help us improve the results a lot. After the classification
model performs the first screening from the perspective of probability, we apply the
regression model to predict the price and perform the second more detailed screening.

3. Due to the slow computing speed of regression models, PCA is used to reduce di-
mension so that we can save more running time without losing much accuracy.

Since the sample period is limited, we still have some other ideas which are not imple-
mented yet. We will try to achieve the following ideas in the future:

1. This essay only considers the features about lagged returns, which means that we pay
more attention to the profitability. It maybe helpful if we add more features which
can express some considerations on risk, such as Value at Risk (VaR), shortfall risk
and downside risk.

2. In the future, we may collect more data with a longer sample period to test whether
this investment strategy is suitable for other financial assets. Otherwise, we will try
to adjust our strategy to adapt to different stages of the financial cycle.

3. As for the regression models, we only apply RNN-LSTM in this essay. However, there
are some other useful regression machine learning models and statistical functional
estimation methods to fit and predict the stock prices. For example, Time-delay
recurrent neural network can predict the data with temporal correlations[15]; spline
methods can fit data better than some regression machine learning models.

4. The financial asset return often demonstrates volatility clustering. When markets
respond to new information with large price movements (volatility), these high-
volatility environments tend to endure for a while after that first shock. In other
words, when a market suffers a volatile shock, more volatility should be expected.
Thus, we can exploit volatility clustering of the returns in order to further improve
the accuracy of predictions.
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