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Abstract

The Black-Scholes Merton model provides a solution for option pricing in a
perfect mathematical setup where the instruments have a lognormal distribution
of prices and hedge can be continuously taken at no cost. In this paper, the
Q-Learning Black-Scholes approach is presented where the option is hedged
and priced under a discrete-time version of the classical Black-Scholes-Merton
model, and is based on Reinforcement Learning. The option price is measured
as an optimal Q-function while the optimal hedge is an argument of it. By
learning the Q-function dynamically, the optimal hedge and optimal price are
learned directly from data without any reference to any model explicitly. This
paper investigates the performance of the Dynamic Programming solution and
the Fitted Q Iteration solution for a data-driven Reinforcement Learning model
and compares to the classical Black-Scholes-Merton model which is used as a

benchmark.
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1 Introduction

1.1 Motivation

The Black-Scholes Merton (BSM) model, published in 1973 by Black and Sc-
holes, and independently also by Merton, is the most well-known option pricing
model in quantitative finance with its theoretical foundation that options can be
priced in terms of other tradable assets, which is also known as a dynamic option
replication. Specifically, an option can be mimicked by a simple hedge portfolio
consisting of certain shares of the underlying asset and corresponding amount
of cash. The hedge portfolio, under the BSM model however, is continuously
rebalanced between stock shares and cash account in a self-financing way with
no cash infusions or withdrawals after inception, aiming to mimic the option
as closely as possible. This gives the BSM model an attractive property, that
the pricing formula for European options is relatively simple and expressible in
a closed form. However, the limitation also arises from its simplicity - the as-
sumption under the BSM model that the rebalancing can be done continuously
at no cost is only in an ideal setup and does not happen in the real market.
Meanwhile, if the continuous-time setting were to happen, it would make the
total portfolio completely risk-free since the replication of option would be in-
stantaneously perfect.

In this paper, instead of the paradoxical continuous re-hedging setting, we
consider a realistic finite-time hedging setup, where rebalancing between the un-
derlying asset and the cash account in the portfolio can only happen discretely,
thus taking mis-hedging risk into consideration. In this case, the overall goal is
to minimize the slippage risk arises from the change in price of the underlying
assets between any two consecutive re-hedges, where the risk is compensated in
the option price relative to the classical BSM price. The process of rebalancing

between the underlying asset and the cash account, in other words, determining



a hedging position at each time step throughout the option lifetime, is indeed a
sequential decision-making process. Inspired by this setup, option pricing and
hedging in discrete time becomes feasible to work on.

Reinforcement Learning (RL) takes the paths of the underlying asset prices
as input and uses a Q-learning framework to output the optimal hedges and
prices. The framework, coined as a Q-Learning Black-Scholes (QLBS) model,
does not depend on any presumed distribution of the underlying assets. Instead
it combines the data-driven Q-learning algorithm and the method of dynamic
option replication under the BSM model. In this paper, we consider the simplest
case to price and hedge European vanilla options with the QLBS approach, al-
though the method can be further extended to other more complicated financial
instruments.

The only intake of the QLBS approach would be the paths of the underlying
asset price. As just mentioned earlier, since it is distribution-free and purely
data-driven, it affords greater flexibility that either historical stock data or
simulated data can be used in this approach. In this paper, for convenience,
a Monte Carlo simulation is implemented for a stock prices generation. As for
a numerical analysis, the Dynamic Programming (DP) solution and the Fitted
Q Iteration (FQI) solution of RL are investigated. Moreover, as an extension
of the classical BSM model, the performance of both solutions of RL will be

compared to the BSM result which is used as a benchmark.

1.2 Organization of the Research Paper

The remaining parts of the paper is organized as follows. In Section 2, we
present the foundation of RL in general. In Section 3, option hedging and pricing
will be introduced. Starting from Section 4, the problem will be formulated in

the RL setup, following which both the DP solution and the FQI solution will



be further discussed in Sections 5 and 6. In Section 7, a comparison of the
implementation performance will be displayed with a corresponding sensitivity

analysis. Finally, conclusions are made in Section 8.



2 Reinforcement Learning

Reinforcement Learning, as another sub-field of machine learning other than
the traditional supervised and unsupervised learning, creates algorithms that
can learn to take an optimal action in an environment. The optimal action
is defined as an action that maximizes the expected lifetime reward [1]. The
difference between supervised learning and RL is that a supervised learning
solution would try to teach an agent which action to take given the current state,
while a RL solution would instruct the agent to try out different strategies to
find out which is the best [2]. Though RL is traditionally used in Atari games
and the famous AlphaGo, it is more and more commonly applied to finance

recently.

2.1 Markov Decision Processes

As shown in Figure 1, in the RL framework, an agent and an environment
interact with each other through actions and rewards. An agent is the decision
maker who selects an action a given the current situation in the environment,
and the environment further reacts to the action with a reward R and takes

the agent to a new state S. This process is called a Markov decision processes

— e —

State 5, Action a,

Reward K,

Figure 1: Reinforcement learning framework

(MDP).
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This interaction occurs in a sequence following the time steps t = 0,1,2, ...
and the whole interaction process is given by: So, ag, R1,S51, a1, R, S2, ... until
some termination condition is reached. The goal of this exercise is to learn the
policy that maximizes the total rewards received over the entire episode. This
brings out a dilemma between exploration and exploitation: the optimal action
in the current state might result in the maximized immediate reward but not
a large positive reward in the long run; whereas the action not being the most
optimal for the current state might lead to a higher total reward.

To balance trade-off between the exploration and exploitation, we define the
total reward as the accumulated future rewards being discounted to the current
state, namely

Gy = Ryy1 +YRipa + 7V Roys + ... (1)

where R; is an immediate reward received at time ¢ and « is a discount rate to
be further specified in the context of a certain problem. The total rewards at

any time t can be further expressed in a recursive form:

Gt = Rip1 +YRigo + VP Riss + ...
= Rt+1 + ’Y(Rt+2 + ’YRtJrS + )

= Ri11 + 7G4 (2)

The core idea of the RL algorithms is to learn the optimal policy m(a | s),
which maps a certain state s to a probability distribution over all possible actions
to take. Given the state s and the policy m, the state-value function V and
the action-value function @ are defined as measurements of the future reward

expected in s:

Va(s) = Ex [Ge | S = 5] (3)
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and

Qr(s,a) =E, [Gt| St = s, A = a (4)

where the expectation is taken at 7, ie. following the given policy 7.

These two functions can be used interchangeably, where the only difference
is that the action-value function @) is more specific as the value of being in state
s and taking action a and following a policy 7 afterwards.

Following the same idea as (2), the value functions could also be written in

a recursive form, which are also known as Bellman equations, as:

Vﬂ—(s) = Eﬂ— [Gt ‘ St = 8]
=E; [Ret1 +vGey1 | St = 9]

=Ex[Rey1 +yVa(s') | St = s (5)
and

Qr(s,a) =E; [Ge | St = s, At = a]

=E,; |Ri11 + ymax Q(s,a)| St =54 =a (6)

where s’ is the next state at t +1 and «’ is the action to take in the next state.
In RL, the MDP is for the agent to learn the optimal policy 7* which max-

imizes the value function V;7(X;), or equivalently, the action-value function

Q7 (Xi, ar):

7 (X3) = arg max Vi'(X:) = arg i??ﬁ Q7 (Xt,at) (7)

11



3 Option Pricing and Hedging

3.1 Black-Scholes Merton Model

Option hedging and pricing under the classical BSM is driven by dynamics
of a continuous-time Geometric Brownian motion (GBM) with a drift © and an

instantaneoes standard deviation or, for the purpose of this paper, volatility o:
dSt = ILLStdf, + O'Stth (8)

where W; is a standard Brownian motion.
For a call option C(S,t) with the underlying stock price S at time ¢, use of

It6’s Lemma immediately gives us

L[ L0000 1, ,0°C oC

With the help of a Taylor expansion [3], the Black-Scholes formula can be

expressed as
0%*C,
o2 5? !

ta—S?*TCt:O (10)

which can be solved with boundary conditions C(S,T) = (S — K)4, C(0,t) =0
for all t and C(S,t) = S as S — oo for a call option. The solution gives us the

famous option pricing formula:

C(Sy,t) = N(dy)Sy — N(dy)Ke "0 for call options, and

P(S;,t) = C(S;,t) + Ke "It _ g, for put options (11)

12



where

2

(%) + 0+ )T 1)
oV —t
dg :d1 —U\/T—t

dy =

and N(+) is the cumulative distribution function (CDF) of the standard normal
distriution.

The other quantity of interest in this paper is a delta hedge, which is defined
as the sensitivity of the option price to a change in the price of the underlying
asset. Under the BSM model, by definition, and from (11), the theoretical delta

hedge is given by:

dps = g_‘; = N(dy) for call options, and
ov .
Spg = 35 = ~N(—dy) = N(dy) - 1 for put options (12)

3.2 Selected literature review for reinforcement learning

studies to option hedging

Halperin (2019) [4] introduces the QLBS approach which combines the Q-
Learning with the method of dynamic option replication under the Black-Scholes
model. It uses the Q-Learning method for option pricing and hedging based on
the risk adjusted returns. This method does not take into account transaction
costs and assumes the Black-Scholes assumptions hold except for continuous-
time rebalancing. Notably, the optimal hedge, as the action to take in the RL
setup, is an argument to the value function which gives the option price. This
means that the two quantities of interest can be solved jointly. The implemen-
tation result is presented separately by Halperin (2018) [5].

Ritter and Kolm (2019) [6] address the issue of the absence of transac-

13



tion costs. They do not assume linearity of transaction costs but state that
their method is compatible with a transaction cost function of any form. They
present a method which could be used for any pricing or simulation method as
in Halperin’s QLBS approach.

Cao et al. (2019) [7] focus on the presence of transaction costs in option hedg-
ing as well, but consider a stochastic volatility, which is modelled by a SABR
model introduced by Hagan et al. (2002) [8], instead of a constant volatility
assumed in the classical BSM model. Their results indicate a statistically sig-
nificant improvement in reducing hedging costs and a small but non-significant

increase in the variance of the agent’s wealth.
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4 Problem Setup

Consider a European put option with maturity 7" and terminal payoff Hy(St) =
(K — St)4+ from the holder’s point of view. It can be hedged by a replicating

(hedge) portfolio II; made of the stock S; and a risk-free bank deposit By:
Ht = UtSt + Bt (13)

at any time ¢t < T', where u; is the position in the stock at time ¢ taken to hedge
risk in the option.

At T, the option holder can choose to exercise it or not, in either case the
underlying stock should be cleared out with up = 0 [9] and thus, there is only
cash account in the portfolio which should be valued equivalently with the option

payoff under the law of one price, namely
Iy = By = Hr(ST) (14)

Under the self-financing constraint, we cannot have any cash inflows or out-
flows between any two rebalancing times, so all future changes in the hedge
portfolio should be funded from an initially set bank account [10]. Precisely,
the portfolio we have at any time t, when it accumulates to the next time step
t+1, the accumulated value should be equivalent to the new rebalanced portfolio

at t+1, otherwise there would be an arbitrage. Mathematically,
wSe1 + € By = w1841 + Bega (15)

which implies

By = e " [Biyy + (w1 — w)Siya] (16)

15



and

I = e "1 — wASY] (17)

where AS; = S;4q — e™tS, fort =T —1,...,0.

The position of underlying asset and the amount in cash account depend on
the stock price, to evaluate the portfolio value IT; and the corresponding cash By,
the paths of underlying stock price S; is needed. Though historical stock prices
can be used, for convenience and feasibility reason, we use Monte Carlo (MC)
simulation to generate Nj;¢ underlying stock price paths S; — S5 — ... = S¢
and then evaluates II; backwards on each path.

Under BSM, the underlying stock price S; follows a GBM as shown in (8)
and it implies

0_2
Si41 = Ste(“_T)AH\/EZ (18)

where Z ~ N(0,1) is a standard Brownian motion.
For simplicity, define an adjusted form state variable X; to convert the non-

stationary S; to a time-homogeneous one X;:

2

Xy =—(p— %)t+logSt (19)
which implies
2
dX: = —(j — %)dt + dlogS; = cdW, (20)

In addition, notation wise, the hedging position a; at each rebalancing point
is the action to take in the RL setup, a; = a;(X;) = u(S¢), and they can be
used interchangeably.

The limitation of BSM model comes from its assumption that the re-hedging
is happening continuously at no cost, which is counterfactual in practice. Thus,

while a discrete-time hedging is considered in this paper, the hedging goal be-
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comes to minimize the hedging risk, which in this case is measured by the
variance of the hedge portfolio values across all MC paths [11]. This is because
the portfolio is set to mimic the option and its value is expected to be as stable

as possible.

4.1 Optimal hedging

Since in practice we do not know the future when we compute a hedge at
each time step t, it can only based on the available information set in the sigma
filtration dated at time ¢, ;. Computed by cross-sectional analysis over all MC
simulated paths and backward in time, starting from maturity 7', the goal is to
find the optimal hedging position u;(S) such that the variance of II; across all

MC paths can be minimized conditional on F, i.e.

u; (St) = argmin Var(Il, | F)

= argmin Var(Ily1 — uASy | Fr) (21)

Solve (21) by setting its first derivative a—u;(u@ to zero and it gives:

% - COU(Ht+1, ASt | ]:t>
) = T AS TR @)

4.2 Optimal option pricing

Theoretical fair option price under BSM model P, is the expected value of

of hedge portfolio II; at time ¢:

Py =ML, | 7 (23)

However, in discrete-time hedging setting, the hedging risk that the bank ac-

count B; may fail to cover the requirement of the portfolio needs to be com-

17



pensated by adding this part of risk premium to the consideration of the fair
option price. Here one possible specification of a risk premium is indicated by
the cumulative expected discounted variance of the hedge portfolio along all

time steps t =0, ...,T, with a risk-aversion parameter J, i.e.

PR (S ) = Ry

T
IIy + )\Zef’”tVar(Ht | Fi) | So = S,up = u] (24)
=0

The object is to minimize the above fair option price, or equivalently, to

maximize the objective value function in the Q-Learning setup V; = fC'é“Sk),
i.e.
Vi(Sy) =K, | ~II, — )\Zc “OVar(y | Fo) | F (25)
tr=t

4.3 Value functions and Bellman equations

From (14), rewrite Sy into X, and the object is equivalent to maximize the

value function

T
V(X)) =By | —TL(X) =AY e "V ar (y(Xy) | Fo) | ft]
t'=t
T
=By |—IL(Xy) = AWar (IL(Xy) = X > e " DWar (L (Xy) | Fo) | i
t'=t+1

(26)

over policy 7 (¢, X;) that maps the time ¢ and the current state X; = x; into an

action a; € A (i.e. the hedging position):

ay = W(t,l't) (27)

The last term in (26) can be expressed in terms of V41 using the definition

18
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of the value function with a shifted time argument:

T
“XEeqr | Y e TOWar [y (Xe) | Fol | Fe| =5 (Vigr + B [Meg]) 7 = e
t'=t+1
(28)

Plug (28) back into (26) and get the Bellman equation for the value function:

VI (Xy) = By [11; — AVar(Ily) +v(Vigr + Eepa [Hega]) | Fi
17
(:) Et [767TAt(Ht+1 — UtASt) — )\V&T(Ht) -+ ’YV;+1 + ’}/Et+1[Ht+1] | .Ft}
=B [0 + va ASy — AVar(ly) + yVigr + vEi 1 [ a] | F

=Ef [R(Xy, a, Xi41) + 7V (Xeq1)] (29)
where
Rt(Xt, A, Xt+1) = 'yatASt(Xt,XHl) - )\V(Z’I”(Ht | ft),t =T — ].7 ceny 0 (30)

is the one-step time-dependent random reward.

The variance term in (30) can be expressed as

17 —rAt
Var(I, | F) (L Var [e Mg — wASy) | ft]

= nyVar [Ht+1 — UtASt | ft]
B 2
= v’E, ((Ht+1 = Ei[MTy41]) — (@i AS; — Ey [atAStD> }

= 72Et (ﬁt+1 - atAS't)z

=+*E,

ﬂ%-‘,—l — QGtAgtﬂt+1 =+ LL%(ASIL)2:| (31)

where fIH_l =1, — II;;; with II;;, is the sample mean of II;,; over all MC

paths, and similarly AS; = AS; — AS;. Thus, plugging (31) back into (30) will

19



further derive the reward function as:
Rt(Xt, ag, Xt+1) = ’}/(J,tASt — )\’yzEt |:ﬁ?+1 — Zﬂ/tAS’tﬁt_t,_l + (I;?(Agt)2 (32)
The expected reward, consequently, is given by

E, [Ri(Xe, ar, Xos1)] = v B [AS)] — M2E, [Hf = 20, A8, + a2 (AS))?2
(33)
as a quadratic function of the action variable a;. And it is known that at
maturity ¢ = T, we have the terminal condition Iy = By = Hy(Sr), thus
Ry = —AVar(Ily).
Similarly, the action-value function, known as the Q-function in the RL
setting, is defined in the same way as the value function, but conditioned on
both the current state X; = x and the initial action a; = a, while following a

policy 7 afterwards:

T
QF (w,0) = By [-T1,(Xy) | Xy = 7,0 = a]-XE] | > e """ OVar(lly (Xy) | Fo] | Xy = 2,00 = a
=t
(34)
By now, the RL setup of the BSM model is formulated as - finding the opti-

mal policy 7} (X;) which minimizes the value function V;*(X}), or equivalently,

the action-value function Q7 (X, at):
m; (Xt) = argmax V" (Xy) = arg maﬁQf(Xt,at) (35)
™ at€e

with the corresponding optimal value function satisfies the Bellman optimality

equation:

Vi (Xe) =B [R(Xp,up = 77 (Xe), Xeg1) + 7Viy (Xeg1)] (36)

20



and the Bellman optimality equation for the action-value function:

Q:(T, (1) = Et Rt(Xt, ag, Xt+1) —+ ’yamaé(A Qr—i—l(Xt"rl’ G,t+1) | Xt =x,a; = a ,t = T*l, vaey O
t4+1

where the terminal condition at ¢ = 7" again, is given by

Q;(XT, ar = 0) = —HT(XT) — )\VGT[HT(XT)] (38)

21



5 Dynamic Programming Solution for QLBS

5.1 Formulation

The Markov decision process in this setup is to solve the Bellman optimal-
ity equation for action-value function (37) jointly with the optimal policy (35)
together, starting from the terminal condition (38) at t = T" and go backward

recursively. To solve, substitute (33) into (37):

QF (Xy,ar) = By [ya; ASy] — MKy {ﬂt2+1 — 20, AS 41 + a?(Agt)Q} + B [Qf 1 (Xeq1,a741)]
= ’YEt [Qz+1(Xt+1, aI_H) + atASt] — )\’\/zEt {ﬁ?—i-l - QGtAStﬂH_l + atZ(ASt)Z} ,t =T — 1, ceey 0

(39)

which is quadratic in a;, since the very first term inside the first expectation

Q7. 1(Xi41,0af,,) is independent of a;, under the assumption that any of our

action a; will not be large enough to impact the market. Thus, the optimal

action aj(X;) that maximizes QF (X, a:) can be solved analytically by setting
)

its first derivative B—Q*éii& to zero, which gives the optimal action to take at

time ¢

E, [ﬁmASt n %LAASJ

E, {(A&) 1

Plug (40) back to (39) to get an explicit recursive formula for the optimal

a; (X¢) = (40)

action-value function:

QF (X, ap) =Bt | Qi1 (X1, afyy) — ML + /\V(a?(Xt))Z(AS’t)Q] =T-1,..,0
(41)
Given the terminal condition at T and proceeds analytically by (40) and
(41) jointly, all the way backward starting from ¢ = T — 1 to the present ¢ =

0, the optimal hedging at each time step is given by af, while the optimal

22



option price in this setting, referred to as the QLBS option price, is given by
LBS *
P28, ask) = ~Q; (i, 7).

5.2 Implementation

For implementation, we do have access to all the of the Ny;c paths of the
state variable X; simulated in the Monte Carlo setting, thus all terms involved
in (40) and (41) for analytical calculation is available by looking at all the
scenarios over Ny paths at time ¢ and ¢+ 1 simultaneously. Ideally, this is how
we solve for the optimal policy a; and the optimal Q-function )} analytically.
However, this is computationally infeasible. Instead, spline basis is used for
approximation. We choose a set of basis functions ®,,(x) and expand the optimal
action (hedge) a;(X;) and optimal Q-function Qj(X:,ay) in basis functions,

with time-dependent coefficients:

N
a; (Xe) =) pn®n(X1) (42)
J’I\LI
and Q; (X1, a;) = > wu®n(Xy) (43)

Coefficients ¢,,; and wy; are computed recursively backward in time for ¢ =

T-1,..,0:
o7 = A7'B, (44)
where
Nye N2
Al = 7 @u (XF) @ (XF) (ASF) (45)
k=1
Nye A ) 1
BL= Y 0, (xF) [Mh188) + o rast] (46)
k=1
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and

wy = C; Dy (47)
where

Nyeo

Cytzm = Z d, (th) D, (th) (48>
k=1
Nuve

Dy, = Z (I)n(Xf) <Rt(Xf,af*,Xf+1) +7 max Qz-s-l(XfMaatH)) (49)

k=1 at+1€A

When implementing in Python with the MC simulated paths and selected
B-spline basis functions, the following steps are taken:

1) Compute the optimal hedge a; and the corresponding portfolio value II;
(one optimal set for each path): Starting from the terminal condition at T with
ar = 0 and Iy = Hp(St) = payof f(St) = (K — Sr)4+ for a European put
option, by a backward recursion from time t =T — 1 to t = 0, in each iteration,
calculate Ay, By, ¢, af (X)) by (42), and II; = v [Il;41 — a; ASy].

2) Compute rewards for all paths: Starting from the terminal condition at
T with Ry = —AVar(Ilr), by backward recursive from time t =T — 1 to t = 0,
in each iteration, calculate R;(Xy,as, Xty1) by equation (32), where the last
variance term is calculated over all MC paths.

3) Compute the optimal Q-function thus the QLBS option price: Start-
ing from the terminal condition at T with Qr(Xr,ar = 0) = —Ip(X7) —
AVar(Ilr(Xr))), by backward recursive from time t =T — 1 to ¢ = 0, in each
iteration, calculate Cy, Dy, wy, and QF(X:,a;) by equation (43), where the
last variance term is calculated over all MC paths. All the way to ¢ = 0 and

PPP(So, ask) = ~Q3(So, aj)-

24



5.3 Implementation Result

The state variables X; and the corresponding stock prices S; are simulated
Ny = 50000 times with the parameters: initial stock price Sy = 100, stock
drift © = 0.05, and volatility o = 0.15. An “at-the-money” (ATM) European
put option is set up with maturity M = 1, strike price K = 100 and risk-free
interest rate r = 0.03. Rehedges are done bi-weekly (i.e. T = 24 with time
interval At = 1/24). Twelve basis functions are chosen to be cubic B-splines
on a range of smallest and largest values of the simulated X;. Risk aversion
parameter A is picked as 0.001.

With this numerical setup, the option price calculated directly from the BSM
model is 4.53, while the resulting QLBS optimal put option price is higher as
expected, taking the hedging risk into consideration, around 5.02 from the MC
simulation.

Figure 2 shows 10 of the 50000 simulated paths with their optimal action
af, optimal portfolio value II;, rewards R; and optimal DP Q-function @); at

each re-balance time step.
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Figure 2: DP solution for the ATM put option on a sub-set of MC paths
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6 Fitted Q Iteration Solution for QLBS

6.1 Formulation

Compared to the DP solution where the transition probabilities and re-
ward functions are assumed to be given, and thus optimal hedging position
is calculated iteratively, in the Q-Learning setup, optimal policy needs to be
found relying on samples. At each time step ¢, the available information is
Fm = xt™ o™ R™. Xt(ff_)l}7 namely Njysc set of the state variable X;, the
corresponding hedge position a;, the instantaneous reward R; and the value of
the state variable at next time step X;;1. Instead of making any assumptions on
the data-generating process, the information .7-'t(n) at each time step t is simply
treated as given. Thus the action-value function @} can be updated according

to .7-",5(”).

6.2 Implementation

Under the FQI scheme, for computational feasibility, once again we consider
the use of a spline basis. Similar to the DP solution, the values to our interest
are the optimal action aj(X;) and the optimal action-value function Q7 (X, aj),
they are represented in a parametric forms. Using the same set of basis functions

®,,(2) as in the DP solution, since we have already showed in equation (39) that
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Q7 (X4+, at) is quadratic in a4, the representation is:

Wii(t) Waa(t) ... Win(t) D (Xy)
QZ‘(Xt,at)=<1,at,%a?> Wor(t) Waa(t) ... Wan(t)
Wai(t) Waa(t) ... Win(t)] \@un(Xy)
=AW, ®(X,) = AT Up (¢, X;) (50)

_ Z - (Wee (A 27 (X)),

- o

=W, -vec (Ay ® ®T(X)) = WP (Xy, ) (51)

where ® stands for element-wise product and ® stands for tensor product, Wy is
the time-dependent coefficients matrix and concatenating its columns converts
it to the vector Wt, and similarly \fl(Xt, a;) = vec(A;@®7T (X)) is also obtained
by concatenating columns of the outer product of A; and ®7(X).

Coefficients W, is computed recursively backward in time from ¢ = 7' —1 to

t=20:
W; =8;'M, (52)
where
Nnyo
SO =" W, (X af) U (XF, af) (53)
k=1

Nae
MO = 3w, (xkab) (RoxE b X+ max, Qi (X 0
k=1 !

(54)
and
. N\ . 11(D) (ai11)? (2
Qi1 (Xtg1,a54) = Uy (041, Xeq)+ai Uy (841, Xt+1)+TUW (t+1, Xey1)
(55)
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When implementing in Python with the MC simulated paths and selected
B-spline basis functions, the following steps are taken:

1) Get optimal actions and rewards for all paths: In addition to the MC
simulated stock price paths, the optimal actions af and rewards R; from DP
solution are taken as to the FQI solution. For an off-policy algorithm [12],
where instead of taking the optimal action directly, some noise are added to
the optimal action, so that we can explore more possible options for the actions
to take in the future. To add the noise, randomly generate a set of uniformed
distributed numbers in the interval [1 — 7, 14 7] where 0 < n < 1 and multiplied
to the optimal each aj.

2) Construct A and then compute .

3) Compute the optimal Q-function thus the QLBS option price: Start-
ing from the terminal condition at T with Qr(Xr,ar = 0) = —Ip(X7) —
AVar(Ilp(Xr))), by backward recursive from time ¢ =T — 1 to t = 0, in each
iteration, calculate Sy, My, Qf 1 (Xy1.0a7, ), W;‘, and Q (X, a:) by equation

(51). All the way to t = 0 and Py (8o, ask) = —Qi(So, ag).

6.3 Implementation result

Using the same parameters as the DP implementation in Section 5.3, with
the noise parameter = 0.5. While the option price calculated directly from the
BSM model is 4.53 and from the DP solution is 5.02, the resulting solution from
FQI method is a bit higher around 5.08 from the MC simulation.

Figure 3 shows 10 of the 50000 simulated paths with their optimal action
a;, optimal portfolio value II;, rewards R; and optimal DP Q-function @; at

each re-balance time step.
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7 Result Discussion and Sensitivity Analysis

7.1 Delta hedging position comparison

In Section 3.1, it is shown that the delta hedge for a European put option
under the BSM model is dps = % = —N(—d;) = N(d1) — 1, where N(d)
is the CDF for a normal distribution whose value is in [0, 1], thus, the delta
hedging position for a European put option under BSM is always between -1
(sell 1 share of underlying asset) and 0 (holding no underlying asset).

If we look at a fixed time, the hedging position should depends only on the
underlying stock price. With the BSM delta hedge known theoretically, we set it
as a benchmark and compare the delta hedge result from DP and FQI solution
to it.

Figure 4 shows the comparison among BSM, DP and FQI delta hedge at
inception t =0, t = M/4,t = M/2, t = 3M /4, and maturity ¢ = M.
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Figure 4: Comparison among DP, FQI and BSM hedging position vs stock price

at fixed time steps
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It is demonstrated that both RL solutions give a very good approximation of
the BSM delta, especially when the stock price is closer to the initial price which
is also the strike price in this ATM setup. Additionally, The approximation gets
better as the option goes closer to maturity. Moreover, FQI solution yields a
wider range of hedging position because an off-policy algorithm is used which

adds some noise to the action value.

7.2 Option price comparison

Similarly, if we look at a fixed time, the option price should depends only
on the underlying stock price. With the BSM being set as a benchmark, we
compare the option pricing result from DP and FQI solution to it.

Figure 5 shows the comparison among BSM, DP and FQI option price at
inception t =0, t = M /4, t = M /2, t = 3M /4, and maturity t = M.
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Once again, it is demonstrated that both RL solutions give a very good
approximation of the BSM price, especially when the stock price is closer to the
initial price which is also the strike price in this ATM setup. Furthermore, The

approximation gets better as the option goes closer to maturity.

7.3 Risk aversion parameter

As defined in equation (24), the risk aroused from mis-hedging is compen-
sated by adding them to the option price with a risk averse parameter A. It is
obvious from the definition and the equation that a larger A adds more weights
to the cumulative risk, which means the investor is more risk averse, and will
lead to a higher option price.

Figure 6 shows the option pricing result from the DP solution against dif-
ferent value of risk averse A\, compared to the BSM price as a benchmark. The

result is consistent with the above analysis from the equation.

Optimal option price vs risk aversion
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‘£ 8
(=1
=
5
g 71 .
°
E
£
& 81
g [ ]
' s
T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010

Risk awersion

Figure 6: The ATM put option price from DP solution compared to BSM vs

risk aversion parameter A
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7.4 Hedging frequency

We have discussed the result from bi-weekly hedging in detail, for analysis
purpose, different hedging frequency are performed with all others remain the
same and we see how RL works.

Figure 7 shows the option price from DP and FQI solution from a one-time
hedging (T = 2), monthly hedging (T = 12), bi-weekly hedging (T' = 24) and

weekly hedging (T = 52), and the results are compared to BSM price as a

benchmark.
5.6 4 = B5M price
& DP price -
54 FOI price
g 521
&
g .
& 5.0
]
48 .
4.6 ®
T T T T
T=2 T=12 T=24 T=52

Hedging Fregquency

Figure 7: The ATM put option price from BSM, DP and FQI solution vs dif-

ferent hedging frequency

As illustrated, both RL solutions yield a higher price compared to BSM
price, this has been explained before that as mis-hedging risk is taken into con-
sideration it needs to be compensated with a higher expected return. Moreover,
it is noticed that the FQI price is always slightly higher than the DP price, this
again is because instead of the analytically optimal action, in the off-policy FQI

algorithm, some noise is added so that we can explore more action to take for
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future benefits.

The interesting point is, as the hedging goes more frequently, the RL prices
also get higher. This can be explained by the pricing function (13), as the ac-
cumulated variance could be larger when the frequency becomes higher. How-
ever, on the other hand, if we keep increasing the hedging frequency and as the
time interval between consecutive rebalancing time eventually becomes infinitely
small, the result should be approaching to BSM price. The implementation here
does not show this part, one possible reason might be the frequency performed is
still not high enough due to computational feasibility. As the hedging becomes
daily, even hourly or secondly, there might be a point where the option price
from RL methods starts to decrease and approach to the BSM model, as the

variance starts to drop. This is subject to further research.
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8 Summary

8.1 Conclusion

In this paper we have investigated the performance of the RL approach
when it is applied to option hedging and pricing. In particular, the data used is
generated from a Monte Carlo simulation which gets rid of extra assumptions
or noises, and the implementation are done for both the dynamic programming
solution and the fitted Q iteration solution. The results are then analyzed and
contrasted to the the results obtained from the classical Black-Scholes model
which is used as a benchmark.

We first presented a general background knowledge of RL and option pricing
and hedging. Then we conducted some review of the selected literature. As the
next step, we formulated the problem of interest in a mathematical setup and
conduct implementation on two solutions within the QLBS approach, namely
the dynamic programming solution and the fitted Q iteration solution. The data
used is synthetically generated from a Monte Carlo simulation which gets rid of
extra assumptions or noises. And the results are analyzed and contrasted to the
results obtained from the classical BSM model which is used as a benchmark.
Both models are shown to produce reasonably good performances, with the
dynamic programming model being more stable while the fitted Q iteration one

providing greater potential for further research.

8.2 Future work

Based on the current research, further investigation can be extended in the
following areas.
Firstly, due to data availability and computational feasibility, the imple-

mentation in this research is only done with the simulated data, and is up to
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a weekly frequency. However, this method should also work for market data
since there is no certain constraint or any underlying assumptions made about
the data. Instead it is completely model-free and entirely dependent on the
sample data. Further experiments can be carried out with historical data and
the performance could be compared to the real hedge and price in the financial
market. Additionally, a higher frequency of hedging can also be conducted.

Secondly, the formulation of the value functions in this paper only provides
one possible setup; other forms of elaboration with the potential to better min-
imize the mis-hedging risk are worthwhile investigating in the future.

Lastly, in this paper, the exploration of the optimal action is conducted by
an off-policy algorithm where some noise is added to the greedy action. For po-
tential improvements, more exploration techniques such as an e-greedy method
and an upper-confidence-bound action selection method could be implemented

in the future.
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