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Abstract

Document modelling is the part of natural language processing (NLP) concerned with
the automatic discovery and extraction of abstract semantic structure within a document
or a corpus of documents. Contemporary document models are often generative statistical
models and the trend can be traced back to the seminal paper | |, which
presents Latent Dirichlet Allocation (LDA). The LDA model is an example of a latent vari-
able model in which variational inference is employed for inference of the latent variables
and estimation of model parameters. Since the publication of that paper, there has been
significant progress in development and application of variational inference methods. This
has been driven in large part by breakthroughs combining deep learning with variational
methods. In this paper, we explore the utility of applying deep variational inference meth-
ods to the task of document modeling. A good portion of our work surveys long-standing
approaches along with contemporary tools driving current innovation in this research area.
Towards the end, we present our own extension of a modern unsupervised generative model
of text data.
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Chapter 1

Introduction

In machine learning and NLP, document modeling aims to provide probabilistic models
for text corpora in order to compute parsimonious representations for documents within
a given corpus. Such representations are important since they enable automated and
scalable text processing while also facilitating other machine learning task like document
classification, text summarization, etc. Moreover, if the document model is generative, it
gives an estimate of the probability of the observed texts while simultaneously providing
a procedure for sampling synthetic texts which accord with texts seen in the training
data. Latent Dirichlet Allocation (LDA) exemplifies the approach whereby a generative
probabilistic model is defined for a corpus. The model is then trained by (approximate)
maximum likelihood in an unsupervised fashion. We shall first describe the LDA model
since it provides an useful jumping-off point for the work we present in this essay.

1.1 Latent Dirichlet Allocation

As stated in the preceding, LDA provides a generative model of text at the corpus level.
More precisely, the abstract structure inferred by LDA is the set of topics inherent in
a given document. To make sense of this statement, it is useful to think of documents
existing within a hierarchy as follows.

(1) A corpus consists of several documents, i.e., if we generate M documents from our
model, we get a corpus.



(2) A document consists of several words, i.e., if we generate N words from our model,
we get a document.

(3) Each word has a latent (or hidden) topic associated with it, i.e., if we wish to generate
N words, we must first generate N (independent) topics and each topic then generates
a word. Additionally, the topics are sampled from a finite mixture of latent topics.

Each document is treated as a bag of words but, as detailed below, our model will contain
parameters shared between documents within a corpus. The LDA model can be represented

using the graphical model in figure 1.1.

N

M

Figure 1.1: Graphical model for Latent Dirichlet Allocation.

The notation is as follows: x denotes a document, t the latent topics with ¢, being
the latent topic for word z,,, K denotes the topic proportions for document x and «, § are
model parameters. We define auxiliary variables

0= [, f]
z = [k, t]

Observe that 6 is shared across documents whereas z is defined per document. There are
two computational tasks. Firstly, we must perform inference, i.e., deduce

Pr(k,t | x;a,5) = Pr(z | x;0) = pp(z | x)

and secondly, we must estimate the model parameters . The quantity pg(z | x) is typi-
cally an intractable integral and we must perform approximate inference. To this end, we
introduce a surrogate or approximate posterior

i (z | x) = p(z | %),



where A are the variational parameters. We then have the ELBO
L(0. %) = B, [logpa(x | z) — log a(z | x) + log pa(2))

Note that the ELBO is completely generic and, in the form we have written it, consists
of three ingredients: the likelihood py(x | z), the surrogate posterior ¢\(z | x) and the
prior py(z). Moreover, we have not yet assumed anything about the forms of the var-
ious conditional distributions above (except, of course, that each of the distributions is
parametrized).

The LDA model obtains under the following assumptions.

(a) Kk ~ Dir(a);
(b) t, ~ Multi(x);
(¢) z, ~ Multi(t,; B).

Additionally, when carrying out the variational inference, LDA assumes a factorized sur-
rogate posterior
(2 [ X) = q,(k | x) - g5(t | x),

where A = [v, 4], ¢,(x | x) is Dir(v) and gs(t | x) is a product of the multinomials Multi(d,,).
These ingredients together constitute a model in which the ELBO can be computed exactly
given concrete values for # and A and the ELBO can be optimized by gradient descent since
the gradients too may be computed exactly. This provides a set of exact update equations
for computing optimal values for § and A as detailed in Appendix A of | |-
Note, however, that since 6 is the set of model parameters while ) is the set of variational
parameters, the two sets of variables must be updated in an alternating fashion rather than
simultaneously per gradient descent step.

1.2 Black-Box Document Model

As should be clear from the foregoing description of inference and estimation in the LDA
model, achieving a model in which we can perform exact updates during optimization re-
quires a series of carefully chosen assumptions about the form of the generative model itself
along with correspondent assumptions about the surrogate posterior. However, suppose
we wish to obtain a richer model for text corpora. We can retain the graphical model
which LDA respects but we may need to either choose different parametrizations (i.e.,
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different families of probability distributions) for some of the conditional distributions in
the graphical model or we might choose a richer family of distributions for our surrogate
posterior. This observation suggests a generic or “black-box" document model which obeys
the equations for the ELBO stated above but which no longer needs to accord with the
assumptions of LDA. In general, such deviations from LDA assumptions will result in an
ELBO which can no longer be computed analytically or whose gradients may not induce
closed-form update equations for gradient-based optimization (most likely both).

However, if we can design our overall model so that the ELBO is the output of a
neural network, with the implication that 6 and A are parameters of neural networks, then
gradient-based optimization of the ELLBO reduces to back-propagation. Thus, if we choose
to parametrize the probability distributions involved using neural networks, we obtain a
document model for which learning is still possible despite analytic intractability of the
objective function and its gradients. Furthermore, the latent variables can be understood
to represent an abstract parsimonious representation rather than simply topics. We shall
elaborate on this distinction in our discussion of models in the sequel.

Going back to our earlier point that a variational inference procedure is specified ex-
actly by choices of likelihood, surrogate posterior and prior, we can construct expressive
document models by parametrizing any or all of these three components using neural net-
works. We shall start exploring this idea in Chapter 4, prior to which Chapters 2 and 3
lay out the necessary tools from current literature on variational inference.



Chapter 2

Primer on Variational Inference

This chapter provides a standalone presentation of basic concepts of variational techniques
as well as some recent technical advances in variational inference. We draw heavily from
[ [ [ !

]. We recommend perusing | | for a broader survey of recent innova-
tions in VI. We shall start with a conceptual overview of what variational inference aims to
do. This discussion will lead us to the key quantity of interest in VI, namely, the ELBO. We
then derive expressions for the ELBO and its gradients. Subsequently, we explore issues
in computing the ELBO (or its gradients) exactly which provides a segue to stochastic VI.

2.1 Variational Inference Basics

We start by considering a probabilistic model with latent variables. That is, we have a
joint density
pg(Z,X) = PI‘(Z,X | 9)

over latent variables z and x. Here, 6 is the set of model parameters. We think of the
latent variables as unobserved influences on the distribution of the observations. Recall
that the joint density can be written as

po(z,x) = py(2) - po(x | 2),

where py(z) is a prior density over latent variables specified by our modeling assumptions
and py(x | z) is the likelihood also determined by assumptions. The key quantity of interest



is the posterior distribution

Po(z) - po(x | 2)

po(x)
Computing this quantity is known as inference and obviously, inference requires calcula-
tion of the marginal likelihood or evidence

n) = [ mtax)

In all but the simplest latent variable models, the evidence is an intractable integral and
exact inference is therefore infeasible. Markov Chain Monte Carlo (MCMC) algorithms
may be employed to approximate the integral. However, for large datasets, MCMC may
be impractical due to long mixing times. As well, the sequential nature of MCMC means
that we are unable to exploit modern parallel computing tools.

po(z | x) =

Variational inference provides a scalable and parallelizable alternative for inference as
follows. Suppose ¢, (z | x) is any parametrized family of conditional distributions. We can
rewrite the log-evidence

log pg(z) =log / po(z, %)

Z

g [ - 2121

Mz | x)
=1lo —pg(z,x) ~qa(z | x
—1g/qu<Z,X) oz | %)
1 po(z,x)
= log ko, {W | x)]

Recall Jensen’s Inequality for the log function
log (E[X]) = E [log(X)]
Applying this inequality to the log-evidence yields

po(z,x)
(2 | x)

> E,, |log
|22 [l 75

S

Hence, we have discovered a lower bound for the evidence. Unsurprisingly, the quantity

L0, \;x) =E, |lo
(6 %) ”{gmux)

6



is known as the Evidence Lower BOund (ELBO). Note that the ELBO is per-datapoint,
i.e., L is a function of x.

To understand the significance of the ELBO, observe that we can re-express it like so

L0, \;x) =E,, {log %]

E,, [logpe(z,x) —log gr(z | x)]

Eqg, [log (po(x) - po(z | x)) —log gx(z | x)]
[
[

Eqy [log po(x) + log pu(z | x) —log gx(z | x)]

ax

Eq, [log po(x) — (log ga(z | x) — log ps(z | x))]
=E,, [log po(x)] — Eq, [log ga(z | x) —log py(z | x)]
=log ps(x) — Ey, [log gx(z | x) — log ps(z | x)]

Recall the definition of Kullback-Leibler (KL) Divergence between distributions

KLgllpl = [ o) log f% _E, [1og ]%] _E, llog a(z) — log p(2)

Clearly, we obtain
L0, A;x) = log ps(x) — KL [ga(z | x) [[ ps(z | x)]

Hence, for given x and a given choice of model parameters 6, finding A which maximizes
L is the same thing as computing A which minimizes the KL divergence between ¢,(z |
x) and the true posterior pg(z | x). We can therefore interpret ¢, as a surrogate or
approximate posterior to the intractable true posterior. Moreover, the problem of
approximate inference in now reduced to an optimization problem (viz., finding an optimal
A) and we are free to apply whatever optimization tools we have available. Once the
optimization problem for A is solved, we obtain a distribution over latent variables given x
and 0. We call A the variational parameters of our model and variational inference
simply means approximate inference facilitated by these variational parameters. Observe
that the optimization is unconstrained; this reflects the fact that the variational parameters
are free parameters which are introduced by the modeler and which exist completely apart
from the model parameters.

The derivations above provide a general procedure for approximate inference under the
assumption that the model parameters # are known. However, in practice, we need to
perform parameter estimation, i.e., we need estimates for . Note that given values for



Algorithm 1 Coordinate Ascent for Variational Inference

Require: data x, joint distribution family py, surrogate posterior family ¢, tolerance e
Initialize model parameters 0(”) and variational parameters A(®)
for k=0,1,2,... do

AEFD «argmax L0, \; x)
A
OF+D) « argmax L£(0, \**+D;x)

0
if H [9(k+1)7 /\(k+1)] _ {9(@7 ,\(k)} || < ¢ then return %+, \(+1)

the variational parameters, we can optimize £ for #. This suggests a natural alternating
optimization procedure for £ for a given data-point x.

The above procedure amounts to coordinate ascent on £. We mention this scheme not
only because it is applied in actual use-cases of variational inference (see | |
again, for example) but it sheds some further light on what is taking place when we optimize
L. Holding 0 fixed and optimizing for A amounts to committing to a particular instance
of the generative model and then finding the best surrogate posterior which accords with
the generative process. This is the conceptual content of the fact that maximizing £ is
equivalent to minimizing the KL divergence between the true posterior and the surrogate
posterior. In the subsequent step, where we hold the variational parameters fixed but
search for an optimal 6, we have decided what surrogate posterior to use; in turn, this
determines a surrogate to the true data likelihood (viz. £(#, \*;x)) and we must find the
6 which maximizes this surrogate likelihood.

This discussion also exposes a limitation of the variational inference approach. We do
not have an objective quantification of how well the surrogate posterior approximates the
true posterior and, by extension, no quantification of how close the optimal value of the
ELBO is to the true data likelihood. Moreover, our choice of probability distributions
for the surrogate posterior biases the overall model. See | | for an
exploration of limitations of VI as it pertains to LDA. Typically, after a VI model has been
trained, domain-specific empirical metrics are computed on the test set to obtain a rough
measure of model quality. For instance, VI models for NLP tasks use perplexity on test
data. Finally, we are not restricted to using coordinate descent on £ when training. Many
of the algorithms we explore in the sequel jointly optimize for model parameters and vari-
ational parameters. Indeed, as already mentioned, we may choose whichever optimization
technique holds the most appeal for a given problem.

Before moving on, we make some remarks about terminology. The coordinate ascent
procedure just mentioned often goes under the moniker of variational EM. The vari-



ational E-step is the computation of the variational parameters while the M-step is un-
changed compared to the classical EM algorithm. The term “variational inference” loosely
refers to any method that employs approximation of intractable distributions using simpler,
parametrized ones. However, in certain contexts, the term refers specifically to computa-
tion of the variational parameters. Thus, in the coordinate ascent algorithm we outlined,
only the step which outputs values for the variational parameters may be referred to as vari-
ational inference. In this usage of the phrase, the computation of model parameters, while
an essential part of training, would not fall under the umbrella of variational inference.
We point this out to make the reader aware that some authors use “variational inference”
to mean a procedure which computes variational parameters under the assumption that
model parameters are fixed and known. Usually, such authors will present a scheme which
uses the “variational inference” algorithm as part of a larger algorithm to compute both
variational parameters and model parameters. Of course, for algorithms which simulta-
neously update variational and model parameters, this way of using the phrase does not
make much sense.

2.2 Exact Expressions for the ELBO

As we saw in the preceding section, optimizing £ amounts to joint approximate inference
and parameter estimation in the latent variable model. However, if we are to use £ as an
objective function in an optimization routine, we need to be able to evaluate £ given ap-
propriate inputs. Additionally, if our optimization is gradient-based, we require evaluation
of gradients of £ with respect to both variational parameters and model parameters. At
this point, it will be helpful to note that latent variable models typically assume tractable
sampling and evaluation of the prior py(z), the likelihood py(x | z) and the surrogate pos-
terior ¢y(z | x). As a corollary, the joint density py(z,x) is also tractable. This obviously
implies that we should try to re-express all quantities of interest solely in terms of these
densities. That is exactly what we do in the next couple of derivations.

The original expression
L0, A;x) = log ps(x) — KL [ga(z | x) [[ ps(z | x)]

which we derived for £ is clearly impractical to compute since the right-hand side con-
tains the evidence as well as the true posterior. However, we can perform an alternative



derivation

L6, \;x) =E,, [10 , Pol2.x) }

(2 | x)

E,, [logpe(z,x) —log gr(z | x)]

Eq, [log (po(2) - po(x | 2)) — log qA(z | x)]
[
[

Eq, [log pp(z) + log pp(x | z) — log gr(z | x)]
Eq, [logpe(x | z) — log ga(z | x) + log pe(z)]

Hence, we obtain an expression for £ in terms of the likelihood, the surrogate posterior
and the prior.

But we can also keep going with the above derivation

L0, X;x) =Eq, [logpy(x | z) — log g (z | x) + log py(z)]
—EqA [log py(x | z) — (logq,\(z | x) — log py(z))]
Ey, [logpo(x | 2)] — Eq, [log gr(z | x) — log py(z)]
—EqA log po(x | z)] — KL [gx(z | x) || po(2)]

Not only do we obtain another version of £ but we can take advantage of situations in which
the KL divergence admits an analytical form (e.g., if the surrogate posterior and prior are
both Gaussians). Furthermore, the above expression provides a different perspective on
what L represents. We may think of ¢, as an encoder which, given an observation x,
“compresses" the observation into a latent “code" z. Choosing a good surrogate posterior
can therefore be seen as picking an encoding engine which is able to extract a parsimonious
representation of observed data. Conversely, py can be thought of as a decoder whose job
is to “decompress" or “reconstruct" datapoints given a compressed representations of said
datapoints. With this interpretation, the first term

Eqy flog po(x | z)]

measures the expected error in reconstruction when using ¢, to encode datapoints and
using py to decompress latent codes into points in dataspace. The KL term

KL{gx(z | x) || po(2)]

which is being subtracted from the expected error is therefore a regularizer which prevents
the decoder from straying too far from the prior distribution over latent codes.

10



Finally, we can rewrite
L(0,A;x) = Ey, [logpp(x | 2) —loggx(z | x) + log py(2)]
as

L(0,X;x) =Eq, [logpe(x | z) + log po(2)] + Ey, [log gr(z | x)]
=E,, [logpo(x | z) + log pe(z)] + H [q)]
Here, H refers to the entropy
H[q] = E;[-1log ]
of a distribution.

Thus, we have exact formulas for the ELBO which we record in the box below.

L(0, X;x) =Eq, [log ps(x | z) —log x(2 | x) + log py(z)] (2.1)

L0, ;x) =Eq, [logps(x | 2)] — KL[qa(z | ) [| pa(2)]

L0, \;x) =E,, [logpe(x | z) + logpe(z)] + H [g)] (2.3)
Following | |, these formulas shall, respectively, be called the Fully Monte

Carlo (FMC) form, the KL form and the entropy form for the ELBO.

2.3 Exact Expressions for Gradients of the ELBO

As mentioned, we may require gradients of the ELBO for optimization. For our derivations
in this section, we shall follow | | and start from the equation

L0, \;x) =E,, [logpe(z,x) —loggr(z | x)]
Firstly, the gradient of £ with respect to 6 is straightforward.

Vo L(0,\;x) =VoE,, [log pe(z,x) —logqa(z | x)]
=V [Eq, [log po(2, x)] = By, [log g(z | x)]]
=V Ey, [log py(z,%)] = V4 Eq, [log gx(z | x)]

Since the term
Eq, [log gr(z | x)]

11



is independent® of 0, we have
Vo ‘6(97 /\7 X) =Vy qu [1ng9 (Z7 X)]

=V / (2 | x) - log py(2, X)

— [ Vs (asla | %) og po(z. )

z

:/mz | %) - Vg log py(2,x)

VA

=E,, [V log py(z,x)]
=E,, [Vg log (ps(x | 2) - ps(z))]
=E,, [Vo logpe(x | z) + Vg log pe(z)]

So, we obtain the gradient with respect to # in terms of the likelihood, surrogate posterior
and prior. We do an analogous calculation for the gradient with respect to \. We start by
observing that

Vi L(8, A;x) =V, E, [log ps(z, x) — log gx(z | x)]
=V [Eq, [logps(z, x)] — Eq, [log gx(z | x)]]
=V Eq, [log po(z,x)] — VA E,, [log ga(z | x)]

Now,
VA E,, [logps(z,x)]
=V /qA(Z | x) - log po(2, x)

:/VA (gr(z | x) - log po(2, x))

:/logpe(Z,X) -Vagn(z | x)

z

'We emphasize our earlier remark that the variational parameters are free parameters assumed to exist
apart from the model parameters. As is often the case, this assumption may not be borne out exactly in
practical situations.

12



On the other hand,
VAE,, [loggx(z | x)]

v, / 02 (5| %) log (s | )

:/ZvA (r(z | %) - log ga (2 | X))

:/z(qA(z %) - Va log ga(z | ) +log x(z | X) - Vo qa(z | x))
:/qu(z | %) - Vy log ga(z | x) + /Zloqu(z [ %) - Voar(z [ x)
z/qu(zIX)-%+/zlogqx(zIX)'VGQA<Z|X)

~ [ Vi@l %)+ [osan %) Von(z] %

v, / (2| %) + / log gx(% | X) - Vo r(2 | X)

V.14 /zloqu(Z %) Voa(z | x)

—0+ /zlogq,\(z | x) - Voar(z | x)

:/loqu(z | x) - Voaqu(z | x)

Therefore,
VL0, \;x)
_ / log po(2, %) - Vi (2 | X) — / log g(z | x) - Vo a2 | x)
_ / log po(2,x) - Va a2 | x) — logar(z | x) - Vo aa(z | x)
- / (log po(2. x) — log 4x(z | X)) - Vaaa(z | x)
But since
\V4 zZ | x
Vilogga(z | x) = Vaa(z] x)
o (z | x)

=Vaar(z [ x) = a\(z | x) - V) logga(z | %)
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we obtain
VL0, \;x)

=/mwmw—m%mmwmmmVﬂ%mum

/%mx<mwmw—m@mwwwmmmu»

)
o [(log py(z,x) —log gr(z | x)) - Vi log gx(z | x)]
]qu [(log ps(x | z) + log ps(z) —log qx(z | x)) - Vi log ga(z | x)]
=E,, [(logps(x | 2) —logqxr(z | x) +logpy(z)) - Vi logga(z | x)]

We record the main results in the box below.

Vo L(0,\;x) =E,, [Vo log pp(x | z) + Vg log py(2)]
Vi L(0,X;x) =Eq, [(logpe(x | z) —loggx(z | x) +logpe(z)) - Vi loggr(z | x)]

(2.4)

(2.5)
Notice that both of the expressions are “fully Monte Carlo” forms in the sense that they
are expectations against qy.

2.4 Variational Inference using Batched Data

Before proceeding, it will be helpful to introduce some notation and assumptions when
discussing training a VI model on a set of data. Note that we have restricted ourselves to
discussing the ELBO provided only a single datapoint x. This is mostly due to the fact
that the core ideas and derivations are easier to follow when only dealing with a single
observation. However, the extension to a collection of datapoints is straightforward.

Given a dataset of observations

X = {X(i)}i]\il

the variable \ collects together parameters {)\;}Y, such that \; consists of the variational
parameters associated to the i datapoint. In other words,

A=A Aoy A

14



Note that we do not assume that the \; are independent or even that they are distinct
from one another. The datapoints are assumed to be generated in an iid fashion and thus,
the marginal likelihood factorizes

po(X) = Hpe(x(i))

This implies that the log marginal likelihood is a sum
N
log py(X) = > log py(x)
i=1

where the i summand is bounded below by £(6, \;x¥). Hence, the goal during training
is to compute

N
argmax Z L6, \;xD)
i=1

9,

Going forward, we will primarily be interested in the case where there arc no global
latent variables, i.e., datapoints in X are not assumed to share latent variables?. Our
notation will therefore favor situations where each datapoint has a local (set of) latent
variable(s) associated to it. We shall use Z®) to denote a collection of the form

{Z(i’l)}lel

where, for all [ € {1,..., L}, A
200 ~ g (2 | x)

2.5 Amortized Inference and Mean-Field Inference

We now clarify some nomenclature typically found in the VI literature. Firstly, a VI model
is said to have a mean-field variational family when the surrogate posterior factorizes
as

N
qA(Z(1)7 SR Z(N) | X) - qui(z(i) | X)
=1

2This is not the same as assuming that datapoints do not have shared variational parameters since the
z(®) are samples from the surrogate posterior.
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Put differently, there are independent variational parameters associated to each latent
variable. Again, in the common case, a latent variable is local to each datapoint and so,
the above equation is equivalent to

N
a(ZD, .., 2™ | X) = qui(z(i) | x®)
=1

There is a general variational EM procedure available during training. The variational
parameters are iteratively updated using a coordinate ascent® algorithm and we refer to
| | for the coordinate update formula. Notice that we are forced to make a
pass through the entire dataset to update all of the variational parameters before we can
perform a single update of the model parameters (or even global variational parameters).
The paper | | presents a stochastic optimization method for scaling
mean-field VI to large datasets. Also, we may choose different parametric families for each
of the factors ¢y, in the surrogate posterior. Therefore, even though the true posterior is
unlikely to be contained in the mean-field variational family?, the mean-field family has
high representational capacity.

In contrast, we may amortize the cost of inference by tying or sharing parameters be-
tween variational parameters corresponding to different observations. Besides the obvious
advantage of having fewer parameters to compute, amortized inference is crucial when we
wish to train models using mini-batches of data. This opens the door to applying stochas-
tic optimization techniques which scale well, as we shall see below. Observe, however, that
amortized inference is strictly less expressive than mean-field inference. In practice, we
often achieve amortization by having the variational parameters be deterministic functions
of the weights and biases of a (fixed) neural network. Lack of representational capacity is
therefore not of great concern in many situations.

2.6 Estimating the ELBO and its Gradients

The exposition on VI provided thus far is completely general, i.e., nothing in the preceding
makes assumptions about what we are modelling and there are no restrictions on any of the

3The coordinate ascent this time is not exactly coordinate ascent on £ since £ also has @ as argument.
We are only performing coordinate ascent for a subset of £’s arguments (viz. A).

4For instance, suppose we are classifying MNIST digits by first extracting latent representation for each
image; images which have the same label are likely to have similar latent representations and therefore the
true posterior is unlikely to assign probabilities to an image completely independently of other images in
the same class.

16



Algorithm 2 Variational EM for Mean-Field Inference

Require: dataset X, joint distribution family py, surrogate posterior family gy, tolerance
€
Initialize model parameters #(°) and variational parameters \(
for s=0,1,2,... do
20 = \(s)
for £ =0,1,2,... do > Begin coordinate ascent loop for variational parameters
fori=1,2,...do
ARFD argmax SN LOW N A A A x0)

0)

7
i

D 2D A

if ||\ —X®|| < ¢ then
/\(s+1) — )\(k+1)
break > Variational inference done
6+« argmax Z;VZI L0, A1, x0)) > Update model parameters

0
if [0+ — 69| < € then return ¢+ A+

probability distributions involved. Additionally, the main formulas in the preceding section
arc only in terms of the likelihood, surrogate posterior and prior. However, they arc all
also expectations with respect to the surrogate posterior. Thus, computation of the ELBO
and/or its gradients necessitates computation of expectations. Since we have scalability
as a desideratum of our training procedure, MCMC and related quadrature algorithms
are immediately disqualified from the set of tools we may apply to this problem®. In this
section, we briefly summarize some of the techniques used to compute the ELBO when
training a model.

2.6.1 Closed-Form Calculation

The first and obvious strategy to optimize L is to find a closed-form expression for the
expectations, in which case we obtain closed-form updates for gradient-based optimization
schemes. This approach has been successfully used in many cases, such as |

5This is not entirely true; MCMC can be used for auxiliary tasks such as approximating the evi-
dence when the latent space is low-dimensional (see Appendix D in | ). How-
ever, MCMC quickly becomes impractical if, as in many practical applications, the latent space is high-
dimensional.
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| |. Unfortunately, the derivation of closed-form expressions is both
non-trivial and non-transferable. That is, such derivations require careful choice in model
construction which ultimately enable closed-form updates and the assumptions thus made
cannot be easily transposed into new contexts. Clearly, this presents a major hurdle to
quick development and experimentation when applying VI to a diversity of tasks. Given
the specialized nature of each application of closed-form training of VI models, it would
take us too far afield to explore any one of these applications in depth. We shall therefore
not explore this technique further. The interested reader is invited to consult the papers
we have just cited and the references therein.

2.6.2 Black-Box Variational Inference

Surmounting the obstacle of model-specific derivations is the motivating goal underlying
| |. The paper therefore aims to provide a generic framework for using
VI in a wide variety of contexts. Their approach is an alternative to approximating expec-
tations via numeric integration (using MCMC) as well as being an alternative to deriving
closed-form update equations. The technique we now explore relies on stochastic opti-
mization, where we optimize an objective function by constructing an unbiased estimator
for the gradient and then plugging in the estimate into a gradient descent scheme. We
shall now see how stochastic optimization enables computation of variational parameters.

Let H (6, \;x) be a random variable® such that
E[H (0, \;x)] = VL0, \;x).
We can use the update equation
AEHD () n(k)h(k)(g’ )x(k);x),

where 1*) is the step size for the (k + 1) iteration and h*®) (6, \*); x) is a realization of
H(0, \;x). This follows the classic Robbins-Monro algorithm from |

|, which also lays out conditions on the step size and the gradient estimator sufficient
to guarantee convergence to an optimum. In particular, a Robbins-Monro sequence

6The randomness in H is assumed to be independent of any randomness in (6, \;x), i.e., we have a
separate random variable H (6, A; x) for each (6, A\;x). Thus, when we take the expected value of H (0, \; x),
the expectation is with respect to the source of randomness in H (0, \; x).
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consists of learning rate schedule {n*)}2 | satisfying

A natural choice for H (6, \;x) is provided by the Monte Carlo estimate

1

L
Vi L(0,\;x) EZ (log po(x | 21) —log qa(z") | x) + log py(2")) - Vx log gx (2" | x)]
=1

where {z}F | is a set of samples from the surrogate posterior”. With this estimator for
the gradient, we obtain the black-box variational inference (BBVI) algorithm.

Algorithm 3 Black-Box Variational Inference

Require: data x, joint distribution family py, surrogate posterior family q,, tolerance e,
Robbins-Monro sequence {n*)}2  model parameters 6
Initialize variational parameters \(¥
for k=0,1,2,... do
for/{=1,...,L do
20 ~ g0 (2 | %)
AEFD - \B) _p(B) L Ez ) [(lngg(X | z20) —log qx (2" | x) + logpg(z(l))) -V log qx(z? | X)}
if || AR+ — )\(k>H < € then return A¢+1

While the BBVI algorithm is theoretically sound, it may be slow to converge in practice
since the Monte Carlo estimate for the gradients can be very noisy. Even a large number
of samples from the surrogate posterior may not be sufficient to reduce the variance by a
desirable degree; appendix D of | | gives some insight as to why. Indeed,
| | modifies the basic BBVI algorithm using Rao-Blackwellization
and control variates. However, good control variates often require injecting model-
dependent information. Note also that the BBVI algorithm only focuses on computation
of variational parameters and is agnostic to the way model parameters are updated.

"Hence, the randomness in H in this case is due to randomness in sampling from the surrogate posterior.
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2.6.3 The Reparametrization Trick

The core idea of BBVI is to express ELBO gradients as expectations and then approximat-
ing these expectations via Monte Carlo estimates. As we saw, practicality forces us to apply
additional techniques to control the variance of these estimates. The reparametrization
trick offers a different method for obtaining a lower variance estimate of ELBO gradi-
ents. In more detail, observe that the FMC form of the ELBO furnishes the Monte Carlo
estimate

L
L(0, X;x) Z log po(x | 2) —Tlog gx (2" | x) + log ps(2")]

where {z®} ~ q\(z | x). We can, of course, take the derivative of the expression on
the right-hand side with respect to both variational parameters and model parameters.
The latter is often satisfactory for model parameter updates but the former is known to
typically be a high-variance estimator for the variational parameter gradients. One possible
explanation is that the noise in the term

V) log gr (2" | x)

is influenced both by the Monte Carlo sampling process and the fact that the derivative
depends on the distribution ¢,. See | | and | | for a deeper
analysis. The reparametrization trick ameliorates this by first expressing the random
variable

z ~ q\(z | x)

as the image of a differentiable transformation

z = gy(€)

where
€ ~ r(€)

and 7(€) is a noise distribution. The classic example of reparametrization is provided by
the normal distribution. Any sample

z~N,,(z]|x)
can be written as
Z=U—+0"€
with
€ ~Noi(e)
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Figure 2.1: Visual for the reparametrization trick. Diamonds indicate deterministic nodes,
circles represent stochastic nodes. Taken from | .

The most important thing to note is that we no longer sample z¥) directly from a distribu-
tion; rather, it is the output of a deterministic mapping of a random sample € and the
distribution from which € is sampled is completely independent of .
Letting
f(z) :=logpg(x | z) —log qx(z | x) + log ps(z)

we now compute, using the same argument as in [ ],

£(6.3:x) =E,, [f(2)]
:/%@|m-ﬂ@

z

= [0 Flante)

€

=E. [f(gx(€))]

Hence, the reparametrization g, allows us to express the ELBO as an expectation against
the distribution r which is independent of variational parameters. The gradient of the
ELBO is now simply

V)\ £(97 /\; X) - v)\ Er {f(gk(e))} - Er [v)\ f(g)\(e))]

Thus, both the ELBO and its gradients can be estimated using Monte Carlo samples from
the noise distribution 7. Further intuition is provided by figure 2.1. On the left half of the
figure, we see the computation flow for when f is computed naively; on the right, we see
that the stochasticity has been “pushed oft" from z and onto e.

We may now compute variational parameters using a stochastic optimization proce-
dure where the gradients are estimated with the derivative of a reparametrized Monte
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Carlo estimate of the ELBO®. We call such an algorithm reparametrization gradient
variational inference (RGVI) and we obtain a generic variational inference procedure
assuming a reparametrization g, exists. The estimator

L
~ 1
L0, A;x) = 7 > [logpa(x | 27) —log ga(2" | x) +log po(2")] = L(6, A; x)

=1
where
Z(l) = g)\(e(l))7
eV ~ r(e)
is called the Stochastic Gradient Variational Bayes (SGVB) estimator in |

I

Algorithm 4 Reparametrization Gradient Variational Inference

Require: data x, joint distribution family pg, surrogate posterior family ¢, noise distribu-
tion r, differentiable map g,, number of samples L, tolerance &, Robbins-Monro sequence
{n®}2  model parameters
Initialize variational parameters \(¥
for k=0,1,2,... do

for(=1,...,L do

eV ~ r(e)

2 = ga()
AR ZNK) — (k) L SV [log pa(x | 2V) — log gr (2" | x) + log ps(z")]
if ||A®H) — MK < ¢ then return A+

As with BBVI, we are agnostic when it comes to model parameter updates. Addition-
ally, we are not restricted to using the Robbins-Monro scheme for stochastic optimization
but are free to apply alternative gradient-based schemes such as stochastic gradient de-
scent (SGD), AdaGrad, etc. (see | | [ | provides a survey of
gradient descent methods). Moreover, the algorithm can be easily adapted for batches of
data. Indeed, given an iid dataset X with N points and a subset (or mini-batch) X C X
of M points, the SGVB estimator can be used to construct the approximation

N
LO.XX) ~ > L0, :x")
=1

8Equivalently, we can estimate the gradient using Monte Carlo samples from 7.
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to the ELBO for the full dataset. The auto-encoding variational Bayes (AEVB)
algorithm from | | is an example of a routine which combines the
reparametrization trick, joint optimization of variational and model parameters, training
using mini-batches of data and application of modern gradient-based optimization algo-
rithms.

Algorithm 5 Auto-Encoding Variational Bayes

Require: dataset X, joint distribution family pg, surrogate posterior family ¢,, noise
distribution r, differentiable map g, number of samples L, tolerance ¢
Initialize variational parameters A(¥) and model parameters #()
for k=0,1,2,... do
Randomly sample a mini-batch X¥ = {x®1M C X
Sample €™ ~ r(e) for (i,1) € {1,...,M} x {1,..., L}
Compute z) = g, (e®™))
Compte £ — Ty [2 520, 50 A;xu»}

Use g® in a gradient-based scheme to get updated parameters *+1 \(+1)
if (9, )\) converged then return -+ \(*+1)

Naturally, the requirement that a differentiable transformation g, exist restricts the
choice of surrogate posteriors to continuous distributions. Hence, BBVI is strictly more
general than RGVI. The cost of the extra generality of BBVI is higher variance in the
gradient estimates. Lastly, we mention that the reparametrization trick can be used in
conjunction with the KL and entropy forms of the ELBO. In cases where the KL term or
the entropy term in the ELBO can be computed analytically, we only need a Monte Carlo
estimate for part of the ELBO. This may further decrease the variance of the gradient
estimates. However, this is not guaranteed to occur and the FMC form of the ELBO can
have lower variance in certain regimes. Consult | | for further details. As
we shall see in the sequel, the reparametrization trick and the innovations of the AEVB
algorithm provide a powerful framework for latent variable modeling when combined with
amortized inference and deep neural networks.
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Chapter 3

Normalizing Flows

In the preceding chapter, we elucidated variational inference (VI) as an approach to prob-
abilistic modeling. More precisely, we saw how VI supports a framework for performing
inference and parameter estimation in latent variable models (LVM). As we saw, VI en-
tails approximate inference by way of optimization of the ELBO. We then expanded on
some modern techniques for making the optimization tractable and scalable. The methods
we studied are broadly applicable and we focused on an abstract LVM problem without
getting very specific about the three core ingredients which constitute an end-to-end VI
model. These ingredients are, as already stated, the following:

(i) likelihood py(x | z),
(ii) prior pe(z),

(iii) surrogate posterior ¢,(z | x).

Any VI model used in practice requires choices for each of these and the choice of surrogate
posterior is crucial in determining how successful we will be in a given situation. When
deciding what family of surrogate posteriors to employ, we must consider not only the
representational capacity but also the computational burden implied. Generally, the more
expressive the surrogate posterior, the more difficult it is to optimize the ELBO. However,
if we restrict ourselves to simple surrogate posteriors (e.g., Gaussians), we may fail to
match propertics of the true posterior (e.g., multi-modality). In addition, note that we are
always injecting some bias through our choice of surrogate posterior and the amount of
bias induced by simple choices may be unacceptably high. Furthermore, it is well-known
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that the variance of the posterior distribution is underestimated in such cases. See |

| for details. Hence, the ideal situation would be one in which we are able
to specify flexible, complex and scalable surrogate posteriors while retaining computational
feasibility in optimization of the ELBO. Normalizing flows are intended as one tool for
achieving this goal. The purpose of this chapter is to introduce the basic technique and
then catalog a few kinds of normalizing flows found in the current literature on VI.

3.1 Transforming Distributions

In order to understand normalizing flows, we will first review some results from probability
theory. Let z be a (continuous) random variable with distribution ¢ and let f : RY — R¢
be an differentiable function with smooth inverse. Using the inverse function theorem and
rules for Jacobians of invertible functions, we may deduce that the random variable

7 = f(2)

has distribution .
of |
det =
© 0z

Given a sequence of invertible functions {fx}~_, and an initial random variable z, with
base distribution ¢q, we inductively define random variables

q(z") = q(z)

2 = [k(Zh-1)
and compute the transformed distribution of zx to be
-1

A fk

0z

det

Ik (zZK) = Qo(Zo) H

k=1

The log-density of gk is therefore

A fr

det
¢ 0Zj—1

K
log i (k) = 10g go(z0) — Y _ log
k=1

We have thus taken an initial, and possibly simple, distribution and transformed to a
perhaps more complex distribution through a sequence of bijectors {fx}5_ . The terms
base distribution, transformed distribution and bijector are used in accordance with the
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nomenclature of | |. The integer K is known as the length of the flow.
Note that each bijector can be an arbitrary differentiable and invertible function. Following
[ |, the path traversed by the random variables z; is called a
flow and the path formed by their distributions is called a normalizing flow. A visual
representation of a normalizing flow is provided in figure 3.1.

fl(Zo) fi(zi—l) fi—+—1(zi)
O, (=)

7

/’ \\
’ AN ’ ’ \
’ \ ’ \ ’ \
1 \ 1 \ 1 \
I | | 1 1 1
\ ! \ ! \ !
\ \ / \ /
\ / \ / \ 7
AN 4 N 4 N ’
\\ ’/ \\ ’/ \\ ’/
2o ~ po(2o) z; ~ pi(2;) ZK ~ PK(ZK)

Figure 3.1: Transformation of distribution through normalizing flow. Taken from |

]

We can apply a normalizing flow to VI as follows: start with a simple base distribution
(e.g., Gaussian) qp and define the surrogate posterior ¢,(z | x) to be the transformed
distribution ¢g, i.e,

(2 | x) = qx(zk)
In slightly more detail, given x, we can generate a sample from the surrogate posterior
by sampling a zy and then applying the sequence of bijectors. Note that the variational
parameters A are now determined by the parameters of the bijectors used to construct the
flow (this will become clearer when we consider some examples below). The FMC form of
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the ELBO can now be expressed as

L0, ); x) o [logpe(x | z) — log gr(z | x) + log py(z)]
o [logpe(x | z) + log pe(z) — log gx(z | x)]
—EqA [log (pe(x | z) - po(2)) — log ga(z | x)]
=Eq, [log ps(2,x) —log qA(z | x)]
=Eq, [log py(z,x)] — Eq, [log ga(z | x)]
=By [log po(zx, x)] — Eq,c [l0g qx (z)]

=E 0} VA z : 0
K [1 gpa( K’X)] E(IK log QO Z0 10g det azf—kl ]

K f
=Eq, [logps (S 00 [i(20),x)] — Eg,c |10g q0(20) :k_1 108 | det azil ]

Observe that each of the terms in the last line is of the form
Eqx [M(zr)]

where h does not depend on gx. The law of the unconscious statistician (LOTUS) can be
applied inductively to yield

]E‘JK [h(ZK)] = ]qu [h (fK ©---0 fl(zo))]

and hence,

L0, A;x) =Ky [logpo (fxc 0+ 0 fi(20),x)] — Eqc |10g qo(20) Zlog det ]
_ Of
=Eq, [logpe (fx -+ 0 fi(20),%)] — Eq, |logqo(zo) — Z log | det

1 07y, |

O fr

det
eaZk1

Z log

k=1

=Ey, [logpg (X | frx 00 fi(2z0))] + Eqg, [logpe (fx o0 fi(z0))]

K
S log] det 2 ]
k=1

=By, [log po (fx 0 -+ 0 fi(20),%)] = By [log go(20)] + By,

|

— E,, [log qo(z0)] + Eq, det

Zj—1
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The latter quantity is called the flow-based free energy bound in |

|. Notice that all expectations are against the base distribution ¢y and so,
for Monte Carlo estimates, we only require samples from the base distribution. Addition-
ally, if the reparametrization trick is available for the base distribution, we can obtain
variance-reduced gradient estimators for a gradient-based optimization scheme. However,
the flow-based bound is applicable in any VI procedure since, from a computational per-
spective, all that a normalizing flow does is to produce a new formula for the ELBO.

In choosing a flow-based surrogate posterior, the choice of surrogate posterior is reduced
to picking a base distribution and a sequence of bijectors. The base distribution is typically
just a Gaussian distribution and the main effort goes towards designing bijectors with good
properties. The usual strategy is to define a parametric family of functions for the bijectors
such that it is relatively inexpensive to compute the log-determinants

é(‘k
g‘

Zi—1

since calculation of these quantities is a key bottleneck for VI using normalizing flows. In
the sequel, we enumerate some of the normalizing flows which have been recently devised to
provide rich surrogate posteriors while maintaining reasonable computational complexity.

3.2 Planar Flow

The authors of | | introduced two simple families of bijectors
for normalizing flows. The first family consists of functions of the form

f(z) =z+uh (w'z+D)

with {u € R, w € R? b € R} being the parameters for this family and h being a specified
smooth non-linearity such as the tanh function. The choice of non-linearity determines the
conditions under which f(z) is invertible! and we only get a normalizing flow under the
constraints which imply bijectivity of f. Notice that the equation

wlz+b=0

defines a hyperplane in latent space and so, geometrically, a function f(z) as above con-
tracts and expands vectors perpendicular to this hyperplane. This is why a flow defined

IFor instance, if h is the tanh function, w”z + 1 > 0 is a sufficient condition.
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by bijectors of this form is called a planar flow. It is easy to see that

g—j; =I+u'wh'(wiz+b)
and therefore,
et I = et (L u"wh!(w's ) | = 14 u"wh' (w1 D)
Z

This implies that the log-determinant terms required in the flow-based ELBO are efficient
to compute. Finally, if we construct a sequence of bijectors {f,}5_ | with
Ak: = {Uk, Wg, bk}

parametrizing the k™ bijector, then the set of variational parameters is simply

A= {0, = {{ug, we, b} e,

3.3 Radial Flow

The second family of functions considered in | | is given by

f(z) =z + Bh(a,r)(z — 2o)
where
ri=|z -zl
1
a—+r

The set of parameters this time is {zg € R%, a € RT,8 € R}. As with planar flow,
extra conditions are needed to guarantee that f(z) is invertible. In this case, it suffices to
have a+ 3 > 0. Geometrically, f applies a contraction or expansion to vectors in a sphere

around the reference point z,. This justifies the name radial flow. The log-determinant
is inexpensive for a radial flow since it can be shown that

et 91 = (14 Bh(a, ) [L+ B, ) + B (o, ]

For VI with a radial flow of length K, the variational parameters are
X = {{Zo, o, B}ty

Figure 3.2 shows how planar and radial flows transform two kinds of standard base distri-
butions.

h(a,r) =
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Figure 3.2: Effect of planar and radial flows on unit Gaussian base distribution and uniform
base distribution. Taken from [Rezende and Mohamed, 2015].

3.4 Autoregressive Flow

Given a distribution ¢(z), we can use the chain rule to obtain the factorization

q(z) = HQ(%’ | Z1.i-1)

where each of the factors is a one-dimensional conditional distribution. We can use this
factorization to estimate a complex joint density ¢(z) by choosing a parametric family of
distributions for the conditionals q(z; | z1.;,—1). This strategy is known as autoregressive
density estimation. As pointed out in [Papamakarios et al., 2017], the ordering of the
variables influences the overall model and an unfortunate ch01ce of ordering can produce
very poor estimates for the joint distribution.

It is observed in both [[Kingma et al., 2016] and [Papamakarios et al., 2017] that certain
kinds of autoregressive models can be viewed within the framework of normalizing flows.
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Consider the model where, for each i € {1,...,d},

q(zi | Z1:1) ::N,ui,ai(z’i)a
Mg ::f/ﬁi(zlli—l)a
o; :=exp(w;),
i = fo,(Z1:-1)
Here, f,, and f,, are parametrized functions. Following | | and | |,
we shall refer to the above as the conditional-Gaussian autoregressive model and

{is, a; 4, is known as the set of scale-and-shift statistics. Applying the usual scale-
and-shift for Gaussians, we see that a sample from ¢(z; | z1;—1) can be generated using

Zi = + w04,

and therefore, we have that
z=f(u):=p+(uo0o)=p+(uecxp(a))

with u ~ A(0,I) and ® being element-wise multiplication (i.e., Hadamard product). Note
that f has inverse
9(z) = (z2—p) 0o = (z— p) Oexp(—a)
where © indicates element-wise division. Hence, we see that z can be interpreted as being
a sample from a transformed distribution such that the base distribution is a standard
multivariate normal and the bijector is defined using the set of functions {{f,, fa; } 1%,
Observe that the equation
Zi — Hi
0i

U; =

hold for all i € {1,...,d} and, indeed, we could also have defined the autoregressive model
using
Q(Zi | Z1;1:—1) 12/\/,1,,;,@(21‘)7
e ::fui(ulzifl)a
o; = exp(qy),
@ = fo, (U1:-1)
That is, we can either compute the scale-and-shift statistics by regressing on latent variable

components or by regressing on noise variable components. In both cases, we obtain an
invertible map between u and z.
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The two different ways of defining an autoregressive model will become important
when we study autoregressive flows. The most salient point is that an autoregressive
model as above can be interpreted as implementing a normalizing flow of length 1. Thus,
we can stack a sequence of autoregressive models together to construct a more complex
normalizing flow. Furthermore, we can re-order the components of z in each bijector to
ameliorate issues with choice of permutation of coordinates. Additionally, even though
the bijector f is invertible, there are no invertibility constraints on the functions f,, and
fa;- In particular, this implies that we can parametrize them using rich classes of function
approximaters such as neural networks. This enables us to introduce complex dependencies
between components of a random variable. Next, the Jacobian of the bijector f has some
nice computational properties. If

z = f(u)

then the autoregressive structure means that z; is only dependent on uy.;. This immediately
implies that the Jacobian is a triangular matrix and that the determinant of this Jacobian
is the product of the elements on the diagonal. Indeed, we can use the equalities

(f(u))i = Zi = Wi + U0y
to deduce that

log

of d d d
det G_u' = logHai = Zlogai = Zai
i=1 i=1 i=1

The log-density of final transformed distribution of an autoregressive flow is
K
log qx (zx) = log qo(20) — Z Z ki

k=1 i=1

We shall henceforth use the term autoregressive flow to refer to a normalizing flow
which uses a bijector derived from a conditional-Gaussian autoregressive model. Unless
specified otherwise, the base distribution for an autoregressive flow is a standard Gaussian
and each of the functions f,, and f,, is parametrized by the weights and biases of a neural
network. The set of variational parameters for a VI model which uses an autoregressive
flow is therefore the union of the weights and biases of these neural networks.

When implementing an autoregressive flow, the most significant computational consid-
eration is how we compute the scale-and-shift statistics. In principle, we are free to use
a separate neural network for each of the functions f,, and f,,, which would result in up
to 2d distinct networks with distinct sets of weights and biases for each bijector in the
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flow. Clearly, for any latent space of respectable dimension, the computational load would
be too heavy for practical tasks. The autoregressive flows we study below apply various
techniques which make the scale-and-shift statistics feasible to compute in a broad range
of scenarios. In particular, we will see that all of the flows use a single neural network per
bijector. Their difference lies in the ways they manage the balance between the following
three qualities of the trained distribution ¢g:

(i) expressiveness of gk;
(ii) computational complexity of generating a sample from g;

(iii) computational complexity of evaluating the density gx(z) of a test sample z.

Intuitively, less expressive qx make it easy to sample and evaluate the density of test
samples. Indeed, NICE and RNVP sacrifice complexity to achieve good sampling and
evaluation. On the other hand, TAF and MAF are able to produce rich transformed
distributions. But, while it is easy to sample from IAF, it is relatively expensive to perform
density estimation. For MAF, it is the reverse. Lastly, a small technical note: if sampling
(resp. evaluation) from gx is easy at test time, then sampling (resp. evaluation) is also
easy during training. The converse, however, is false; for instance, IAF makes it easy to
evaluate density during training even though it is expensive to evaluate density of a test
sample.

3.5 Non-Linear Independent Component Estimation Flow

Although the paper | | was not originally written using the language of
normalizing flows, the Non-Linear Independent Component Estimation (NICE)
algorithm constructs a bijector and then chains a sequence of bijectors together to transform
samples from a noise distribution into samples from an autoregressive model. Apart from
the aforementioned fact that only a single neural network is used for computation of shift-
and-scale statistics, NICE is an efficient procedure for two reasons. Firstly, NICE only
computes shift statistics and secondly, the shifts statistics are constructed to depend only
on the first £ components of a noise sample with 1 < k < d. More mathematically,

f(u) =p+u
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where

M1k = 07
Mi+1:d = fu(ulzk)
The function f, : R¥ — R%* is just a neural network.
In constructing a normalizing flow using the NICE bijector, the authors of |
| reverse the ordering of the dimensions in each step of the flow so that components
which are only copied in one step may have a transformation applied to them in the
succeeding step. Observe also that the Jacobian of f is simply the identity matrix and

its log-determinant is zero. For a NICE flow of length K, the log-density of the final
transformed distribution is

det

K
log qx (zx) = log qo(zo) Z log = log qo(2o) Z 0 = log go(2o)
k=1

Generating a sample from a NICE flow at test time is efficient since we only need to
sample from the base distribution and feed it through a succession of K trained neural
networks. Evaluating the density qx(z) of a test sample z is also easy. Once training is
complete, we have the final set of shift statistics {p}5; and we can use the recursion

ZK =17,
Z, =Zpy1 — Per Ve € {1,..., K — 1}

to get zy whose density is trivial to compute.

3.6 Real Non-Volume Preserving Flow

The paper | | generalizes the NICE bijector by introducing scale statistics.
That is, the Real Non-Volume Preserving (RNVP) bijector is of the form

fw)=p+uoo)

where
MH1:x = 0
Hi+1:d = (fu,a(ulik»l:d—k’
o1 = exp(0),

Ok+1:d = €XP (flh@(ulik))d—k—}—l:Q(d—k)
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The function f,, : R¥ — R2@=% is a single neural network whose first d — k outputs are
the shift statistics and whose last d — k outputs are the log of the scale statistics. Note
that an RNVP flow is slightly more expensive than a NICE flow since the Jacobian of the
RNVP bijector is not the identity matrix; rather, the last d — k diagonal entries consist
of {o:}% 1. Apart from that, RNVP enjoys computational efficiencies similar to NICE
vis-a-vis sampling and evaluation.

Tg41:D = Ug1:D * €xXplegi1.p) +

transformed
distribution X, Xy | X4
Hi

X | %5
ud-|—1 uD

base
distribution | Yy | Uy || Uy
Figure 3.3: Computation of shift-and-scale statistics in RNVP. Taken from | |-

3.7 Masked Autoregressive Flow

Although RNVP provides an autoregressive flow, it is not as general as an autoregressive
flow is allowed to be. This is due to the fact that the non-trivial scale-and-shift statistics
of an RNVP (and therefore also NICE) bijector are only made to depend on the first
k components of a noise variable. The authors of | | introduce
a bijector which allows us to implement an efficient autoregressive flow while taking full
advantage of the representational capacity provided by autoregressive flows.

The Masked Autoregressive Flow (MAF) bijector uses the equations

2 =i + u; exp(a;),
Hi :f,ui (leifl) )

0% :fai (Zlci—l)

directly to define the transformation of samples. The novelty is in the way they compute
the set of scale-and-shift statistics {yu;, a;}%_; per bijector. Clearly, it would be inefficient

35



to use a separate neural network for each f,, and f,,; moreover, it seems desirable to share
learned representations between all the scale-and-shift statistics computed. The authors
of | | put forward a solution which computes all the statistics using
a single neural network but applies binary masks to enforce the autoregressive property.
Such a neural network is called a masked autoencoder. Since the paper |

| is titled Masked Autoencoder for Density Estimation (M ADE), we shall also
call such a neural network a MADE network. The MADE network makes it possible
to have the autoregressive property for each bijector while retaining scalability of training
when using MAF in a VI model. More precisely, | | uses a MADE
network which, given z, computes all p; and «; using a single pass through the network.
This makes it very efficient to perform density estimation for test samples. Recall that
computation of the log-density qx(z) requires the accumulated scale statistics «y; and the
log-density ¢o(zo), where z, is obtained from inverting z through the flow. But notice that
obtaining z, just means repeatedly applying the inverse of the MAF bijector. This inverse
is the mapping

25 (2 — 1) © exp(—a)

and thus, inversion of the flow is only as hard as accumulating the scale-and-shift statis-

tics. The MAF is designed precisely to make accumulation of these statistics scalable and
efficient.

Unfortunately, once the parameters of a MAF have been learned, it can be expensive
to generate a new sample from MAF. This is so since the defining equation of the MAF
bijector is inherently sequential: we must use the recursion

21 =1 + ug exp(—ayq),
Zit1 =Hit1 + Uit1 €XP(— 1) = fuy, (Z1:) + Ui1 €xp (fam (Zln‘))
and there is no way to parallelize this process. This implies making d sequential passes
through the MADE network to accumulate the necessary scale-and-shift statistics. Con-

trast this with RNVP, where generating a sample requires a single pass through a neural
network.
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Figure 3.4: Computation of shift-and-scale statistics in MAF. Taken from | -

3.8 Inverse Autoregressive Flow

The Inverse Autoregressive Flow (IAF) bijector of | | makes the
opposite trade-off as the MAF bijector. The TAF bijector uses the equations

zi =i + u;exp(ay),

i :fm (111;11—1) )

@ =fo, (W1:i1)
when transforming a sample from the base distribution. Again, a MADE network is used
to compute all the scale-and-shift statistics in one pass through the network. The difference
with MAF is that, in the IAF MADE network, the input to the network is the noise variable
u rather than the latent sample z. This means that an IAF can generate samples efficiently
but density estimation is expensive. Sampling is easy since we just draw a sample from
the base distribution, pass it once through the MADE network to get all the scale-and-
shift statistics and apply the IAF bijector. As with MAF, density evaluation requires the
bijector inverse

z—u=(z—p)Oexp(—a)

However, for IAF, the components of u have to be computed in sequence. That is, we are
forced to carry out the recursion

uy = (21 — 1) exp(—az),
Uip1 = (Zig1 — fiv1) exp(—aig1) = (Zi+1 - f;wrl (ul:i)) eXp (faiﬂ (ul:i))

We therefore require d sequential passes to invert the IAF bijector. There is a precise sense
in which MAF and TAF are inverse processes to each other. See | ]
for details.
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Figure 3.5: Computation of shift-and-scale statistics in IAF. Taken from [Jang. 2018b].
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Chapter 4

Variational Inference and Deep Learning

Our discussion in the foregoing chapters focused on a suite of general techniques for prac-
tical VI using powerful surrogate posteriors. In our discussion of normalizing flows, we
saw that autoregressive flows such as MAF and TAF allow us to endow VI models with
rich approximate posteriors which are capable of matching features in real-world data. As
we also learned, the choice of surrogate posterior, likelihood and prior ultimately comes
down to choosing a sufficiently expressive class of parametrized functions. Computational
efficiency of approximate inference and estimation of model parameters is thus contingent
on the chosen class of functions having good computational properties.

Neural networks are precisely such a family of functions. This provides a natural point
of entry for deep learning into VI. Current best practice therefore combines amortized
inference and normalizing flows with deep learning to obtain VI models which achieve
state-of-the-art performance on several tasks (see | | for specifics). Since
we have already analyzed the key ideas and derived the main equations which enable VI
on practical tasks, the purpose of the current chapter is to point out the places where
deep necural networks lend their representational power. Thus, we focus on relatively terse
pointers on the interaction between VI and deep learning. We mention in advance that
the VAE is the primary model of interest for our applications to document modeling.

4.1 Deep Latent Gaussian Models

A deep latent Gaussian model (DLGM) is a latent variable model which specifies
a standard multivariate normal for the prior p(z) over latent space and the likelihood
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po(X | z) is parametrized by a neural network. More precisely, the neural network involved
takes as input a sample z from latent space and outputs parameters for the probability
distribution over datapoints x given the z. The distribution in this case is Gaussian and
the means and variance of the Gaussian are exactly the outputs of the neural network.

Equivalently, as per | |, a DLGM can be specified using the following
generative process:

(i) sample z ~ N (0,1);

(ii) compute vector-valued gqs(z), where gy represents a neural network with 6 the set of
weights and biases;

(iii) sample x from N(x | go(z)), where go(z) is the concatenation of the mean and
(co)variance matrices.

The paper | | which originally provided an efficient and scalable method
for learning in DLGMs presented an alternative view which is strictly more general. That
paper also derived equations for training DLLGMs with stochastic backpropagation. How-
ever, we shall use the term DLGM to refer to the slightly simpler version defined by the
generative process above. The main takeaway is that, since gy is a neural network, the
model parameters are the weights and biases 6 and that we can apply deep learning to
perform parameter estimation. In practice, we apply VI to approximately optimize the
marginal likelihood of the data and the surrogate posterior chosen is also parametrized by
a neural network. Note, however, that a DLGM only specifies the prior and likelihood.
Additionally, we can change the form of the likelihood depending on the type of data we
are modeling. Indeed, in the final step of the generative process, we can sample from
f(ge(z)), where f produces a distribution over datapoints provided the outputs of gy. So,
for instance, f can compute a Bernoulli distribution in the case of discrete data. Hence,
DLGMs form a very flexible class of density estimators.

4.2 Variational Auto-Encoders

The Variational Auto-Encoder (VAE) of | | can be thought
of as a more specific version of the DLGM. In fact, both | | and |

| were published around the same time and offered similar algorithms for
learning latent variable models using VI. Like the DLGM, VAE uses a neural network with
weights and biases 0 to parametrize the likelihood. The original model in |
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Figure 4.1: Graphical model (left) and computational graph (right) for DLGMs. Red
arrows represent forward propagation, black arrows backpropagation. Solid arrows are
deterministic calculations and dashed arrows are stochastic computations. Taken from

[ J

| also uses a standard multivariate normal prior over latent space. However,
the VAE is more specific in performing amortized inference using a neural network. That
is, to obtain the distribution ¢,(z | x) over latent space when given a datapoint x, we pass
x through a neural network with weights and biases ¢ and the outputs are the parameters
of ¢g\(z | x). We shall slightly abuse notation and write ¢, for the surrogate posterior in
this situation. The neural network with parameters ¢ is called the recognition network
or inference network. We can view the inference network as predicting local variational
parameters using datapoints. Given local variational parameters, we are able to sample
from the surrogate posterior. This is done repeatedly during training, where we optimize
the ELBO using the AEVB algorithm. Furthermore, as with DLGMSs, a second neural
network called the generative network takes a sample from latent space as input and
outputs a point in data space. When we place the inference network and generative network
next to each other, we get an architecture which resembles an autoencoder (AE) (see
[ ). Much like a deterministic AE, the complete VAE architecture takes a
datapoint as input and produces a reconstruction of the input at the top layer. But
there is a stochastic operation in the bottleneck layer which is key to variational inference.
Notice also that since the AEVB algorithm is used, the reparametrization trick needs to
be available for the family of distributions for the surrogate posterior.

Observe that the VAE provides a general framework for performing VI as long as the
following ingredients are available: a prior, a generative network, an inference network and
the reparametrization trick. Indeed, | | takes this idea seriously and gives
examples of VAEs with very rich surrogate posteriors and likelihoods to produce models
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which perform well on standard benchmarks for a diversity of tasks. Note that even the
prior can be implemented using a ncural network. The TensorFlow Distributions library,
as described in | |, combines Automatic Differentiation Variational
Inference (ADVI) from | | with the generic VAE model to provide
a very powerful class of VI models. Very briefly, ADVI uses the generic formulas we
derived for the ELBO and its gradients in conjunction with a generalized form of the
reparametrization trick to automatically produce a VI procedure. ADVI only requires
specification of differentiable likelihood, prior and surrogate posterior. We have made
extensive use of the TensorFlow Distributions library in our own work.

i bﬁ )
h
\\@ /

N

Figure 4.2: Graphical model representing computation in a VAE. Taken from |

).

4.3 Neural Variational Inference and Learning

For completeness, we also mention the Neural Variational Inference and Learning
(NVIL) technique of | . Just like BBVI, NVIL optimizes the
ELBO by estimating the gradients using Monte Carlo samples and then applies variance
reduction techniques to the estimate of V £(6, \;x). Unlike BBVI, the variance reduction
techniques of NVIL are more generally applicable and NVIL does not assume a mean-
field factorization for the surrogate posterior. Recall that the gradient with respect to
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variational parameters is

VA L(0,X;x) = Ey, [(logpe(x | z) —log qa(z | x) +logpe(z)) - Vi log ga(z | x)]

The term

I\(x,2) = logpg(x | z) — log qx(z | x) + log ps(z)

is called the learning signal in | | and the paper offers tricks for
variance reduction by studying the learning signal. We now give short descriptions of these

tricks

(1)

Centering the learning signal: It can be shown that
Eq, [IA(x,2) - Vx log qa(z | x)] = Eq, [(Ia(x,2) — ¢) - Vx log ga(z | x)]

for any ¢ independent of z. We can use a neural network with weights and biases
Y to compute an appropriate Cy(x) for each observation x and reduce the variance
contributed by £(0, \;x). The quantity Cy(x) is called the baseline associated to
X.

Variance normalization: Once the learning signal [)(x,z) is centered, we can divide
it by a running estimate of it standard deviation.

Local learning signals: When using an MLP inference network as part of our VI
model, we can think of our surrogate posterior as introducing a hierarchy of la-
tent variables. We can reduce the gradient variance further by explicitly using this
hierarchical structure and carrying out centering and variance normalization on a
layer-by-layer basis.

The reader is invited to consult | | for further details.

4.4 Sigmoid Belief Networks

Recall that a belief network (see | |) is specified by a directed acyclic graph
where the nodes represent random variables and the joint distribution of these variables
can be factorized as

T
Pr(v) = H Pr (ve | Vpags))
t=1
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Here, vy, is the set of parent nodes of v, as indicated by the directed edges of the graph.
As the name suggests, a sigmoid belief network (SBN) (sce | |) is a type of
belief network; in addition, an SBN assumes that all random variables are binary and that
each of the conditional distributions

Pr (v, | Vpaqr))

is a logistic regressor. Thus, an SBN is parametrized by a vector # which includes param-
eters for each of the logistic functions. Note that this implies that an SBN estimates the
density over a collection of bit vectors.

We can create a generative model for data by partitioning the random variable v (also
called the state of the SBN in | |) into two subsets

v = (z,X)

where z is the set of latent variables or hidden units and x is the set of observations or
visible units. There is a clear connection with neural networks if we arrange the random
variables into layers such that each hidden layer consists of a subset of the hidden units.
This corresponds to a partitioning of the latent variables

zZ — (hl,...,h]\,[)

with h,, being the set of hidden units in the m'" layer and M being the number of hidden
layers. As with the VAE, the network thus constructed is called a generative network.

As might be expected, inference of the hidden units given a set of observations is gen-
erally intractable. Moreover, parameter estimation requires inference as a subroutine. The
paper | | provides a learning procedure which uses Gibbs sampling for inference
and gradient descent for model parameter updates. This is obviously not very scalable
and for the SBN, mixing times for a Gibbs sampler are typically very long since the latent
variables tend to be highly correlated. Both | | and | |
present approaches for approximating the exact posterior. The latter uses a mean-field
variational inference approach in conjunction with the generative network and optimizes
a form of the ELBO specially derived for an SBN. However, the wake-sleep algorithm
of | | deviates from the usual VI approach. This algorithm is specifically
designed for an SBN which takes the form of a layered feed-forward network and uses an
inference network for computing parameters of an approximate posterior distribution.
The inference network topology is simply a mirror of the generative network and a form
of variational EM is applied for inference and parameter estimation. This combination is
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Figure 4.3: Helmholtz machine. Taken from | |.

known as a Helmholtz machine (see figure 4.4), which was introduced in |

| and which also applies variational techniques. Unfortunately, the construction of the
training procedure for Helmholtz machines does not optimize a lower bound of the evidence
and there are no formal guarantees for convergence. This limitation is pointed out in |

I, | | and | |. In particular,
both | | and | | provide theoretically sound objective
functions for training an SBN. As we discussed in our section on NVIL, the approach of
[ | is quite general but | | provides lower variance

gradients of the objective since the mean-field lower bound in that paper is specifically
tailored for an SBN.

To summarize, we have several ways to train an SBN which scales well with the size
of the data. We can apply the wake-sleep algorithm or a mean-field variational inference
procedure or NVIL. All of these methods apply variational optimization in one way or
another. Wake-sleep and NVIL use an inference network whereas the mean-field VI of
| | does not. On the other hand, mean-field VI and NVIL optimize a lower
bound to the evidence but wake-sleep does not. Finally, even though SBN and related
techniques such as Boltzmann machines, Helmholtz machines, deep belief networks, etc.,
are not so fashionable at time of writing, the SBN provides a solid algorithm against
which to compare newer methods. As well, these ideas are an important precursor to more
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modern techniques like DLGMs and VAEs. In particular, the idea of using an inference
network for performing approximate inference has been very influential.

4.5 Deep Autoregressive Networks

The deep autoregressive network (DARN) of | | is very similar
in spirit to the VAE. Just like the VAE, DARN specifies a prior over latent space, an
inference network which computes local variational parameters from global parameters ¢
and a generative network whose weights and biases 6 serve as model parameters. As well,
DARN jointly optimizes the two sets of parameters with stochastic optimization rather
than relying on a variational EM procedure and we get an AE-like architecture when the
inference network is placed next to the generative network. Unlike the VAE, however,
DARN maximizes the function

EHelm(‘97 )‘a X) = ECD\ [logQ pQ(X | Z) - 10g2 qA(Z | X) + IOgQ pg(Z)]

The quantity Lyen is known as the Helmholtz variational free energy and lower
bounds log, py(x). Clearly, the Helmholtz free energy is just the ELBO with natural loga-
rithms replaced by binary logarithms (more concisely, replace nats with bits). The reason
for the binary logarithms is that, as shown in | |, the Helmholtz free
energy is derived using the minimum description lengths (MDL) of the probability
distributions involved. Briefly, the MDL is a concept from information theory which mea-
sures compression and minimizing MDL is a desirable goal when training models which
extract parsimonious representations (or codes) from data. See |
| for a detailed discussion.

Additionally, DARN uses autoregressive models for the prior, likelihood and surrogate
posterior. To make this more precise, let us introduce some notation similar to |
]. Consider an AE with successive hidden layers {h()}"%* with h() consisting

of ng) units. For | > 0, each of the h® is allowed to be stochastic. We also define
h(mayerst1) .= () and write h® for the input layer which represents points in data space.
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The likelihood and surrogate posterior for DARN then satisfy the conditions

g0

po (0 [10) = [T (0" 1), 1)
j=1

k
e

a5 (0 [00) =TT g (0" [ Y, =)
j=1

for all 1 € {0,...,Njayers} and for all & € {1,..., Njayers}. Furthermore, the prior factorizes
as

(latent)
'y

pe(Z) = H Do (Zj | Zl:j—l)

where ngmm) is equal to the dimensionality of the latent space. Observe that the autore-

gressive property holds within each layer. The distribution over vectors output by h®
(resp. h®) is dependent on the output of h*Y (resp. h*~1) as in an ordinary feed-
forward network but also the j™ unit of h¥ (resp. h®)) depends on the output of the
preceding j — 1 units of h® (resp. h(®)),

In principle, we can use arbitrarily complex autoregressive models for each of the con-
ditional distributions above. However, computational efficiency may force us to stick with
relatively simple distributions. Indeed, | | initially parametrizes these
distributions using sigmoid functions. Moreover, the paper introduces extra efficiency by
choosing sparse stochastic hidden layers. This more specific version of DARN is called
fast deep autoregressive network (fDARN). Lastly, note that we are free to train the
DARN architecture using either NVIL or wake-sleep to maximize the ELBO. The original
stochastic optimization scheme in | | uses Monte Carlo estimates for the
Helmholtz free energy and its gradients with a relatively simple baseline (in the sense of
NVIL) to reduce variance of gradient estimates.

4.6 Deep Boltzmann Machines

Recall that an energy-based model (EBM) assigns probabilities, to vectors in a specified

domain, using a formula
1
Pr(v) = - exp (~B(v)
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Figure 4.4: Visual representation of deep autoregressive network (DARN). Taken from

[ |
where F(v) is an energy function and

7= / exp (~B(v))

is the partition function. For an energy-based latent variable model, we partition v as
v = (z,x) with z being hidden variables or units and x being observed variables or units.
We can compute the negative log-probability of an observation x as

— log Pr(x) =log (/z Pr(z,X))
~ log ( / ~ exp <—E(z,x)>)
~ log (% / exp<—E(z,x)>>

=log Z + F(x)
with

Fox) = —1og [ o0 (~Es.))

z
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being the free energy. It is easy to see that

Pr(x) =  exp (~F(x))

and that
7= / exp (—F(x))

That is, the probability distribution over observations is also an energy-based model but
using the free energy function derived from the defining energy function.

Model design for an EBM amounts to choosing an energy function. Typically, the
energy function is parametrized by a family of functions indexed by # and parameter esti-
mation for the model means determining the parameters 6 which maximize the likelihood
of a given training set of observations. As shown in | |, the gradient with
respect to 6 of the log-evidence can be expressed in terms of the energy

0 0 0 .
%lngg(X) = —Ep,z1%) [%E(z,x)} + Epy(2,%) {%E(z,x)}

or in terms of the free energy

0 0

S 08p() = — 700 + B, [ 2070

In either case, we are required to compute expectations to compute the gradient and to
calculate the derivative of either the energy or the free energy. Since the energy function
is a model choice, we can usually design the energy such that its derivative, as well as the
free energy and its derivative, is easy. Calculation of the expectations is the more difficult
task and, indeed, the expectation terms are typically not analytically tractable. Thus,
we compute stochastic estimators for the gradient using Monte Carlo samples from the
relevant distributions. For the gradient in terms of the energy, we require samples from
the posterior py(z | x) and from the joint distribution py(z,X). But note that if we are able
to sample from the joint, then we can also compute a Monte Carlo approximation of the
gradient in terms of the free energy.

A deep Boltzmann machine (DBM) (| |, figure
4.5) is an EBM which admits an affine energy function based on an undirected graphical
model. The random variables of a DBM are organized into successive layers with hidden
units belonging to one of several hidden layers. Borrowing the notation of DARN, the
energy function of a DBM can be written as

EMh®, ... hmwe) x) = — 12 (hm)TW(z)h(l—l) - 12 (h(l))Tb(l)
=1 =1
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Deep Beliefl Deep Boltzmann
Network Machine

Figure 4.5: A DBM is an undirected version of DBN. Taken from |
|.

Note that h(®) = x. The weights {W®1}"%** and biases {b};"%* form the set of model
parameters for the DBM. When there is only one hidden layer in a DBM, we get a re-
stricted Boltzmann machine (RBM) or Harmonium (see 4.6). Observe that all
random variables in a DBM or RBM are assumed to be binary. Thus, a DBM acts a
density estimator for bit vectors.

As with any other latent variable model, we wish to perform inference and parameter
estimation in a DBN given a set of observations. Additionally, inference is necessary for
parameter estimation in any case. Directly optimizing for the model parameters using
the formula for the gradient of the log-evidence is computationally challenging due to the
expectation terms. Boltzmann machine learning admits an MCMC procedure which uses
two Gibbs sampling chains (one for the posterior and one for the joint; consult |

|). However, this algorithm is impractical for DBMs trained on large datasets. For
RBMs, minimizing a different function known as contrastive divergence (CD) provides
an efficient alternative. CD uses K steps of blocked Gibbs sampling (for this reason, CD is
sometimes called CD-K) and this sampling is required for every single parameter update.
In practice, very small values of K (even K = 1) often suffice.

Unfortunately, even CD-K is not efficient enough for DBMs with multiple hidden layers
and we must once again resort to approximating the exact posterior pyp(z | x). Thus,
[ | employs a mean-field variational inference algorithm
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General Boltzmann Restricted Boltzmann
Machine Machine

Figure 4.6: An RBM has only one hidden layer. Taken from |
|-

for training a DBM. A form of variational EM is used for training. The ELBO in this
case involves the partition function Z, which is a function of #, and MCMC must be
used to estimate the partition function when updating model parameters (given variational
parameters from the variational E-step). Follow-up work in |

| accelerates inference in the DBM by also applying a set of recognition weights.
Although not explicitly mentioned in the paper, the end-to-end DBM training procedure
(minus the weight initialization with pre-training) of | |
is like an undirected version of the Helmholtz machine. That is, there is a set of inference
weights and a set of recognition weights and these are alternately updated with a variational
EM algorithm.
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Chapter 5

Neural Document Models

Our ultimate goal is, of course, document modeling. More accurately, we wish to automati-
cally discover good representations for sentences or even entire documents using unlabeled
data!. Our task falls under the umbrella of unsupervised representation learning.
The representations (or features) are treated as hidden variables which must be inferred
given observations. Latent variable models are therefore a natural framework for this type
of machine learning.

In the previous chapters, we have explored techniques for creating powerful latent vari-
able models using variational inference. We then saw that deep neural networks provide
efficient learning for a broad class of expressive VI models. In particular, the use of an
inference network, which predicts variational parameters using data, is crucial for represen-
tational capacity and scalable optimization of the objective function. Hence, we now have a
robust framework for applying latent variable models to document modeling. The present
chapter is dedicated to such applications. We first describe some existing approaches which
use deep learning to attack document modeling. Some of these apply variational inference
while others do not. The latter are presented to provide strong basclines and also to give
some flavor of document modeling without VI models. Subsequently, we present our own
additions and modifications to the approaches combining VI and deep learning.

"'What counts as a “good” representation is always a little subjective. If the goal is to extract features
which are useful in a downstream task (e.g., classification), then representations are “good” insofar as they
improve outcomes in the downstream task. However, like many authors working in the field, we wish to
be agnostic to context and “good” will usually mean one of two things: (a) achieving low perplexity on
a held-out test set or (b) achieving good performance on a document retrieval task constructed using a
held-out test set.
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5.1 Replicated Softmax

Previously, we saw that the RBM provides a latent variable model which can be trained
from a given set of observations. An MFVI technique allows scalable training of the RBM.
Recall, however, that each observation is assumed to be a (high-dimensional) bit vector.
So, additional steps are required in order to apply RBMs to the problem of document
modeling. Let us introduce some notation before proceeding. We shall use x to denote a
document which occurs as a sequence

X = (T1,...,%q)

of integer indexes, i.e., x; € {1,...,V} with V being the size of the vocabulary we are
working with. It is assumed that we have a dictionary whose keys are all the integers
between 1 and V' and whose values are the words in the vocabulary. We write n(x) for the
Bag-of-Words (BoW) vector associated to x. That is, n(x) is a vector of size V' where
the it element is the number of times that the word with index i occurs in x.

The replicated softmax (RSM) model of | | is an
EBM whose energy function is defined by

E(z,h) = —z"Wn(x) — b n(x) — dc’z

where § = {W € REXV b € RV, c € R”} is the set of model parameters and H is the
dimensionality of the latent space. Additionally, z represents a latent, stochastic binary
variable. Clearly, the energy function of RSM is just a slight modification of that of the
RBM. The major differences lies in two places: the visible layer is no longer binary and
the bias term associated to the hidden layer is scaled by d.

Under this model, we obtain the following conditional probabilities
H
polz | x) = [ [ po(z | %),
j=1

d
pox | 2) = [ ol | 2

In words, the distribution over latent variables conditioned on observations factorizes com-
pletely and vice-versa. Moreover, each of the one-dimensional factors can be expressed as
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follows.

d
po(zj=1[x)=0 (dcj + ZVVJT> g
i=1

exp (by +2"W.,,)
w €XD (b +2TW._ )

pg(xi:w|z)zz

where w is the index of an arbitrary word in our vocabulary. Observe that py(x; = w | z) is
just a softmax function. As with an ordinary RBM, the conditional probabilities py(x; =
w | z) are approximated with a factorized approximate distribution and inference amounts
to MFVI. The RSM model extracts a hidden representation z given a document x and,
once the model parameters have been learned, the conditional probability equations above
can be used to calculate the likelihood of an arbitrary document.

Latent Topics Latent Topics

Observed Softmax Visibles Multinomial Visible

Figure 5.1: Visual representation of the RSM. Taken from |

I
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Figure 5.2: Alternative representation of the RSM. Blue lines indicate shared parameters.
Taken from | |.

5.2 Document Neural Autoregressive Distribution Esti-
mation

The Neural Autoregressive Distribution Estimator (NADE) of |

| is, like the DBM or RBM, a technique for estimating a distribution py(x)
over bit vectors x € {0,1}” given a set of observations {x) }é\le As the name suggests,
NADE is an autoregressive model, i.e., we first factorize the overall distribution

po(x) = Hpe(ﬂh | X1:i-1)

and specify a parametrized model for each of the factors py(x; | x1,-1). In this case,
po(z; | X1.4-1) is computed using a fully-connected neural network with three layers: an
input layer with ¢ — 1 binary units, a hidden layer with H units and an output layer with
one unit. The input layer accepts a bit vector which represents the first ¢ — 1 bits, x1.;_1,
of an observation x. The input is then mapped into R with the dimensionality H and
the hidden layer activation being hyperparameters for NADE. Lastly, the output of the
hidden layer is passed through a sigmoid layer to produce a scalar value between zero and
one.
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A

) Autoencoder

Figure 5.3: Comparison between autoencoder and NADE. The AE has a single hidden
bottleneck whereas the hidden layers in NADE enforce autoregressivity. Taken from [Lauly
et al., 2017].

Observe that NADE employs d separate neural networks, each containing a hidden layer
with H units and an output layer with one unit. Clearly, it would training and sampling
would be slow if we had separate sets of parameters for the different neural networks.
Hence, NADE introduces parameter sharing as follows. The complete set of parameters
consists only of two matrices and two vectors

0={Wc R VvV c R"" becR? ce R}
During a forward pass, a list of hidden vectors {h;}¢_, is computed using the formula
h; =g(c+W.1,1X1.-1)
Subsequently, we calculate the probability values {p;}¢, as
pi =0 (b + V] h)

Note that
po(xi =1|X14-1) = pi

when the NADE input is x. We see that the parameters used to compute py(z; = 1 | X1.-1)
are re-used to compute py(z;41 = 1 | X1,;) and moreover, NADE computes all the hidden
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layer outputs using O(dH) operations. As well, by construction, it is easy to compute the
log-likelihood of an observation given values for model parameters. Parameters in NADE
can thus be learned by maximizing the log-likelihood of the training data using SGD.

The NADE algorithm must be modified somewhat when modeling a distribution over
documents. Suppose we have a vocabulary of size V' and we have established a dictionary
between integers {1,...,V} and the set of words in our vocabulary. Assume for now that
each document is represented as a sequence of d indexes, i.e., x € {1,...,V}¢ In this
case, instead of a weight matrix W € R¥*¢ we shall have a word representation matrix
W € R*V which facilitates calculation of the hidden vectors

h, =g (c + Zka>

k<t

for all i € {1,...,d}. The j column of W is thought of as an H-dimensional word
embedding for the word with index j. Thus, the hidden layers in this case simply sum
a bunch of word vectors, add a bias and pass the result through a non-linearity. Finally,
for a word w in our vocabulary, we calculate the probability pg(x; = w | x1,;_1) using a
softmax with shared weights and biases

exp (bw + Vg7:hi)
Y €XP (bw/ + V;‘Z,’:hi)
Unfortunately, computation of the softmax scales linearly with the size of the vocabulary.
We therefore apply the hierarchical softmax function (see | |) to com-

pute the probabilities instead. This completes the description of the Document NADE
(DocNADE) (see 5.4) model of | .

Pw = ]99(1’7: =w | Xl:z’—l) =

However, DocNADE assumes that documents are presented to us in the form of se-
quences of indexes when, in practice, documents are commonly represented as Bag-of-
Words (BoW) counts which are inherently orderless. Given a document x represented
as a sequence of indexes, let n(x) be the vector of word counts for x and let V(x) be the
set of all documents X such that n(x) = n(xX). As shown in | |,
we can sample uniformly at random from V(x) and we have

1 -
P9 = g 2 Pl

ZeV(x)

with py(Z) modeled by DocNADE. We then train DocNADE by approximating Pr(x) using
samples from V(x).
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Figure 5.4: Visual representation of the DocNADE model. Taken from | |-

Finally, | | presents several extensions to DocNADE. One such advance
is to extract a sensible language model using the DocNADE framework while another
improvement is obtained by using deep neural networks to augment the expressiveness of
DocNADE. We refer the reader to | | for further discussion.

5.3 Neural Variational Document Model

As we have seen, the VAE provides a powerful and flexible method for extracting (con-
tinuous) latent representations from unlabeled data. In particular, if our unlabeled data
consists of texts represented as BoW vectors, then passing a piece of text through a VAE
yields a semantic latent variable for this text. Moreover, this provides a generative model
of text. | | explores this idea of taking a VAE architecture and applying it
to BoW vectors. The resulting model is known as the Neural Variational Document
Model (NVDM). In more detail, NVDM uses a two-layer feed-forward neural network
with ReLU activations for the inference network, a softmax regression model for the gen-
erative network and a standard Gaussian for the prior over latent variables. Note that the
inference network ¢, (z | x) produces a distribution over latent variables given a BoW vec-
tor x and the generative network py (x | z) independently generates words given a sample
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from the latent distribution, i.e.,
(x| 2) H Do (x; | z)

As the prior is standard Gaussian and the approximate posterior is Gaussian, the KL form
of the ELBO is used when computing the objective function. This is owing to the fact
that the KL divergence between Gaussians is available in closed form. Evidently, the ar-
chitecture employed is quite straightforward as compared to, for instance, deepDocNADE.
However, NVDM still achieves competitive results on unsupervised document modeling.

Y
Q09O h
p(X|h) |
O0O0000 | X

Figure 5.5: The NVDM is an instance of a VAE. Taken from | |

5.4 Flow-Augmented Neural Variational Document Model

Given that the NVDM model is simply an instantiation of the VAE and that normalizing
flows provide an elegant tool for constructing more expressive probability distributions for
VI, it is natural to extend the NVDM model using such flows. Indeed, as shown in |

|, we are free to increase complexity of the prior or the generative network or
the inference network by introducing normalizing flows into the appropriate component
of the VAE architecture. When applied to BoW vectors of texts, we call such a model a
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Flow-Augmented Neural Variational Document Model (FANVDM). At time of
writing, we are unaware of extant literature which considers such an approach for document
modeling.

While the most obvious FANVDM is one where we simply stack a normalizing flow on
top of the inference network, we expect to obtain better performance gains from augmenting
the prior distribution instead. This is so since the NVDM inference network is already quite
expressive relative to the simple softmax regression generative network. It is well-known
that VAEs suffer mode collapse when the inference network is too expressive and it might
therefore be undesirable to augment it when using the NVDM architecture. On the other
hand, the prior used in NVDM is a simple standard Gaussian and this constrains the
document model’s capability to efficiently represent complex latent factors. Hence, we
hope to be able to represent complicated, multi-modal distributions in latent space by
changing the prior distribution. In slightly more detail, we use a standard Gaussian as the
base distribution for our prior and transform this Gaussian through a normalizing flow to
obtain the final prior distribution over latent variables. Note, however, that the prior no
longer being Gaussian implies that we are forced to use the FMC form of the ELBO when
computing the objective. Thus, while we can employ an arbitrary normalizing flow for the
prior, IAF’s efficient sampling property makes it an attractive flow for augmentation. The
main novel algorithm we pursue in this work is a FANVDM with TAF as an augmenting
flow for the prior. The inference and generative networks for our main FANVDM are
identical to those of NVDM.

5.5 Ewvaluation of Document Models

We have by now encountered a diversity of document models which extract representations
of documents given an unlabeled set of training data. Judging the relative merits of these
different models necessitates evaluation criteria, which we now discuss. The criteria we
provide here are precisely the ones used and prescribed by | |. We note
that these criteria, or some subset thereof, is standard in much of the literature on document
and topic modeling.

5.5.1 Perplexity on Test Set

Recall that a document model assigns probabilities to arbitrary documents (assuming
fixed vocabulary, standard pre-processing, ect.). Thus, once a document model py has
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been trained, we can evaluate the quality of the trained model through a metric which
reflects the probability assigned to documents in a held-out test set. Given a collection
Xiest = {Xi}M, of M test documents, the (average) corpus perplexity of the py on
Xtest 18

M
. 1
perplexity (Xiest) = exp (—M Z log pg(xi)>
i=1

The key property which makes perplexity useful is that it is a monotonically decreasing
function of the evidence of the test data. In particular, this means that lower perplexity is
better for document models.

Obviously, computation of the perplexity requires calculating the log-evidence log py(x)
for test documents. While some models such as DocNADE admit exact computation of
this quantity, most of the document models we have enumerated above have intractable
evidence. Hence, we can only approximate the perplexity on the test set in most cases.
For models which employ variational inference, we use the ELBO in place of log-evidence.
The ELBO itself is again intractable and, in general, we estimate the ELBO for test
samples using the Monte Carlo estimate used during training. The approximation to the
perplexity thus computed is still a monotonically decreasing function of the evidence of
the test data. However, since the ELBO can sometimes be a poor indicator of the true
evidence, the approximate perplexity may be an inaccurate indicator of the true perplexity.
Other models such as LDA and RSM estimate the log-evidence using specialized sampling
techniques instead. See | | and | | for more detailed
discussions of perplexity as a metric and alternatives.

Lastly, we remark that the actual metric used to evaluate document models is the
perplexity-per-document defined as

1 &

perplexity — per — doc (Xyest) = €xp <_H 2 A_[z log py (xz)>

where M; is the number of words in x;. It is well-known that there are several problems
with using corpus perplexity and we shall therefore use perplexity-per-document to rank
document models.

5.5.2 Performance on Document Retrieval Task

Each of the document models we have studied extracts a (distribution over) latent or hidden
representation z when the model is presented with an input document x. Most of our
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document models are latent variable models which assume a generative process whereby
latent codes “emit” observations according to a probability model. For DocNADE, the
hidden layer outputs serve a similar role even though DocNADE is not specifically set up
as a latent variable model. In any case, we can estimate the quality of our document model
by trying to measure whether the model is able to extract good latent representations. Of
course, this requires us to define how we measure the “goodness” of such representations.

Intuitively, each document model produces a representation which captures the seman-
tic content of an input document. This implies that the model should produce similar
latent representations for similar documents. Since the latent representations are vectors
in a “semantic space”’, we can measure the closeness of two representations using cosine
similarity. There are some benchmark datasets which come with labels which indicate cat-
egories or topics for each document in the dataset. Hence, we are able to group together
documents by their labels and if a model computes close representations for documents
with similar labels, we have some assurance of model quality.

We can translate this heuristic into quantitative terms as follows. Suppose we are given
a dataset with datapoints X and labels y and that the dataset has been split into a training
set {Xirain, Yirain }, @ validation set? {X a1, yvar} and test set {Xiest, Yiest . Assume that we
have trained a document model pg in an unsupervised fashion using Xi,.i, and X,. We
create a document retrieval task in which the database to be queried is Xy U Xya and
each document in X is treated as a query to the database. Given a query, the task is to
rank documents in the database by similarity to the query. In our case, similarity between
documents is simply cosine similarity between latent representations. Thus, documents in
the database which have closer semantic representations to the query document are ranked
higher. Since we have labels for the datapoints, we can compute precision and recall for
each query and hence obtain a precision-recall (PR) curve for each document model. Note,
however, that a document in the dataset can have multiple labels. We therefore compute
individual PR curves for each label and the average the curves to get a single, final PR
curve associated to a document model. The PR curve thus computed indicates how well
similar documents are clustered together in latent space.

5.5.3 Qualitative Evaluation of Representations

Given a trained document model which extracts latent or hidden representations from doc-
uments, we can attempt to see whether the representations thus learned can be organized
into sensible topics. This requires some post-hoc reasoning based on our own observations

2A separate validation dataset is almost always required for tuning hyperparameters.
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of the representations extracted by the model for individual words. However, there is
no uniform method for examining or categorizing extracted topics since different models
implement different mechanisms for feature extraction. For instance, LDA is an explicit
topic model, i.e., LDA provides a probability distribution py(x | ¢) over documents x for
a fixed number of topics t. In particular, we can get a probability distribution py(w | t)
for individual words w by treating words as documents with a single word. We can then
deduce the n'* topics by looking at the words assigned the most probability by ps(w | ¢,).
77

For example if the highest-probability words are “encryption”, “pgp” and “crypto”’, we may
deduce that ¢, corresponds to the topic of encryption.

Unfortunately, for document models which are not topic models in a manner analogous
to LDA, the task of deducing topics is a bit harder. Some models like DocNADE interpret
a weight matrix W as a word embedding matrix (where columns are word embeddings)
and deduce the nt* topic by looking the ten or so words w which have embeddings closest
to W,,,,. Other models such as NVDM, which learns a continuous space of latent repre-
sentations, assume that each dimension of the latent space represents a topic and looks at
the words generated by the likelihood py(x | z) when z is a unit vector in latent space. We
will be more specific about qualitative representations and discuss examples in the sequel
on experimental results.
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Chapter 6

Experimental Results and Conclusion

We now detail the experiments we carried out using our proposed FANVDM algorithm.
We then offer some reflections on the results we obtained and on how we plan to build on
the work carried presented here.

6.1 Datasets

Within the document modeling literature, there are two datasets which are used as standard
testbeds for novel algorithms. Firstly, 20NewsGroups (see | |) consists of
20,000 messages posted to 20 Usenet newsgroups. There are 11,314 messages comprising
the training set and 7,531 in the test set. Our procedure for preprocessing this dataset is
identical to the procedure used by | |. In particular, the vocabulary size is
set to 2,000.

The second dataset used in the literature is the RCV1 (see | D
which is a collection of over 800,000 Reuters newswire stories. There are 794,414 training
documents, 10,000 test documents and | | set the vocabulary size to 10,000
for this much larger dataset.

6.2 Experimental Setup

The inference network and generative network of our FANVDM are identical to that of
NVDM. Thus, the inference network g4 (z | x) is an MLP with two hidden layers and is
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defined using the following set of equations (copied from Appendix A of | )):

A =ReLU (W;x + b;)
7 =ReLU (W3 + by)
n=Wj3m + bs
logo :=Wym + by
z ~N (p, diag (%))

Note that {W3, Wy, b3, by} are all parameters for the final layer of the inference network
and that p and o are functions of x. The generative network pg (x| z) is a softmax
regression (also copied from Appendix A of | |):

€; ‘= exp (ZTRXi + xxl.)
€;

v
> 1€
po(x|2z) = Hpg (x; | z)

where V is the vocabulary size and R € R”*V is interpreted as a matrix of semantic word
embeddings. Here, H is the dimensionality of the latent space. The prior was constructed
using a normalizing flow with base distribution a unit Gaussiana and two [AF bijectors.
Each bijector was implemented as an MLP with a single hidden layer containing 32 neurons.
More precisely,

po (X; | z) =

7 = f2 e} fl (i)
where z ~ N (0,I) and f1, f are the TAF bijectors. Finally, the model is trained to

maximize the FMC form of the ELBO, which in our case can be approximated with samples
to yield

L0, ¢;:x) =By, [logpy (x | 2) —log gy (2 | x) + log py (2)]

Z log po (x; | z) —log gy (z | x) + log py (Z)]

:]E%

N
%% 2 [Z logpy (xi | 2) —log gy (2 | x) +log py (z(”)]

We follow | | in only drawing a single sample for each forward pass through
the model.
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6.3 Results

Due to computational constraints, we only experimented with the 20NewsGroups dataset
and we only used a single FANVDM model with a 50-dimensional latent space. We report
the test set perplexities for our model as well several other document models explained
in the foregoing chapter on document models. All perplexity scores are perplexity per
document and every number except the one for FANVDM is lifted from Table 1(a) in
[ |. As can be seen, we obtained some marginal improvements over the
NVDM. Additionally, we plot changes in perplexities and KL divergences for the FANVDM.
Note that since we used the FMC form of the ELBO, the KL divergence value is simply
the empirical estimate

L

1

23 (~logan(z | x) + log po(2"))
=1

of the quantity
E,, [—loggx(z | x) + log py(z)]

We remark that we do not want the KL divergence to be too low since a very low KL
divergence would imply that the latent variable is not capturing much information beyond
what is already contained in the prior.

6.4 Discussion and Future Work

The results we have presented for the FANVDM should be considered as a proof-of-concept
for showing that it is indeed feasible to add complexity to a VAE, particularly for document
models, through normalizing flows. One of the virtues of normalizing flows is that they
are a generic tool. That is, given any base distribution we can get a complex transformed
distribution by simply applying a sequence of bijectors. Hence, even though we motivated
normalizing flows as a tool for obtaining complex surrogate posteriors (including the flow-
based free energy bound), we were able to successfully integrate a flow into the prior.
Therefore, an obvious and interesting direction to pursue would be to see whether and
how much performance gains we get if normalizing flows are applied to the likelihood or
surrogate posterior instead.

More immediately, however, we hope to carry out experiments applying FANVDM
to RCV1. It appears from our table of results in figure 6.1 that more complex models
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KL Divergence
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Figure 6.1: Change in test perplexities and KL divergence through training epochs. All
curves were smoothed using splines.
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Model Latent Dimension 20News RCV1

LDA 50 1091 1437
LDA 200 1058 1142
RSM 20 953 988
docNADE 50 896 742
SBN 20 909 784
fDARN 50 917 724
fDARN 200 - 298
NVDM 50 836 963
NVDM 200 852 550
FANVDM 50 826 -
FANVDM 200 - -

Table 6.1: Perplexities per Document for various models

perform better on larger datasets. Since we managed to gain at least some improvement
over NVDM on 20NewsGroups, we may be able to gain even larger improvement on RCV1.
On a related note, we wish to set up more extensive evaluation of FANVDM; namely, it
would be interesting to observe how FANVDM performs on the document retrieval task and
also to what extent latent representations from FANVDM can help improve classification
and clustering tasks.

Lastly, we can develop even more powerful versions of FANVDM by constructing more
complex likelihoods so that a flow-augmented surrogate posterior does not lead to mode
collapse during training. Indeed, augmenting both the likelihood and the surrogate poste-
rior with normalizing flows might be a virtue of this approach. The main disadvantage of
our FANVDM is, clearly, the fact that normalizing flows add time complexity to training.
This is particularly true in the case of MAF and TAF which parametrize all distribution
parameters with neural networks. However, for larger and more diverse datasets, this ad-
ditional complexity may be a price worth paying for a model which is expressive enough to
compare rich patterns in data. In conclusion, there are many directions to explore going
forward and we hope that our work provides a jumping-off point for further work in this
exciting area.
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