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Abstract

The purpose of this research paper is to present a three-stage method using mathematical-
programming techniques that finds high-quality solutions to the multi-floor facility layout
problem. The first stage is a linear mixed-integer program that assigns departments to
floors such that the total of the departmental interaction costs between floors is globally
minimized. Subsequent stages find a locally optimal layout for each floor. Two versions
of the proposed approach are considered. The first solves the layout of each floor inde-
pendently of the other floors, allowing up to one elevator location. The second solves the
layout of all floors simultaneously, allowing for multiple elevator locations. Variations to
the problem and to the basic method are also investigated. The two versions are tested and
compared to each other through computational experiments and also to existing results in
the literature. It is clear that the proposed method can provide several high-quality layouts
for medium and large-scale problem instances. Not only does it achieve competitive results
compared to previous methods, but it also overcomes some of their limitations.
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Chapter 1

Introduction

In general, facility layout problems involve finding the optimal arrangement of departments
within a facility. Interaction costs between departments of given areas are minimized in
the optimal arrangement. Many applications of this general problem exist and include ar-
ranging departments in production facilities, in hotels, in office buildings, and in hospitals,
to name a few. There are several variations to the problem, all of which are AN'P-hard [3].
Even the quadratic assignment problem, which is the special case of assigning N depart-
ments to N fixed locations with departments of fixed, equal shapes is N'P-hard [12].

A particular case of the general facility layout problem is the multi-floor facility layout
problem which, as the name suggests, involves finding the optimal arrangement of depart-
ments in a facility having multiple floors. More constraints arise in the multi-floor problem
in addition to those already present in the single floor case; this adds to the complexity
of the problem. Not only must the interaction between departments on the same floor be
considered, but also the interaction between departments that are on different floors of the
facility. This requires the use and placement of elevators and/or stairwells to facilitate the
movement of material between floors. Due to the complexity of the problem, many multi-
floor approaches have several limitations. These may include the inability to accommodate
multiple elevator locations, the need to split departments across floors, and computational
times that are too high for practical use.

In general, the objective function for the multi-floor facility layout problem can be given
as

()

where f;; is a parameter denoting the flow between departments ¢ and j, cg (c};) is a

parameter denoting the horizontal (vertical) cost per unit distance between departments
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i and j, and d} (dj;) is a variable denoting the horizontal (vertical) distance between
departments ¢ and j [23]. It is assumed here that the material is transported between
departments on different floors using the elevator that minimizes the distance between the
two departments. In other words, if departments ¢ and j are located on different floors,
dg = mcjn (die + d.;), where d,. is the distance between department ¢ and elevator e and

d.; is the distance between elevator e and department j [23]. The costs and flows are given
by the user and the position of the departments within the facility is determined in the
optimal layout.

There are many different forms of this objective function, taking into account other
important aspects of facility layouts. In certain applications, information on corridors,
multiple elevator locations or stairwells, and even their capacities are helpful or even re-
quired. Given the complexity of these problems, exact solutions may be difficult to find
and global optimal algorithms work, in general, only for small problem cases. Heuristics
are often needed for larger, more complex problems. The latter is the approach taken here.

In this research paper a three-stage method is presented that uses mathematical-
programming techniques to provide good solutions to the multi-floor facility layout prob-
lem. In particular, this method extends the framework for the single-floor facility-layout
problem by Anjos and Vannelli [3] to the multi-floor case. The first stage is a linear
mixed-integer program equivalent to FAF, which was introduced by Meller and Bozer [23]
to assign departments to floors while minimizing vertical interaction costs between de-
partments. Each department remains fixed to the floor it is assigned in the first stage.
Subsequent stages find a locally optimal layout for each floor using an approach based
on the single-floor framework of Anjos and Vannelli [3]. This new multi-floor model was
implemented and solved using the CPLEX solver for the first stage and MINOS for the
remaining stages through the GAMS modeling language. Variations to the problem and
to the basic method are also investigated.

Two versions of the problem are considered. The first solves the layout for each floor
independently of the other floors. One consequence is that no more than one elevator loca-
tion can be considered. The second version solves the layouts on all floors simultaneously,
allowing for multiple elevator locations. These versions are compared to each other through
computational experiments and also to existing methods in the literature. It is clear that
both versions can provide several high-quality layouts even for large problem instances.

The report is structured as follows. Chapter 2 is a literature review of the methods for
solving the multi-floor facility layout problem. Chapter 3 gives the background necessary
for the proposed three-stage method. Chapter 4 presents both versions of the three-stage
multi-floor layout model and the results of computational experiments can be found in
Chapter 5. The conclusions and specifics of the problem data constitute the remainder of
the report.



Chapter 2

Literature Review

This chapter outlines several methods in the literature used to solve the multi-floor fa-
cility layout problem and its variations. Advantages and disadvantages, limitations and
strengths, as well as the quality of their results are summarized.

2.1 Single-Stage Approaches

2.1.1 Exchange-Based Heuristics

Exchange-based heuristics, in general, begin with an initial layout and exchange depart-
ments within/across floors in order to find a lower cost layout. Some early heuristics place
restrictions on the departments that can be exchanged and others involve splitting depart-
ments in the final layout. This is not acceptable for many practical applications and more
recent heuristics improve upon these limitations.

CRAFT

CRAFT [6] is a single-floor improvement-type heuristic that influenced subsequent methods
for solving multi-floor facility layout problems. Using a steepest descent approach, CRAFT
begins with an initial layout and exchanges the locations of two or three departments that
are either adjacent or equal in area. The effect of every possible exchange on the material-
handling cost is recorded and the exchange which will most reduce the cost is selected.
This process is repeated and is terminated when no exchange that reduces the objective
function value can be found.



As a result of using the steepest descent approach, it is possible that CRAFT will arrive
at a solution that is a local minimum rather than the global minimum. Since there is likely
more than one local minimum, the final solution can vary depending on the initial solution
and the path taken, i.e., the exchanges that are made [24].

SPACECRAFT

Presented in 1982 by Johnson [13], SPACECRAFT is a method influenced by CRAFT
for solving the multi-floor facility layout problem. It was the first method of arranging
departments in a multi-floor building known to Johnson at the time. The procedure itself
begins with an initial layout and attaches the separate floors to ecach other in a two-
dimensional layout grid, before attempting to improve the solution iteratively. An improved
solution is obtained by exchanging the two or three departments which will result in the
greatest savings. Similar to CRAFT, these departments must either be adjacent pairs or
triplets in the layout and/or department pairs of equal size. The procedure repeats until
no improved solution can be found by performing these exchanges or until the procedure
has reached its maximum number of iterations allowed. SPACECRAFT allows for elevator
and stairwell locations in any area of the building. However, due to the way in which
SPACECRAFT evaluates its exchanges, departments may be split across floors; the floors
are attached to each other in a two-dimensional layout grid, the exchanges are made, and
then it is transformed back into multiple floors [5].

MULTIPLE

The next improvement type algorithm, which is also an extension of CRAFT, overcomes
some of the above limitations. Bozer et al.[5] present MULTIPLE which stands for
Multi-Floor Plant Layout Evaluation. This algorithm uses spacefilling curves and a two-
dimensional layout grid to represent the layout of each floor. The area that each department
will occupy is known and is represented by the number of grid squares it occupies within
this grid.

Using a similar example to the one given in [5], with department areas given by the
number of grid squares in Table 2.1 and layout sequence 1 — 2 — 3, one can see that on

Table 2.1: Department Areas
Department Number 1 2 3

Number of Grid Squares 5 11 4

the layout for the floor, the first 5 grid squares following the path of the spacefilling curve
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belong to department 1, the next 11 belong to department 2, and the next 4 belong to
department 3. The path of the spacefilling curve passes through every usable grid square
that is not allocated to a fixed department.

MULTIPLE begins with an initial layout and considers all exchanges that are area-
feasible between any two departments located on the same floor or across different floors,
even if they are not adjacent or equal in size. In each iteration, the algorithm then selects
the best feasible exchange, the one which minimizes the cost, and repeats this process with
the new layout. When no exchanges that improve the layout can be found, the process
terminates.

Within a floor, the exchange is straight-forward; the layout sequence is simply rear-
ranged and the grid squares are assigned to departments as before. The order in which the
grid squares are assigned to a department follows the path of the constructed spacefilling
curve, which is a continuous function, so the departments will never be split on the same
floor and the department shapes will not worsen with each iteration. The areas assigned
to each department consist of a range of acceptable values rather than a specific number.
This, along with the fact that there is a separate spacefilling curve for each floor, will in-
crease the number of exchanges that can be made within and across floors without splitting
departments.

Software: LayOPT

LayOPT [11] is a software for use in Windows that can find optimal solutions to single
and multiple floor layout problems. The algorithm used is based on the one used in
[5]. LayOPT is able to run the optimization algorithm automatically or interactively.
This software allows the user to specify constraints and spacefilling curves. It allows any
department shape and the user may modify these shapes in order to better suit his/her
purpose. The user can also specify the flows and the costs associated with them.

2.1.2 Simulated-Annealing Based Algorithms

The heuristics mentioned above are path-dependent whose final solutions may settle at a lo-
cal minimum since they do not consider any departmental exchanges that might temporar-
ily increase the value of the objective function. Simulated annealing is used in heuristics
to attempt to reduce path dependency and should yield better solutions by reducing the
bias associated with the initial layout and by removing some of the exchange restrictions
[22].



SABLE

SABLE, introduced in [22] by Meller and Bozer, uses simulated annealing and spacefilling
curves to solve the multi-floor facility layout problem. Similar to MULTIPLE, the layout
can be represented with grids and can be uniquely defined by a sequence of numbers with
dividers and a spacefilling curve.

SABLE begins with an annealing schedule of temperatures upon which the quality of
the final solution is dependent. Each department is assigned an address that determines
the initial layout and its cost. A number b between 0 and 1 is uniformly sampled for each
department and is compared to a specified critical value 3. If b < 3, then a new department
address is generated. Otherwise, the address remains as it is. The departments are re-
sorted according to their new addresses to determine the new layout sequence and checked
for feasibility. If not feasible, the process is repeated. Generating layouts in this way, the
procedure does more than just exchange two or three departments as in previous layouts,
but many exchanges can occur and may even change the number of departments on each
floor. If the changed layout, the candidate layout, reduces the value of the objective
function, it becomes the new current representation. If not, it is accepted with a certain
probability. This allows the algorithm to visit layouts even if they are worse, with a certain
probability, to overcome the problem of settling at a local minimum [22].

Experimental results conclude that, on average, SABLE outperforms MULTIPLE, es-
pecially in the case when the value of vertical cost per distance unit to horizontal cost
per distance unit is high. This result makes sense given that SABLE is more flexible with
departmental exchanges across floors and may even change the number of departments on
each floor [22]. The largest of the test problems considered is a 40-department and 4-floor
problem with an average running time of 305.3 seconds.

2.1.3 Genetic-Based Algorithms

Several genetic-based algorithms exist and are useful for including other important as-
pects of facility layout problems. Some present variations to the layout problem that may
accommodate many practical problems. Several of these algorithms are presented here.

MULTI-HOPE

Kochhar and Heragu [16] introduce a genetic algorithm-based heuristic to solve the multi-
floor layout problem called the Multi-Floor Heuristically Operated Placement Evolution
(MULTI-HOPE) technique. Each floor is represented by a grid of unit squares. The number
of unit squares assigned to each department corresponds to the area of each department.



The location of lifts are given in advance and are indicated on the grid. The lift with the
lowest transportation cost is selected to transport materials. This algorithm does not allow
departments to be split across floors.

Experimental results in [16] show that MULTI-HOPE resulted in better average final
solutions in most of the tested cases than both MULTIPLE and SABLE, however, it does
so with larger computational times. The largest of the test problems considered is also a
40-department and 4-floor problem.

MUSE

Matsuzaki, Irohara, and Yoshimoto [20] introduce MUSE (MUIti-Story layout algorithm
with consideration of Elevator utilization), which is a heuristic, improvement-type algo-
rithm that considers the capacity of elevators and optimizes their number and location. It
is assumed that the area and shape of every floor and that the capacity of each elevator is
equal. However, the arcas of elevators and aisles are not considered. Vertical and horizon-
tal material handling costs are included in the objective function as well as the installation
costs of each elevator. They conclude that their proposed algorithm is effective by testing
it on the 15-department, 3-floor, and 6-elevator problem that was used to test MULTIPLE
in [5].

An Improved Genetic Algorithm for Multi-floor Facility Layout Problems Hav-
ing Inner Structure Walls and Passages

Lee, Roh, and Jeong [17] present an improved genetic algorithm for multi-floor facility
layout problems having inner structure walls and passages. The boundary of the facility
can be a curve such as the boundary of a ship. It is assumed that the number and position
of the inner structure walls and lifts are specified. Also specified are the number of passages,
their widths and the bounds of their locations. Experimental results on test problems with
between 11 and 40 departments, between 2 and 3 floors, and between 2 and 6 elevators,
show that this algorithm performed better than STAGES, which is presented in Section
2.2.

Multiple-Floor Facility Layout Design with Aisle Construction

Chang et al. [7] consider aisle construction in the multi-floor facility layout problem. The
departments must be rectangularly shaped and may not be split by any space. The de-
partments’ size and shape remain unchanged throughout the procedure. This procedure
can apply to problems where the floors have different areas by assuming that each floor has



the same area and then forbidding certain areas of each floor. The numbers and locations
of doors and elevators must be specified.

The procedure includes a construction stage that groups the departments using the
K-means clustering algorithm. Reference departments are selected and are assigned to
floors. The remaining departments are then assigned to floors individually. The result is
that each of the groups are allocated to a floor so that departments of the same group
occupy the same floor.

In the improvement stage, a genetic algorithm is used to improve the initial layout.
Multiple chromosomes are used to represent departments in this multi-floor facility. This
is combined with a heuristic decode function in order to generate a layout with doors and
aisles.

Simulations show that the algorithm efficiently constructs layouts while constructing
door and aisle structures automatically. Their simulations consist of 2 to 5 floors, 10 to 30
departments, and 1 to 4 elevators.

2.1.4 Mathematical Programming Techniques
Computer Aided Design Group’s Space Planning System

Liggett and Mitchell [18] describe a software for space planning problems called Computer
Aided Design Group’s Space Planning System. This software system attempts to optimize
operating efficiency by allocating “activities” to “facilities”. In fact, three different types of
problems can be handled by this system and are noted in [18]. These include the stacking
or zone plan optimization problem (that optimizes the assignment of activities to parts of
a facility), the block plan optimization problem (that optimizes the spatial arrangement of
activities on a floor), and the move optimization plan (that optimizes the number of moves
made within a facility).

The Space Planning System handles the above problems using a specialized form of the
general quadratic assignment problem which is AP-hard and is solved using a constructive
initial placement strategy [18]. In this specialized form, fixed costs, interactive or com-
munication costs, and move costs are considered. Each activity is composed of modules
of equal size and each part of the facility is partitioned into location modules of the same
size. The system assigns the activity modules to the location modules. Using modules in
this way allows the system to handle problems in which different activities have different
areas that do not necessarily match the areas of specific locations.

It also gives the user the ability to supply shape constraints by specifying minimum
values for ratios involving a bounding rectangle drawn around the shape. Split penalties,
large interaction values, are associated with pairs of modules from the same activity, so



that the parts of the activity will be located as close as possible to each other in the case
that activities must be split. They also assume that there is only one lift location which
may be a group of centrally located clevators [23].

Multi-Floor Facility Layout Problem with Elevators

In 2007, Goetschalckx and Irohara [10] developed two formulations for the continuous
facility layout problem with elevators; one with full-service elevators and one allowing
partial-service elevators. This problem is known as the Multi-Floor Facility Layout Prob-
lem with Elevators (MFFLPE). Both formulations include, as decision variables, where to
locate each department and elevator, the number of elevators, and which elevator to assign
transportation operations. Elevators and travel aisle space are included in the areas of the
departments. An elevator is given by a point that remains the same on any floor it services
and must be located on the boundary of departments. Departments cannot be split on
multiple floors, they are all rectangular, and have the same height equal to that of the
floor. The shape and area of the departments are given, but the location and orientation
of each department are decision variables.

In [10], symmetry-breaking techniques and valid inequalities are also presented to reduce
computational times. The problem is solved using a combination of computer software
including AMPL, a modeling language for mathematical programming and the CPLEX
solver. The largest of the problems solved in this paper consists of 15 departments, 3
floors, and 6 elevators.

The Multi-Story Space Assignment Problem

The Multi-Story Space Assignment Problem (MSAP) is presented in [12] by Hahn, Smith,
and Zhu. Here the multi-floor facility layout problem is modeled as a Generalized Quadratic
3-dimensional Assignment Problem (GQ3AP) and also includes an evacuation plan for the
facility. The main objective is to assign the departments to floors so as to minimize the
evacuation time given the number of people per department and the size restrictions of
each department. A secondary objective is to minimize transportation costs given the flows
and distances between the departments.

The GQ3AP is a NP-hard problem and is applied to problems concerning a pair of
independent simultaneous one-to-one assignments, which is why is it of interest for this
type of problem; one must assign departments to locations while simultaneously assigning
these same departments to escape exits. The footprint of the facility is a rectilinear polygon
or can be closely approximated by a closed and bounded polygon. Each department can
be subdivided, can be assigned separately to different stairwells, and no department may
be split across floors.



The authors of this paper solve the MSAP using an exact solution method. Experiments
consider between 7 and 8 floors, between 10 and 13 departments, and 2 to 3 stairwells.
They recognize from the experimental results that the algorithm quickly provides solutions,
however the run times are exponential in the problem size.

2.2 Multi-Stage Approaches Combining Exact and Heuris-
tic Procedures

Several approaches for solving the multi-floor layout problem consist of two stages. In the
first stage, departments are assigned to floors in order to reduce the vertical interaction
costs and in the second stage, the layouts are optimized within each floor. Some two-stage
approaches fix the departments to the floor they were assigned in the first stage throughout
the second stage. The idea is that because the vertical interaction cost is usually more
expensive than the horizontal interaction cost, minimizing the interaction between floors
should reduce the solution space in the second stage while still including good solutions
[23]. Other approaches do not restrict the departments to the floor they were assigned in
the first stage rather they are allowed to move between floors in the second stage.

A heuristic method for the multi-story layout problem

Kaku, Thompson, and Baybars [15] present a heuristic procedure capable of producing so-
lutions to large multi-floor layout problems with as many as 150 departments in reasonable
times. The multi-story layout problem (MSLP) considered in this paper consists of two
stages. The first stage groups the departments and assigns these groups to floors. The
second stage uses the department to floor assignment from the first stage to determine
the layout of each floor. The problem is broken up into subproblems, allowing the entire
problem to be solved in a more reasonable time which is important, especially as the size
of the problem increases.

This heuristic method assumes that the building has only one elevator or a group of
elevators at one location and that all departments are interchangeable, thus requiring the
departments to occupy the same floor space. On the other hand, modifying this method
to handle unequal area departments is problematic and can increase the complexity and
size of the problem [16].

In the first stage, a K-median heuristic is used to form groups of departments with
the goal of including departments having a high interaction in the same group, minimizing
inter-group interaction. These K groups need to contain an equal number of departments.
An elevator can then be added to each group that will break up inter-group flows into
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three separate flows. So, a flow from department ¢ in group I to a department j in group
J is broken up into a flow from department ¢ to the elevator belonging to group I, a flow
from group [ to group J, and a flow from the clevator of group J to department j. This
is done for the purpose of reducing the problem into K + 1 QAPs. Included is one QAP
that determines the group’s floor number by considering the flow between groups. The
remaining K QAPs find a layout on each floor by considering intra-group flows. Here, the
flows between the elevator and departments help to ensure that those departments that
have a high interaction with departments belonging to other groups are located near the
elevator [15]. These QAPs are solved using heuristics presented in [14].

A simplified exchange procedure can then improve the entire solution through depart-
mental exchanges across floors. It is a “simplified” version because instead of computing
the change in the value of the objective function exactly, it is estimated at several steps of
the process. Of course an exchange of this sort will change the groups and the flows. In
effect, groups may have to be reassigned to floors and the layout of each floor will have to
be determined again given the changes.

ALDEP

The Automated Layout Design Program (ALDEP) is a construction-type algorithm intro-
duced in [25] by Seehof, Evans, Friederichs, and Quigley. It is a two-step program that
assigns each department to a floor in the first stage and assigns the departments to loca-
tions within each floor in the second stage. Unfortunately, ALDEP can only work with a
maximum of three floors at a time.

First the planner must specify the building and department requirements. Any area
can be fixed which may represent aisles, bathrooms, and stairs, to name a few. A pref-
erence table is then constructed indicating the preferences for departments to be located
near one another. The first department is randomly selected using a modified random-
selection technique. To select another department, the preference table is searched for the
department with the highest preference of being located near the already chosen depart-
ment. If such a department is found, it is chosen next. Otherwise, another department
is chosen randomly. This process continues until a complete layout, consisting of all the
departments, is formed. This layout is then evaluated by adding together the preference
values for bordering departments. Many layouts can be found and evaluated and the best
of these can be considered further by the planner.

Meller and Bozer [4] mentioned three issues concerning ADELP: it ignores the vertical
flow between departments after they have been assigned to floors; it is unclear how this
assignment is made; and departments may be split across floors.
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SABASS

Meller and Bozer [4] present a construction-type layout algorithm for manufacturing facil-
ities with multiple floors and capacitated lifts. This algorithm consists of several stages.
The first stage optimally assigns departments to floors without considering which lift is
used and without splitting departments across floors. To do this, a mixed-integer linear
programming formulation is used and is referred to as the Floor Assignment Formulation
(FAF). It is NP-hard and a branch-and-bound algorithm is used to solve this problem
[23].

The second stage of the algorithm determines the layout of each floor simultaneously
using the fixed floor assignments from FAF in stage one. It is assumed that the locations of
existing or potential lifts are specified in advance and that the vertical flow will use the lift,
[, that minimizes dg = mlin(dg + dg ). For the case where there is one lift whose location is

known, an approach in which the floor layouts are constructed independently can be used.
However, it is necessary to use another method when there is more than one lift. This
is because in an algorithm such as this, where a department has not yet been assigned a
location, it is not known in advance if that department will interact with a particular lift.

For the case of multiple lifts, this paper presents an improvement-type algorithm.
Again, the departments are restricted to the floors to which they were assigned in stage
one. Each floor is given a space filling curve and a layout sequence with dividers as in
SABLE, above. An address consisting of a fixed component and a variable component
are assigned to each department which indicates where it will be located in the layout
sequence. The generated variable components are values between ) and 1 and determine
new layouts using an algorithm similar to SABLE described above. This algorithm is called
the Simulated-Annealing Based Algorithm for the Second Stage (SABASS).

The third stage solves the Lift Location-Allocation Problem (LLAP). The LLAP is the
problem of deciding which lifts to open and which lift to assign each vertical flow while
not exceeding the throughput capacity of the lift [4]. It is assumed that every vertical
flow can be assigned to only one lift and that only one lift can be at each location. The
loads arrive at a lift according to a Poisson process and are served one at a time on a
first-come-first-served basis. Specified and fixed are the distance between floors, the travel
speeds of each lift, and the pick-up and deposit times of loads. The costs to minimize in
the objective function include the amortized cost of the open lifts, the cost to wait for lifts,
and the horizontal travel costs between departments to lifts. A simulated-annealing based
heuristic algorithm similar to SABASS is used to solve this problem. However, instead of
departments, flows and lifts are used.

Computational results, using the first two stages of this algorithm, show that it achieves
results that are better than or equal to SABLE’s for most problems [4]. A comparison of
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the runtimes depend on the problem size since FAF is used in the first stage and has
difficulty solving large problem sizes such as the 40-department problem tested [4].

STAGES & FLEX

Meller and Bozer [23] introduce STAGES, a two-stage approach, combining mathematical-
programming and simulated annealing. Here, the departments are assigned to floors with
the goal of reducing the vertical handling cost in the first stage, and in the second stage,
the layouts are determined on each floor.

FAF, the mixed-integer linear programming problem, is used for the first stage. Using a
modified version of SABLE in which exchanges across floors are not allowed, the procedure
attempts to improve the departmental layout of each floor in the second stage. This leaves
the departments fixed to the floor to which they were assigned by FAF in the first stage.
This step attempts to minimize the horizontal handling cost, while the vertical handling
cost remains minimized [23].

Since this algorithm does not consider exchanges across floors, it does not consider the
case when an exchange across a floor will decrease the horizontal handling cost more than
the resulting gain in the vertical handling cost. So, Meller and Bozer [23] present another
two-step procedure named FLEX for comparison purposes. FLEX uses FAF in the first
stage followed by SABLE in the second. The difference here is that the departments are
not fixed to the floor to which they were originally assigned.

Computational evidence concludes that STAGES outperforms both SABLE and FLEX
[23]. The largest data set used to test these methods consists of 40 departments, 4 floors,
and 3 lifts. Again, the run times vary and as noted in [23], they are between 0.5 and 2.5
times as long as SABLE’s run times.

GRASP/TS and FAF/TS

Abdinnour-Helm and Hadley [1] present two heuristics. The first of these is GRASP/TS
which is a two-stage heuristic. A modified version of GRASP is used in the first stage and
a tabu search method is used in the second stage.

GRASP (Greedy Randomized Adaptive Search Procedures) is defined in [9] and consists
of a construction phase and a local search phase. In the construction phase, a solution is
constructed iteratively and a local search phase is used at each iteration that attempts to
improve the solution.

In the first stage of GRASP/TS, a modified version of GRASP is used in which the
assignment of departments to floors can be modeled as a graph partitioning problem. It
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finds an initial assignment of departments to floors while minimizing the inter-floor flow.
In this modification of GRASP, the local search phase is not performed at each iteration,
which is sufficient since the objective of the first stage is to find a good solution for the
second stage, not to solve the whole problem.

The second stage uses Tabu Search (TS). Like simulated annealing, TS is a method
that attempts to overcome the problem of getting stuck at local optimal solutions [1].
Spacefilling curves are used and one curve is generated for each floor. It begins with the
initial layout obtained from stage one. At each iteration, TS finds the best feasible move
by evaluating all possible feasible pairwise exchanges or shifts including those that occur
across different floors. These are the only two types of moves that are allowed. A shift
move is important because it allows a department to move to another location on the same
floor and also to move to a different floor, allowing the number of departments on a floor to
vary. Each move is then evaluated. Once the move is made, it is added to a tabu list which
means that this move is forbidden, at least for some given number of future iterations.
This method maintains a separate tabu list for exchange moves and shift moves. It is still
possible to make a move that is on this list if the resulting layout is better than the best
layout determined up to that point. There is a chance that the move that is selected does
not actually improve the layout and this can help prevent T'S from getting stuck at a local
optimal solution. The process is repeated until it has reached its maximum number of
iterations allowed.

The second heuristic presented in this paper is FAF/TS. This heuristic also consists of
two stages. In the first stage, FAF which is described above, is used to obtain an exact
solution to the above graph partitioning problem, and in the second stage, TS is applied
as just described.

FAF /TS found some solutions that are the best known solutions to date on a few
data sets. FAF/TS was also shown to outperform STAGES, indicating that tabu search
performs better than simulated annealing in this situation [1]. The fact that FAF/TS and
STAGES outperform SABLE, which was the best known single stage approach at the time,
suggests that approaching the problem in two stages is a good approach [1].
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Chapter 3

Background for New Mathematical
Programming Approach

Next, I will present the mathematical-programming framework by Anjos and Vannelli
[3] upon which the proposed three-stage multi-floor layout model is based. First, two
methods are briefly introduced that are important to the development of the ideas in their
framework.

It is assumed that there are N departments. The center of department ¢ is (z;,y;). We
have that c;; is the cost per unit distance between departments ¢ and j and that ¢;; = c¢j;.
The distance between departments ¢ and j, d;;, is measured from the center of department
¢ to the center of department j.

3.1 Dispersion Concentration Method (DISCON)

In 1980, Drezner [8] solved a version of the facility layout problem based on a non-convex
mathematical-programming method named DISpersion-CONcentration in which each de-
partment i is approximated by a circle of radius r; and center (x;,y;). The distance between
two circles ¢ and j is measured as d;; = /(x; — x;) + (vi — y;)*

The method determines the location of each department by solving the following for-
mulation using a penalty-based algorithm:

min C; dz
J g

ZiYs -
( zyz) 1<i<j<N

st.dij >ri+rjforalll <ie<j < N.
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Inspired by the Big Bang theory, the algorithm has two phases. The first is the
DISpersion phase for which the center of the circles are placed at one point (the ori-
gin) and are allowed to disperse. This phase provides good starting points for the second
phase, the CON centration phase, where the departments are once again densely arranged
achieving a local minimum and arriving at a final solution [8].

3.2 Nonlinear Optimization Layout Technique (NLT)

van Camp, Carter and Vannelli [26] introduced new heuristics that help find good solu-
tions to the layout problem. They presented the Nonlinear Optimization Layout Technique
(NLT) allowing for rectangular departments of any area with heights and widths deter-
mined throughout the optimization procedure.

The following model is the basic nonlinear optimization model used in the NLT method
to approximate the real layout problem. The model will be denoted by vCCV to be
consistent with the paper of Anjos and Vannelli [3]:

min E Cij dij

5,9 ), w; hp w
(zyz) 1, Wi, NF,WF 1<i<j<N

1 1
st | @ — x| —§(wi+wj)201f]yi—yj | =5 (hi+hy) <0

2
1 . 1
[ =95 | =5 (hi+hy) 20 3 | 2 — 2y | =5 (wi +w;) <0
1 1
in—(.Z’Z—FEwZ)ZO forizl,...,N
1 1
§hF_(yz+§hz)ZO forizl,...,N
1 1
(azz—§wz)+§wF20 forizl,...,N
1 1
min(w;, b;) — M >0 fori=1,...,N
[ — min(w;, h;y) >0 fori=1,...,N
min(wg, hp) — IE™ >0
l?a"—min(wF,hF) > O,

where d;; = \/(xl — )%+ (y; —y;)%. Here (z;,v;) is the center of department 4, w; and h;
represent the width and height of department i, wr and hpr represent the width and height
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of the facility, and [[™™, [ [ and %% are the minimum and maximum allowable
lengths for the shortest side of department ¢ and the facility.

The NLT method adopts a three-stage approach that uses penalty function methods.
Stage One is a relaxation that attempts to distribute the centers of the departments evenly
throughout the floor space, completely ignoring the boundaries of the departments. In
Stage Two, each department is represented by a circle whose diameter equals the square
root of the area, such that the circle is inscribed in a square having the same area of the
department. Using a relaxation of the vCCV model, a layout is determined where the
circles do not overlap and are contained within the boundaries of the facility. The solution
of this stage can be used as initial values for the vCCV model. The Stage Two model is:

min E Cij dij

(zi,9i),hFrwr

1<i<j<N

st. dij— (ri+1;) >0 foralli, j=1,...,N
%wF—(aji—l—n)ZO foralli=1,... N
%hF—(yH—T’i)ZO foralli=1,..., N
%ijt(gj,-—m)zo foralli=1,...,N
%hFﬁ—(yi—ri)ZO foralli=1,...,N

min(wp, hp) — (5" >0

[ — min(wp, hp) > 0,

where all the parameters and variables are as defined before.

Finally, in Stage Three the departments are modeled as rectangles and using the solution
of Stage Two as the initial layout, the final solution is determined by solving the vCCV
model.

3.3 The Anjos-Vannelli Facility-Layout Design

Anjos and Vannelli [3] present a framework which consists of two stages. They combine two
new mathematical-programming models to find solutions for the facility-layout problem.
The purpose of the first stage is to find a solution that provides good initial values for
the next stage. The second stage attempts to find a locally optimal layout. In addition,
the framework incorporates aspect-ratio constraints that prevent unrealistically shaped
departments in the final layout.
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3.3.1 Stage One: ModCoAR

Stage One uses an attractor-repeller (AR) model, which is a relaxation of the layout prob-
lem that improves upon the first two stages of the NLT method. In this model, each
department is also approximated by a circle of radius r; and center (x;,y;). Its purpose is
to find good initial values for the next stage in which the final layout is determined.

AR model

The AR model introduced by Anjos and Vannelli [3] is given as follows:

— lij
1<i<j<N

(xi,y:).hpwp

1
s.tEwF >x;4+r; fore=1,...,

1 .
§UJF2TZ'—.%'Z‘ fOI"l:L...,

N

N
1 ,
§hp2y¢+7“i fort=1,...,N

N

1
§hF2ri—yi fori=1,...,

’LU?(H Z Wr Z w;mn
max min
hF Z hF Z hF 9

where f(z) = (1/2z) — 1 for z > 0 and t;; = a(r; +r;)? for a given @ > 0 and for

1 <i < j < N. Furthermore D;; = (z; — x;)* + (y; — y;)* denotes the square distance
between departments i and j and wp®™ wF" KR B denote the maximum and mini-
mum widths and heights of the facility. The first four constraints ensure that all the circles
remain completely inside the bounds of the facility and the remaining provide a bound for
the shape of the facility.

As mentioned, the AR model improves upon the first two stages of the NLT method.
Both methods are non-convex, but the AR model has only linear constraints, which is
a major advantage over the NLT method. The main difference here is that in the AR
model, the non-overlap constraints are enforced through the use of target distances instead
of the constraints d;; > r; +r;, for all 1 <i < j < N. The concept of target distances is
introduced next.

Notice that since the costs are nonnegative, the term ), i ¢;jD;; would achieve a min-
imum when D;;, the square of the distance between departments ¢ and j, is as small as
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possible. This acts as an attractor because it causes the distances between each pair of
circles to decrease. It can be seen that without a constraint of the form d;; > r; 4+ r;, or
the second term in the objective function, the minimum value would be achieved when
D,; = 0, that is when the circles ¢ and j completely overlap each other. Instead of using
the constraints d;; > r; +r;, for all 1 <¢ < j < N, as in the NLT method, a repeller term
f (%) is added to the objective function and works to prevent the circles from overlapping
3].

The AR model aims to ensure an ideal separation between two circles at optimality.

Theoretically, = (z’_zj()r j;(ny;g w7 _ 1. Here, /T, ; is the target distance

between two pairs of circles ¢ and J and t;; is the target value for Dl] When a =1 and
when Z’jj = 1 at optimality, the circles should intersect at exactly one point. Then, of
course, having a < 1 in t;; = a(r; +r;)? would be a relaxation in that some overlap would
be allowed between the circles ¢ and 7. Choosing o > 1 would enforce a greater separation

between circles [2]. This concept is illustrated in Figure 3.1.
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Figure 3.1: The theoretical concept of target distances.

Initially, the circles are arranged in a layout in which the squares of the distances
between the circles are much larger than the corresponding target distances, implying that
% > 1. The attractor-repeller effect is accomplished by penalizing overlap through the

ij
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inclusion of the repeller term in the objective function. Recall that the repeller term is
f(&) — 1 _ 1 where 24 > (. The attractor term in the objective function aims

t'ij Di] tij
D, . . . . . oo
to decrease 7, while the repeller term aims to increase this ratio until it has reached
]

an equilibrium. The goal is to achieve this equilibrium when % ~ 1 by adjusting the
ij

parameter « [2]. The choice of this parameter is discussed in Section 5.1.

Convexified AR Model

Since the objective function of the AR model is not convex, a new convex version, CoAR,
is presented in [3]. Assuming that ¢;; > 0 and ¢;; > 0 for all ¢, j, the following piecewise
function is convex and continuously differentiable [2]:

. Lij Lij
CijZz + = ) z > o

2\/Cijtij_1> 0§Z<\/ZZTJ7

fij(q;ia xja Yi, yj) =

where z = (z; — ;) + (y; — y;)*
Anjos and Vannelli [3] present CoAR as:

min Z fij(xiaxﬁyiayj)

I'v.',',h W ..
( 2U7) F F1§1<]SN

= =2 =z =

1 .
s.t. §wF2$i+7’i fori=1,...

1
EwFZTi_xi forizl,...

1
§hp2yi+n~ fori=1,...,

1
éheri—yi fori=1,...,

max min
Wp 2 Wp 2 Wp
max min

Generalized Target Distances

The CoAR model motivates the discussion of generalized target distances. It can be shown

that the minimum of the function f;; occurs when D;; < \/t;;/c;; [3]. However, the
situation where the circles completely overlap (when D;; = 0) also satisfies this inequality.
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It is desirable to seek a layout where the overlap of circles is minimized and this occurs
when Dij X 4/ tij/cij [3]

The generalized target distance T;; is defined in [3] as

Ty= stz forall 1 <i<j<N.
A small number € > 0 is included to enforce the assumption that c;; > 0 made for the
CoAR model. Intuitively, it is desirable to seek a layout in which D;; ~ T;;. First, D;;
is proportional to the corresponding target distance, t;;. In addition, D;; is inversely
proportional to ¢;;. If the cost between circles ¢ and j is high, then T;; is small and since
D;; =~ T;; , the two circles will probably be close to each other. On the other hand, if
the cost ¢;; is low, then Tj; is high and by the same reasoning the circles will probably be
located farther away from each other in the layout.

ModCoAR Model

Applying generalized target distances to the CoAR model would require a specialized al-
gorithm that is not very practical. So, a new model, although not convex, is used so that
(theoretically) D;; ~ T;; at optimality. This new model is ModCoAR and is presented in
[3] as follows:

. D;;
min g Fij(zi, x5, vi,y;) — Kyop In(=2)
(@isyi),hFwr L<ico Tu
<i<j<N

s.t.%wFin—f—n fori=1,....N
%wFZTi_xi fori=1,...,N
%thyi—i—m fori=1,...,N

N

1
§hpz7‘i—yi fore=1,...,

wp™ > wp > wp
h?ax Z hF Z hr};mn)

where Ky;op is a scaling factor and

t..
cijz + 2+ —1, z > Ty

zg(ajuﬂjjayuy]) { 2@—1, 0<z2 <E]
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3.3.2 Stage Two: BPL

In stage two, the Bilinear Penalty Layout Model (BPL) uses the solution of ModCoAR as
initial values in order to solve the layout problem. In fact, BPL is an exact formulation of
the facility layout problem and is modeled as:

min > ciblmiyy g yp) + KppXi Yy
(z6,9i)hiswishpwr 1<ico

<i<j<N

1
s.t. szi(wl-i—w])—hrl—xﬂ for al]l§2<j§N

1

szé(hl+h]>—|yz—y]| fOI‘aHl§2<jSN

XUZO, Y;JZO, and XUY;J:O forall1<i1<j <N

1 1

§’IUF—(.TZ+§U)L)20 forizl,...,N
1 1

(xi—§wi)+§wpz() fori=1,...,N

1 1

§hp—(yz+§hz)20 forz'zl,...,N
1 1

’LUth:CLl forizl,...,N

W >y > wn fori=1,...,N

R > by > pMn fori=1,...,N

wp™ > wp > w}“i“ and hR™ > hp > h‘}?in.

Here, Kppy, is a penalty constant and (x;, y;, z;,y;) is the distance function, which may
be measured with several different norms [3]. The first three constraints are non-overlap
constraints, replacing the more intuitive, but disjunctive non-overlap constraints that can
be expressed as § (w;+w;)—|z;—z;] < 0or (hi+h;)—|y;—y;| < 0. The constraints X;; > 0,
Yi; >0, and X;;Y;; =0 for all 1 <7 < 7 < N, make the model a mathematical program
with equilibrium constraints (MPEC) [19]. Anjos and Vannelli [3] penalize X;;Y;; = 0 for
all 7, 7 in the objective function since MINOS, which is used to solve this problem, would
otherwise fail when applied to BPL. Handling the problem in this way often successfully
leads to solutions where X;;Y;; = 0 for all 7,5 [3].
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3.3.3 Aspect-Ratio Constraints

Anjos and Vannelli [3] also incorporate aspect-ratio constraints into the BPL model that
allow the user to have control over the shape of the departments. Without these con-
straints, it is possible that the final layout will contain one or a few very long and narrow
departments which is not always practical. The aspect ratio for department ¢ is defined
as (; = max{h;, w;}/ min{h;,w;}. Figure 3.2 demonstrates a layout obtained using the
Armour and Buffa 20-department problem without using any aspect ratio constraints and
another with aspect ratio constraints of 3; < 3. It can be seen that the narrowness of some
departments without any aspect ratio constraints is not practical for many applications.

15+ 15+

1n- 10k

" L L L | a '
-15 -10 5 0 o) 10 15 -15 -10 5 0 5 10 15

No Aspect Ratio Constraints Aspect Ratio Constraint of 3.0
Worst ratio=23.55

Figure 3.2: Final layouts of Armour and Buffa 20-department problem using Anjos-Vannelli
Method [3].

The ModCoAR and BPL models given above constitute the two stages of the mathematical-
programming framework for facility-layout design by Anjos and Vannelli [3]. Results of
computational experiments in [3] indicate that they improve on previous results obtained
from other single-floor methods in the literature. The methods of this single-floor frame-
work are modified and extended for the proposed three-stage multi-floor layout method
presented next which is the main contribution of this report.
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Chapter 4

Three-Stage Multi-Floor Facility
Layout Method

From the literature review in Chapter 2, it can be seen that methods for solving the multi-
floor layout problem consist of one or several stages. Methods such as MULTIPLE [5]
and SABLE [22] that approach the problem in a single stage use special techniques in
order to ensure that departments are not split across floors and that the problem remains
feasible when departments are moved across floors. It can also be seen in the literature
review that multi-stage approaches such as STAGES [23] and GRASP/TS [1], in which
the departments are assigned to floors in the first stage and the layout is optimized on
each floor in the second stage, perform just as well, if not better, than the best single stage
approaches in many practical cases.

It has also been seen that some multi-stage approaches such as FLEX [23] allow de-
partmental exchanges across floors after they have already been assigned in the first stage,
while others such as STAGES do not [23]. Experimental results by Meller and Bozer [23]
suggest that allowing departments to be exchanged across floors is not necessarily advan-
tageous even though it is possible that an exchange of this type will result in a reduction
of horizontal costs greater than that of the increase in vertical costs. They found that this
is true, in general, as long as the ratio, cz‘-g / cg- , is greater than or equal to 1 and that the
floor layouts are solved simultaneously [23]. If the ratio is greater than 1, it is desirable
that departments with a high level of interaction be located on the same floor because of
the greater cost for vertical travel than horizontal travel [23]. They hypothesize that the
success of the two-stage method in which departments are fixed to a floor is due to the
fact that it operates over a smaller solution space, that is, a low cost portion of the whole
solution space. If there were no limits on the running time of the procedure, this would
probably not be true, but for practical purposes, smaller computational effort is important.
Hence, for this research project we consider a method with multiple stages.
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In the first stage of the proposed three-floor multi-floor facility layout method, the task
is to assign departments to floors minimizing the vertical interaction cost. The second and
third stages use an extension of the mathematical-programming framework by Anjos and
Vannelli given in Section 3.3 in order to solve the multi-floor problem. The layout of each
floor can be solved simultaneously or independently. Theoretically, in the case of a single
elevator location, the two versions of this method should be equivalent, however both have
their advantages and disadvantages.

4.0.4 Solving Each Floor Independently vs. All Floors Simulta-
neously

The first version solves the layout of each floor independently of the other floors and will
be denoted FBF (Floor-By-Floor). This case allows several smaller problems to be solved
separately as opposed to solving the one larger, more complex problem of solving for the
layout of all floors simultaneously. However, this version can only handle up to one elevator
location. This is because since the layout on another floor is not known until the end of the
procedure, the elevator that will minimize the travel distance between two departments on
different floors cannot be determined throughout the optimization procedure.

As will be seen, the models in stages two and three of the simultaneous version, de-
noted AFS (All-Floors-Simultaneously), require there to be a penalty term in the objective
function for each floor. In practice, several penalty terms in the objective function may be
more difficult for the solver, but these models have the advantage of allowing for multiple
elevator locations.

If one elevator location is sufficient, then FBF presented in Section 4.3.1 can be used.
It is capable of providing good quality solutions in a short time and can also solve large
problems with many departments and several floors. If multiple elevator locations are
required, then AFS that solves each floor simultaneously would be required. This version
is presented in Section 4.3.2 and has also proven to be able to solve large problems.

4.1 Notation for the Three-Stage Multi-Floor Model

We consider N departments and K floors where the areas of the departments are given
and the lengths, widths, and positions of the departments are optimized in the layout. To
be consistent with the notation in [23], the area needed for department i is a; and Ay, is the
maximum floor space that can be used on floor k. The distance between any two adjacent
floors is given by 0 and y; is the variable denoting the floor number of department .
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In the three-stage multi-floor model, if two departments ¢ and j are on the same floor,
the horizontal distance, dg , is simply the distance between the two departments which can
be measured with various norms. On the other hand, the distance between two departments
on different floors must include both the horizontal and vertical distance between them.

As in [23], the horizontal distance, df, is djf = mln (die + dj), where d;. is the distance

between department ¢ and elevator e on one floor and d.; is the distance between elevator e
and department j on the other floor. The vertical distance, dY;, between two departments
not on the same floor is djj = dly; — y;].
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It is important to note that the costs ¢;; and flows f;; arc not necessarily symmetric,
which allows for the case when the interaction between departments ¢ and j is not nec-
essarily the same as the interaction between departments j and 7. It is also necessary to
distinguish between vertical costs c - and horizontal costs c - seeing that the cost to trans-
port materials in the vertical dlrectlon is likely more costly than transporting materials to
another area on the same floor.

4.2 Stage One: Assigning Departments to Floors

In the first stage, the task is to assign departments to floors, minimizing the vertical in-
teraction cost using a mathematical programming formulation. A binary variable x;; is 1
if department ¢ is placed on floor j, and 0 otherwise. The constraints need to guarantee
that the area capacity of each floor is not exceeded and that each department is assigned
to exactly one floor. Then the vertical cost and distance must be included in the objective
function when two departments are not on the same floor. This is modeled by Meller and
Bozer [23] as:

N K K
Z Z Z Z figclingintso

N
i=1 j=1 k=1 g=1

i =1 fori=1,...,N
a;xi < Ag fork=1,..., K,

i
:

where
S 1, if department 7 is assigned to floor k
* 700, otherwise
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and c?kg is the distance between floor k£ and floor g.

As pointed out by Meller and Bozer in [23], this problem is simply a generalization of
the traditional quadratic assignment problem, which is known to be N'P-hard and gener-
ally difficult to solve with more than 20 departments. They improve on this formulation
by considering the structure of the inter-floor distance function, creating a model with a
linear objective function, allowing for larger problem sizes to be solved [23]. This improved
model is FAF [23], which has already been mentioned in the above literature review. With
the exception of some changes in notation, the following is equivalent to FAF and is used

in Stage One of the three-stage multi-floor layout model:

where

4.3 Stages Two and Three: Optimizing the Layout of

Stages Two and Three use the mathematical-programming framework of Anjos and Van-
nelli for the single floor case and extend its ideas in order to solve the multi-floor problem.
The layout of each floor is solved independently in FBF and simultaneously for all floors

in AF'S.

N N
minZZVij

i=1 j=1

K
s.t.kaik:yi fori=1,...,N
k=1

Vij 2 (yi—yj)écl‘-;fij fori, j=1,...,N

Vi > (yj—yi)écl‘gfij fori, j=1,...,N

inkzl fori=1,...,N

Tik -— {

Each Floor

1,
0,

if department 7 is assigned to floor k
otherwise.
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4.3.1 FBF: Optimizing the Layout of Each Floor Independently

Each floor uses modified versions of the ModCoAR and BPL models presented in Section
3.3. I will denote ModCoAR .l as the modified version of ModCoAR for floor [ and similarly,
BPL_l as the modified BPL model for floor (.

An elevator can be given a fixed position on each floor and, of course, must be located in
the same position on each floor. In other words, the center of the elevator (xg, yr) must be
fixed at the same coordinates on each floor. In addition to the horizontal interaction costs
present in the single floor model, vertical interaction costs must be considered as well. This
means that, for example, a department ¢ on floor [ that interacts heavily with department j
located on another floor, will ideally be located closer to the elevator (in order to minimize
costs) than another department on floor [ that does not interact with any departments on
another floor. It is this reasoning that motivates the three cases included in my model.
On each floor, [, the layouts are optimized independently by considering three cases; each
case must be included in the objective functions of both the ModCoAR [ and BPL_l models:

On each floor [, consider:

Case 1: Departments ¢ and j are both on floor [.

Let AL={ (i, )| departments i and j are both on floor [ }. This case can be handled in a
way equivalent to the single floor problem presented by Anjos and Vannelli [3], as will be
seen.

Case 2: Department ¢ is on floor [ and department j is on another floor.

Let BL,={ (4, )| department i is on floor [ and department j is on another floor }. On floor
[, we calculate the portion of the cost that is between department ¢ and the elevator.
Case 3: Department ¢ is on another floor and department j is on floor [.

Let CL,={ (4, 7)| department i is on another floor and department j is on floor [ }. On floor
[, we calculate the portion of the cost that is between the elevator and department j.

Additional Notation

Recall that in this new approach, the costs and flows are not necessarily symmetric. Since
the model by Anjos and Vannelli [3] does not distinguish between costs and flows, but most
of the multi-floor models in the literature do, the costs are redefined as

H._ H V._ .V
cii = ¢ fij and ¢ = ¢ fij.

The radius of department 4, r;, and the radius of the elevator E, rg, are defined as
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ri:\/%andrE: .

The target distances are modified for each of the above cases:

ti]’ = Oq(?“i + 7"']‘)2, if (’L,j) € Ai’ﬂ

s g elritre)? () € By
T aglrg +1y)?, i (4, ) € CL,

where «; is a parameter for floor /.

The generalized target distances include

Ty = /o if (i,)) € Ay and T_Ey = /=24 i (i, 5) € By UCh.

These next variables are equivalent to the square distances D;;, D;rp and Dg;:

2= (x; —x;)* + (Y — y;)°,

B E._{ (i —2p)* + (ys —yp)?, if (i,5) € B,
- (zp —x;)* + (yg —y;)%, if (4,7) € CL.

Kyop, and Kppr, are parameters for ModCoAR_l and BPL_[, respectively.

Stage Two: ModCoAR_I

The ModCoAR_l model is given next:
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: D;;
min Z [Fij (i, 25, Yi, y;) — Karop, (7))

ZiyYi),y N ,*Z_'Z
(wisyi).hFwr el
i#]
. Dig
+ Z [F_E;j(xi, 2, 9i,v;) — Knmon, 1I1(T E)]
i,jEBL, -
Dg;
+ D F-Biy(ws, 25,5, 9) — Ko, In(o-)
i,jecl, v
s.t. éwp > x; +r; for all i on floor [
1
§wp > r; — x; for all ¢ on floor {
1
§hp > y; + r; for all 4 on floor [
1
EhF > r; —y; for all 2 on floor [
wgﬂlax Z wr Z w%lin
hr}i;ax 2 hF 2 %ﬁn’
where if (i,7) € A% then
cg.z + %J -1, z > T;;

E' is Lj, Yiy Yj) = /
,](x/ x.? Y y]) { 2 C’L}]Itl.j_l’ O§Z<E37

and if (i, j) € B5 UCY then

H t_E;;
ciz-B+ =4 —1, 2 B >T_ Ly

F-Buy(wi 2,4 35) = { 2\/cHt By —1, 0<zE<T.Ey
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Stage Three: BPL_]
BPL_] is formulated as:

min Z (50, i, 25, y;) + Kppr, Xi; Vi)

(®i,yi),hFwp

i,jeAL,
i#j
+ Z [Cgé(xmyZaxEvyE)]
i,jEBY,
+ Z C 5 $anE7$j7yj)]
z]ECl
1 . .
s.t. X > §(wZ +w;) — |z; — zj] for all (i,7) € A, i #J
1
Y §(h +h) | yj’ for all (Za ) E» 27&]
X O Y;j > O, and Xin;j = O, for all (Z, ) I 1 §£ j
1
§wp — (z; + éwl) >0 for all 7 on floor [
1 1
(x; — §wi) + JWF >0 for all 7 on floor [
1 1
§hF — (yi + §h7) >0 for all 7 on floor [
1 1
(y; — §hl) + §hF >0 for all 7 on floor [
w;h; = a;, for all 7 on floor [
W > w; > w;mn for all 7 on floor [
h > h; > hmi“ for all ¢ on floor {

wmax > wF > w and hmax > hF > hnlln

Outline of FBF

The general outline of FBF is

Solve FAF;

TotalCost=0;

for [=1to K do
Solve ModCoAR_I;
Solve BPL_I;
TotalCost=TotalCost+BPLCost;
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end for
VerticalCost:Z cx %0 % |y; — yj|§

ij
TotalCost=TotalCost+Vertical Cost;

4.3.2 AFS: Optimizing the Layout of Each Floor Simultaneously

Optimizing the layout of each floor simultaneously has the advantage of allowing for multi-
ple elevator locations. AFS uses an extension of the ModCoAR and BPL methods denoted
Multi-ModCoAR and Multi-BPL. Several notation modifications are made.

Additional Notation

The target distances are modified for the simultaneous case and are given as

t-li; = ay(r; +1;)?, for all 4,7 on floor [ and for all 1 <1 < K.

The generalized target distances for each floor [ are given as

Tl = %, for all 7,5 on floor [.

The M elevators are denoted Ey, ..., E,,.
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Stage 2: Multi-ModCoAR Model

Dij
T_ll'j

min Z [F-135(, 25, viy Y5) — Ko, In( )]

x,Yi)shp,w
(@3ye)hr Fi,jonﬂoorl

1F]
D;;
Y [F2y(n 75,0, 95) — Kuon, ln(T-;ij)]

4,5 on floor 2

i#]
FK K In(2
—|——|‘ Z [ - l](mzuxjay“y])_ MODg n(T_K’L])]
4,7 on floor K
7]
Sy,
1,j on

different floors
1 1 )
s.t. Ewp > z; +7; and in > r; — x,; for all 7 on floor 1

1 1
§hF > y; +1r; and th > r; —y; for all 7 on floor 1

1
§wF > x; +7; and iwp > r; — x; for all ¢ on floor 2

1 1
§hp > y; +r; and §hF >r; —y; for all ¢ on floor 2

1
§wF > x; +r; and §wp > r; — x; for all ¢ on floor K

1 1
§hp > y; +r; and §hp >r; —y; for all ¢ on floor K

w?ax 2 W 2 w}?in

hI}r;ax Z hF Z hl}[;in

Dy; > min (D, + Dg,;, Dig, + Dg,j, ..., Dig,, + Dg,,;) for all i, j not on same floor (%),
where if departments ¢ and j are both on floor [

cgzﬂ—ﬂ—l, z>T.1;

z

F-l@" 79 s Y1y Yy =
](x Lj, Y yJ) { 9 /Cgt—lij -1, 0<2<Tl
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and recall that D;; = (z; — 2;)* 4+ (yi — y;)* and thus D;p,, for example, is the square
distance between department ¢ and elevator E.

The constraints (%) are non-convex. Alternatively, the following convex constraints can
be used:

Jij > \/Dig, + Dg,; for all 7,5 on different floors
Jz‘j > +/Dig, + Dg,; for all 7, j on different floors

dij > \/Dig, + Dg,,; for all i, j on different floors,

with the objective function modified as:

D..
I F—]-i‘ 1y Ly Jis Ij - K 1 -
<xi’y%1}g’wwo§or1[ (@0 5,9:,5) ~ Kasop, In(7E)]
9. i j
+ > [F2(xi 5, 095) — Kuon, In(7=-)]
i,j on floor 2 -
i
Dij

+...+ Z [F_Kij (i, 25, ¥i, y;) — Knop,e In( )]

4,7 on floor K

T K

1#]
+ Z Cg (CZ»LJ) 2
4,j on

different floors

Note that the model with convex constraints would probably yield a solution in which
each circle will be not too far away from any elevator. The solution to Multi-ModCoAR
need not be exact and although this may not give a uniform distribution of circles, it has
the advantage of having convex constraints. The AFS model using the Multi-ModCoAR
model with convex constraints, denoted AFS-C, and the one using the Multi-ModCoAR
model with non-convex constraints, denoted AFS-NC, are tested and compared in Chapter
5.
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Stage 3: Multi-BPL Model

min Z (cgdg + c};d};) + Z Kppr, X Yij

(%iyi),hrwr

1#£] 4,7 on floor 1
i#]
+ Z Kppr, XijYi; +... + Z Kppr,Xi;Yij
4,7 on floor 2 1,7 on floor K
i#j i#]
1 1
8.8 Xij 2 5(wi +wy) = |wi — 5] and Yy = 5 (hi + hy) = [yi — 4l for all 7, j on floor 1

Xi; 20, Y; >0, and XY =0 for all 4, j on floor 1
1 1 1 1
SWF — (x; + §wz) >0 and (x; — awz) + SWF >0 for all ¢ on floor 1
1 1 1 1
Ehp — (y;i + §hl) >0 and (y; — §h1) + §hp > () for all ¢ on floor 1

1 1 .
Xi; > §(wl +w;) — |r; — ;| and Y;; > §(hl +h;) — |y — v for all 4,5 on floor 2
Xi; 20, Y; >0, and X;Y;;=0 for all 7, 7 on floor 2
1 1 1 1
SWF (x; + Ew,) >0 and (z; — §wb) +Swr >0 for all i on floor 2
1 1 1 1
§hF - (yl + §hl) 2 0 and (y1 - éhl) + §hF Z 0 for all 7 on floor 2

1 1 o
Xij > E(wZ +w;) — |z; — ;| and Y;; > §(hl + h;) — |y — vl for all 4, j on floor K
Xi; >0, Y; >0, and X;Y;; =0 for all 4, j on floor K
1 1 1 1
SWF = (x; + §wz) >0 and (z; — §wl) + SWF >0 for all 7 on floor K
1 1 1 1
§hF — (y; + §h’) >0 and (y; — ihz) + §hp >0 for all ¢ on floor K
w;h; = a; and w;"™* > w; > w;min and h" > h; > h?‘in for all i
dg = nr?:l{l . (dig,, +dg,,;) for all ¢, j on different floors
dg =d;; for all 4, 7 on same floor

W > wp > Wit and hEX > hp > AEY
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where d;; is simply the horizontal distance between departments ¢ and j and, for example,
d;p,, is the horizontal distance between department ¢ and elevator ,,.

Outline of Three-Stage Multi-Floor Layout Model (AFS)

The general outline of AFS is simply

Solve FAF;
Solve Multi-ModCoAR,;
Solve Multi-BPL;

TotalCost=BPLCost;
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Chapter 5

Computational Experiments

In this Chapter, we study the computational behavior of the proposed models. We also in-
vestigate the choice of parameters, the effect of slack space, and the case of a narrow facility.
Both versions of the three-stage multi-floor layout method are tested on several problems
using the CPLEX 12.1.0 solver for the first stage and MINOS 5.4 for the remaining stages
through the GAMS modeling language. In addition, AFS using Multi-ModCoAR with
the convex constraints (AFS-C) will be compared to AFS with the non-convex constraints
(AFS-NC). The test data used for the experiments are included in the Appendix.

Each problem requires an initial configuration of departments. The center of each
department, (z;,;), is placed at equal intervals around a circle of radius r = wp* + AR,
So, if there are M departments on a floor, then z; = rcosf; and y; = rsin#; where

5.1 Choosing Parameters

In this report, the choice of parameters was investigated in an attempt to find a correlation
between these values and the quality of the optimal layout. The choice of ; and the penalty
values Kyop, and Kppy, are important to the performance of the modified ModCoAR and
BPL models in both versions of the proposed three-stage method described in Section 4.3:

e Kppr, must be chosen large enough so that the method will converge to a feasible
layout.

o Kyop, is a scaling parameter and affects the position of the circles in the layout.

— A small Kop, results in a layout where the circles gather closer to the center
of the floor.
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— A large Kjop, results in a layout where the circles are pushed further against
the walls of the floor.

e The parameter «; appears in the target distances of the modified ModCoAR models
(ti;; = au(ri +7;)%), and can be viewed as a fine tuning parameter.

The effect of these parameters is illustrated in Figure 5.1 which is associated with Table

5.1.

O
5 5 Coxoxfig s
a il y B
—a | ggo
1 wEo 1 ) -

20 5 0 5 [ 5 0 15 Eil EEET] 5 [} 5 [ 15 S o 0 = & = B re

Figure 5.1: Solutions to ModCoAR for the Armour and Buffa 20-department problem.

Table 5.1: Parameters and Costs for Figure 5.1

| Figurc ” KMOD | o | Fin(é?SLtag)/gut

Left | 5% Y ¢y | 7 | 477276
1<i<j<N

Center > ey | L8| 4743.20
1<i<j<N

Right || 0.5% > ¢; |05 | 4653.63
1<i<j<N

The method for finding several good layouts in [3] consists of a two step approach.
First, Kyop and a large enough Kpgp; are chosen, then ModCoAR is run for several
values of a. The solutions are inspected and the one or two values, say &, for which a good
separation of circles are observed, are chosen. The algorithm is then executed using values
a=£0.1,0.2,...,0.5, usually resulting in several good layouts.

In the multi-floor case, different parameter values for each floor are often necessary to
provide good solutions. Due to the increased number of possible parameter combinations
it is even more desirable to have a mathematical method that can determine which penalty
values are likely to result in a good final layout. Anjos and Vannelli [3] observed that o
had a significant impact on the layouts obtained and, therefore, that the role of o should
be the subject of future research.
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5.1.1 Investigating The Choice of Parameters K);op and «

The aim of the ModCoAR model is for D;; ~ T;; at optimality. My hypothesis was that
a good approach for choosing parameters would be to choose Kgpy, large enough, and to
adjust Kyop and « in such a way that the average of D;;/T;; would be approximately 1
at optimality in hopes of discovering a correlation between T;; and the quality of the final
solution. More precisely, the goal was to be able to adjust the parameters in such a way

that, on average, D;; ~ T};, say for parameter values & and Krop, and then execute the
code for the values a = a4+ 0.1,0.2,...,0.5.

Although this method may find good layouts, having the average of D,;/T;; approxi-
mately equal to 1 does not appear to be correlated to the best solutions. In fact, often
the best solutions are found far away from this point, demonstrating how difficult the
multi-floor layout problem really is.

The results obtained using the Armour and Buffa 20-department problem and the 15-
department and 3-floor problem were recorded for several values of Kj;op. In particular,
for each Kjyop, the results for every value of alpha between 0.5 and 10 in intervals of
0.1 were recorded. They clearly show that there seems to be no correlation between the
generalized target distances and optimal costs. Figure 5.2 illustrates the best solution I
found for the Armour and Buffa 20-department problem with aspect ratio constraints of
3.0. Here, « = 8.0 and Kyop = 3 * Zl§i<j§N ¢;j. The average of ?—j is 10.46 > 1 and it
can be seen that the circles are not well separated.
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Figure 5.2: Results of ModCoAR and BPL for the lowest cost solution found.

Table 5.2 displays only some of the results obtained where it can be seen that often
the best solutions are found far away from the point at which D;; ~ T;; on average. The
results in the table are ordered by the average of D;;/T;;, from largest to smallest, so that it
can also be seen that as the average of D;;/T;; decreases, the total cost does not necessary
decrease as well.
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Table 5.2: Generalized Target Distances vs. Total Costs: Armour and Buffa 20-Department
Problem

Average of
B; Kyop Kppr « Dy /Ti; | Lot al Cost
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5.2 Slack Space

The purpose of this section is to investigate the impact of the amount of slack space on
the quality of the solution. In particular, would even a small amount of slack increase the
quality of the final solution?

To investigate this, I again used the Armour and Buffa 20-department problem, in which
there is no slack space to begin with, and varied the amount of slack by expanding and
contracting the area of the floor. Some results are given in Tables 5.3 and 5.4. The entries of
the table are the costs of the final layout and the columns, labeled 30/20, for example, mean
that the facility has a height of 30 and a width of 20. In Table 5.3, Kgpr, = (21§i<j§N cij)?,
Kuyop = 10 % Zl§i<j§N cij, and there are no aspect ratio constraints. In Table 5.4,
Kpp; = (Zlgiq‘gN cij)?’, Kyop = Z1§i<j§N c;j, and the aspect ratio constraint for each
department is set to allow for a ratio less than or equal to 3.00. In both tables, the heights
and widths of each department are bounded below by 2.

In general, it can be seen that the more slack there is, the more likely it is that the
solver will find a feasible solution. It is also clear that there is a relationship between the
amount of slack space and the layout cost. With more slack space, even though the solver
sometimes yields solutions that are much worse, often it does yield better solutions. For

40



example, in Tables 5.3 and 5.4, the lowest cost solution for each (highlighted in bold) are
in the last column, meaning that they were found when there was the greatest amount of
slack space.

Table 5.3: Investigating Slack Space on Quality of Solution (no aspect ratio constraints)

a || 30/20 ] 30.1/20 ] 30/20.1] 30.1/20.1 | 30.1/20.2 | 30.2/20.1 | 30/21 | 31/21
1 - - - - - 5207.33 - 4240.29
15 || 4524.04 | - | 5520.07 - 444069 | 6005.1 | 4924.23 | 5023.78
2 = [ 540357 | - 5247.08 | 54838.05 | 4981.41 | 4193.11 | 4720.79
25 | 5199.54 | 4978.23 | 5102.46 - 5055.52 | 5616.95 | 4878.7 | 4365.88
3 - 5238.6 | 4887.29 - 1621.24 | 500243 | 4625.01 | 3755.83
35 - - - A864.42 | 472143 | 4528.89 | 5292.97 | 4458.93
4 | 50988 = [ 5145.08 - 4199.08 | 492342 | 4369.46 | 4336.86
15 - — [ 523837 - A714.07 | 4252.66 | 4033.56 | 4483.48
5 - - | 5468.63 - 5465.58 | 5137.25 | 4280.07 | 5151.61
[slack | 0 | 2 | 3 | 500 | 802 | 702 | 30 | 51

Table 5.4: Investigating Slack Space on Quality of Solution (aspect ratio constraints of 3.0)

a 30/20 [30.1/20 | 30/20.1 | 30.1/20.1 | 30.1/20.2 [ 30.2/20.1 | 30/21 | 31/21
1 - - - - 4677.23 | 4677.23 | 4902.85 | 4290.77
1.8 || 4743196 [ - - - 4559.69 | 4559.69 | 4884.44 | 4850.74
1.5 - - - - 4663.04 | 4663.04 | 5326.51 | 4282.7
2 - - 4829.83 - - - 4966.86 | 4583.9
2.5 - - - - 5427.67 | 5427.67 | 5202.12 | 4607.42
4 - - 5391.84 - 5092.3 | 5092.3 | 5172.92 [ 5007.43
5.1 | 5585.781 - 4283.31 - - - 4470.69 | 5128.82
52 [ 5007.864 | - - 4998.45 | 4735.8 | 4735.8 | 4297.3 [ 4472.14
4.2 [ 5019.872 - 4995.01 | 5639.81 - - 4735.48 | 5241.47
|slack| 0 [ 2 [ 3 | 500 [ 802 | 702 | 30 | 51

5.3 Case of a Narrow Facility

When the shape of the facility is narrow, it can occur that the circles are too large to fit
in the narrow facility causing the solution of ModCoAR (or of the modified ModCoAR
models) to be infeasible. In this case, it is possible to scale all of the radii by the same
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amount so that the circles fit within the facility and a reasonable layout can be obtained.
This is illustrated in Figures 5.3 and 5.4. The figures illustrate the layout of one floor of
the 15-department and 3-floor problem solved using the proposed AFS-NC method. The
data for this problem is given in Appendix A.2.

Figure 5.3: Infeasible solution of Multi-ModCoAR before scaling radii.

2
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Figure 5.4: Solution of Multi-ModCoAR after radii is scaled by 0.8.

It is also sometimes helpful to scale the radii even when the solution is not infeasible,
but the circles are too large for the narrowness of the facility.

5.4 Test Problem 1: 15-Departments and 3-Floors

The first test problem is a 15-department and 3-floor problem used in [5] to demonstrate
MULTIPLE. It includes 6 potential lift locations that, from my understanding, are located
on the perimeter of the floor and do not take up space. Department 15 is the receiv-
ing /shipping department and is thus fixed to the first floor as a 5 X 5 square in the bottom
right hand corner. Also, because of the method used by MULTIPLE, a range of areas are
allowed and the departments are not necessarily rectangular in shape. The final layout
cost determined by MULTIPLE is $125,822.50 with compression and without any shape
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Figure 5.5: Final layout obtained by MULTIPLE. The figure comes from [5].

constraints and is shown in Figure 5.5. This layout was found in 37.9 seconds. With shape
constraints and further restrictions, the cost increases.

In order to be able to compare my results with theirs in the best way possible, I
determined the areas of each department from MULTIPLE’s final layout. To do this, the
final layout for each floor shown in Figure 5.5 was divided into a grid of unit squares. The
area of a new rectangular department is precisely the number of unit squares occupied by
the irregularly shaped department. The exact problem data used is given Appendix A.2.

5.4.1 Application of FBF to Test Problem 1

In order to be able to apply FBF, I first considered the case where only one elevator location
is permitted. This location is fixed to the center of the floor and it is assumed that the
elevator does not take up space, even though it can easily be made to do so. With the
exception of the elevators, the specific data for this 15-department and 3-floor problem is
the same as the data given in Appendix A.2.

As is the case for FBF, the layout of each floor [ was solved independently. The param-
eters Kjop, and oy were varied to find a reasonable separation of circles in ModCoAR_,
following the method described in Section 5.1. Table 5.5 summarizes the best results of
20 different layouts, including the largest aspect ratios found on each floor, the cost of the
final layout on each floor, the vertical cost, the total cost of the final layout, and also the
running time over all floors. It is possible to find lower cost solutions more easily if the
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aspect ratio constraints are relaxed, but they were kept low to ensure realistically shaped
departments. Note that the running time that is recorded is the running time for one run of
the FBF code and does not take into consideration the time taken to tune the parameters
before arriving at the combination of parameters that yields the solution.

Table 5.5: Results of FBF on Test Problem 1

Largest Aspect Ratios Cost Cost Cost Vertical Total Running
(Floorl, Floor2, Floor3) Floor 1 Floor 2 Floor 3 Cost Cost Time (sec)

3.56, 3.00, 4.17 995891 15226.24 9736.50 86250 121,171.65  4.381
3.13, 3.00, 4.17  7270.63 15226.24 9736.50 86250 118,483.37  4.459
3.13, 3.00, 3.55 7270.63  15226.24 13939.16 86250 122,686.02  4.480
2.50, 3.00, 3.55  10413.64 15226.24 13939.16 86250 125,829.03  4.353

Figure 5.6, illustrates one of the final layouts obtained. It can be seen that the proposed
three-stage multi-floor method found a low cost layout with realistic department shapes.
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3 3
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Second Floor First Floor

TOTALCOST= 125,374.30

Figure 5.6: Final layout obtained by FBF.

5.4.2 Application of AFS to Test Problem 1

The same problem data was used, again with the exception that only one elevator location
is permitted, so that the AFS and FBF methods can be compared. Note that since there
is only one elevator location, there is no need to distinguish between AFS-C and AFS-NC.

The proposed AFS method was tested on this data for 20 different combinations of
parameter values. Slightly larger aspect ratio constraints were used than in Section 5.4.1
in order to be able to find a few more feasible solutions in 20 trials. One reason for this
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is that the method for choosing parameters as described in Section 5.1 works differently
when the layout of all floors are solved simultaneously because changing the parameters
on one floor affects the layout of all floors. The feasible results of these trials are displayed
in Table 5.6 and one of these layouts is illustrated in Figure 5.7.

Table 5.6: Results of AFS on Test Problem 1

Largest Aspect Ratios Cost Cost Cost Vertical Total Running
(Floorl, Floor2, Floor3) Floor 1 Floor 2 Floor 3 Cost Cost Time (sec)

2.92,5.2,6.81 10341.97 15680.99 9033.54 86250 121,306.50  0.523
5.12, 4.35, 4.6 11233.70 14168.26 13452.38 86250 125,104.35  0.569
5.12, 452, 6.01  11233.70 14235.26 14494.89 86250 126,213.86  0.552
5.64, 5.66, 4.33  13670.40 15586.55 15400.68 86250 130,907.63  0.516

5 T 2 1+ 5
15
14 [ ] ol w0 9 ok 7 u 13
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Figure 5.7: Final Layout using AFS with a cost of 125,104.35.

5.4.3 Application of AFS to Test Problem 1- AFS-C vs. AFS-NC

This section compares the proposed AFS-C and AFS-NC methods. Both methods were
tested on this 15-department and 3-floor problem (with all 6 elevators) using tight aspect
ratio constraints. First, Kgpr,, Kyop,, and a; were chosen in such a way that a reasonable
solution to Multi-ModCoAR was achieved. Then «; was increased and decreased by the
same increments for both methods to find 30 different layouts. Table 5.7 displays the
number of feasible solutions of the 30 trials and also the lowest cost found for each version.

The 4 lowest cost solutions for each method of the 30 trials are given in Tables 5.8
and 5.9. It can be seen that both methods find good solutions without much difference in
computational times.
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Table 5.7: AFS-C vs. AFS-NC

AFS-C AFS-NC
oo Cotrae | ot Soluons Loyt Cost g pwes, o || 08 Selutions Loyt Gt ooy o
9,9, 3 126,936.07 0.929 12 133,181.78 0.930
6,6,6 5 129,866.20 0.908 2 129,393.76 0.912
8,8,8 12 126,754.52 0.926 13 123,501.51 0.870
Table 5.8: Results: AFS-C
T oo B, Total Cost e
2.66,8.00,4.32 126,754.52 0.926
3.14,4.26,4.32 126,936.07 0.929
7.14,7.15,4.32 128,982.77 0.934
3.14,5.83,4.32 129,866.20  0.908
Table 5.9: Results: AFS-NC
(Floorr: Pl Floory)  Total Cost  pind ()
7.06,4.42,5.76 123,501.53 0.870
8.00,7.05,4.32 124,763.39 0.869
7.14,4.63,3.54 125,269.47 0.848
5.60,8.00,7.26 125,423.63 0.876

5.4.4 Comparing Proposed Methods to MFFLPE

Goetschalckx et al. [10] also use the 15 department, 3 floor, and 6 elevator problem to
test their mathematical-programming method, MFFLPE, summarized in Section 2.1.4 of
the literature review. They converted the irregularly shaped departments of the problem
into rectangular departments of the same area using one of the final layouts obtained from
MULTIPLE in [5]. Using their algorithm, they were able to find a “distance score” of
121,419 in a time of 3,911 seconds.

However, there are a few issues with this. First of all, it is not clear what is meant by
a “distance score”. Also, their algorithm requires the length of the long and short sides of
the departments as input parameters rather than variables. In addition, it is clear from
their final layout shown in Figure 5.8 that department 15 is not fixed to the first floor as
it should be.

I tested the proposed methods of this report using the same data that Goetschalckx
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ME1ET | f BorerI5F3. FixedElovators layout:2

Figure 5.8: The optimal floor layout obtained by Goetschalckx et al. [10]. The figure was taken
from [10].

et al. used in [10]. The data is the same as in Section A.2 of the Appendix except that
department 15 is not fixed to the first floor and the areas are as given in Table 5.10.

Table 5.10: Fixed Area of Departments
Department | 1 21314 5 6 7 8191101111213 |14 ]| 15

Area 15110 (971102525 |15|9(25]10|15] 6 |19|25

First, FBF was applied to this data. In this case, it is assumed that there is only one
elevator location in the center of the floor. The largest aspect ratio in their results is 2.94.
So, the aspect ratio constraints for each department in this experiment were set to allow
for ratios less than or equal to 2.94. The final layout is illustrated in Figure 5.9 with a
total cost of 106,830.08 and a total running time of 4.534 seconds.
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TOTALCOST= 106,830.8

Figure 5.9: The final layout obtained from FBF.

AFS-NC and AFS-C were also applied to this problem, taking all 6 elevators into con-
sideration. The aspect ratio constraints were relaxed since it is more difficult to choose
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parameters that will yield a feasible solution when the layout of all floors are solved simul-
taneously. This is partly because changing a parameter on one floor affects the layout of
the other floors as well. Another factor could be the multiple penalty terms in the objective
function. AFS-NC obtained a layout with a cost of 111,985.07 in 0.893 seconds and with
aspect ratios of 4.00, 3.04, and 3.86. AFS-C obtained a layout with a cost of 113,803.39 in
0.950 seconds and with aspect ratios of 4.00, 2.58, and 3.10.

From these results, it is clear that the proposed three-stage multi-floor method yields
good solutions and with small running times.

5.4.5 Comparison of Results for Test Problem 1

Although the results of the proposed three-stage multi-floor method cannot be compared
directly to the final solution obtained by MULTIPLE because of differences in assumptions
and in the solution method, it is clear that FBF, AFS-C, and AFS-NC are able to find
low cost layouts with realistically shaped departments. MULTIPLE arrived at the solution
illustrated in Figure 5.5 in 37.9 seconds. All versions of the proposed method of this report
find several high-quality layouts with running times of at most a few seconds. In particular,
the AFS-C and AFS-NC methods find solutions to this problem in a running time of less
than 1 second. One must keep in mind, however, that the time that is recorded here is
the running time for one run of the FBF, AFS-C, or AFS-NC code and does not take into
consideration the time taken to tune the parameters before arriving at the combination of
parameters that yields the solution. Since, on average, only a few parameter combinations
need to be tested before arriving at a solution, the proposed method can find solutions in
a short amount of time. Of course this depends on the tightness of the constraints used.

It is clear that both the FBF and AFS methods can provide good quality solutions in a
short amount of time. Although FBF has the disadvantage of allowing for only one elevator
location, and it has slightly larger running times, often a high-quality layout can be found
in a more systematic way. This is because the layout of each floor is solved independently,
so if the user finds that the layout on only one floor is not desirable, for example, the
parameters for that floor can be changed without affecting the layout of the other floors.

Both the AFS-C and AFS-NC methods find good solutions without much difference in
running times. From the results of Section 5.4.3, it may seem that AFS-NC yields lower
cost solutions in general and that AFS-C finds lower cost solutions with lower aspect ratio
constraints. However, this may not be the case because these results were highly dependent
on the parameters chosen for the particular experiment. It is likely that changing the
parameters will find other high-quality solutions.
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5.5 Test Problem 2: 40-Departments and 4-Floors

The second data set used is a 40-department, 4-floor, and 3-elevator problem found in [21].
This test problem was designed for methods using grids and spacefilling curves, which is not
the case in the proposed method of this report. The grid size is 4.0 square distance units
and I interpreted this to mean that each grid square of the floor is of size 2 x 2. There are
26 squares on the grid for each floor, implying a total area of 4 x 26 = 104 square distance
units. The inter-floor distance is 2.5 units and it seems as though department 40 is fixed
to the first floor as an irregularly shaped department. This is illustrated in Figure 5.10.

There are several issues in comparing my results to the other methods in the literature
that also used this test data, explaining why the costs I obtain in my results are much
lower than the costs of the others methods. It is my opinion that they cannot be compared
directly. I fixed department 40 to the first floor, but I could not fix it in the same irregular
shape as can be seen in Figure 5.10. In addition, the shape of the floor itself is irregular,
but I assumed that it was a square floor of the same area. Since the grid size is 4.0 and the
shape of each department must follow the shape of the grid squares, there is less flexibility
in the department shapes. The method of this report allows for rectangular shapes of any
length and width, allowing for more flexibility. The specific data used for the experiment
is given in Appendix A.3.

End End

40

S[an Staﬂ
Floor 1 B - Lift Floor 2 - 4

Figure 5.10: The spacefilling curve and fixed department locations for the 40-department
and 4-floor problem. Figure comes from [21].
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5.5.1 Application of FBF to Test Problem 2

FBF was tested on this problem for the purpose of testing its effectiveness in solving
large-scale problem instances. Since FBF can only accommodate one elevator location, the
problem data given in Appendix A.3 differs only in that there is one elevator location fixed

to the center of the floor.

Results of this experiment found a low cost layout of 14,229.03 in a time of 178.7
seconds and the largest aspect ratios for each floor were 6.50 for floor 1, 2.80 for floor 2,
2.91 for floor 3, and 3.00 for floor 4. Solving ModCoAR I for each floor accounts for most

of the time taken to solve the problem.

Figure 5.11 illustrates another layout obtained that had a cost of 14,622.53. The largest
aspect ratios for each floor were 3.31, 2.73, 3.01, 3.01 and this solution was found in a time
of 178.9 seconds.
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Figure 5.11: Layout obtained using FBF.
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5.5.2 Application of AFS to Test Problem 2- AFS-C vs. AFS-NC

AFS-C and AFS-NC are tested on this problem, including all 3 elevators. Some results
are given below in Tables 5.11 and 5.12, demonstrating that both methods are capable of
finding good solutions to large problems very quickly.

Table 5.11: Results: AFS-C

Targest Aspoct Rat . - R
(Floor, Floors. Floors) Horizontal Cost Vertical Cost Total Cost e (ae

Time (sec)
4.65, 6.50, 10.71, 11.00 9092.27 5562.50 14,654.77 2.82
4.15, 6.50, 5.90, 6.28 9369.99 5562.50 14,932.49 2.80
2.43, 5.78, 6.00, 2.69 9453.50 9562.50 15,016.00 2.73
4.50, 4.96, 5.34, 6.00 9501.68 59562.50 15,064.18 2.72

Table 5.12: Results: AFS-NC

(gﬁggfft gf;ff;igt ?1?;;’;) Horizontal Cost Vertical Cost Total Cost T%I‘;r;“gggc)
4.68, 2.77, 4.00, 5.00 8975.10 5562.50 14,537.60 2.68
4.48, 4.39, 4.00, 4.00 8959.16 5562.50 14,521.66 2.68
2.74, 3.61, 6.00, 3.69 8815.29 5562.50 14,377.79 2.66
3.47, 7.02, 6.38, 4.84 9633.63 5562.50 15,196.13 2.66

Note that choosing the initial configuration of departments (specifically for this data)
using the method given in Chapter 5 results in the Multi-ModCoAR method being badly
scaled for some choices of parameters. However, both AFS-C and AFS-NC are still able
to find solutions, showing the strength of the methods. To avoid this problem, changes
were made to the initial configuration by randomly changing the position of some circles.
The initial configuration and the specifics of the problem data are given in Appendix
A.3. To avoid the problem of scaling for the application of the AFS-C method, the initial
configuration was scaled by 0.3.

5.5.3 Comparison of Results for Test Problem 2

It is clear that each version of the proposed three-stage multi-floor method is capable of
finding good layouts even for large problems. Also, both AFS-C and AFS-NC arrive at
a solution in only a few seconds compared to the 200 seconds it takes FBF to arrive at
a solution using the same problem data, except with only one elevator location. It seems
that the difference in running time is due to the formulation of the objective function of
ModCoAR._I versus the objective function of Multi-ModCoAR.
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5.6 Summary of Computational Experiments

First, the choice of parameters was investigated and although the aim of the ModCoAR
model is for D;; ~ T;; at optimality, there seems to be no correlation between T;; and
the quality of the final solution. However, the method for choosing parameters by Anjos
and Vannelli [3] presented in Section 5.1 resulted in many good layouts for the above
computational experiments.

It was seen that scaling the radii of the circles in the ModCoAR and the modified
ModCoAR models helps to achieve a reasonable layout of circles in the case of a narrow
facility.

The effect of slack space on the quality of the solution was also investigated. In general,
the more slack there is, the more likely it is that the solver will find a feasible solution. It
is also clear that there is a relationship between the amount of slack space and the layout
cost; increasing the slack space often does yield better solutions.

From these test problems, it is clear that both the FBF and AFS methods can provide
good quality solutions in a short amount of time. FBF has the disadvantage of allowing
for only one elevator location since the layout of the floors are solved independently of
one another. It also has larger running times than the AFS methods, but it seems that
this is due to the formulation of the objective function of ModCoAR _[ versus the objective
function of Multi-ModCoAR. On the other hand, FBF has the advantage of allowing the
user to find a desirable layout in a more systematic way, often making it easier to find low
cost solutions with low aspect ratios.

The AFS methods, AFS-C and AFS-NC, solve the layout of all floors simultancously
and so have the advantage of allowing for multiple elevator locations. By adjusting the
parameters o, Kyop,, Kppr,, the initial configuration, and aspect ratio constraints, both
AFS-C and AFS-NC yield good results and there is not much difference in running times.
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Chapter 6

Conclusions and Future Research

In this report, a three-stage multi-floor layout method using mathematical-programming
techniques was presented that provides good solutions to the multi-floor facility layout
problem. The first stage is a linear mixed-integer program that assigns departments to
floors such that the total of the departmental interaction costs between floors is minimized.
Subsequent stages find a locally optimal layout for cach floor.

Two versions of this method were presented in detail. The first, FBF, solves the lay-
out of each floor independently of the other floors and thus, allows for only one elevator
location. The second version, AFS, solves the layouts of all floors simultaneously, allowing
for multiple elevator locations. These versions were implemented, tested, and compared
to each other and to existing results in the literature through computational experiments.
From the results of the experiments, it is clear that both versions can provide high-quality
solutions to the multi-floor layout problem even for large problem instances.

Not only does the proposed method achieve very good results, but it also overcomes
some limitations that are present in previous methods. For example, departments are not
split across floors, multiple elevator locations are allowed with the AFS version, and the
running times are small. The method can find several very good layouts for the same
problem in a short time by simply changing the parameters o;, Kyop,, and Kgpr, as
opposed to other methods that find only one optimal layout. Low cost layouts with realistic
department shapes can be found by controlling the aspect ratio of each department through
constraints.

It is clear that the initial configuration of departments, and the parameters oy, Kyop,,
and Kppr, have a large impact on the quality of the final solution. It is fairly easy to find
a combination of these values that yield good solutions, but it is not clear ahead of time
which combination it will be. The choice of these values could be the subject of future
research. Future work could also involve constructing a single-stage method that assigns
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departments to floors and optimizes the layout on each floor using the same underlying
concepts of the proposed method of this report. Lastly, to find the closest elevator for each
department in the Multi-BPL model, the “min” function was used, which is believed to be
problematic. No problems were noticed in the computational experiments of this report,
but replacing this function could be the subject of future research.
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Appendix A

Test Data for Computational
Experiments

A.1 Data for the Armour and Buffa 20-Department
Problem

e The height of the facility is 30 and the width is 20.

Table A.1: Initial Configuration for Armour and Buffa 20-Department Problem

Department Center Department Center
1 (155.12000000, 0.00000000) 11 (44.13591924,148.70855736)
2 (153.84646694,19.83630532) 12 (24.75713572,53.13163824)
3 (150.04677915,39.34689906) 13 (4.97184071,155.04030186)
4 (143.78332740,58.21141780) 14 (14.89509178,154.40320800)
5 (135.15895738,76.12010667) 15 (-34.51744728,151.23081774)
6 (124.31528102,92.77890549) 16 (-53.57302724,145.57522163)
7 (111.43035119,107.91427725) 17 (-71.74893958,137.52928440)
8 (96.71573806,121.27769956) 18 (-88.74673632,127.22512013)
9 (80.41305520,132.64974540) 19 (-104.28731410,114.83192291)
10 (62.78999219,141.84368608) 20 (-118.11549706,100.55318868)
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Table A.2: Costs for Armour and Buffa 20-Department Problem

1213 4|56 7|8 ]9 (10[1112]13| 14 |15] 16 | 17 |18] 19 | 20
1101812, 0 |0]0] 0| 0 ]O0f{04112 0012000 0 | 0 |0] 0O
211.8] 0 ]0.9624.450.78 0 13.95 0 [1.200.35 0 (O[O | O |O| O | O | 0 [6.90] O
3(1.21096| 0 | 0 | 022y 0 | O [3.15390 0 [ O | O 13.05 O | O | O | O [13.65 O
410 2445 0 | 0 [1.085.707.50| O 234 0|0 140 O O [ O] O | O [1.5015.75 O
5001078 0 [1.08] 0| 0 (2.25]1.35| 0 1.560 O (O[O | O 135 O | O | O | O | O
6/ 0| 0 221570 0] 0(6.15] 0 OO |04 O] O |O| O | O |L.O5 O | O
71 0 13.95 0 |7.50[2.256.15 0 [24.000 0 1.8 0 [ O | 0 [0.96| O | O | O [1.65 O [3.75
80} 0] 0] 01350240, 0 |O|OJO]0O6O0 O O 0| O |O0/|7.508345
9/ 0 [1.20{3.15(2.34| 0|0 O | O JO|O|JO[O|O|750]0| 0 |7500| 0| O
101.041.35|3.90| 0 [1.56 0 {1.87| O | O | 0 0.3612.00 0 [18.61.92 O | O | O [5.25] O
1mM.12 o 0L O JO[O] O] 0 ]0P36 0225 0(3.000.9622.500 0 0| 0 | O
120 0 | 0 |1.400 0 045 0 | O | 0 12.02.25 0 | 0 | O [1.65 O [15.000 O [8.40| O
300000100 1(0600[0]0]O0]O0]|8001.046.000 0 (0] 0] 0
141.200 0 [13.05 0 | 0 | 0 [{0.96| O |7.5018.63.000 0 8.000 O .75 0 | O 090 0 | O
5000 0] 0] 01350 0] 0|0 [1.920.961.651.049.75| 0 | 0 [525/ 0| 0 | O
60 0| 0] 0010 O0]0/|0]0R2501600 0/ 0] 0 [1200001] 0| 0O
1700100010010 ({500]0({500]| 0 p.2512.00 0 [0 |7.50] 0
180 0| 0 |1.50 0 1.05(1.65( O | O[O[O]O0O]O0{0900] O] O |O01]465] 0
19 0 [6.90[13.6515.75 0 | O | O [7.501 O .25 0 840 O | O | O | O |7.504.65 0 | O
2001 0 [ O L O 0|0 (37B3450(0(0|0]0OLO0]0O] 0| O0]0] 0O
Table A.3: Fixed Area of Departments for Armour and Buffa 20-Department Problem

Department | 1 | 2 | 3 |4 | 5|6 [7|8[9]|10]|11]12]13|14|15]16 |17 |18 |19 |20
Area 27|18 |27 |18 | 18 |18 19| 9 24160 |42 | 18 |24 |27 | 75| 64 | 41 | 27 | 45
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A.2 Data for 15-Department and 3-Floor Problem

There are 15 departments and 3 floors.

There are 6 elevator locations. They are located at (-7.5,0), (-2.5,2.5), (2.5,2.5),
(7.5,0), (2.5,-2.5), and (-2.5,-2.5).

Department 15 is the receiving/shipping department and is thus fixed to the first
floor as a 5 x 5 square in the bottom right hand corner.

Departments are assumed to be rectangular.

The initial configuration of departments for floor number [ were determined from the
formulas z; = rcos#;, y; = rsinf;, where r = wgp* + h2* and 0; = 27 (i — 1)/M,
and M is the number of departments on floor [.

The maximum area for each floor is 75 where wi** = 15 and A" = 5.
The distance between any two adjacent floors is 10.

The radii is scaled by .8 (narrow facility).

Table A.4: Vertical Cost for 15-Department and 3-Floor Problem
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Table A.5: Flow Matrix for 15-Department and 3-Floor Problem
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Table A.6: Horizontal Costs for 15-Department and 3-Floor Problem

15
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

0

14

13

12

11

10

10
11

12
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1510.25(0.25]0.25]0.25|0.25|0.25{0.25|0.25]0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25
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Table A.7: Fixed Area of Departments for 15-Department and 3-Floor Problem

Department

1

2

31415

6

71819

10

11 (12 | 13

14

15

Area

12

7

6158

27

26 | 16 | 22

22

10114 | 6

18

25

A.3 Data for 40-Department and 4-Floor Problem

There are 40 departments and 4 floors.

There are 3 elevators locations given by (—+/26,0), (0,v/26), and (1/26,0).

H

The distance between adjacent floors is 25 distance units.

=1 and ¢j =5 for all i # j.

The area of each floor is 104.

Department 40 is fixed to the first floor.

Table A.8: Flow Data for 40-Department and 4-Floor Problem
Beeme: | Flow [ oot | Flow || deswtimm: | Flow || igmtimns: | Flow

1—3 66.25 5—15 10 16—17 10 32—33 25
1—-5 101.25 5—23 6 17—13 ) 33—34 25
1—9 40 5—34 25 18—19 ) 34—2 12.5
1—12 4 6—11 20 19—3 5) 36—37 10
1—30 25 6—23 12 20—21 15 37—32 25
1—36 12.5 6—29 17.5 21—22 15 38—39 25
1—38 10 7—24 15 22—23 | 7.5 39—33 25
2—40 23.75 8—2 17.5 23—8 7.5 40—1 | 1495
3—4 70 8—40 15 24—25 | 7.5 40—7 7.5
4—10 40 9—10 40 25—22 | 7.5 40—16 4
4—14 5) 10—11 16 26—27 | 175 40—18 4
4—25 7.5 11—-2 16 27—28 | 8.75 40—20 6
4—28 17.5 12—13 2 28—29 | 8.75 40—26 7
4—33 25 13—14 10 29—8 8.75
5—6 78.75 14—15 5 30—31 12.5
5b—11 40 15—2 4 31—32 | 125
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Table A.9: Initial Configuration for 40-Department and 4-Floor Problem

Department Center Department Center
1 ( 10.000000 ,0.000000) 21 ( -10.000000, 0.000000 )
2 (1 9.876883, 1.564345 ) 22 (-9.876883, -1.564345 )
3 (19.510565, 3.090170 ) 23 ( -9.510565, -3.090170 )
4 ( 8.910065, 4.539905 ) 24 ( -8.910065, -4.539905 )
5 ( 8.090170, 5.877853 ) 25 ( -8.090170, -5.877853 )
6 ( 7.071068, 7.071068 ) 26 (-7.071068, -7.071068 )
7 ( 5.877853, 8.090170 ) 27 ( -5.877853, -8.090170 )
8 ( 4.539905, 8.910065 ) 28 (-4.539905, -8.910065 )
9 (3.090170, 9.510565 ) 29 (-3.090170, -9.510565 )
10 ( 1.564345, 9.876883 ) 30 (-1.564345, -9.876883 )
11 (' 0.000000, 10.000000 ) 31 ( -0.000000, -10.000000 )
12 (-1.564345, 9.876883 ) 32 ( 1.564345, -9.876883 )
13 (-3.090170, 9.510565 ) 33 ( 3.090170, -9.510565 )
14 (-4.539905, 8.910065 ) 34 ( 4.539905, -8.910065 )
15 (-5.877853, 8.090170 ) 35 ( 5.877853, -8.090170 )
16 (-7.071068, 7.071068 ) 36 ( 7.071068, -7.071068 )
17 (-8.090170, 5.877853 ) 37 ( 8.090170, -5.877853 )
18 ( -8.910065, 4.539905 ) 38 ( 8.910065, -4.539905 )
19 (-9.510565, 3.090170 ) 39 (19.510565, -3.090170 )
20 (-9.876883, 1.564345 ) 40 (19.876883, -1.564345 )

Table A.10: Fixed Area of Departments for 40-Department and 4-Floor Problem

Department 2 13 (4 |5 |6 |7 |8 |9 |10(11]12}13|14|15|16| 1718|1920
Area 16112112168 (8 |16|4 |16|16(4 |16|16 |8 |8 (4 |4 |4 |4

Department | 21 | 22|23 |24 | 2526 | 27|28 |29 (30|31 |32|33|34|35|36|37|38]|39]|40
Area 16|16 |8 |8 |4 (4 |8 |16|12|4 (4 |16|16|4 |4 (4 |4 |8 |4 |32

Note that in order to deal with one of the methods being badly scaled for this problem,
the initial configuration for the problem was not obtained by using the method described
in 5, rather the position of some circles were changed randomly.
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