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Abstract

In this paper, we consider the two-stage Capacitated Vehicle Routing Problem (2SCVRP),

a stochastic variant of the Capacitated Vehicle Routing Problem (CVRP) proposed by
Dantzig and Ramser in 1959. In the original CVRP, one or multiple vehicles start at a
depot with a specified capacity of goods and serve customers given on a graph which have
pre-specified demands. This is done with the objective of minimizing the total travel cost.
In the two-stage version, the demands of each of the customers are not known until a
vehicle arrives to serve them, which makes the problem more difficult. In this variant, we
allow for the vehicle(s) to return to the depot once along their route in case their capacity
is exceeded by their customers. This allows vehicles to refill, which gives the possibility
of serving a larger set of demand realizations. Finding this refill point and calculating
the extra cost incurred by the return to the depot is the main challenge in solving the
2SCVRP. This problem is interesting in fleet distribution systems, for example, as the de-
mand of their customers may not be known before the trucks leave their depot. Although
interesting, the problem has not yet been formulated for this specific version, although
similar versions with time windows [13]. The 2SCVRP is an NP-complete problem, and as
is common for NP-complete problems, formulating it as an IP gives a method of solving
the problem which is capable of solving instances of the problem that would take billions
of years using a naive approach. In this paper, we’ll give formulations for both the single
and multi vehicle versions of the problem. In both cases, we give two different formulations
of the problem, and compare them computationally using instances of varying sizes and
complexities.
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Chapter 1

Introduction

The Capacitated Vehicle Routing Problem (CVRP) is concerned with finding the shortest
tour for a vehicle to serve customers with a given demand and return to its original starting
position. There may be one vehicle (in which case the CVRP is really a restatement of
the Travelling Salesman Problem [TSP]) or multiple vehicles. Every vehicle also has a pre-
specified capacity, and in the multi vehicle case all the vehicles have the same capacity. The
CVRP was first proposed by Dantzig and Ramser in 1959 [6], and been studied extensively
since then. They proposed an algorithm to solve the problem without the use of linear
programming in their paper, which was improved by Clarke and Wright in 1964 [5]. This
algorithm did not make use of the TSP formulation known at that point, also known to
Dantzig [7], so it could not simply expand on the methods of solving linear programs.
Eventually, the CVRP was formulated as an integer program (IP) in various ways by
Laporte et al. [9], Gavish and Graves [2], and Laporte and Nobert [8], among others. This
problem is NP-complete, as it is a generalization of the bin packing and TSP problems,
both of which are NP-complete. In the deterministic version of the problem, the demands
of each of the customers is known before the problem is solved.

In the stochastic version, by contrast, the demand of each of the customers is not known
before the problem is solved. Many different ways of defining the randomness in the system
have been studied, and some examples will be given later. This situation is more useful
in some applications than the deterministic situation, since sometimes the demands will
be unknown for each of the customers along the route until they are reached by a vehicle.
Some applications of this approach are in supply chain management, fleet distribution and
delivery services, among others where the demand at each stage is unknown at the outset.
We will focus our attention on the stochastic version of the problem.



As is often the case with NP-complete problems, the most effective method of obtaining
an optimal solution to the CVRP in practice is to formulate it and then use an IP solver to
compute an answer. There are many different ways of formulating the deterministic version
of the problem as an IP. The first formulation of the CVRP, given by Laporte et al. in [9],
is very similar to a common formulation of the TSP given by Dantzig et al. [7] - it is a
similar edge-based formulation that ensures each vertex has the right number of incoming
and outgoing edges. There are also a number of other formulations developed in the 1980s
to the 2000s by Laporte and Nobert [5], Toth [18], and others, including a formulation
based on re-interpreting the CVRP as a multi-commodity flow problem given in [1]. These
deterministic formulations are often natural starting points for constructing formulations
for the stochastic CVRP. It is important to note that different types of formulations give rise
to different methods of solving IPs. For example, branch-and-cut algorithms are designed
to solve edge-based formulations of the CVRP, and branch-cut-and-price algorithms are
designed to solve set-partition-based formulations. This distinction will guide the analysis
of computational results, since the important elements to be analyzed are dependent on
how the problem is solved.

There are many ways of examining the CVRP in a stochastic setting. For example,
there is the Chance-Constrained CVRP, in which a solution is considered if it is can serve
all its customers with probability 1 — e for some given e. This method of examining the
stochastic CVRP has been studied extensively [20, 14, 22]. Another way of examining the
stochastic CVRP is the two-stage CVRP (2SCVRP), in which each possible tour can be
followed by a recourse action (returning to the depot to refill to its capacity) if a vehicle
does not have the capacity to serve all its customers in a given realization of demands.
The recourse action we allow is returning to the depot to refill the vehicle before carrying
on its route. The 2SCVRP is the version of the stochastic CVRP which will be discussed
in this paper. It is good to note here that there are some pros and cons in how the
randomness is handled in the 2-stage and chance-constrained variants of the CVRP. The
chance-constrained variant is more robust because the tolerance can be set so there are
only a few failures, but those failures could be very costly as their costs are not taken into
account. By contrast, the 2-stage variant is less robust because it allows for failed routes,
but the routes that fail are taken into account in the overall cost so their negative impact
is minimized.

The 2SCVRP has been investigated in the past, but generally with restrictive assump-
tions on the demands like independence of random variables or specific distributions [3, 21].
A version of the 2SCVRP with minimal assumptions on the demands is given by Poggi
and Spyrides [15]. The assumptions made are that the distribution is finite discrete (which
allows for a finite number of demand realizations, and thus a finite IP) and that there is at



most one recourse action per vehicle (this makes defining the recourse cost much simpler).
In that work, a preliminary formulation of the two-stage CVRP with one vehicle is given
for a few different recourse actions. The two actions they gave were simple recourse and
reshuffle recourse. The simple recourse action they investigated is simply returning to the
depot when the capacity is exceeded and returning to the next customer along the route,
and the reshuffle action is determining the optimal route to follow for the remaining cus-
tomers after returning to the depot. In this paper, we’ll work to improve their formulation
for the simple recourse action and extend it to the case where there is more than one
vehicle. This formulation is given under the assumption that the vehicle can only refill
once. This seems reasonable because allowing a vehicle to refill more than once can make
routes more prone to variation, which would be undesirable in practice.

In Section 1.1, we give the formulation of the CVRP given by Letchford and Salazar-
Gonzalez, which is based on the multi-commodity flow formulation [1]. The TSP for-
mulations we give are similar to this formulation, so we write it out in its entirety for
easy reference. In Chapter 2, we’ll give a more formal definition of the problem, and in
Chapters 3 and 4, we give formulations of the problem for the single and multi vehicle
versions, respectively, of the problem. More specifically, the sections are divided as follows.
In Chapter 3, we give a single vehicle TSP formulation in Section 3.1, and two recourse
formulations in Sections 3.2 and 3.3. Both recourse sections end with a full two-stage for-
mulation. Similarly, in Chapter 4, we give multi vehicle TSP formulations in Sections 4.1
and 4.2, and two recourse formulations in Sections 4.3 and 4.4. Here as well both recourse
sections end with a full two-stage formulation. Finally, the formulations are compared
empirically in Chapter 5, with the single vehicle formulations in Section 5.1 and the multi
vehicle formulations in Section 5.2.

1.1 Multi-Commodity Flow Formulation

Before giving a formal problem definition for the 2SCVRP, we give the multi-commodity
flow formulation given by Letchford and Salazar-Gonzalez for the CVRP, as the first stage
we'll give for the 2SCVRP is very similar. The deterministic CVRP is as follows. Let
G = (V,E) be a complete graph with V = {1,...,n}, V = {2,...,n}, and edge costs
{cij 1 ij € E}. Also let {d; : 2 < i < n} be the customer demands, d(S) = >, 4 d; for
S CV,V={L1,...m} be the vehicle set, and C' be the vehicle capacity. Find the edge set
P satisfying



P = U P,, P, is a cycle such that 1 € P,,Vv € V,

vey

V(P,)NV(P,) = {1},Yv,w € V,v # w.

d(V(P)) < C,Yv eV

such that ) ¢;; is minimized. Here V(V) = {v € V(V) : v is incident to some edge in P}.
ijeP
Their formulation of this problem, based on the multi-commodity flow formulation, is
as follows:

(

min zn: zn: CijYij MCF

i=1 j=1

j=1

En:yz‘j = 17 VJ eV

=1

N n 1, 1=1,k#1
=Y wm=<S-1, i=k#1 VikeV
j=1 J=1 0, otherwise
de:cijk < C’ym \V/Z,j eV
keV
Tijk € Lo, Vi, j€Vyi# jVkeV
Yij € {0,1} Vz,j EV]Z%]
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Given some feasible solution [x,y] representing an edge set P, the variables in this
formulation are given by

)L, el
Yia = 0, otherwise

and

1, 145 € P,i,7, and k are served by the same vehicle and i is served before k
Tijk = .
o 0, otherwise

With these variables, we can outline the purpose of each of the constraints. The first two
constraints ensure that each customer has an incoming and an outgoing edge, and the third
and fourth constraints ensure that there are M vehicles that enter and leave the depot.
With only these constraints, there is no guarantee that there is one cycle corresponding to
each vehicle, so we add the final two constraints to enforce that there is exactly one cycle
per vehicle. This is done by tracing the route from the depot to every customer with the
xi;, variables and matching the y;; variables to the corresponding ;5 variables.



Chapter 2

Problem Definition

Suppose we are given a directed graph G = (V, E) with edge costs {¢;; > 0 :ij € E}
such that 17, j1 € E for every j € {2,...,n} and ¢;; > 0,¢j; > 0 for every j € {2,...,n}.
Here the vertex set is labelled V' = {1,...,n}, where vertex 1 is the depot, and vertices
V ={2,...,n} are customers who must be served. For an edge set P C E we'll let

V(P) ={v € V : v is incident to some edge in P}

and

V(P) = {v €V : v is incident to some edge in P}.

At the depot, there are m vehicles each having capacity C', collectively denoted by
V ={1,2,...,m}. The customer demands are not known until a vehicle arrives to serve
the customer, and are considered to be random variables as a result. We introduce the
probability distribution in the form of scenarios. We define a scenario as a tuple of demands
(dos, ... ,dps) such that 0 < d;s < C' Vi € V. We'll use D to reference the set of possible
scenarios for any instance of the problem, and we require that |D| < oo so that the resulting
IP is finite. Based on this set of valid scenarios, we define

S={1,...,/D]

as the set of indexes s. Each scenario s occurs with probability P[s], and these probabilities
defines a discrete probability distribution on the random vector of demands; that is P[s] >
0, and ) PP[s] = 1. We also give the following definitions:

seS



Definition 2.1. m-TSP solution
An edge set P is called an m-TSP solution if it has the following properties:

P= U P,, P, is a cycle such that 1 € P,,Yv € V, (2.1)
veY
v(P)=|JV(R)=V, (2.2)
veEY
V(P,) NV (P,) ={1},Yv,w € V,v # w. (2.3)

Each cycle P, in an m-TSP solution P is called a route, and we say that each route
starts and ends at vertex 1. O

Given a route P, we now define the recourse cost for P. Let P traverse the vertices in
the order 1k ...k,_11, with s, = 1. Using this, we define

k r—1
argmind 1 <k<r—1:>d,s>Cp,if Y d.,>C
OK(P,S)Z =1 7 = J

J:
r, otherwise

Then

fY(Pa S) = Ra(P,s)

is the location of the refill point for route P in scenario s.

It is good to note here that the definition of 4 enforces the policy that a vehicle refills
immediately after reaching capacity. To see why this is reasonable, consider m = 1,
P = {12,23,34,41} and the demand distribution (C,0,C — 1). The vehicle could refill
after customer 2 or customer 3, but because the vehicle does not know that customer 3 has
0 demand until it reaches the customer, it does not make sense for the vehicle to wait until
it reaches customer 3 to refill. Rather, it should refill immediately after serving customer 2
in order to prepare for future customers. It also allows a vehicle to return to the depot to
refill in the midst of serving a customer. To see why, consider m = 1, P = {12,23,34,41}
and the demand distribution (C' — 2,3, C — 2). Clearly the vehicle must serve customer 2,



then partially serve customer 3 and return to the depot before finishing the route. If we do
not allow for vehicles to refill in the midst of serving a customer, it is likely that reasonable
solutions like this one will be rendered infeasible by a seemingly innocuous scenario like
this one.

We should also note that this means that a refill will occur if the total demand along
P, is equal to C, even though this should not be the case. This could be avoided by
choosing « such that no refill occurs if Z;: de;s < C. However, we could have a scenario

in which Z?g’s) dyys = Z?g’s)“ dy,s = C, in which case finding the maximal ¢ such that

22:1 dy,;s < C will not find (P, s), but rather some ¢ > a(P,s). Avoiding this introduces
complexity into the formulation, so for now we satisfy ourselves with o defined the way
it is. Finding a way to avoid this issue while avoiding a refill when the total demand is
equal to C' should be the subject of future work.The expected recourse cost for the m-TSP
solution P can be defined as the sum of recourse costs for its constituent routes, averaged

over all scenarios. This sum is given by

D> Plsl(eypan + Ciypis);

SES veV

where P[s] > 0 is the probability that scenario s occurs. In the case where all distributions
are equally likely, we have P[s] = ﬁ Since there is no edge 11 € E, we can define
c11 = 0 to make formally writing the second stage cost more notationally convenient.
By the definition of a(P,,s) we have a recourse cost of 0 corresponding to scenario s if

z;’: dy;s < C.
Since the first stage cost is ZijeP c;j, this gives a total cost for a stochastic m-TSP
solution P of

D i+ YD Pls(Cypst + Ciy(prs)- (2.4)
ijeP SES veY
The problem we pose is to find the stochastic m-TSP solution P which minimizes this cost.

Definition 2.2. Stochastic m-TSP solution

An m-TSP solution P is called a stochastic m-TSP solution if it satisfies

Y diy<20-1YseSveV, (2.5)
i€V (Py)



or equivalently

Dipae(V(P,)) <20 —1,Yv €V, (2.6)
where
Dinas(S) := max d;s
seS
icS
for S C V. O

The constraint that the total demand must be less than 2C' — 1 along every cycle P,
in every scenario is required so that every vehicle refills at most once on its journey. This
also should be the subject of future work, since a vehicle should be able to serve a route
with a total demand of 2C. The issue is closely linked to the one mentioned above about
refilling if a route has total demand C'.



Chapter 3

Single Vehicle Variant

The single vehicle variant is largely based on a presentation by Poggi and Spyrides [15].
However, the list of recourse constraints is pared down significantly from this initial for-
mulation. We make a slight modification to the range of total demands, restricting it only
to be less than 2C' — 1. This is to ensure that each route is divided into customers before
the capacity is reached (< C' — 1) and those after the capacity is reached (> C') with both
ranges having the same measure (0 to C'— 1 and C to 2C' — 1). This is also the reason for
condition (2.5) having 2C' — 1 instead of 2C.

3.1 TSP Constraints

The variables defined for the first stage constraints are

e y;; (binary): An indicator for whether the edge 7j is in the given TSP solution.

e 2, (binary): An indicator for whether the edge ij is used along the path from 1 to
k on the given TSP solution.

Definition 3.1. We say that [x y]* represents a TSP solution P if

e y;; = 1if and only if ij € P.

e If P traverses the vertices in the order 1k;...k,_11, and j,k € V are such that
J = Kq and k = Ky, then x5, = 1 if and only if ij € P and a <b. O

10



In our constraints, we’ll also use the function

1 1=1,k#1
[, k)=< -1 i=k#1
0 otherwise

With this function, we can write down the TSP formulation, which is similar in nature

to MCF.

min Z Z YijCij (31&)
i=1 j=1
st Y yy=1 VieV (3.1b)
=1
Zyij =1, VjeV (3.1c)
< i=1
d mp =1, VkeV (3.1d)
j=1
Zl’ijk — ijik = f(Z, ]{?) V’L, keV (316)
=1 =1
Tijk — Yi; <0 Vi, 5, keV (3.1f)
\ yijaxijk € {07 1} Viaja k € V (31g)

Now we show that a vector [z y]T is feasible for this set of constraints if and only if it
represents some feasible TSP solution.

Lemma 3.1. [z y]T is feasible for (3.1) if and only if it represents some TSP solution P.

Proof. (<=) Suppose we have a TSP solution P represented by [z y]7.

(3.1b): Let i € V. By (2.2), i € V(P), and since P is a cycle there is exactly one outgoing
edge 7j in P. Then y;; = 1 and yy = 0 for all vertices k # j, so > 7, y;; = 1.

(3.1c): Let i € V. By (2.2), i € V(P), and since P is a cycle there is exactly one incoming
edge ji in P. Then y;; = 1 and yy; = 0 for all vertices k # j, so > 7,y = 1.

11



(3.1d): Let k€ V. By (2.2), 1 € V(P), and since P is a cycle there is exactly 1 outgoing
edge 17 from vertex 1. Since P begins at vertex 1, this edge precedes every vertex
i along P, so w1, = 1. Moreover, since 17 is not on P for every other vertex ¢, we
have that zy;; = 0 for every ¢ # j. Thus, > 'z = 1.

(3.1e):

Let i,k € V. By (2.2) and the fact that P is a cycle, there is exactly one incoming
edge j17 to 7 and one outgoing edge 77, from 7.

(a)

Let i =1, k#1,s0 f(i,k) = 1. Then only 1j5 occurs before we reach k and
not ji1. This gives D77z, = 1 and 377 ;1 = 0, so the constraint is
satisfied.

Let i = k, k # 1, so f(i,k) = —1. Then only j1i occurs before we reach k
and not 4j,. This gives 21;21 zir = 0 and Z;’Zl T = 1, so the constraint is
satisfied.

Let k=1,i € V,so f(i,k) = 0. Then both j;i and ijs occur before we reach
k. This gives > 7 | w1 = D7 x5 = 1, so the constraint is satisfied.

Let i,k # 1 be such that i # k so f(i,k) = 0. Either both j;7 and ij, occur
before we reach k (if ¢ comes before & along P) or neither of them do (if
i comes after). This gives either > 7 215 = Y37 211 = 1 (in the first
case) or Z?:l T = Z?:l xj11 = 0 (in the second case), so the constraint is
satisfied.

If y;; = 0, then the edge ij ¢ P and x;;, = 0 for every k € V. If y;; = 1, then
Zijr < Yi; since x5, < 1. Thus, the constraint is satisfied.

: Clearly the variables are binary because there are indicators for the edges included
in P.

(=) Now we need to show that if [z y|” is feasible given (3.1b) to (3.1g), then it
represents a feasible TSP solution. To show that [z y]? represents a TSP solution, we need
to show that it satisfies properties (2.1), (2.2), and (2.3), and also that = and y represent
the same solution.

1. It is clear, since the indegree and outdegree for each vertex is set to 1, that [z y

]T

represents a composition of cycles. To show that there is exactly one cycle, we look
at the x vector. Suppose, for sake of contradiction, that there is more than one
cycle. Only one of these cycles contains vertex 1 since the cycles together cover every
vertex exactly once. Let the cycle containing vertex 1 traverse the vertices in the

12



order 1k1 ...k,1, and consider a vertex k£ which is in a cycle that doesn’t contain 1.
We'll show that constraint (3.1e) breaks for k£ and some i € {ky,...,k, 1}. From
(3.1d) there is an edge 1j such that x;, = 1, and (3.1f) this edge is 1x;. In order
to satisfy D7 | @k — Zjnk = 0, then, we require that > -7 |z, = 1. By (3.1f)
again, the edge k17 with x5 = 1 is K1ke. If we continue this so that constraint
(3.1e) is satisfied for i € {ki,...,k,.}, we require that Z;”:l Tyyjk — Tjuee = 0 for
1 <t <r, since k # Ky for any t. Thus, we have Z?Zl Loy ik Z?Zl Tk = 1 for all
1<t <r 80 2,y =1 for every 2 <t <r and zy,,x = 1. For ¢ = 1, we require
that 2?21 x1jk — 1, = 1. However, we have 1., = @1, = 1 to satisfy (3.1e) for
i = K1, Kr, and from (3.1f) we have x1;;, = 0 for all j # k; and xj1;, = 0 for all j # k..
Thus, we have > 7 | 1, = > 7 ¥j, = 1 and (3.1e) is not satisfied for i = 1 and k.

2. This is satisfied by constraints (3.1b) and (3.1c), which ensure that each vertex has
exactly one incoming and one outgoing edge.

3. This is automatically satisfied, since |V| = 1.

4. Let the TSP solution described by y be denoted by P, and let P traverse the vertices
in the order 1x;...K,—11. We expect that z;;, = 1 if and only if ij = ks;_1Ks and
k =k for t > s. By (3.1f), we have x;;, = 0 if ij # K 1k, for some 1 < s < n, so
we need only concern ourselves with variables of the form x,, .., -

s

Set £k € V, and let ¢ be such that k = x;,. We'll show that z,, ,..r = 1 if and only
if s < ¢ by induction on s. First, for s = 1 this is true, since by (3.1d) we have
Tige = 1 for every k € V. Now let 1 < s < ¢, and assume that z,, ,., & = 1.
By (3.1¢), we have that f(ks—1,k) = 0, SO Tw, s, 1k = Tr._ sk, and both are equal
to 1 by the induction hypothesis. For s = t + 1, we make two observations - first,
T, ke = 1, and second that f(k, k) = —1. By (3.1e), we have Ty p — T, 1k = —1,
and since z,, k. = 1 we have xy,., = 0. Finally, let £ +1 < s < n, and assume that
Tro oo 1k = 0. Then f(ks_1,k) = 0, so by (3.1e) we have ., |k = Tu, or. 1k = 0.
Thus, x., k. = 1 if and only if s <t as expected, and x and y represent the same
TSP solution.

As a result, we see that if [z y]T satisfies the constraints (3.1b) to (3.1g), then [z y]T
represents a TSP solution.

O

Now that we have shown our TSP formulation works as intended, we work on giving
the recourse formulations.

13



3.2 Recourse Costs

For the TSP constraints, we did not deal with the demands at all. However, we need to
be more concerned about the different scenarios when discussing the recourse costs. In a
given scenario, we say the vehicle refills if it returns to the depot from its current vertex,
increases its capacity to C', and returns to the same vertex from which it started. Such a
refill is the recourse action that can be taken, and we say that a recourse action is taken
at a vertex k if the vehicle returns to the depot from vertex k in its recourse action. As
discussed in the problem definition, we ensure that the vehicle can only refill once along
its route, and to this end we must ensure that any feasible solution for this IP represents
a stochastic TSP path. This will be shown once the formulation is stated.

With the above notion of a refill, the variables defined for the recourse costs are as
follows:

e 0;: contains the position of vertex ¢ along the TSP solution P represented by [z y|T.

e wy,: indicates whether vertex k is served at or after the vehicle is refilled in scenario
s.

e nns,: the number of customers served at or after the refill point along the TSP
solution P represented by [z y|T

e paysys: indicates whether the vehicle goes from client £ to the depot and returns in
scenario s. In other words, we have

1, if a recourse action is taken at k in scenario s
paysgs

0, otherwise

With the variables defined as above, we have the following recourse LP:

14



min Z Z Ps|paysks(cix + cx1) (3.2a)
SES k=2
st (O djwigr) —Crwp <C—1, VeV, s€S (3.2b)
i=1 j=2
(Z Zdjs%ijk) -C- Wrs > 0, Vk € V, seS (32C)
() =
O°D i) —ox =0, VkeV (3.2d)
i=1 j=2
(Z Wgs) —nnss =0, Vs € S (3.2¢)
=2
Ok + nnSs + paysps > n-wps + 1,Vk € V,s €S (3.2f)
\ Ok, MNSs € Za Wys, PAYSks € {07 1} (32g)

Now we need to show that TSP solutions are feasible for (3.2) if and only if they are
stochastic TSP solutions. To do this, we first present the following lemma.

Lemma 3.2. Suppose that P is a TSP solution represented by [x y|*, and suppose that P

serves its customers in the order 1ky ...kn,_11. Let k = k;. Given constants {a; : j € V},
we have

t n n
E CL]‘ = E E (ljl’ijk
=1

i=1 j=2

Proof. This follows easily from the reverse argument in Lemma 3.1, since it is shown there
that x;;, = 1 if and only if ij = k1K, for some 1 < s <+¢. Thus,

n n t
E E a;jTijk = g Ay Ty _ vk
i=1 j=2 =1
t
=2
=1
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Lemma 3.3. Given a TSP solution P represented by [x y|*, (3.2) with input x is feasible
if and only iof P s a stochastic TSP solution.

Proof. (<) Let P serve the customers in the order 1k ...%,_11, and let k = k;. Since P
is a stochastic TSP solution, we have the variables set as follows:

1, 45 € P,j comes before k along P or j =k
Tijk = .
0, otherwise

0, otherwise

1, t> P
wks:{, _a( ’S)

1, k=~(P,s)
aySks =
Paysi 0, otherwise

and

nnss =n — a(P, s), o = t.

By the definition of v(P, s), we have by Lemma 3.2 that

n n t
0< szjsxijk = Zdnls < -1
=1

=1 j=2
if t < a(P,s) and
n n t
C < szjsxzjk - Zdnls < 20 -1
=1 j=2 =1
if t > a(P,s), so constraints (3.2b) and (3.2¢) are both satisfied by P. Clearly we have
9 S
i=1 j=2

by Lemma 3.2 and
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Zwks =n—-1)—(a(P,s) —1) =n—a(P,s) = nnss,

so constraints (3.2d) and (3.2e) are satisfied.

so if wgs = 0 this constraint is satisfied. If wys = 1, then t > «(P,s). If t > a(P,s) + 1,
then oy + nnss + paysys > op + nnsy > (a(P,s) + 1) + (n — a(P,s)) = n+ 1 and the
constraint is satisfied. Finally, if t = a(P, s), we have paysgs = 1 and o + nnss + paysgs =
a(P,s) 4+ (n — a(P,s)) +1 = n+ 1, so the constraint is satisfied. Since (3.2g) is clearly
satisfied, (3.2) is feasible.

Finally we examine constraint (3.2f). We have oy + nnss + paysgs > o + nnss > 1,

(=) Suppose &(z,y) is feasible, and let s € S. Let v € V be the last customer served
along P. Then

n n
E E djsxijkzg dss,
i=1 j=2 1%
since
n n
E g djsxijk:E disa(iak)
i=1 j=2 iV
where

, 1, 1 is served before k along P
a(i, k) =

0, otherwise

and every vertex in V' comes before k. From constraint (3.2g) we know that wy, € {0,1},
and from constraint (3.2b) we have either

Zdi5§0—1<20—1

icV

if Wrs = 0 and
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Zdis <20 -1

i€V

if wps = 1,80 ), dis < 2C — 1. Thus, (2.5) is satisfied. Since P is a TSP solution, (2.1)
through (2.3) are satisfied, so P is indeed a stochastic TSP solution.

O

Now that we have ensured that every stochastic TSP solution is feasible for (3.2),
we must ensure that the recourse cost associated with a stochastic TSP solution P is the
appropriate recourse cost. Since the recourse cost is dependent only on the paysy, variables
and input parameters, we need only ensure that the pays.s variables are set properly as
defined in the problem definition.

Lemma 3.4. Given a stochastic TSP solution P represented by [xy]T, an optimal solution
to (3.2) with the input x satisfies

{1, k=~(P,s)
paysgs =

0, otherwise

for every demand scenario s.

Proof. To start, we show that

1, k=~(P,s)
aySks = .
Py {0, otherwise
for every k € V and s € S. Let s € S. For simplicity, suppose that P traverses the vertices
in the order 1kika...Kp—2Kn_11.

First, we show that the w;, variables are set appropriately, since if they are it is clear

that nnsg is all set correctly. We should have that w,,s = 1 if and only if 23:1 dejs >
C. Since 22:1 rjs = D=y Do j—o djsTij,, this is true by constraints (3.2b) and (3.2c).
Thus, the wy, variables are set appropriately, and as a result nns; really is the number of
customers served after the refill. Note that 0 < nns, <n — 1.

Next, we note that »,", 7 ) %15, = i = 0., by Lemma 3.2, so oy, is set correctly as
well for every vertex k € V. Note that 1 < o5 < n.

18



Let u = Kk, = (P, s) be the refill point, and suppose that (P, s) # 1. Since K,
is the refill point, we know that a — 1 customers are served before the refill. There are
n — 1 customers in total, so we have nns; = (n — 1) — (a — 1) = n — a. Thus, we have
n—a+1<o,+nns; <2n—a.

Consider a vertex k = k;, # 1. If b < a, then k is served before the refill point and we
have nwgs + 1 = 1. Since op + nns, > 1, we have o, + nnss > nwis + 1 and paysgs can
be 0. If b = a then k is the refill point. Since wyg, = 1 here, we have nwy, +1 = n + 1.
We also have oy = b, so o + nns; = b+ (n — b) = n. Thus, in order for the constraint
O +nnsg + paysgs > nws + 1 to be satisfied, we must have paysg, = 1. If b > a, then k is
served after the refill point and we have nwgs +1 = n + 1. As before, we have o, = b, so
o +nnss =b+ (n—a) =n+ (b—a). Since b > a, we have oy + nnsy; > n + 1, S0 paysk,
can be 0. Thus, paysgs is forced to 0 if and only if k = v(P,v) is the refill point.

If v(P,s) = 1, then there is no 1 < a < n — 1 such that }°7_, d.,s > C. By (3.2b)
this means that wys = 0 for every k € V, _and nnss = 0. Then (3.2f) is o + paysgs > 1
in this scenario. But o, > 1 for every k£ € V, so (3.2f) is satisfied for both paysis = 0 and

payses = 1, independent_of k. Thus, paysys can be 0 for any k, which is as expected since
k # ~(P,s) for any k € V.

Finally, we show that if this inequality holds strictly for some vertex & and some scenario
s, then the solution is not optimal. Consider a solution p; for which pays,s = 1 for some
scenario s € S and some k # (P, s). Then create a new solution py by setting paysys = 0
and leave all other variables the same, since we are required only that paysgs > 0. But this
new solution ps has cost less than that of p; by P[s](c1x + ¢k1), S0 p1 cannot be optimal.
Thus, if paysgs = 1 for some k # (P, s) for some feasible solution to (3.2), then that
solution is not optimal, so since

S 1, k=~(P,s)
aYSks =
Paysi 0, otherwise

for any feasible solution for every k € V and s € S, we have that at an optimal solution
to (3.2)

1, k=~(Ps)
aYSks = .
Pt 0, otherwise

as desired. 0
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This shows that the first recourse formulation gives the correct value for the recourse
cost. Then the full formulation is

(

min

s.t.

Z Z YijCij + Z Z Ps|paysgs(cik + cx1) FI-S

i=1 j=1 SES k=2
n

Zyij = 17 VieV
Jj=1

Syy=1Vjev

=1

Z»’Uuk =1, VkeV

7=1

Y wige— Y w = fik) Vi, k eV
J=1 j=1

00D djwijg) —Cruwpe <C—1, VkeV,s€S

i=1 j=2

(ZZdjsxijk)_C'wks 207 Vk € ‘_/7568

i=1 j=2

(Zn:zn:ﬂ%k) —o0p=0, VkeV

i=1 j=2

(Z wgs) —nnss =0, Vs € S
k=2
or + nnss + paysps > n-wps +1,VE eV, s €S
Tijk — Yi; <0 Vi,5,keV
Yij» Tijks Ws, DaYsks € {0,1} Vi, 5,k e Vs e S

Ok, MNSs € 7
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3.3 An Alternate Formulation for Recourse Costs

In the formulation given in Section 3.2, the paysys variables were used to determine if a
recourse action should be taken at customer k in scenario s. What this variable is really
determining is the vertex at which wy, switches from 0 to 1 in scenario s. This is effectively
measuring w;s — w;s for some edge ij € E, where j is the vertex at which the recourse
action is taken, so it is reasonable to assume that we can express paysis as a product of
y;; and w;s — w;s. Indeed, we have the following lemma.

Lemma 3.5. If for some stochastic TSP solution P represented by [z y]T,

1, k=~(Ps)
aySis =
Paysw 0, otherwise

and

1, k is served at or after (P, s)
Wgs = .
0, otherwise

then

> o payses(cik + o) = > yi(wjs — wis) (e + ).

k=2 i=1 j=1

Proof. Let P serve the customers in the order 1k4 ...k, 11 with Ky = k, = 1. Since

L i) =Rk for some 1 <t <n
Yis 0, otherwise
it is clear that

n

Z Z Yij(Wis — wis)(c1; — ¢jp) = Z(wms — Wry_ys) (Cley — Che1).

i=1 j=1 t=1

From the definition of wy,, we have
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1, t>alP
wﬂtsz{ 7 _a( 78)

0, otherwise

so since the refill occurs at (P, s),

I, t=a(P,s)
Wyys — W =
e e 0, otherwise

Then from the definition of paysy,, we have

n

DD wii(wie —wis) (e — cjn) = Y (W — Wi, 1) (Crr, — chir1)

i=1 j=1 t=1

= Cly(Ps) T Cy(Pys)

= > payses(cur + cx1)-
k=2

O

Using the substitution from Lemma 3.5 allows us to avoid setting the paysys variables
entirely, which removes constraints (3.2d), (3.2e), and (3.2f) and variables oy, nnss and
paysks. However, substituting directly in (3.2a) leads to a non-linear objective function,
so we need another way of expressing this alternate objective function. Fortunately, there
is a simple method of linearizing a product of binary variables by replacing them with a
single binary variable, as given in [16]. In our case, we'll replace the product v;;(w;s — w;s)
by z;;s. However, we’ll have to do a little bit of extra work because w;s — w;s can take the
value -1 and is not binary. As a logical statement, what we want is that the recourse cost
c1; + ¢j1 should be included if

e The edge ij is included in the path we are concerned with (y;; = 1)
e The vertex ¢ is served before the recourse action is taken in scenario s (w;s = 0)

e The vertex j is served after the recourse action is taken in scenario s (w;s = 1)
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Noting that for a binary variable a, 1 — a = a, we want to show that

n

Zzyu w}e wzs)(clk+ckl Zzyzyw7< wis)(clk_l_ckl)-

=1 j5=1 =1 j=1

Lemma 3.6. If for some stochastic TSP solution P represented by [z y]T,

1, k is served at or after v(P, s)
Whs =
g 0, otherwise

then

n n n n

Z Yij(wjs — wis)(C1e + Ca1) Z Z Yijwjs(1 — wis)(C1r + cx1)-
1 5=1

= =1 j=1

Proof. As noted in Lemma 3.5, we have

1, 1 =ki1ke forsome 1 <t <n
Yij = .
0, otherwise

SO
Z Z Yiiwis(1 — wis)(c1x + k1) Z Wyeys (1 — Wy, ys)(C1x + Cr1)-
i=1 j=1
From the definition of wy,, we have
1, t=a(P,s)
wms(l - wmfls) - .
0, otherwise
SO
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n n

yijsz( wzs Cl] + le E wms u’nt_w)(clm + le)
i=1 j=1

= C1y(Ps) T Cy(Ps1
=D > wig(wys — wis) (e + ¢pn).
i=1 j=1

O

With this conversion, we now have a product of binary variables in the objective func-
tion. Using this, we have the following alternate IP to compute the recourse costs:

min Z Z Z ]P’[s]zijs(clj + le) (33&)

s€S i=1 j=1
st (O diwin) —Crwpg <C—1, VkeV,s€S (3.3b)

=1 j=2

o(z,y) = (; ; diswijr) —C-wgs >0, VeeV,se S (3.3¢)
Zijs < Yij, VZ,j S ‘/, se8 (33d)
Zijs < Wis, V’L,] c V,S S (336)
Zijs <1- Wis, VZ,j c V,S €S (33f)
Zijs Z yij + sz — Wj;g — 1, VZ,j < V, S € S (33g)
L Wiks, Zijs € {0, 1} (33h)

It is quite easy to show that (3.3) is equivalent to (3.2).

Lemma 3.7. (3.2) and (3.3) are equivalent.

Proof. From lemmas 3.5 and 3.6, it is clear that as long as the w;, variables are set
correctly and z;;s = v;;w;s(1 — w;s), then the two formulations are equivalent. The wy,
variables are correct by Lemma 3.4, and by [16], constraints (3.3d) through (3.3g) set
Zijs = Yijw;s(1 — w;s), so the formulations are equivalent. O
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Since this gives a correct formulation, we give the full alternate IP formulation:

;

min Z Z YijCij =+ Z Z Z ]P[S]Zijs(clj + le) FA-S

i=1 j=1 seS i=1 j=1
s.t. Zy” = 1, VieV

j=1

i=1

Y mp =1, VkeV
j=1

Zl’ijk — Z.’Ejik = f(’L, k) Vi,keV
j=1 j=1

<
Tijk — Yij <0 Vi,5,k eV
n n

O djaie) —Crwpe <C =1, VEEV,s€S
i=1 j=2

(ZZdjsa:ijk) —C-wy >0, VkeV.,seS
i=1 j=2

Zijs < Yij, Vi,j€V,s€S

Zijs < Wjs, Vi, €V, s€S

Zijs <1 —w;s, Vi,jeV,s€S

Zijs = Yij +Wjs —wis — 1, Vi,jeV,s€S

\ Yij, Tijk, Whs, Zijs € {0,1} Vi, j, k€ V,s € S

It is likely that (FA-S) will have a more useful LP relaxation in general. To see this,
first note that the constraints in (FA-S) that are different from the ones given in (FI-S)
are simply linearizing a product of binary variables. It can be shown that the linearization
used in the final constraints of (FA-S) perform well in practice to approximate a product
of binary variables [12]. Since these constraints work well in general, it is likely that they
will work better than the constraints in (FI-S) which are designed to accomplish the same
task. A computational comparison of the two formulations is given in Chapter 5.
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Chapter 4

Multi-Vehicle Variant

For the multi-vehicle case, we base the recourse constraints more closely on the originals
given in [15], and modify the TSP constraints much more. Unlike the single vehicle case, we
do not concern ourselves too much with a range on the total demand. Since this formulation
works for any number of vehicles, if the total demand is too high and the problem is
infeasible, we can just increase the number of vehicles to compensate. Obviously for the
recourse [P to be implemented in practice, a list of demand scenarios must be given, but
for the following discussion we’ll assume that there are enough vehicles that the problem
is feasible.

4.1 TSP Formulation

The easiest way to extend the TSP constraints to the multi-vehicle variant of the problem
is to simply change the right hand side of constraints (3.1b), (3.1¢), and (3.1d) to m when
they refer to the depot to ensure that there are m solutions starting and ending at the
depot and that every customer is served exactly once by one vehicle, similar to MCF. Using
the function

1 i=1k#1
flik)=<{—-1 i=k+#1

0 otherwise

as defined in Chapter 3 and the new function
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the multi-TSP formulation is given by

(

min Z Z YiiCij (4.1a)
i=1 j=1
st Y yiy=g(i,m), VieV (4.1b)
jfl
Zyw = VeV (4.1¢)
\
wa L VkeV (4.1d)
Zl'zgk Zxﬂk ) Vi,keV (4.1e)
Tijk — Yij S 0 VZ,], keV (41f)
\ Yij, Tijk € {0,1} Vi, jk €V (4.1g)

This formulation is almost the same as (3.1), but with g(i,m) replacing 1 in the first
three constraints to account for the m vehicles leaving the depot.

4.2 TSP Formulation with Duplicated Variables

Unfortunately, (4.1) does not lend itself nicely to extending (3.2). The simplest way to
give a proper set of recourse constraints is to simply make m copies of each of the variables
used in the recourse IP, where m is the number of vehicles. Since the w;;, variables are
included in the recourse IP, in order to replicate the constraints in the recourse IP we must
also replicate the z;;, variables. If we replicate the x;j; variables without also duplicating
the y,; variables, the linking between the two sets of variables doesn’t work properly, so we
also replicate the y;; variables. This gives the following variables for the multi-TSP IP:

® y;j, represents whether edge ij € P,.
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® 7, represents whether edge 7j is on the path from 1 to k along P,. We define this
to always be 0 if k& & P,.

The variables are replicated only so that the recourse costs can be computed similarly to
the since vehicle case, not because it is necessary for the first stage IP. To avoid confusion,
if [z y]7 is the vector that represents an m-TSP solution with these replicated variables,
we say that [z y]T represents P multiply.

We also define the following function:

not to be confused with

1 i=1k#1
flik)={—-1 i=k#1

0 otherwise

as defined in Chapter 3. With these replicated variables, we give the following multi-TSP
problem IP formulation.
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;

min Z Z Z YijuCij (4.2a)
i=1 j=1 veV
s.t. Z Zym =g(i,m), YieV (4.2b)
veY j*l
Z Zymv == Vj eV (42C)
veY =1
Zyijv - Zij =0, VieViveV (4.2d)
< j=1 7j=1
Z Zﬂﬁlj/w =g(k,m), VkeV (4.2¢)
vey j=1
Nt =Y i = f6 k) @i Visk € Vi eV (4.26)
J=1 J=1 j=1
Zmlm =1, YweV (4.2g)
Tijko — Yijo <0 Vi, j,k €V (4.2h)
\ Yijo, Tijko € {0,1} Vi, j, k €V (4.21)

Note that this formulation is essentially MCF, but modified slightly for the replicated
variables.

Now we show that these constraints really do correspond to the feasible solutions.
Lemma 4.1. [zy]"
(4.2b) to (4.2i).

corresponds to an m-TSP solution if and only if it satisfies constraints

Proof. (=) Suppose that we have an m-TSP solution P, and let [z y]T represent P. We
show that constraints (4.2b) to (4.2i) are satisfied by [z y].

(4.2b): Each vertex i # 1 is part of exactly 1 route P, by constraints (2.2) and (2.3), so
ZUEV Z; 1 Yijo =
Vertex 1 € V(P,)Vv € V by (2.3), and since these paths are edge-disjoint (also by
(2.3)) we have ) ., Z?Zl Yijy =M
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(4.2¢):

(4.2d):

(4.2¢):

(4.2f):

Follows by the same argument as for constraint (4.2b), with the sum over y;;,
instead of v, .

Let i € V,v e V. If i € V(P,) then there is an incoming and an outgoing edge at
vertex i along P, since P, is a cycle by (2.1). Then Y7, yijo = > 7 yjiw = 1. 1If
i & V(P,), then there are no incoming or outgoing edges at vertex i along P,, so
> i1 Yijo = D_i—1 Yjiw = 0. Thus, this constraint is satisfied.

Consider a vertex k # 1. Then k € V(P,) for exactly one v by (2.3). This path
has exactly one outgoing edge 1j, from vertex 1, so we have x1;,1, = 1. For every
other choice of j # j, and v" # v, we have 21,y = 0 since 1j & P, and k & V(P,).
Thus, >,y 2 e Tijre = L.

For k = 1, we have that k € V(P,) Vv € V by (2.3). For every route P,, there is
exactly one outgoing edge 1j, from 1, so we have x;,1, = 1 for all these choices
of j, and v. Since for every choice of v, we have that 15 € P, for j # j,, we have

Lijlo = 0 for J 7& Jv- Thus> Z’UEV Z.;;l Lijie = M-

Fix vertices i,k € V and a vehicle v € V. First, if k ¢ V(P,), then x5, = Tjikp =
Tk = 0 for every j € V, so both the left and right sides are 0 and the constraint
is satisfied.

Now suppose that k € V(P,). Then Z?Zl T1jke = 1, so the right side is f(i, k). If
i & V(P,), then x5, = xjik, = f(i,k) = 0 for every j € V, so the constraint is
satisfied. The only remaining case is where i,k € V(P,). We divide this case into
further cases which are similar to the single vehicle variant.

o Leti =1,k €V so f(i,k) = 1. Then there is an edge 1j; and an edge j,1
in P,, but only 17; occurs before we reach k£ along P,. Since these are the
only edges with vertex 1 as an endpoint in P,, we have Z?:l Tijky = 1 and
Z;’:l T = 0, so the constraint is satisfied.

o Leti=Fk keVsof(i,k) = —1. Then there is an edge ij; and an edge joi
in P,, but only j5¢ occurs before we reach k along P,. Since these are the
only edges with vertex ¢ as an endpoint along P,, we have Z;‘:l Tijko = 0
and Z?Zl Zjikw = 1, s0 the constraint is satisfied.

e Let i = k = 1. Then f(i,k) = 0. There are m incoming and m outgoing
edges from vertex 1 by (2.3). Since each of the routes P, start and end at
vertex 1, all these edges are along the path from vertex 1 to vertex 1. This
gives Z;;l Ty = Z?Zl z;11 = m, so the constraint is satisfied.
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o Leti k € V,i+# k. Thereis an edge ij; and an edge j»i in P,, and either both
these edges occur before we reach k along P, or neither of them do. Since
these are the only edges with vertex i as an endpoint along P,, we have either
Z;;l Tyjp = Z?Zl zj11 = 1 or Z;’L:l T1j = Z?:l zj11 = 0, so the constraint

is satisfied.

(4.2g): Let v € V. By (2.1) there is exactly one edge 1j, € P,. Thus zy,;, = 1 and
T1j;, = 0 for all j # j,, so we have Z?Zl Tyjjp = 1.

(4.2h): If ij is on the path to k served by vehicle v for some £ € V and v € V (i.e.
Zijky = 1), then ¢j € P, C P and y;;, = 1. Thus, this constraint is satisfied.

(4.2i): Clearly the variables are binary because there are indicators for the edges included
in P.

(<=) Now we need to show that if [z y|T satisfies these constraints, then it multiply
represents an m-TSP solution P. For this to be true, we need to satisfy constraints (2.1)
to (2.3). In addition, we need to verify that there is only one cycle corresponding to each
vehicle and that the x and y variables define the same edge set P.

1. From (4.2b) and (4.2c), we have that for each v, the vector §, defined by d,(7,j) =
> wev Yijo describes an edge set made up only of cycles, and by the same argument
as in the single vehicle variant we can conclude that ¢, describes exactly one cycle.

2. (4.2b) and (4.2c¢) ensure that for every k € V, k € V(P,) for some vehicle v, so
ke V(P).

3. For i € V, (4.2b) says > .y, >i—1 Yije = 1. Since the right hand side is 1, i € V(P,)
for at most one v, so i € V(P,) NV (P,) for v # w.

By (4.2g), we have xy;;, = 1 for some j, and by (4.2h) we have y;, = 1 for this
choice of j and v. Thus, 1 € V(P,) for every v € V,so 1 € V(P,) NV (FP,) for every
choice of v, w € V.

4. It is obvious that there is exactly one cycle corresponding to each vehicle, since (4.2g)
ensures that there is exactly one outgoing edge from vertex 1 corresponding to each
vehicle.

5. Suppose that for vehicle v, y defines the path 1k;...k,_11, with kg = k, = 1. If
x defines the same path as y for this vehicle, we require that x,,_ ..o = 1 for
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1 < s <t, and x5, = 0 for any other choice of 7, j, and k. We show this in two
parts. First, if ij # ks_1k, for some s, then y;j, = 0, which implies that z;;, = 0 for
every k by (4.2h). For x variables of the form ., _, ..., We first set ¢ and show that
T, qreew = 1 if and only if 1 < s <¢. We do this by induction on s using constraints
(4.2e) and (4.2f). First, by (4.2¢) and (4.2h) we have that 2., x,, = 1. Now consider
1 < s <t, and assume that x._ .. ,xe = 1. By (4.2f) with ¢« = k,_1 and k = &,
we have that 37 | @4, s, = 1, and by (4.2h) this implies that 2., k0 = 1.
Next, consider s = ¢ + 1, and suppose that x. _,.x._ ke = 1. By (4.2f), we have
that 3 7 1w, yjrw = 0, since f(ky, k) = —1. Thus, Tu,x, r0e = 0. Finally, let
t+1 < s < r, and suppose that z., ,.. v = 0. Then Z?Zl Tjry ko = 0, SO
D im1 Try rjmew = 0 by (4.2f). Thus, we have x, ,,x,0 = 0. From this analysis, we
have that, given a vehicle v that follows the path 1x;...k,_11 according to the y
vector, T;ji, = 1 if and only if ¢ = k1, j = K, and k = Kk, for 1 < s <+,

Thus, we have satisfied the requirements for [zy]” to represent an m-TSP solution. [J

We require for the recourse IP that every m-TSP solution we pass in should also be a
stochastic m-TSP solution, but this is dealt with in the recourse constraints.

4.3 Multi-Vehicle Recourse Constraints

To modify the original recourse constraints for the multi-vehicle variant of the problem,
we largely follow the model in [15]. First, we replicate the variables used, similarly to the
multi-TSP formulation. We also need to replace n with the number of customers along
the path for vehicle v, n,. To do this we’ll need another constraint to set n, for all v € V.
This gives a list of variables as follows:

e 0;,: contains the position of vertex i along P,. We define this to be 0 if i & V(P,).
o n, |Pyl.

® Wy, indicates whether vertex i is served at or after v(P,, s) in scenario s along P,.
We define this to be 0 if k£ & V(P,).

e p;.: avariable used to determine the number of vertices before v(P,, s) after vertex
k in scenario s along P,. This is always non-negative, and only one of p and p;,,
can be non-zero.

32



® ... avariable used to determine the number of vertices after v(P,, s) before vertex
k in scenario s along P,. This is always non-negative, and at most one of p;, and
Drsp Call be non-zero.

® Signks,: a variable used to ensure that pzsv and p, . are both non-negative.

® paysis,: indicates whether the vehicle goes from client k& to the depot and returns in
scenario s along the path covered by vehicle v. We have

1, a recourse action is taken at vertex k by vehicle v in scenario s
paySksv

0, otherwise

Doing this allows us to simply take most of the original constraints from (3.2) and copy
them so we have one of each constraint per vehicle. However, we need to be a little bit
more clever in setting the paysys variables because simply replacing n with n, in (3.2f)
makes the constraint non-linear. Instead, we’ll use a slight variation on the idea in [15].
The full formulation is given as follows:
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( n
min Z Z Z P[s|paysksy(cir + k1) (4.3a)
SES k=2 veV
st (O djstijn) —C e <C—1, VEEV,s €S, VeV  (4.3b)
i=1 j=2
O°D djstiji) = C - wiey =0, VEEV,s €S, WweV (4.3¢)
i=1 j=2
O°D i) —or =0, VE€V, Yo eV (4.3d)
i=1 j=2
=(@) = 3 (Z injlv) —n,=0, YoeV (4.3¢)
i=1 j=1
(Z Whsy) — NNSgy =0, Vs €S, Yo €V (4.3f)
=2
Oy + NS5y + Dy — Prsy = My VE € V,seS, YoeV (4.3g)
Diy = Ssigng, <0, VEeV,s€e S, YweV (4.3h)
Diwy T 1 Signpsy <n, Vk€V,s€S, Yo eV (4.31)
PAYksy + Dy + Prwy > 1, VEEV s €S, Vo eV (4.3))
Okivs My Ppras Prsy € LYk €V, s €S0 €V (4.3k)
| Whsys STGNksw, PAYSksy € 10, 1}VE €V, s €S, v €V (4.31)

Before showing that only stochastic m-TSP solutions are feasible for (4.3), we show a
useful lemma about the z;;, variables corresponding to m-TSP solutions.

Lemma 4.2. Suppose that P is an m-TSP solution multiply represented by [v y]T. Let
v €V and suppose that }zv serves its customers in the order 1ky...Kk,_11. Let k = k;.
Given constants {a; : j € V(P,)}, we have

n

t n
E a; = E E A Lijky
=1

i=1 j=2

Proof. This follows easily from the reverse argument in Lemma 4.1, since it is shown there
that x;;r, = 1 if and only if ¢j = k1K for some 1 < s <. Thus,
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n n

t
E § AjTijko = E Oy Ly _qimykv
i=1 j=2 =1
t
g E aﬂl
=1

O

Using this lemma, we can show easily that only stochastic m-TSP solutions can be
feasible for (4.3).

Lemma 4.3. Given an m-TSP solution P multiply represented by [z y]T, (4.3) with input
x 1s feasible if and only if P is a stochastic m-TSP solution.

Proof. (<) Let v € V, let P, serve the customers in the order 1k;...x,_11, and let
k =k, € V(P,). From the definitions of each of the variables, we set them as follows:

1, if iy € P,,j comes before k along P or j =k
Lijkv = .
0, otherwise

0, otherwise

{1, if t > a(P,,s)
Wrsy =

1, ifk=~(P,,s)
QY Sksv =
paysk 0, otherwise

. JaP,s)—t, t<a(P,s)
Prsv = 0, otherwise

__Jt—a(PR,s), t>a(P,,s)
Prsv = 0, otherwise

. 1, p:SU >0
SUGNEsy = ,
I 0, otherwise
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and

Ny =T, NMNSg = Ny — (P, 8), 0y = t.

By the definition of v(P,, s) and Lemma 4.2, we have that

n n t
0< Z Zdjexukw = Zdﬁ,ls < C—-1
=1

i=1 j=2

if t <a(P,,s) and

n n t
C < szjsxijkv - des < 20 -1
=1

i=1 j=2

if t > a(P,, s), so constraints (4.3b) and (4.3c) are both satisfied by P,. Clearly we have

Z Z Tijko =1,

i=1 j=2

n n
E E Tijlo = T,

i=1 j=1

and
> e = (1= 1) = (a(Pys) = 1) =7 — a(P,y ) = nns.,
k=2

so constraints (4.3d), (4.3e), and (4.3f) are satisfied.
For k & V(P,), we let

Lijk = Oy = whksv = pk‘_sv = PaYSksv = 07 Ny =T, NNSs = nv_a(Pm S)7p;:3v = a(PU7 S), Signksv =1
Finally we examine constraints (4.3g) through (4.3j). If t < a(P,, s), we have
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Oky + NNSsy +p;:sv _plzsv = (t> + (T‘ - Oé(PU,S)) + (a<Pva S) - t) - (0) =T =Ny,
Phuw — 1 Signpsy = ((Py,8) —t) —n- (1) =n+1 —a(P,,s) <0,
and

Diy + Diosy + PAYSkso = ((P,,8) — ) 4+ (0) + (0) > 1,

so all the constraints are satisfied. Similarly, if ¢ > «(P,, s), we have

ke + 0500+ Dy — Py = (8) + (r = (P, 8) + (0) = (t — a(Po.s5) =7 =,

Pioy — 1 Signgsy, = (0) —n - (0) <0,

Prey T 1 - SigNpsy = (t — (P, 8)) +n-(0) =n+t—a(P,,s) <n,
and
pﬁsv +pl;sv +pay8k31) = (0) + (t - a<PD7 S)) + (O) Z 1
Finally, if t = «(P,, s), we have
Oky + NNSsy +p2—5v _pl;sv = (t) + (T - Oé(PU,S)) + (a(P’UJS) - t) - (0) =T =Ny,

Phu — 1 SigNEsy = ((Py,8) —t) —n- (1) =n+t — a(P,,s) <0,

Prey T 1 SigNEsy = (0) + 7+ (1) < m,

and
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pz_sv +p/;sv +pay8ksv = (CY(PU,S) - t) + (O) + (1) =1 Z 1

and the constraints are still satisfied. Since (4.3k) is clearly satisfied, Z(x) is feasible if P
is a stochastic m-TSP solution.

(=) Suppose that P is not a stochastic m-TSP solution. Since P is an m-TSP solution, it
satisfies (2.1) to (2.3), so P breaks constraint (2.5). This means that (2.5) is not satisfied for
some vehicle v € ¥V and some scenario s € S. By definition, we have ZieV(Pﬂ) d;s > 2C —1.
Now let P, serve its customers in the order 1x;...x,_11, and let k = k,_; be the last
customer served by vehicle v. Then, by Lemma 4.2, we have

Z dis = izn:djsl'ijkv > 20 — 1,

i€V (Py) i=1 j=2

so in order for (4.3b) to be satisfied for this choice of k, s, and v, we require that wgs, > 1.
However, this is not possible because we defined wys, to be a binary variable in (4.3k), so
=(x) is not feasible.

O

Now that we have shown only stochastic m-TSP solutions are feasible for (4.3), we need
to show that it actually gives the correct solution, which we show in the next lemma.

Lemma 4.4. Given a solution P multiply represented by [z y|*, an optimal solution to

(4.3) with input = satisfies

1, k=v(P,,s)
AYSksv =
Payst 0, otherwise

for every vehicle v € V, every demand scenario s € S, and every k € V.

Proof. Let P, serve its customers in the order 1x;...k,_11, with kg = k, = 1. Note that
r = |V(P,)|. As in the single variable case, we start by showing that

PayYSigsy Z {17 b= ’y(ij S)

0, otherwise
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We first ensure that og,, nnsg,, and n, are set properly, then show that the resulting
Piw, and py from (4.3g) set paysks, correctly.

Consider a vertex k ¢ V(P,). Since k € V(P,), we have Tijke = 0 for every edge ij, so
by constraint (4.3d)

n o n
Oky = § § Lijkv = 0.

i=1 j=2

Now consider a vertex k € V(P,). Then k = k; for some 1 <t < r — 1. As shown
in Lemma 4.3, we have oy, = t, so o, is set correctly. The correctness of n, follows
immediately from the correctness of o, since (4.3e) is simply (4.3d) with k = 1.

For nns,, we need to ensure that the wygg, variables are set correctly. We divide our
analysis into three cases - k &€ V(P,), k € V(P,) is before v(P,, s), and k € V(P,) is at or
after v(P,, s).

Suppose that k & V(P,). As noted before, we have x,, = 0 for every edge ij, so we
have

n n

Z Z djsxijkv =0

i=1 j=2

and wgs, = 0 from constraint (4.3c).

Now suppose that v = k, = y(F,, s) is the refill point. Then we have

sz_jsxijuv = des >C
=1

i=1 j=2

and

=

n n a—

Z Zdjsximﬂv =>» d,s<C—-1

i=1 j=2 =1

by definition, unless @ = r in which case only the second inequality applies. Consider a
vertex k which is before the refill point. Then k = k;, with 1 < b < a — 1, so we have
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n n

b

E E djsxijk’v: E dnls
i=1 j=2 =1
a—1

< § dms
=1

<C-1.
Thus by constraint (4.3c) we have wyg, = 0.
Conversely, consider a vertex k which is at or after the refill point. Then k = k;, with

a<b<r-—1,so we have

n n

b
Z Z djsxijkv = Z dms
i=1 j=2 =1
a
> ds
=1

> C.

Thus by constraint (4.3b) we have wgs, = 1, and wyg, is set correctly for every vertex
k € V. Since wgs, is set correctly for every vertex k € V., it is clear that nns,, is set
correctly.

Let the refill point be u = k, = y(P,,s) with 1 <a <r. Then nns; = (r—1)—(a—1) =
r—a, and n, = |V(F,)| = r. We consider constraints (4.3g) through (4.3j) in 4 cases -
k & V(P,), k is served before the refill, k is served after the refill, and k = v(P,, s).

Suppose that k& € V(P,). Then ok, = 0, 50 0, + nnss, = 7 — a. Since, as noted in
(4.3), at most one of p;_ and p;, is positive, we have p;’, = a and p;,, = 0 by constraints
(4.3g) through (4.3i). As p{., > 0, paysks, can be 0.

Now suppose that k € V(P,), and that k is served before the refill. Then k = &, for
some b < a, and we have

Oy + sy =b+(r—a)=r+(b—a) <r=nmn,

Thus, constraint (4.3g) sets pj,, = a — b, 50 pi., + Dr., > 0 and paysks, can be 0.

Similarly, if k is served after the refill we have k = k;, for some b > a, so
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Oy +nnsgyy =b+ (r—a)=r+(b—a) >r=nmn,

Thus, constraint (4.3g) sets p.,, = b — a, 0 pi., + Pr., > 0 and paysks, can be 0.
Finally, if k£ is the refill point, we have k = k,, so

O +nnsgy =a+ (r—a) =r=mn,

Thus, constraint (4.3g) sets p},, = Pr., = 0, 80 i, + Prew = 0 and paysys, can be 0.

From this argument, we see that

1, k=~(P,s)
aySkso =
Pays {O, otherwise

Finally, we show that if this inequality holds strictly for some vertex k£ and some scenario
s, then the solution is not optimal. Now consider a solution p; for which paysg., = 1 for
some vehicle v € V, scenario s € S, and some k # y(P,,s). Then we can create a new
solution p, by setting paysis, = 0 and leave all other variables the same, since we are
required only that paysis, > 0. But this new solution p; has cost less than that of p; by
P[s](c1x + cx1), so p1 cannot be optimal. Thus, if payss, = 1 for some k # ~(P,,s) for
some feasible solution to (4.3), then that solution is not optimal, so since

I, k=~(P,s)
aySksv =
paysx {0, otherwise

for any feasible solution for every k € V, s € S, and € V we have that

17 k = /Y(PW S)
AYSksy = .
paysk 0, otherwise

for the optimal solution. (I
This shows that (4.3) gives the correct recourse cost given a stochastic m-TSP solution

P represented by [z y|*. This means that a full formulation for the 2SCVRP can be given
as follows:
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p

min

s.t.

Z Z Z YijuCij + Z Z Z P[s]paysksy(cir + cx1)

i=1 j=1 veV sES k=2 veV
Zzyijv = g(lam)> VieV

veY j=1

D v =glim), Vi€V
veY i=1

iyij‘v - iyjiv =0, ieVveV
j=1 j=1

YO wije =glkom), VeV

veyY j=1

n n n
Ziﬁzjkv - Z-Tjikv = f(i, k) lejkv Vi,k€eViveV
7=1 7=1 Jj=1

il‘h‘w = 1, Yv ey
i=1

O djstijn) = Cwpey <C—1, VEEV, €S, YweY

i=1 j=2

O djsmijre) = C ey 20, VEEV s €S, YweV

i=1 j=2

(Xn:i%jku) —0p =0, VkEV, YweV

i=1 j=2

(ii%jm) —n,=0, Yoey

i=1 j=1
(Z Wgsy) — NNSgy = 0, Vs €S, Yo €V
k=2

Okv + MNSsu + Py — Phgy = Mo, VK EV, s €S, Yo €V
P, —n-signg, <0, VkeV,s€S, YoeV

Diwy 10 Signpsy <n, Yk €V, s €S, Yo eV

DAY keso +p§sU + i, =1, Vk € V,seS, YveV

Tijko — Yijo < 0 Vi, 5,k €V 42

Yijus Lijkvs Wksv, Signksvapaysksv € {O; 1} Viaja ke ‘/v s € 87/0 eV

Okvs Moy Dpas Prww € ZVk €V s €S0 €V

FI-M



4.4 An Alternate Formulation for Multi Vehicle Re-
course Costs

Similarly to the single vehicle case, we can express the multi vehicle recourse cost in an
alternate way using a product of binary variables. Because there is nothing vehicle specific
about determining the refill point in this way (unlike (4.3), which requires n,), we can
avoid having to copy the variables for each vehicle. Instead, we can just use the multi-TSP
formulation given in (4.1). As a result, we have the following lemma.

Lemma 4.5. If for some stochastic m-TSP solution P is represented by [z y]7?,

1, k=~(P,s)
aySks =
Py 0, otherwise
and
1, k is served by vehicle v at or after v(P,,s) for some v
Wi =
" 0, otherwise
then

Y paysksolcw + ) = Y > yigwjs(1 = wig)(ci + ).

VeV k=2 i=1 j=1
Proof. This is clear from Lemmas 3.5 and 3.6, since

> paysis, = paysi

veY
with paysys is as defined in 3.5. O
From Lemma 4.5, we see that if [zy]” is an m-TSP solution without replicated variables,

we can use (3.3) for the multi vehicle case as well.

Lemma 4.6. Given some m-TSP solution P represented by [z y|*, (3.3) gives the correct
recourse cost for P.
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Proof. Similarly to the single vehicle case, we need only show that the wy, variables are set
correctly and that z;;s = y;;w;s(1 — w;s), since by Lemmas 4.5 and 4.4 (3.3a) is the correct
objective function. We have a bit of extra work to do to show that the wy, variables are
correct.

Let v € V, and suppose P, serves its customers in the order 1&; ...#s,_11. We should
have that wgs = 1 if and only if it is served at or after v(P,, s) for some vehicle v. Now
let £ € V, and suppose that k is served by vehicle v which serves its customers in the
order 1k ...K,—11. By the definition of v(P,,s), we expect that wgs = 1 if and only if
2321 dy;s > C. Since Z;Zl dejs = Y 1y Z;LZQ djsTijx;, as shown in Lemma 3.3, this is true
by constraints (3.3b) and (3.3c). Thus, the wy, variables are set appropriately.

As in the single vehicle case, constraints (3.3d) through (3.3g) give 2, = yijw;s(1 —w;s)
by [16], so (3.3) gives the correct recourse cost for P. O

As mentioned above, we can use the multi-TSP formulation given in (4.1). Using this
TSP formulation, we can write the full two-stage IP as
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(

min

s.t.

n n

YD vucu+ Y>> Plslzyley +en)

i=1 j=1 €8 i=1 j=1
n
Zyij =g(i,m), YieV
j=1

Zyij =g(i,m), Vj eV
i1

Zl‘ljk =g(i,m), VkeV

j=1

injk - ijik = f(i,k) Vi,k eV
Jj=1 j=1
Tije — Yi; <0 Vi, 5, ke V

(ZZdjsxijk>—C'wk5§C—1, V/CE‘_/,SES

i=1 j=2

OO0 djain) = Cwie >0, VkeV,s€S

i=1 j=2

Zijs < Yij, Vi, EV,5E€S

Zijs < Wjs, Vi, €V, 5€S

Zijs <1 —wi,, Vi,jeV,s €S

Zijs > Yij T Wjs —wis — 1, Vi,j €V, sE€S
Yijs Tijks Whs, Zijs € {0,1} Vi, j,k e V,s € S
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Chapter 5

Computational Results

Since there are multiple formulations given to solve the problem, it is important to compare
them empirically. In order to decide what should be compared between the two formula-
tions, we should look at the steps an IP solver will take to solve each instance. First, we
note that both formulations will be solved using the branch-and-cut method, since both
are edge-based formulations. The first important thing to know is that the time required to
solve an IP can be dependent on seemingly unrelated things, so comparing IP solve times
is likely not the best comparison. Some causes of variability in IP solve times are given
in [1]. To determine the next-best comparison, we note that branch-and-bound IP solvers
solve successively more restrictive LP approximations of the given IP. Then the two things
that are important are

1. The solve time of each of the LP approximations. Decreasing the time required for
each iteration of the branch-and-bound process will decrease the overall time required
to solve the IP if the number of LPs solved stays constant.

2. The difference between the optimal value of the LP approximations and the optimal
value of the IP. Decreasing this difference will decrease the number of iterations of
this branch-and-bound process that are required to solve the IP.

Since the LP approximations solved in the branch-and-bound method are similar to the
LP relaxations of the original IPs, comparing the solve times and optimal values of the LP
relaxations of the IPs should give a good idea of how their IP solve times will compare.

Before continuing, we give a note on comparing the gap between formulations. Normally
to compare the optimal values two formulations, we would calculate the gap
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1— LP value
MIP value

for each individual formulation so the MIP value is used as the baseline for the comparison.
In this case the gap is calculated for both formulations and the results are compared.
However, since the MIP value is only given if it is solvable in under an hour some instances
do not have a MIP cost, we’ll do the comparison as

FA-S/FA—M Value 1
FI—-S/FI—M Value

so that the value of the FI-S/FI-M is used as the baseline for the comparison. We use
these formulations as the base because for every instance, they give a lower objective value
than the alternate formulation. For each instance, the gap will be given along with the
two optimal values.

Each instance of the 2SCVRP is defined by a graph and a scenario set. The instances
are not from a standard set of instances in literature because the standard instances have
deterministic scenarios. They were designed with a couple of ideas in mind. The graphs
with fewer than 10 vertices are crafted more carefully to ensure that the optimal solution
avoids as many long edges as possible. They are generally a mix of edges that are less than
5 units long and ones around 10 units long. This is done to make sure that the vehicle tends
towards the shorter edges in the first stage solution. The graphs with 10 vertices or more
have edge lengths in a greater range, and are intended largely for testing the run time of the
two formulations. The 10 vertex graph is taken from the CVRP library (instance E-n13-k4)
[17], which is a Euclidean instance, and the larger graphs are expansions of the 10 vertex
graph. A Euclidean instance is one generated by placing points on a grid and creating an
adjacency matrix from the distances between them rounded down to the nearest integer,
and graphs were expanded by adding customers in clusters near the existing customers.
The graphs are divided into large and small in this way because the 7 vertex graph was
the largest MIP that could be solved for every number of vehicles that was tested.

For each graph size, there are three different scenario sets. The first group of scenario
sets is designed with small demands to allow for a small vehicle capacity. Specifically, for
6 vertices we include all the possible distributions which give a total demand of 4, and for
larger graphs we give scenarios of a similar flavour to the sets used for the 6 vertex case so
that pockets of customers have demands similar to the 6 vertex scenarios. There are not
enough distributions in the 5 vertex case, so the scenarios for 5 vertex graphs are separate
from the rest. Similar to the 6 vertex graphs, we simply include all possible distributions
which give a total demand of 4. The second and third groups of scenario sets are designed
to require a higher capacity. Each scenario is a vector which is first generated uniformly on
the simplex {z € R"™! : ||z||; = 99,2 > 0}, then has each component rounded down to the
nearest integer. The number 99 is used so that a capacity of 50 can be used in the tests.
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The only difference between the second and third groups of scenario sets is the number of
scenarios - 40 scenarios in the second set and 100 in the third set. For easy reference in
the result tables, we denote the three groups of scenario sets by M-S, R-40, and R-100.

The reasoning for choosing these specific groups of scenario sets is to make two specific
comparisons between the two formulations. The first is to make a comparison between
the results with low capacities (M-S) and high capacities (R-40) with a similar number of
scenarios. The second is to make a comparison between the results with the same capacities
but a different number of scenarios (R-100).

The following sections give empirical results for both formulations in the single and
multi-vehicle cases. The code for the tests is written in Julia [ 1], the LP solver is Gurobi
9.0.0 [10], and the tests were run on a Intel Core i7 CPU M 620 @ 2.67GHz quad-core
processor with 7.8 GB of memory. For the sake of space, many of the column names
are abbreviated. The abbreviations used are the following: nV represents the number of
vertices in the graph, Cap represents the capacity, T(s) represents the time in seconds,
and LP represents the optimal value of the corresponding LP. Also note that FI-S is the
formulation based on the presentation in [15], FA-S is the formulation based on a product
of binary variables, and FI-M and FA-M are their multi-vehicle counterparts. The value
of the MIP will be denoted by simply “MIP” to avoid confusion.

5.1 Single Vehicle Results

The computational results for the single vehicle variant of the problem are summarized in
tables 5.1 to 5.3. For both formulations of the problem, we give the amount of time taken
to solve the LP and the optimal value of the LP. When the MIP is solvable in under an
hour, the value of the MIP is given for comparison. The graphs and demand scenarios used
are given in appendices A and B respectively, and the capacity required for a particular
instance of the problem is also given when necessary.

48



Graph | nV | Cap | FI-S T(s) | FA-S T(s) | FI-SLP | FA-SLP | Gap | MIP
A 5 3 0.00 0.01 10.00 10.00 0.0% | 15.50
B 5 3 0.00 0.01 13.00 13.00 0.0% | 25.00
C 5 3 0.00 0.01 21.00 21.00 0.0% | 33.00
D 6 3 0.01 0.04 9.00 9.17 1.89% | 16.27
E 7 3 0.04 0.28 41.00 41.00 0.0% | 45.24
F 10 ] 3 0.14 0.24 110.50 113.29 | 2.52% | 170.02
G 12 7 0.20 1.01 102.50 103.83 | 1.30% | N/A
H 15 7 2.09 2.73 87.00 87.00 0.0% | N/A
I 20 | 10 12.90 8.21 88.28 88.39 |0.12% | N/A
J 30 | 15 108.81 163.27 97.19 97.21 | 0.02% | N/A
K 40 | 20 368.71 839.52 108.00 108.00 | 0.0% | N/A

Table 5.1: Results for 1 Vehicle, M-S
Graph | nV | FI-S T(s) | FA-S T(s) | FI-SLP | FA-SLP | Gap | MIP
A 5 0.01 0.32 10.00 10.00 0.0% | 17.60
B 5 0.01 0.31 13.00 13.03 | 0.23% | 27.80
C 5 0.01 0.03 21.00 21.00 0.0% | 35.80
D 6 0.02 0.47 9.03 9.22 2.10% | 17.15
E 7 0.04 0.29 41.00 41.00 0.0% | 45.70
F 10 0.11 0.19 110.50 111.98 | 1.34% | 163.35
G 12 0.19 1.18 102.00 102.21 | 0.21% | 150.08
H 15 0.46 0.75 85.00 85.00 0.0% | N/A
I 20 1.54 2.11 87.00 87.00 0.0% | N/A
J 30 16.60 44.90 97.00 97.00 0.0% | N/A
K 40 116.77 659.11 108.00 108.00 | 0.0% | N/A

Table 5.2: Results for 1 Vehicle, R-40, Capacity 50
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Graph | nV | FI-S T(s) | FA-S T(s) | FI.S LP | FA-SLP | Gap | MIP
A |5 0.07 0.09 10.00 | 10.00 | 0.0% | 16.60
B |5 0.04 0.09 13.00 | 13.08 |0.62% | 25.72
c |5 0.04 0.08 21.00 | 21.04 |0.19% | 33.72
D | 6| 004 0.15 9.00 9.23 | 2.56% | 16.78
E | 7] o015 0.29 41.00 | 41.00 | 0.0% | 45.16
F | 10| 029 0.52 110.50 | 111.78 | 1.16% | 163.79
G | 12| 053 1.92 102.00 | 102.25 |0.25% | N/A
H |15] 113 1.76 85.00 | 8500 | 0.0% | N/A
I |20 307 3.57 87.00 | 87.00 | 0.0% | N/A
J 30| 3334 41.26 97.00 | 97.00 | 0.0% | N/A
K |40 | 17636 | 230.86 | 108.00 | 108.00 | 0.0% | N/A

Table 5.3: Results for 1 Vehicle, R-100, Capacity 50

Regarding the run time of the formulations, there isn’t a definitive answer for which
formulation is superior. However, there are a couple general trends that can be noted.
The first is that the run time of (FI-S) scales better than the initial formulation in the
size of the graph. FA-S is 50% more than FI-S on average for the 15 vertex instances,
but the difference increases to 208% for the 40 vertex instance. Here the 15 vertex is used
as the low vertex comparison because it is the smallest number of vertices for which both
formulations have a run time of over 1 second for at least one choice of scenario set so that
the results are more significant. Another trend for both formulations the impact of adding
scenarios or increasing capacity seems dependent on the formulation. For FI-S, increasing
the capacity decreases the solve time while increasing the number of scenarios increases
the solve time. On the other hand, for FA-S increasing capacity and number of scenarios
have erratic effects on the solve time that are dependent on the associated graph.

Regarding the gap, the comparisons we are interested in are between a low and high
number of vertices and between the three groups of scenario sets (M-S, R-40, and R-100),
and we’ll compare the average gap across all instances in a given category. For example,
when looking at the gap for scenarios M-S, we take the gap for each individual instance
using a scenario from M-S and average them to get the average gap for scenario group M-S.
Here a low number of vertices is less than 10 and a high number is greater than or equal
to 10, the same as the split in the graph construction. The instances with a low number of
vertices have a larger average gap than the instances with a high number of vertices, with
the former having a gap of 0.51% and the latter a gap of 0.38%. Regarding the groups of
scenario sets, the tests on the scenario sets M-S have the highest average gap, with a gap
of 0.53% versus 0.35% for R-40 and 0.43% for R-100.

50



5.2 Multi Vehicle Results

Using the same graphs and demand distributions as in the single variable case, the results
arc summarized in the tables below. The general format of the tables is similar to the single
vehicle case - for each instance, the values and solve times are given for both formulations,
the capacity is given when necessary, and the MIP value is given when the solve time is
under an hour. In addition, there are results for each instance for both 2 and 4 vehicles.

Graph | nV | Cap | FI-M T(s) | FA-M T(s) | FI-M LP | FA-M LP | Gap | MIP
A 5 3 0.01 0.01 12.00 12.00 0.0% | 16.88
B 5 3 0.01 0.01 14.00 14.00 0.0% | 18.38
C 5 3 0.01 0.01 22.00 22.00 0.0% | 26.25
D 6 3 0.09 0.03 11.00 11.67 6.09% | 16.27
E 7 3 0.11 0.30 41.00 41.00 0.0% | 44.51
F 10 3 0.30 0.28 136.00 140.47 | 3.29% | 186.88
G 12 5 0.71 1.01 121.00 125.13 | 3.41% | N/A
H 15 5 1.16 2.41 104.00 105.74 | 1.67% | N/A
I 20 5 5.90 9.91 106.00 106.95 | 0.90% | N/A
J 30 8 64.88 101.57 115.00 115.39 | 0.34% | N/A
K 40 | 10 266.05 526.45 126.00 126.00 0.0% | N/A

Table 5.4: Results for 2 Vehicles, M-S

Graph | nV | Cap | FI-M T(s) | FA-M T(s) | FI-M LP | FA-M LP | Gap | MIP
A 5 3 0.02 0.00 26.00 26.00 0.0% | 26.00
B ) 3 0.02 0.00 40.00 40.00 0.0% | 40.00
C 5 3 0.02 0.00 40.00 40.00 0.0% | 40.00
D 6 3 0.40 0.02 23.00 23.00 0.0% | 23.88
E 7 3 0.14 0.04 41.00 41.00 0.0% | 41.80
F 10 3 0.42 0.11 219.00 222.38 | 1.54% | N/A
G 12 3 1.14 0.21 196.00 199.73 | 1.90% | N/A
H 15 3 2.87 0.78 162.00 164.87 | 1.77% | N/A

I 20 3 8.28 6.96 146.00 146.50 | 0.34% | N/A
J 30 5 67.98 41.83 153.00 153.40 | 0.26% | N/A
K 40 5 404.58 471.60 163.00 163.00 0.0% | N/A

Table 5.5: Results for 4 Vehicles, M-S
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Graph | nV | FI-M T(s) | FA-M T(s) | FI-M LP | FA-M LP | Gap | MIP
A 5 0.02 0.02 12.00 12.16 1.33% | 19.50
B 5 0.02 0.02 14.00 14.16 1.14% | 24.30
C 5 0.03 0.02 22.00 22.00 0.0% | 32.30
D 6 0.05 0.03 11.00 11.24 2.18% | 18.35
E 7 0.11 0.28 41.00 41.00 0.0% | 45.20
F 10 0.29 0.17 136.00 138.51 | 1.85% | 179.23
G 12 0.56 1.06 121.00 121.60 | 0.50% | 163.20
H 15 0.75 0.50 104.00 104.00 0.0% | 104.19
I 20 5.21 1.97 106.00 106.00 0.0% | N/A
J 30 53.27 23.97 115.00 115.00 0.0% | N/A
H 40 251.96 424.67 126.00 126.00 0.0% | N/A

Table 5.6: Results for 2 Vehicles, R-40, Capacity 50

Graph | nV | FI-M T(s) | FA-M T(s) | FI-M LP | FA-M LP | Gap | MIP
A 5 0.05 0.01 26.00 27.05 4.04% | 29.10
B 5 0.07 0.01 40.00 41.67 4.18% | 44.80
C 5 0.05 0.01 40.00 41.67 4.18% | 44.80
D 6 0.10 0.03 23.00 23.09 0.39% | 26.25
E 7 0.15 0.08 41.00 41.04 0.10% | 43.05
F 10 0.38 0.17 219.00 220.65 | 0.75% | 239.18
G 12 0.74 0.26 196.00 196.14 | 0.07% | 204.80
H 15 1.39 0.39 162.00 162.00 0.0% | 166.33
| 20 9.59 1.78 146.00 146.00 0.0% | 146.00
J 30 85.98 17.80 153.00 153.00 0.0% | 153.00
K 40 507.52 197.20 163.00 163.00 0.0% | 163.00

Table 5.7: Results for 4 Vehicles, R-40, Capacity 50
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Graph | nV | FI-M T(s) | FA-M T(s) | FI-M LP | FA-M LP | Gap | MIP
A 5 0.07 0.05 12.00 12.22 1.83% | 18.62
B 5 0.08 0.06 14.00 14.20 1.43% | 22.52
C 5 0.07 0.07 22.00 22.07 0.32% | 30.52
D 6 0.16 0.12 11.00 11.25 2.27% | 17.88
E 7 0.32 0.42 41.00 41.00 0.0% | 44.94
F 10 0.93 0.54 136.00 138.09 | 1.54% | 178.69
G 12 1.04 1.36 121.00 121.64 0.53% | 178.69
H 15 3.19 1.33 104.00 104.00 0.0% | 121.20
I 20 15.30 5.33 106.00 106.00 0.0% | N/A
J 30 73.63 27.12 115.00 115.00 0.0% | N/A
K 40 519.98 182.32 126.00 126.00 0.0% | N/A

Table 5.8: Results for 2 Vehicles, R-100, Capacity 50

Graph | nV | FI-M T(s) | FA-M T(s) | FI-M LP | FA-M LP | Gap | MIP
A 5 0.14 0.04 26.00 26.85 3.27% | 29.26
B 5 0.14 0.04 40.00 41.18 2.95% | 44.76
C 5 0.15 0.04 40.00 41.18 2.95% | 44.76
D 6 0.28 0.08 23.00 23.14 0.61% | 25.48
E 7 0.36 0.20 41.00 41.01 0.02% | 42.30
F 10 0.93 0.35 219.00 220.22 | 0.56% | 236.55
G 12 1.61 0.61 196.00 196.27 | 0.14% | 204.95
H 15 4.20 1.00 162.00 162.02 | 0.01% | 164.58
I 20 19.22 2.60 146.00 146.00 0.0% | 146.46
J 30 105.87 23.75 153.00 153.00 0.0% | 153.00
K 40 | 1550.70 155.58 163.00 163.00 0.0% | N/A

Table 5.9: Results for 4 Vehicles, R-100, Capacity 50

With results on the same instances and different vehicle counts, we can make some
inferences about general trends. As with the single vehicle case, however, we cannot treat
these as absolute trends, but rather issues to be investigated. The main trend that we see
from the multi vehicle case is that FA-M scales better with the number of vehicles than
FI-M - in the single vehicle case FI-M is solved faster in 32 of 33 instances, for 2 vehicles
FA-M is solved faster in most instances (20 of 33), and for 4 vehicles FA-M is solved faster
in 30 of 33 instances. One particularly interesting thing to note is that FA-M seems to
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reach an optimal solution faster when the number of vehicles is increased - in almost every
instance, the 2 vehicle LP is solved faster than the 1 vehicle and the 4 vehicle is solved
faster than the 2 vehicle. For example, for graph K with scenario set R-100, the 1 vehicle
instance is solved in 230.86 seconds, the 2 vehicle in 182.32 seconds, and the 4 vehicle in
155.58 seconds. It would be interesting in the future to investigate why this is the case,
and whether it holds for more general instances and could be exploited in any way.

For the gap, we compare the results by number of vehicles, scenario group (M-S, R-40,
or R-100), and low number of vertices vs. high (where low number of vertices is less than
10 and high is greater than or equal to 10). In all comparisons, as in the single vehicle
casc, the gap given is an average over all tests in a given category. First, the gap in the 2
vehicle tests is roughly equal to the gap in the 4 vehicle tests, with gaps of 0.93% and 0.91%
respectively. Both are more than double the gap of 0.44% in the single vehicle tests. Given
this result, it might be interesting to see if this is a feature of the formulations themselves
instead of a result of increasing the number of vehicles, since the 2 and 4 vehicle tests use a
different formulation than the 1 vehicle tests. The difference in gaps of the low vertex tests
and high vertex tests increases drastically with the number of vehicles. In the 2 vehicle
case, the average gap for low vertices is 1.11% and the gap for high vertices is 0.78%, while
in the 4 vehicle case the gaps are 1.51% and 0.41%, respectively. This indicates that FA-M
gives better approximations as the number of vehicles is increased, although more tests
should be done to see if this is the case in general. Finally, as with the single variable
case, the scenario group M-S has the largest gap, with a value of 0.83% across all instances
(including the single vehicle ones) versus 0.74% for R-40 and 0.71% for R-100. The range
across the three values is a little bit smaller than for the single vehicle case, even though
the values themselves are higher. It might be interesting to look into whether the gap is
generally larger when the capacities are smaller, and if the gap would decrease with an
even larger capacity.

From the results of the tests, we can conclude that, at least in these instances, for-
mulation (FA-S) is the more promising single vehicle formulation and (FA-M) is the more
promising multi vehicle formulation. This conclusion is made based on the results for
both the run time and optimal value for both formulations. The reasons for this are the
following. Regarding run time, (FA-S) and (FA-M) scale better with run time than their
counterparts in both number of customers and number of scenarios. Formulations (FI-S)
and (FI-M) may be better for a smaller number of customers, since there is a larger dis-
parity in the run times for a smaller number of vertices, but in general (FA-S) and (FA-M)
gives a solution more quickly. Secondly, these formulation always give an equal or better
approximation to the IP values than their counterparts, which should decrease the num-
ber of iterations required to solve its corresponding IP. Reducing the number of iterations
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required to solve the IP reduces the overall solve time of the IP, which is the ultimate goal.
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Chapter 6

Conclusion

The 2SCVRP is a version of the vehicle routing problem given in a stochastic setting which
is concerned with serving a group of customers while minimizing travel costs. The cus-
tomers are served by vehicles with a given capacity which most start and end their routes
at their depot, and are allowed to refill at their depot once in the middle of their route. In
this paper, we started by giving a formal definition of the 2SCVRP. With this definition,
we were able to give two formulations each for the single and multi vehicles versions of
the problem, differing in their method of determining whether a refill is needed for a given
vehicle and the cost of that refill if necessary. These formulations of the problem were
compared empirically, with the single vehicle formulations ((FI-S) and (FA-S)) being com-
pared to each other separately from the multi vehicle formulations ((FI-M) and (FA-M)).
After comparing the formulations empirically, it was concluded that (FA-S) and (FA-M)
show more promise of being used in practice for the single and multi vehicle problems
respectively. Future work on the problem should include further verification that (FA-S)
and (FA-M) are really the formulations that should be pursued for practical purposes,
as well as improving both the formulations themselves and their implementation in code.
One particular line of research is looking into implementing the formulations in code using
capacity separation constraints to reduce the number of invalid routes verified by the TSP
constraints.
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APPENDICES

Appendix A - Graphs
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The sets of demand scenarios are given as matrices. They are formatted as follows: given a
matrix A = a;,, the entry a;, is the demand for customer i in scenario s. Note that vertex

1 always has demand 0, since it is the depot.
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