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Abstract

Problems in many disciplines, such as physics, chemistry, and finance, can be modelled
as integrals of high dimensions (hundreds or even thousands). Quasi-Monte Carlo (QMC)
methods, which perform sampling using a more uniform point set than that used in MC,
have been successfully used to approximate multivariate integrals with an error bound
of size O((logN)*N=1) or even O((logN)*N—3/2), where N is the size of the sample and
k depends on the dimension of the problem. This suggests an outperformance over the
standard MC whose error bound is only O(N~'/2). But for high dimensional problems,
this outperfomance might not appear at feasible sample sizes due to the dependence of the
QMC convergence rate on the dimension of the problem. However, around 1993, it was
found by researchers at Columbia University that QMC provides better convergence rates
than MC for very high-dimensional problems in finance and in physics as well. This may be
explained by the fact that the integrands in these problems have low “effective dimension”
properties that interact positively with the properties of the point set used by the QMC
method. To understand the efficiency of QMC, this paper uses Sobol’ method for global
sensitivity analysis to investigate features of specific finance problems, digital option pricing
and mortgage-backed securities, in dimensions as high as 360. Using Sobol’ sequences,
we estimate the low-order Sobol’ sensitivity indices of these problems and estimate their
effective dimensions accordingly. We also examine the efficiency of the Brownian Bridge
technique in reducing the estimated effective dimension.
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Chapter 1

Introduction

Simulation is often the only effective numerical tool for problems that do not exhibit
a closed form solution, such as the valuation of entities that have inherent stochastic
components. Monte Carlo (MC) simulation is a widely used computational tool in many
disciplines of physical science, and more recently in finance, thanks to its flexibility and
robustness. MC simulation is an attractive method for the approximation of complex, path
dependent derivative securities, i.e. securities whose value depends on the whole trajectory
of another security or variable, such as Mortgage Backed Securities (MBS). However, one
of the main drawbacks of the standard MC simulation using pseudo-random sequences is
that its convergence rate is only O(N~1/2) for N sample paths.

To improve upon the slow convergence of standard MC methods, Quasi-Monte Carlo
(QMC) methods have been extensively applied in financial problems, where sampling is
performed using a point set that exhibits higher uniformity properties than the standard
MC pseudo-random point set. In 1995, Paskov and Traub [24] provided numerical experi-
ments to demonstrate the outperformance of QMC methods on a mortgage-backed security
problem of dimension 360. This was a surprising result back then since QMC was claimed
to be superior to MC only on low-dimensional problems (no more than 20 dimensions).
This was considered the case because of the dependence of £ in the QMC error bound
O((logN)*N~1) on the dimension s, implying that in high dimensions, accurate results
cannot be achieved at computationally feasible sample sizes. In other words, N has to
grow exponentially with s which renders it impractical in high dimensions.

Despite what the error bound suggets, quasi-Monte Carlo simulation outperforms stan-
dard Monte Carlo in many high-dimensional problems using relevant sample sizes. This
has drawn the attention of researchers to the features of the integrand estimated in these
problems. The estimated high-dimensional integrands exhibit some favorable properties
that make them amenable to QMC simulation. These properties can be summarized by
the effective dimension of these integrands. In fact, Caflisch, Morokoff, and Owen (1997)
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suggest that the integrand in the MBS problem could be approximated by a sum of one
dimensional terms.

The purpose of this paper is to examine the effective dimension of specific finance
problems, such as digital option pricing and mortgage-backed security, using a recenlty
proposed method by Sobol’(2001). Using the Sobol’ sensitivity indices method, we will
estimate the effective dimension of these problems and compare the performance of QMC to
that of MC. The remainder of this paper is organized as follows: in chapter 2, we discuss the
MC and QMC methods respectively. In chapter 3, we present the ANOVA decomposition
and the Sobol’ sensitivity indices. Chapter 4 defines the notion of the effective dimension
and the Brownian bridge technique for reducing it. In chapter 5, we introduce randomized
QMC sequences then apply the discussed concepts on specific finance problems, digital
option and mortgage-backed securities valuation. Finally, we present some concluding
comments and ideas about future research in chapter 6.



Chapter 2

Quasi-Monte Carlo Versus Monte
Carlo Integration Methods

2.1 Monte Carlo Method

Let’s first give an example of using MC integration method to approximate the value of
a path dependent security such as an MBS. To approximate an MBS value, we have to
generate a set of N independetly sampled interest rate paths, aggregate the discounted
cash flows of the MBS under each sample path to obtain the value of the MBS and average
the aggregated cash flows over the sample paths. For a detailed study of MC methods see
Owen (1998). Now let’s present this method in general:

Consider f € Ly defined over D = [0, 1]°, where L, is the field of square-integrable func-
tions. The integral I = [, f(u)du is approximated by:

. 1 &
=1

This approximation results in an error defined as:

A

| XN
eN(f):IN_[:N;fa]i)_/Df(u>du

The standard MC sampling method uses U; drawn from the uniform distribution over the
domain D = [0,1]*. Using the law of large numbers we have:

P(lim Iy=1)=1

N—oo



which ensures that Monte Carlo method always converges to the exact value for very large
N. Having f € L, implies that its variance is finite:

0% = /D(f(u) — Idu < 0o

then we have that ey (f) has mean zero and variance "—N2, which implies that the error bound
for MC integration method is O(N~%/2).

From the above error bound, it seems that MC method seems to have a slow convergence
rate. This slow convergence is explained by the clumping of points in the pseudo random
sequence used to generate sample paths. Since the sampled points are chosen independently
of one another, it’s possible that the chosen points end up landing close to each other.
However, MC method still has the advantage that its order of convergence is independent
of the problem dimension unlike other integration methods, such as Newton Cotes or
Gaussian quadrature methods. The latter methods suffer from the curse of dimensionality,
as described by Richard Bellman [3] to refer to the fact that the sample size N has to
increase significantly, often to an infeasible size, as the dimension increases.

2.2 Quasi-Monte Carlo Methods

The Quasi-Monte Carlo method has better convergence properties than that of the Monte
Carlo method due to the uniformity of the quasi-random sequences that fill the space D
avoiding the clustering seen in MC sampling. To illustrate this idea, we show in figure (2.1)
four plots, each is a two-dimensional projection of 4096 points. These points are either
sampled from a Sobol’ sequence (the two plots in the top) or a pseudo-random sequence (the
two plots in the bottom). Notice the difference in the way points are arranged between the
top and the bottom plots. In the pseudo-random sequence, uniformity of points is limited
by their clumping. On the other hand, the way quasi-random sequence is constructed (as
Sobol’ in this case) prevents them from clustering. For a detailed survey of low discrepancy
sequences and their application in finance see Paskov (1997), and Caflisch, Morokoff, and
Owen (1997).

We can measure the uniformity of a sequence of points in the s-dimensional unit cube
D = [0, 1]* using a numerical measure called discrepancy. Following the procedure outlined
in [14], let’s define the star discrepancy which is the most commonly used measure. Let
v = (v1, V2, ...,0s) € [0,1)° and let’s consider all sets of the from:

B(v) ={ue€[0,1)°: 0 <u; <w;,1<j<s}
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Such sets can be thought of as hyper-rectangles with a corner at the origin. Now given
an N-point set Py, we denote by a(Py,v) the number of elements in Py that fall in the
“box” B(v), i.e. a(Py,v) denotes the cardinality of the set :

{ui:OSUiJ §vj,z':1,...,N}

The empirical distribution induced by Py assigns a probability of a(Py,v)/N to this box,
instead of the value [[;_, v; assigned by the uniform distribution over [0,1)%. Hence, to
measure the departure (or discrepancy) of Py from uniformity, we compare a(Py,v)/N to
[1;_, vi via the Kolmogorov-Smirnov statistic as follows:

D*(PN) = sup |’U11)2...U3 - Oé(PN7'U)/N‘
ve[0,1)®

Thus, we obtain what we call the star discrepancy measure by maximizing the difference
between the two entities. For other definitions of discrepancy and more recent generaliza-
tions, we refer the reader to Niedereiter [18] and Hickernell [10] respectively.

The importance of the discrepancy measure can be seen from the Koksma-Hlawka
incquality which gives a bound for the error of the simulation-based estimate of the integral
of fon [0,1)*. Following the notation of [5], the Koksma-Hlawka inequality is the following:

len(f)] = |1/NZJ"(U¢) - f(u)du] < V(f)D*(Px) (2.1)

[0,1]°

where V'(f) is the variation of f. In one dimension, V' (f) = fol |df|. In higher dimensions,
the definition becomes much more complicated. Define the quantity:

ok f

VO (Frig, i) = [ |t
(fit ) Iklﬁtil..ﬁtik

|ty =1 i i iy -ty

for all £ < s and all sets of k integers 1 <14y < ... < 1, < 5. Using the above quantity, we
define the variation of f as:

VA=Y D VO(frir, i)
k=1 1<i1<...<i<s

The Koksma-Hlawka inequality (2.1) should be compared with the formula for the root-
mean square error of Monte Carlo integration using a pseudo-random sequence. If {u;}Y
is an i.i.d. uniform random sample on D = [0, 1]*, then

Elen(f)*'"? = o(f)N~? (2.2)



where o(f) is the square root of the variance of f given by:
o) =(f 1 =B

The error magnitudes (2.1) and (2.2) share in common the fact that their bound is a
product of two terms, one depends on properties of the integrand function and the other
depends on properties of the sequence. Being an absolute bound, the Koksma-Hlawka
inequality (2.1) is more reliable than (2.2) which holds only probabilistically. However,
the preference is reversed for practical reasons. It is incredibly hard to compute factors
in (2.1), but it is much easier to estimate the Monte Carlo variance using the same data
needed to estimate E(f). The infinite sequence {uy}$2, is said to be quasi-random if:

D*(Py) < c(logN)FN—*

in which the constant ¢ and the logarithmic exponent £ are dependent on the dimension s.
The Koksma-Hlawka inequality implies that the integration using quasi-random sequences
has an error bound of size O((logN)* N~1), which for large enough N makes it much more
accurate than standard MC simulation. Examples of quasi-random sequences have been
constructed by Halton, Faure, Sobol’, Niederreiter, and others. For a detailed discussion,
we refer the reader to the monograph of Niederreiter [18].

Although s derivatives of f are required to obtain the variation of f, it was found
in practice that quasi-Monte Carlo integration is effective only with a minimal amount of
smoothness of f, unless f is discontinuous, where improvements in this case are diminished.
To investigate more about the effectiveness of QMC in high-dimensional problems, the
reader is referred to [15] and [16]. In these papers, it is shown that the faster convergence
rate for QMC generally disappears for high-dimensional problems. A simple evidence
for this conclusion is the dependence of the discrepancy on N for different values of the
dimension s, where for large s, the discrepancy becomes O(N~'/2) same as that of a random
sequence, taking on a rate of O(N~!) only when N becomes very large. On the other hand,
there was almost no problems found for which QMC behaves worse than standard MC.

We have presented above a measure for the uniformity of a sequence, but in practice it’s
difficult to evaluate the uniformity of a sequence in a high-dimensional space. A necessary
but not sufficient condition for uniformity is the uniformity of low-dimensional coordinate
projections of the sequence. The Sobol’ sequence used in the numerical experiments of this
paper has excellent one-dimensional projections and many of its two dimensional ones are
highly uniform thanks to the proper choice of the direction numbers as discussed in the
section below.



2.2.1 Sobol’ Sequence

Sobol” sequence is the most widely used construction in the family of digital sequences
and the first one proposed as well. In what follows, we will adopt the same notations and
discussion used by C. Lemieux [13] to explain Sobol’s sequences construction. For each
coordinate j, the one-dimensional projection Py({j}) of Py requires two things; the first
is a primitive polynomial f;(z) in Fy, the finite field with two elements, and the second
one is an integer m; to initialize a recurrence based on f;(z) that generates the direction
numbers defining Py({j}). The method specifies that f;(z) should be the j one in the
list of primitive polynomials sorted by increasing degree. Sobol” specifies a certain order
within each degree as given in the code of Bratley and Fox [4] for j < 40. The Sobol’
sequence generated in our numerical experiments is generated from the package developed
by C. Lemieux [13] where the order used for j > 40 is that given in the list of primitive
polynomial that can be found at Florent Chabaud’s website (fchabaud.free.fe).

Assume f;(z) = 29+ a;127! + ... + a;,, where a;; € Fy for each j,I. The direction
numbers v; 1, j2, ... are rationals of the form

k
m;k
3 _ 75 _ 3 —l
Uik = o = ve27
=1

where m;, is an odd integer smaller than 2k The first ¢ values Vj1,Vj2, ..., Vjq, OF equiva-
lently, m; 1, m;2, ..., m; 4, have to be chosen, and the next values follow recursively according
to the recurrence relation:

Vik = @j105k-1 D . B Qjg-1Vjk—qt1 D Vjk—g D (Vj1—q/29)

where @ denotes a bit-by-bit exclusive-or operation, and v;;_,/2? means that the binary
expansion of v;j_, is shifted by ¢ positions to the right. These direction numbers are then
used to define Py({j}) = {w;;,i=0,..., N — 1} as follows:

U j = loUj1 D 110Vj2 D ... D ig-1Vj4 (2.3)

where 1, ..., 14— are the coefficients in the binary expansion of i, i.e.

and d is such that N = 2¢. An alternative way to describe this procedure in correspondance
with the general construction principles for digital nets is to consider the binary expansion

of u; j given by:
L
-L
Uiy =) w2
1=1
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Then we have that (2.3) is equivalent to

Z:O Ui g1
o e e e (2.4)
Z'd;l ui:j,l
where C’ is a L x d matrix defined by
Cly = vk

and the operations in (2.4) are performed in Z,.

In the implementation of Bratley and Fox [4], the initial values of m;; for j < 40
are provided. For dimension 40 < j < 360, C. Lemieux adopts a criterion based on the
resolution of Py for searching for “good” initial values, where resolution is a measure that
is often used to assess the quality of pseudo-random number generators based on linear
recurrences modulo 2. In Lemieux’s package [13], the intial values m;, for dimension j were
chosen as follows: the resolution of Py ({j—1,j}) fori =1,...,8 and N = 2¢ was computed,
where d is the degree of the primitive polynomial assigned to dimension j, compared with
the maximal resolution [d/2], and then the largest difference for those eight projections
was measured. Hence, the set of initial values chosen was the one providing the smallest
maximal difference. A random search was performed to find these sets of values, since
otherwise the search space would have been too large. The optimal values of m;;, obtained
for 40 < 7 < 360 are available from the authors of the used package [13].

The implementation of Sobol’s sequence in [13] is based on the Fortran code of Bratley
and Fox available at www.acm.org/calgo. The procedure described in [13] could be similarly
followed up to dimension j=1000, and was provided by C.Lemieux for the algorithm we
are using in our numerical experiments.



Chapter 3

ANOVA Decompostion and
Sensitivity Indices

3.1 Analysis of Variance (ANOVA)

The analysis of variance (ANOVA) is a tool devised to describe the dependence of a square-
integrable function f on each of the input variables or subgroups of variables. The idea
is to decompose f, defined on [0, 1]°, as a sum of 2° components based on each possible
subset of variables. This decomposition is very useful to understand the behavior of quasi-
Monte Carlo methods for numerical integration methods, where it can be applied to various
notions of the effective dimension of an integrand.

Let f € Ly be a function defined on [0,1]* and let A = {1,2,...,s}. For any subset
I C A, let d denote its cardinality, and let —I denote its complementary set in A. A generic
point of [0, 1]* is written as u = (uq, ..., us) and u; denotes the d-vector of components u;
for i € I. We write [0, 1]¢ for the domain of u;, and [0, 1]*~¢ for the domain of u_;. The
integral over u; € [0,1]? of a function g(u), is a real valued function that depends on u
only through u_;.

In the ANOVA decomposition each square integrable function f(us, us, ..., us) is written

fw= 3 fiw). (3.1)
}

IC{1,...,s

where for any nonempty subset I, f;(u) depends on u only through u;. The ANOVA terms
are defined by:

Oy SRR Al 3.2)

JCI
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and the ANOVA component f,(u) is simply the integral:
I(f) = f(u)du
[0,1]¢

For the decomposition in (3.2) one can show by induction on d that the integral of every
summand over any of its own variables is zero:

1
/ fr(u)du; =0, for any i € I (3.3)
0
Then it follows that distinct ANOVA terms belong to orthogonal spaces, i.e. if I # J:
fI deu = Oa

[0,1]°

since at least one of the indices in [ is not repeated in J and the integral with respect to
that variable vanishes (3.3).

Since f(u) € Lg, it can be shown that f; € Ly, hence the variance of f and f;:

o? = f2(w)du — f3
0.1)°

o] = Ji (ur)duy
[0,1)¢

are finite. From the orthogonality of ANOVA terms, it can be easily shown that the
variance of f can be be decomposed in a similar fashion as (3.1):

o = Z o7 (3.4)
I1C{1,...,s}

where o3 = 0. We use o7 to measure the importance of f;. Normalized versions o7/0? are
called global sensitivity indices in Sobol” (2001) as we will see in the next section.

3.2 Sobol’ Sensitivity indices

In 2001, Sobol’ developed a method for global sensitivity analysis of model output, which
was named : Sobol’ sensitivity indices [28]. The indices were developed based on his earlier
work on the Fourier Haar series (Sobol’(1969)). The purpose of the so-called Sobol’ sensi-
tivity indices, which we will denote by Sy, is to give us an idea of the relative importance of
the term f; by computing the contribution of its variance to the total variance as follows:

Sr=21 0,1 (3.5)



In other words Sy allows us to estimate the sensitivity of a function f(U) with respect to
different variables or groups of variables. For instance, f; = 0 if and only if S;=0 and f(u)
is independent of u; if and only if S; = 0, for all I containing i. S;, refering to Sy;y for short,
is the main effect of the variable u; on the output variation. .S;; is the interaction effect,
i.e. the fraction of the output variance caused by the two variables together, u; and u;, and
which cannot be explained by summing the effects of each variable alone. Sy, 4 is the
part of the output variation caused by the interaction of the variables altogether and which
cannot be explained by summing terms of lower order. Finally, note that > 1C{1,. s} Sr=1
using (3.4) and (3.5).

In practice, it is usually neither possible to obtain closed-form expressions for the
ANOVA components f7, nor to compute their variance contributions o%. Hence, one of-
ten needs to estimate Sobol” sensitivity indices. In his work on sensitivity measures for
nonlinear models, Sobol recommends using quasi-Monte Carlo methods to approximate
these quantities. Informally speaking, if we know, or can guess, which components f; arc
important, then we can say that quasi-Monte Carlo integration based on point sets with
corresponding high quality projections Py ([) should give accurate approximations.

For example, the linear MBS problem discussed in chapter 5, is shown to have important
one-dimensional components fr;;, and hence is accurately evaluated using Sobol” sequences
due to their excellent one-dimensional projections.

3.3 Computation of Sobol’ Sensitivity Indices

As mentioned in the previous section, Sobol” indices can be estimated using quasi-Monte
Carlo integration methods. In our numerical experiments, we generate N points, {uy,usg,...,un},
where each one is sampled from the Sobol’ sequence described earlier in (2.2.1). Then, we
compute QMC estimates of the grand mean and total variance in a straighforward way as
follows:

. 1 X
f(b:N;f(ui)?

52 = iijﬂ(uz) _ qus
N 1=1

It’s worth mentioning that it’s not necessary to generate a new QMC sample for each group
of variables whose sensitivity index is to estimated. For example, for I = {j}, ij}, which

(oY
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can be estimated using the following QMC estimator:

N

~2 (1) (1) (2)
Jj Z Uy,j> U (u ijo U ) f¢>

where the superscripts (1) and (2) refer to two different QMC samples, namely Sobol” in
our experiments. To obtain the different samples (1) and (2), we generate a 2s-dimensional
Sobol” point set and use the first s coordinates to define the first sample and the last s
ones to define the second sample. That is:

e 2 _

= (ui,la Ui 2,5 -y Ui’s) and u, " = (ui75+17 Uj 5425 -9 Ui723)

fori=1,2,..., N. Hence, to compute S’i, the estimate of the sensitivy index .5;, we need to
multiply the values of f(u) obtained at the first sample of N points by the corresponding
values of f obtained at the second sample of N points except for the variable wu;, whose
data is kept from the first sample. For S; we resample all variables but wu;, where as for
5’7, we resample everything except u;. Then, after subtracting f¢ from the average of the
N obtained products, we divide the result by 62. For subsets I containing more than one
index, Sobol” and Levitan (1999) suggest looking at the following quantity:

1
7= > o3 (3.6)

p#JCI

where QMC methods can be used to estimate this quantity by:

( Zf (1) u[ U ) fé) (3'7)

( / f(u)du_[>2 duy

(1)

using the fact that:

where, as defined before for the Sobol” indices, u; ’ represents coordinates ¢ € I taken from

(2)

the first sample, and u'"; represents coordinates i ¢ I taken from the second sample.

The procedure can be summarized as follows:

e Assuming that all S; need to be computed, we generate two sets of /N points, each
sampled from a Sobol” sequence as described earlier. Save each set in a matrix of
dimension N X s, where s is the dimension of the integrand. One of these matrices
is used for sampling and the other one for what we call resampling.
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e To compute 5'1', the estimator of S;, multiply the values of f(u) obtained at the first
sample of N points by the corresponding values of f obtained at the second sample of
N points excluding the variable u;, substract f; from the average of the N products
obtained, and then divide the result by 2.

e Higher order interactions or sensitivity indices of groups of variables can be obtained
in a similar fashion. S; the estimator of Sy, can be obtained by induction on (3.6)
and (3.7) as follows:

N
1
= 2 S ) =378, -
i=1

Jcil

where I = {iq,...,74} C{1,...,s} and —1 = {1, ..., s}\I

hint : If variable u; is a relatively important variable, then high values of the first term in
the (f x f) product are multiplied by corresponding high values of the second term, leading
to a high 62 and hence S 2 Otherwise, high values of one of the terms will be multiplied by
low ones and a lower o7 is obtained. This approach was suggested in Saltelli et al. (1997)
and even carlier described in a Russian article [27].

3.3.1 Bootstrap Confidence Intervals

To have an idea of how accurate our estimated Sobol’ sensitivity indices are, we need to
estimate their sampling variability. In Sobol’(1999) the ‘probable error’ for the variances
o2 was used to measure the accuracy ie. Ac? is calculated so that Pr{|o? — o?| <
Ac?} = 0.5. However, a better estimate of accuracy for S; indices can be obtained using
Bootstrap Confidence Intervals (BCIs). This procedure is usually applied with independent
pseudo-random sampling, however it is still valid with quasi-random sampling as shown in

Appendix A of [2].

The idea behind BCls is to draw, with replacement, N values of the QMC sampled
values {u1, ug, ..., uy } and repeat this procedure B times until we have generated B samples
{ub, b, ..., ub}, where b = 1,2, ..., B. For each obtained sample, recalculate the estimate
S#b of the corresponding variable S;. The computed B values S;°, where b = 1,2,..., B,

are used as a bootstrap estimate of the sampling distribution of the sensitivity 1ndeX S’l.

In this paper, we will use the moment method which relies on large sample theory and
gives a symmetric 95% interval for S;, as follows:

S; 4 1.96 x e.s.e(S;)

14



where e.s.e(S'i) is the estimated standard error of the bootstrap estimates:

1 B

6‘8.6(5(1') = ﬁ Z(S,L*b — 5_’1*)2
b=1

and S} is their mean:

1 B
S;==>.5"

3.3.2 Examples

We investigate the effectiveness of the estimation of the Sobol” indices and the bootstrap
intervals described earlier in this section using the following test function:

i 4’(1,1 -2 + a;

i=1

y aiZO, ’é:l,...,S

where f is defined on the s-dimensional cube [0, 1]*. The integral of f for all values of the
parameter a; > 0 is equal to 1. This test function was used in Davis & Rabinowitz (1984)
to test mutidimensional integration. The plots of the function for different values of the
parameter a; are given on Figure 3.1. Knowing that u; lies in [0,1] for each 1 <1 <'s, the
function g; is bounded by:

1 <g <1+

_ 3.8
1+CLZ‘ 1—}-@@ ( )

That is the range of g; depends on the parameter a; for all 1 <17 < s. Hence, the smaller
the parameter a; is, @ = 1,2,..., s, the bigger is the range of g; and the value of f(U)
respectively. For example:

a; = 0= 0 < g; <2; hence u; causes a variation in g = w; is an important variable,

a; =9 = 0.9 <g; <1.1; u; causes less variation in g = w; is less of an important variable,
a; = 99 = 099 < g; < 1.01; wu; causes little variation in ¢ = w; is not an important
variable.

The advantage of using this test function is the existence of analytic solutions for its
sensitivity indices. It’s strongly nonlinear and nonmonotonic which provides a good test
of the performance of Sobol’ methods. As shown in [20], we have that:

) 1
or =] ST a) (3.9)

jeI
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= 0'2 = Z H T a] (310)

I1C{1,2,....s} jGI

For our experiments, we choose the dimension s = 20 variables, where the parameters
a; = ((i —1)/2), i=1,...,s. Hence, the importance of u; decreases as i increases.

The Sobol’ sensitivity indices were estimated using Sobol” sequences with N = 22 as
described in (3.3). Table (3.1) contains a list of ranking of the variables, the exact Sobol’
indices S;, the estimated sensitivity indices S;, the moment BCI computed as described
earlier, the absolute errors of estimated indices using Sobol’ sequence, then the last column
lists the absolute errors of the estimated indices using pseudo-random sequences.

From the results, we notice that there is a remarkable monotonic decrease in magnitude,
that is in importance, for all the twenty variables as expected. In Sobol’ [2]; using a smaller
N =512, some of the estimates obtained for the higher variables (variable 19 and 20)
were negative. This is theoretically impossible, since the indices are a ratio of variances.
However, this occurs due to the fact that we are approximating these variances, which
implies the result could be underestimating and hence could become negative. But, this
still does not affect the message of the results with respect to the relative importance of
the input variable.

It seems from the BCI results that the sampling distribution of the estimated Sobol’
indices is symmetrical. This hypothesis is supported by the fact that the estimates are the
exact midpoints of the BCI's. Notice how S5 is lower than the endpoint of the BCI for
variable u;, which makes u; significantly more important than any other variable.

We conclude from this experiment that the estimated Sobol’ sensitivity indices clearly
point out the order of importance of the input variables. The BCI intervals proved to
be effective in the assessment of the overlap between these variables, however it is worth
mentioning that confidence intervals is not a formal test of the hypothesis that one variable
is more important than another, but only to assess how probable it is the case. The
bootstrap intervals could also be used to examine the bias in sensitivity analysis estimate,
and correct this bias if necessary, as described in [2].
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Figure 3.1: : Some examples of the test function.
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Figure 3.2: : Moment bootstrap intervals for the estimated Sobol” Sensitivity Indices
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Table 3.1: : Estimation of Sobol’ indices and Bootstrap Confidence Intervals

Variable S; S; Moment BCI Sobol e Random e

1 0.3065 0.3109 (0.2417, 0.3800)  0.0044 0.0142

2 0.1362 0.1444 (0.0835 , 0.2053 0.0082 0.0113

3 0.0766 0.0893 (0.0250 , 0.1536 0.0127 0.0157

4 0.0490 0.0480 0.0086, 0.1045 0.0010 0.0301
5 0.0340 0.0347 (-0.0190, 0.0884 0.0007 0.0305
6
7
8

)
)
)
)
0.0250 0.0265 (-0.0265, 0.0794)  0.0015 0.0305
0.0384, 0.0724)  0.0021 0.0388
0.0377, 0.0688)  0.0003 0.0475
0.0433, 0.0620)  0.0029 0.0351
0.0439, 0.0583)  0.0029 0.0294
0.0443, 0.0559)  0.0028 0.0295

)

)

)

)

)

)

)

)

)

0.0191 0.0170 (-
-0.0438, 0.0582 0.0001 0.0360

(
(
(
(
(
(
0.0152 0.0155 (

9 0.0122 0.0093 (
10 0.0101  0.0072 (
11 0.0086 0.0058 (
12 0.0073  0.0072 (
13 0.0063 0.0073 (
14 0.0054 0.0042 (
15 0.0048  0.0030 (
16 0.0042 0.0042 (
17 0.0038 0.0052 (
18 0.0034 0.0017 (
19 0.0030 0.0028 (
20 0.0028 0.0021 (

0.0421, 0.0567 0.0010 0.0365
0.0012 0.0321
0.0018 0.0294
0.0000 0.0327
0.0014 0.0383
0.0017 0.0314
0.0002 0.0335
0.0007 0.0297

0.0462, 0.0545
0.0485, 0.0544
0.0464, 0.0548
0.0463, 0.0567
0.0509, 0.0543
0.0476, 0.0532
0.0496, 0.0537
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Chapter 4

The Effective Dimension

4.1 Definition

The concept of effective dimension is a means for assessing the difficulty of a multidimen-
sional integration problem by studying its ANOVA decomposition. The effective dimension
is used to determine how many variables u; of f(u) are relatively important, in other words,
contribute to a considerable variation of f(u). It was introduced to explain the effective-
ness of quasi-Monte Carlo integration methods on problems in finance with nominal high
dimensions. As mentioned earlier, the error bounds of quasi-Monte Carlo integration is
of size O((logN)*N=1) or even O((logN)*N~=3/2), which suggests that an improvement in
convergence rates over MC methods is not attainable at feasible sample sizes. However,
many problems of high dimensions have reported a substantial improvement from using
quasi-Monte Carlo at relevant sample sizes. This leads us to assume that even if the inte-
grand has a high nominal dimension, it may be of lower effective dimension. For instance,
the mortgage-backed security problem studied in Caflisch, Morokoff, and Owen (1997) has
been accurately computed using QMC in dimensions as high as 360, which suggests that
the integrand in this problem may be a sum of lower dimensional integrands i.e. lower ef-
fective dimension. It is not surprising then that the good low dimensional equidistribution
properties of low discrepancy sequences give QMC methods good performance on these
problems at relevant sample sizes.

Definition The effective dimension of f in the superposition sense (and in proportion p)
is the smallest integer dg such that :

% Y oizp

I:|I1<dg
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The effective dimension of f in the truncation sense (and in proportion p) is the smallest
integer dp such that

é Yo o= p

J:JC{1,2,...d7r}

Hence, a function of effective dimension d in the superposition sense can be well approxi-
mated by a sum of functions of at most d variables each. A function of an effective dimen-
sion d in the truncation sense can be well approximated by a sum of functions involving
the first d variables only.

As mentioned earlier for Sobol’ indices, the effective dimension quantities usually cannot
be evaluated analytically. The effective dimension in the superposition sense, dg, can be
approximated by using QMC to compute ¢ increasing || until:

Y 6izpd’ (4.1)

I{1|<ds

Hence, the estimated effective dimension dg is the smallest || obtained for which (4.1)
holds. For estimating the effective dimension in the truncation sense dr, we can use the
quantity vy defined by Sobol” and Levitan (1999) (see Section 3.3). We compute dr by
calculating ~; for subsets I = {1,2,...,d} increasing d until 7; > p. Hence, dr is the
smallest value of d obtained for which +; > p holds.

Below we present two main types of integrands and estimate their effective dimension in
the superposition and truncation sense, with proportion p=0.99. A very useful description
of the test functions used in comparative studies involving QMC can be found in Owen
(2003). We will present a simple linear function and describe its characteristics, and a
multiplicative function will follow respectively.

4.1.1 Examples

1. Consider a linear function of the form:
f)=fo+> ci(u; —1/2), ¢; € R, (4.2)
j=1
which is already decomposed into its ANOVA components:

f](U) = Cj(U,j — 1/2), j = 1, o S

20



where fr(u) = 0 for all subsets I containing more than one index. We can analytically
compute UJQ. and o2 as follows:

E(f;) = /01 cj(u; —1/2) duj = c;(1/2-1/2) =0

= 12 duy — (B()Y
c

3

632-1

34

2

2 G

%7 12
S 2
2 Cj
= 0% = e
7 T2

7j=1

Hence, we can compute the exact global sensitivity indices as follows:

Cj2 i
s forj=1 s (4.3)
> j=1Cj
Let’s consider two linear functions of the same type as above but with different set
of parameters ¢; :

Si(u) =

(i) s=20,c¢cj=c, ceR, Vj
(i) s = 40, ¢c; =¢', c€(0,1), forj=1,....s

From (4.3), we have that »°_, S;(u) = 1 for any constants ¢;, thus it follows that
the effective dimension, in the superposition sense, of any linear function (4.2), must
be 1. However, the effective dimension in the truncation sense does depend on these
constants ¢;. For instance, for the function (i), where all ¢; are equal, dr = [0.99s].
Whereas for function (i7), dr is the smallest integer d such that:

2 2d
}: o (1 =c*) 2 _
01—1_—62 20990' =0.99

Ig{1277d}

02(1 _ cQs)
1 —¢?

After rearranging, we get the exact value of dr as follows:

log(1 —0.99(1 — ¢*%))
dr = { T W (4.4)
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We conducted numerical experiments to test the methods described above for esti-
mating the effective dimension in both superposition and truncation sense. Applying
quasi-Monte Carlo integration, we were able to verify that the effective dimension in
the superposition sense for both functions (i) and (éi) is equal to 1, using a Sobol’
sequence of a quite feasible size (N=4096). Using the same sequence, we verified that
dr = dp = 20 for (7) and obtained the results listed Table 4.1 for dr of a function of
the same form as (i7), for different values of ¢ and s. Notice that the results obtained
for dr in Table 4.1 are exactly the same as dr given by (4.4).

Table 4.1: : Estimated Effective dimension in the truncation sense for linear function
flu) = fo+ 325 & (u; — 1/2), for different values of ¢ and s

c\s 5 10 20 50 100
099 5 10 20 50 97
095 5 10 20 41 45
09 5 10 18 22 22
05 4 4 4 4 4
02 2 2 2 2 2

2. Now consider the multiplicative function studied previously in Section 3.3

1 [4u; — 2| +

s =TT

J=1

Using (3.9) and (3.10), it can be proved that the effective dimension in the superpo-
sition sense of function f is equal to 3. This means that the function f(u) can be well
approximated by a sum of functions depending on no more than 3 variables each.
We were able to verify this result using the algorithm developed in our numerical ex-
periments and the same Sobol’ sequence used previously for estimating the effective
dimension of the linear function in experiment 1 above.

Now let’s consider different choices of a;. As we can see from (3.8), the smaller a; is,
the more important the variable u; is. For example, for a; = a; = 0,a3 = ... = ag = 3
in dimension 8, we found that dg= 3 and dry= 8 which is the same result we would
get analytically for this case.

Also several values for a; were used in Wang and Hickernell (2000) for example:

(i) a; = 0.01,
(ii) a; =1,
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(44) a; = j,
(iv) a; =357

forj=1,2,...,s.

Theoretically, as we go from (i) to (iv), the effective dimension (in the truncation
sense) dr of the function f should decrease since a; increases. Using the same Sobol’
sequence as in the above experiments, we were able to obtain the following values for
the estimated effective dimension in the truncation sense for the four cases above,
where s = 50 :

(i) dr =42
(i1) dp = 41
(iii) dr = 23
(ZU) dT =4,

In order to better assess the overall quality of the Sobol’ method, we also stud-
ied the choice a; = (s —j + 1)2 for 1 < j <'s, which can be seen as the same choice as
(iv), but where we reverse the order of the coordinates of each point. Based on the
previously used Sobol’ sequence, we found that dy = 48 which means the effective
dimension d; becomes larger than the previous choices since now the most important
variables are the last ones ug, us_1, and so on.

4.2 Reducing The Effective Dimension

The fact that many high dimensional problems in finance have a low effective dimension
in the superposition sense or the truncation sense has no universally accepted explanation,
but Sloan and Wozniakowski [26] may offer a possible answer to the outperformance of
Quasi-Monte Carlo over Monte Carlo for such problems. What is interesting for us though
is that having a low effective dimension in the superposition sense implies that we can
obtain accurate results by using a highly uniform quasi-random sequence with good low
dimensional projections, i.e. points whose first few coordinates are more uniformly dis-
tributed than the latter ones. However, in many constructions of quasi-random sequences
such as Sobol” and Halton, the uniformity of low dimensional projections Py(/) deterio-
rates with the increase in the coordinates of the point set. Thus, in order to obtain accurate
results using such sequences, it becomes necessary for the integrand to have a low effective
dimension in the truncation sense as well. The question that naturally arises is: Is there a
technique to reduce the effective dimension in the truncation sense of a financial problem?

The Brownian bridge construction for pricing of financial derivatives is one of those
techniques. This technique aims to modify the way we simulate paths of stochastic vari-
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ables, so that the resulting integrands depend heavier on the first few coordinates of the
point set, which are presumably more uniform. Later in our numerical experiments, we’ll
apply the Brownian bridge construction to two different financial problems, pricing digital
options and Mortgage backed securities, and analyze its performance on both. But let’s us
first define this technique and discuss its details.

4.2.1 Brownian Bridge Construction

The Brownian Brigde (BB) technique for QMC integration was first suggested by Caflisch
and Moskowitz [6] and then generalized by Morokoff and Caflisch [17]. The authors of
Ackworth et al. [1] state that ‘It attempts to use the best coordinates of each point to
determine most of the structure of a path’. Being based on this idea for pricing financial
derivatives, the BB method deals with the simulation of the Brownian motion paths in
particular, without being concerned with the way the asset prices are combined by the
payoff function.

Following a similar procedure to that outlined in A. Papageorgiou [22], let {U;,0 <
t < T} be a Gaussian Markov process, which is sampled at s times 0 < t; < ..ty < T.
This results in a normally distributed random vector U = (Uy,, ..., U;,). We assume that
its mean is zero and its covariance matrix is C'. Let f: R® — R be a given function and
let I(f) = E[f(U)] be the integral we want to compute. Then U can be simulated using
u = (u1,...,us), where u; are independent normal random variables with mean zero and
variance one. For example, assume the underlying asset follows the Black-Scholes model,
that is, under the risk-neutral measure (see, e.g., Glasserman (2004)):

dS(t) = rS(t)dt + o S(t)dB(t)

where B(.) is a standard Brownian motion. Therefore, S(¢) has a lognormal distribution,
S(0) is the initial price, and o is the volatility of the underlying asset. More precisely, we
can write:

S(t) _ S(O)e(rfoQ/Q)twLo'B(t)
In the standard approach to generate a path, the coordinates {uy,...,us} of u are succes-
sively used to generate the observations B(t;), ..., B(ts) of the assets underlying Brownian
motion as follows:

Bt_7’+1 = Btj + tj+1 - tj Ujt1, j = 0, ey S — ]_,

where By = 0. Equivalently, in matrix notation we have:

Bt1 U1
By Uz
2
=M .
Bts Ug
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where M is obtained from the Cholesky factorization of the matrix

C = {min(t;, t;)}; ;o) = M M". When At = T/s = tj43 —t;,j =0,...,5s — 1, i.e. the t;’s
arc cqually spaced which is often the case in practice, the matrix M is given by:
1
M=VE| | 1
1 1 1

The expectation of any integrable function of the discretized path of the Brownian
motion is given by :

E[f(By,, ..., B.,)] = E[f(Mu)], u = (uy,ug, ..., us)" .

If instead one tries to use the first few coordinates of u to decide as much as possible
the behavior of B(.), then hopefully, this should reduce the effective dimension of the
problem in the truncation sense. The Brownian bridge construction does this by first
generating Br, then using this value, and By = 0, it generates Br/,. It generates Br/4
using By and Br/2, and it generates Bsr/, using Bt/ and By. The construction proceeds
recursively generating the discretely sampled Brownian path by filling in the mid points of
the subintervals T',T/2,T/4,3T/4, ..., (s — 1)T /s according to:

BT = \/Tul
1 VT

Brjy = §BT + o U2

1 V2T
Bry = §BT/2 =+ 1

Uus

V2T

1
Bsris = = (Brj2 + Br) + Uy

2

1 VT
Bs—1yr/s = §(B(s—2)T/s + Br) + gus
This results in a matrix M different from that of the Cholesky factorization, where
MM?T = C. The Brownian bridge can be generalized to include unequal length intervals.
Fortj, =t;+At, j = 0,...,s—1,At =T/s, we can simulate a future value B, , k > j,
(given the value B;;) according to :

By, =B, +/(k—j)Atu
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where u follows a normal distribution N (0, 1). We can also simulate By, at any intermediate
point ¢; < t; < t; (given the values of By, and By, ) according to the Brownian bridge
formula :

By, = (1 —7)By, + VB, + V(1 — ) (k — j)At u,

where u follows a normal distribution N(0,1) and v = (i — j)/(k — j)

Although the Brownian bridge (or, another similar construction) can provide better
convergence in a number of interesting cases, we shall see that this advantage is not guar-
anteed because there exist cases for which it does not perform well. One of these cases is the
digital option, where the underlying asset is lognormally distributed. For this option, the
dimension by truncation obtained using the Brownian bridge is no less than that obtained
using the standard discretization (i.e., the one reflecting the Cholesky decomposition of
the covariance matrix of the Gaussian distribution), even when the dimension is as small
as 2. In [22], A. Papageorgiou claims that we can conclude the following :

e The Brownian bridge does not offer a consistent advantage in QMC integration

e We still need a clarification for the argument attributing its success to its ability to
reduce the effective dimension of a problem

e A covariance matrix decomposition can be interpreted as a change to the integrand
or to the sample points which may yield a harder problem.

Returning to the integral I(f), the Monte Carlo error is not affected by the choice of
the covariance matrix decomposition because this error depends on the first and second
moments of f which remain invariant under the different decompositions. In general, this
is the case for any method with an error depending only on the moments of f. On the
other hand, the choice of the matrix M, MMT = C, does affect the quasi- Monte Carlo
error. This is due to the fact that any choice M can be interpreted as a change in the
integrand or as a change in the sample points, and both are factors upon which the QMC
deterministic error bound depends.
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Chapter 5

Problems from Finance

5.1 Randomized Quasi-Monte Carlo For Obtaining Er-
ror Estimates

In order to assess the performace of QMC, we need to obtain bounds on its integration
error. Bounds on the integration error using QMC can be obtained and are valid for
functions satisfying strong regularity conditions (e.g., f must be of bounded variation: see
Niederreiter (1992) and Owen (2005) for the details). However, these bounds are very
difficult to compute and too conservative and hence not useful in practice. An alternative
way to assess the peformance of QMC is described below using what we call a Randomized
Quasi-Monte Carlo sequence.

One way of obtaining error estimates for QMC methods is to randomize the underlying
quasi-random sequence. Using the same argument as C. Lemieux [12], let v be a uniform
random vector in some space 2. Then choose a randomization function r such that
r: Q x[0,1)®* — [0,1)® and construct the randomized version Py = {uj,...,un} of Py,
defined by 4; = r(v,u;). For example, with the Cranley-Patterson rotation (Cranley and
Patterson, 1976), Q = [0,1)® and r(v,u;) = (u; + v) mod 1.

The function r should be chosen so that:
(7) (v, u) is uniformly distributed over [0, 1)° for any w.

(74) Py has the same highly uniform properties as Ply.

Once a randomization is chosen, the variance of the resulting estimator S~ | f(u;)/N

can be estimated by generating m 1i.i.d. randomized point sets Py. For more on random-
ization techniques and standard constructions for QMC methods, we refer the reader to
Owen (1998), L’Ecuyer and Lemieux (2002), and Glasserman (2004).
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We discussed in chapter 4 the concept of Effective Dimension and Brownian bridge
technique used to enhance it. In the following sections we are going to use the methods
proposed by Sobol” as discussed carlier, to estimate the effective dimension of two problems:
a digital option and a mortgage backed security. Using randomized Sobol’ sequences,
we will investigate the accuracy of the QMC approximations for these two problems for
different dimensions, and compare our results to those of MC obtained using pseudo-
random sequences. We will also check the effect of applying the standard Brownian bridge
technique on their effective dimension in the truncation sense .

For both problems discussed below, QMC integration methods are performed using
Sobol’ sequences generated by the same package described in Section 2.2.1. To obtain the
RQMC results, Sobol” sequences are randomized by a random shift. That is, a randomized
point set Py is obtained by shifting all the points in Py by a constant value randomly
drawn from the uniform distribution U([0,1]*). Thus, properites (i) and (ii) discussed
earlier remain valid.

5.2 Digital Option

We chose this problem because it has been shown (Papageorgiou (2002)) that the Brownian
bridge technique does not reduce the effective dimension by truncation. The payoff of a
digital call option is given by :

s

1
Cp =+ > (S, = S8,

Jj=1

where t; = jT'/s for j=1,...,s, and (:L’)S)r is equal to 1 if x > 0, and is 0 otherwise. Thus the
value of this type of option is determined more heavily by local trends of the underlying
asset rather than by its global trend, which might be a reason for the failure of the Brownian
bridge technique on this problem.

Table 5.1 gives results of applying RQMC for a digital option with 7" = 1, r = 0.045,
o= 0.3, and S(0) = 100. The number of randomizations m was set to 25 for these results.
For each pair (s, N), we give the estimator for the price of the option on the first line,
and its standard error on the second line. As we can see in this table, the RQMC method
consistently succeed in reducing the variance for this problem.

Applying the Brownian bridge technique to the digital option, we obtained larger values
for the effective dimension in the truncation sense than that of the standard discretization.
The failure of the Brownian bridge verifies our claim that the price of this option depends
on the local changes in the price of the underlying asset more heavily than the global
change. Table 5.2 below shows the values of Dy for different dimensions s.
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Table 5.1: : Digital Option

Variable (s,N) MC Sobol’

(64,1024) 52.6191  52.6926

0.1552 0.01
(64,4096) 52.6101  52.7007
0.07 0.0014

(128,1024)  52.2402 52.26226
0.0879  0.0068

(128,4096)  52.2061 52.2222
0.0414  0.0012

(256,1024) 51.904  51.9377
0.0936  0.0039
(256,4096)  51.7997 51.9105
0.0276  0.0013

Table 5.2: : Effective Dimension in truncation sense of the Digital Option

s without BB with BB

64 62 64
128 121 128
256 236 255
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5.3 Mortgage Backed Security

A Mortgage-Backed Security (MBS) is an asset-backed security or debt obligation that
represents a claim on the cashflows generated by a group of one or more mortgages. Since
they started in the 1970s, mortgage-backed securities have undergone significant growth
and acquired a huge popularity as an investment tool among individuals and financial
institutions. This was favored by the benefits offered to investors by MBSs, including
attractive yields, minimal credit risk and a liquid market. In 2002, the total value of
outstanding MBS was already exceeding $3.8 trillion and constituted 21% of the total
outstanding bond debt in the U.S. Fixed Income market (Kelman (2002)).

The valuation process of mortgage-cashflows-dependent securities is based on model-
ing the borrowers’ refinancing strategy. In the early models suggested by Brennan and
Schwartz (1985), the borrower was thought of as an optimal agent actively seeking to min-
imize the present value of his mortgage. This model was inefficient because it failed to
regard borrowers as suboptimal agents and thus match the actual prepayment rates. This
resulted in developing behavioral mortgage-valuation models that produced reduced form
prepayment behaviour models.

5.3.1 Details

A Mortgage-Backed Security is created when a mortgage issuer assembles together a set of
mortgages into pools. MBSs are issued by government agencies, government-sponsored en-
terprises, and private entities. Most MBSs are issued by three government sponsored agen-
cies: Gennie Mae (GNMA), Freddie Mac (FHLMC) and Fannie Mae (FNMA). Mortgages
are assembled into pools based on specific government guidelines and common properties,
such as interest rate, payment terms, etc. When the pool is set up, the issuer has the right
to sell units to investors directly or through securities markets. Ownership of the MBS
entitles the investor to receive collections of the mortgage borrowers interest and principal
payments minus the expenses of the deal such as the issuers fees for guaranteeing the timely
payments to the investor. The payments on the MBS are guaranteed by the respective issu-
ing agency. For more details, see “MBS basics” by Mark Adelson, Nomura Securities Inter-
national, Inc. (http : //www.securitization.net/pdf /Nomura/M BS Basics31 Mar06.pdf)

Thus, the MBS owner faces two different risks: the interest and prepayment risks.
Fluctuating interest rates influence the interest paid by the borrower and fluctuating pre-
payment rates influence the principal on which the interest is paid. Because of all these
factors, the valuation of MBSs becomes a complex process that involves modelling the
interest rates and the prepayment behaviour of the individuals, which in turn depends on
term structure, strategical and other random factors.
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5.3.2 Term Structure and Prepayment Models

As mentioned in the previous section, the value of an MBS is essentially sensitive to
fluctuations in the interest rate, which makes its model a very important factor in the
MBS valuation. The Rendelman-Barter model is the simplest way to model the interest
rate r, where r follows the geometric Brownian motion model:

dr = u(t,r)rdt + o(t,r)rdB

where p is the drift term, o is the volatility and B is a Brownian motion.

Note that this model assumes the same behaviour for a short-term interest rate as that
of a stock price. This assumption, however, is deficient since unlike stocks, interest rates
drift toward a long-run mean which is called a mean reversion property. Although the
Rendelman-Barter model does not exhibit this property, we need to set drift term pu = 0 to
eliminate any price drift. A more sophisticated model with the mean reversion property,
like the Vasicek model, could also be used.

The prepayment model is another crucial factor in MBS valuation. Building this model
entails many difficult tasks, since it aims to describe the different behaviours of individuals
when it comes to paying off their mortgages. One of these difficult tasks is to accurately de-
scribe rational behaviour in response to changing financial factors, for example refinancing
due to falling interest rates.

Many prepayment models are suggested in the literature. But most models agree that
the following four factors should be taken into consideration: (1) prevailing mortgage rate,
(2) characteristics of the underlying mortgage pool, (3) seasonal factors, and (4) general
economic activity. Details of these factors can be found in “Valuation of fixed income
securities and derivatives” By Frank J. Fabozzi [8].

5.3.3 Model Details

In this section, we will introduce the same model and notation used by Paskov (1997),
and Caflisch, Morokoff, and Owen (1997). The model discussed below assumes that the
cash flows consist of interest and principal repayment, and therefore depend on the future
interest and prepayment rates. Let our MBS be of length M =360 months with fixed initial
interest rate iy i.e. the current interest rate at the begining of the mortgage. Let {£}2L,
be normally distributed random variables with mean 0 and variance o2.

The interest rate at month k, iy, is given by:

i = K()egkik—l — K§i06£1+"'+€k
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where the constant Ky = e7°/2 is chosen to normalize the log-normal distribution so that

E(ix) = ip. The initial interest rate i is an additional constant that needs to be specified.

The prepayment model, which is a function of the above interest rates, is:

wy = Ky + Ky arctan(Ksi, + Ky)
= K1 + K, al“Ctan(KgKé%Oe(fl+...+§k) + Ky)

where K, Ky, K3, K, are constants of the model. wy represents the fraction of outstanding
mortgages at month £ that are prepaying in that month. Using this model for the pre-
payment rate, we can obtain several sample problems by modifying the parameter values
t9, K1, Ko, K3, K4, 0, hence modifying the prepayment behaviour in response to changing
interest rates. K and K, are respectively the mean and volatility of the prepayment rate,
while K3 and K, together control the linearity of the function arctan. For example, small
magnitudes of K3 and K, make arctan linear and large values make it non-linear, with the
sign of K3 controlling the sign of the slope in the linear case.

The total cash flow from r; remaining mortgages for month k consists of two parts:
rrwy, of the mortgages are prepaying the entire mortgage, thus paying Cc¢; (where C' is
the monthly payment and ¢ is the remaining mortgage annuity after month k), while the
remaining 7 (1 — wy) are paying only the monthly payment C. Thus my, the cash flow for
month k, is the following:

k—1
T = H(l — w;)
j=1
mr = C’I“k((l — wk) + wkck)
360—k
Cr = Z (1 + io)_‘7
j=0

The present value of a Mortgage-Backed Security is the discounted value of all under-
lying cash flows in the security.

360

k=1

where E is the expectation over the random variables involved in the interest rate fluctations

and wuy is the discounting factor for month &, uz = H?;S : ii_
. J

Numerical examples in this paper use two problems defined by two sets of parameters
provided by Caflisch, Morokoff, and Owen (1997).
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The first set results in what was refered to as a Nearly Linear problem, defined by:

(io, K1, K3, K3, K4, 0%) = (0.007,0.01, —0.005, 10, 0.5, 0.0004)

The second set results in a problem refered to as Nonlinear, defined by:

(io, K1, K3, K3, K4, 0) = (0.007,0.04,0.0222, —1500, 7.0, 0.0004)

We are interested in these two problems since they belong to two different classes. In
Caflisch, Morokoff, and Owen (1997), the first problem was shown to be very nearly a
linear function of the random variables &,. Using Latin hypercube sampling, they found
that 99.96% of the variation comes from one-dimensional structure, that is has an effective
dimension of one in the superposition sense. In our experiments, we used a Sobol’ sequence
of size N = 218 (starting from the point 2! according to the algorithm described in Section
2.2.1). We found that the Nearly Linear example appears to be a nearly linear function
of uy, since (99.73%) of the function variation is explained by the variation of the first 76

variables :
76
> 8 >0.99
i=1

Hence most of the variation of the funcion comes from the one dimensional structure. On
the other hand, we were not able to obtain such results for the effective dimension of
the nonlinear problem in the superposition sense due to the sensitivity of the prepayment
function to extremely low interest rates as shown in figures (5.1) and (5.2).

Table 5.3 gives results of applying RQMC for both the linear and nonlinear MBS
problems described above. The number of randomizations m was also set to 25 for these
results. For each dimension s, we give the estimator for the value of the MBS on the first
line, and its standard error on the second line. As we can see in this table, the RQMC
method consistently succeed in reducing the variance for this problem.

Applying the Brownian bridge technique to the MBS, we were able to obtain a much
smaller effective dimension in the truncation sense than that obtained from the standard
discretization. Table 5.4 below shows the values of Dt for both the linear and nonlinear
problems..
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Table 5.3: : MBS

N MC Sobol’

nearly-linear

1024 131.6667 131.5931
0.047 1.90E-04
4096 131.5694 131.5895
0.0119 4.12E-05

non-linear

1024 130.5558 130.5609
0.0059 1.30E-03
4096 130.5654 130.553
0.0098 5.60E-04

Table 5.4: : Effective Dimension in truncation sense of MBS

problem BB without BB

linear 34 144
nonlinear 34 63
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interest and prepayment rates for the Nearly Linear Problem
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Figure 5.1: : Sample Interest and Prepayment Rates for the Nearly Linear Problem

interest and prepayment rates for the Nonlinear Problem
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Figure 5.2: : Sample Interest and Prepayment Rates for the Nonlinear Problem
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Chapter 6

Conclusion

Many finance problems use small time increments i.e. large number of input variables which
leads to their formulation as high-dimensional integrands. However, it was found that these
problems are essentially low-dimensional, in the sense that the majority of their variation
is governed by their low order ANOVA components, usually first and second order. This
property together with good inherent features of the quasi-random sequence renders QMC
integration method more efficient for approximating these integrands regardless of the fact
that they are high dimensional.

To investigate the efficieny of QMC method and the notion of effective dimension
attributed to it, we presented in this paper a powerful method for sensitivity analysis given
by Sobol’. This method incorporates advantages from several existing approaches, from
fast fourier transforms to correlation ratios. It adds to the previous methods the ability
to carry out a full ANOVA on the outcome of a numerical experiment. Results from the
literature and the experiments performed by Sobol’ [2] on low-dimensional problems have
encouraged us to apply it on high-dimensional finance problems with amenable features.
For these problems, we have shown that using quasi-random Sobol’ sequences with good
low-dimensional projections, the estimated Sobol’ sensitivity indices were able to identify
which and how many input variables are important, thus giving a good estimate of their
effective dimension. For example, for the digital option, we have shown that all its input
variables are important regardless of their order, in dimensions as high as 256. As for
the MBS problem, we were able to show that (99.73%) of its variation come from its
one-dimensional ANOVA components in dimension as high as 360. That is, it could be
well approximated by sum of one-dimensional functions. The efficiency of QMC was also
revealed in the results obtained from randomized Sobol’ sequences for both problems, where
we were able to obtain estimators with much smaller variance than MC.

Finally,we have investigated the Brownian bridge technique to reduce the effective di-
mension of the presented high-dimensional problems. This technique was proved to be
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very successful for the MBS problem where more than (99%) of its variation was reduced
to the first 34 input variables. However, this was not the case for digital options, meaning
that all its input variables are equally important.

In this paper, we have focused on specific finance problems and tried to detect their spe-
cial features, such as their effective dimension, showing the efficiency of applying QMC on
these problems. However, answering the question of why QMC methods work well in high
dimensions is a challenging task which has been extensively studied in the recent years.
The research focuses on two main ideas. First, the features of the functions that arise in
practice, such as the notion of low effective dimension used by Paskov and Traub(1995),
Carlisch el al(1997), Paskov(1997), and Wang and Fang(2003), the “weigthed” function
spaces presented by Sloan and Woznaikowski(1998), the isoptropic and non-isotropic prop-
erties presented by Papageorgiou (2001,2003), etc. Second, the aspect of point sets, where
it was shown non-constructively by Heinrich et al.(2001) that there exists a point set
{u1,ug, ...,un}, such that its star dicrepancy satisfies D*({u;}) < C*y/s/N where C*
is a constant.
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APPENDICES

In what follows we will describe in brief the algorithm used to obtain the results of our
numerical experiments. First, we have to call the function named all Driver to initialize the
global variables that are going to be used in every function such as s, N, etc... all Driver also
calls a function generateSamples to generate the two Sobol” samples needed for computing
estimates of Sobol’ sensitivity indices (SSIs).

Notice from the computation procedure of these SSIs (Section (3.3)), the computation
of higher order SSIs requires the the values of lower order ones. Thus, to avoid computing
the same S 1 twice, we will save the computed Sy I’s in the vector allSi where each entry
corresponds to a unique subset I. These subsets are saved in another matrix named allsubs.
For example if the dimension s=3, allDriver intitializes allSt and allsubs as follows:

c 1
allSi = | c¢| where allsubs = 2
c 3

where ¢ is a constant. Now, let’s introduce the major function in our algorithm, namely
the function allSSI. This function takes [ as an input and saves the computed value S;
in its proper location in the vector allSi. For example, after calling all Driver, if we call
allSSI([1]), that is with {1} as an input, allSSI will compute 5’{1} and save it in the first
entry of the vector allSi. If we call allSSI([3]), the computed value 5’{3} will be saved in
the third entry of allSi, and so on. Now, if we call allSSI([1,3]) to compute SV{Lg}, we
don’t have to compute S”{l} and 3{3} again, but we just need to extract their values from
allSi. We also have to expand allsubs and allSi in order to include the new subset {1,3}
and g{1,3} respectively.

The efficiency of this procedure is more evident when we are estimating the effective
dimension in the superposition sense because we will have to compute all 5’{ ry’s for increas-
ing values of |I| until their total sum exceeds the proportion p. The procedure for now is
very simple, but what if the input I of allSSI has subsets J whose corresponding 5’{ s
have not yet been computed?
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In our algorithm, we have created the functions subsets and allsubs in order to deal
with this case. The function subsets(L, ) generates all subsets of I of length L, and is
used by allsubs(I) in order to generate all the power set of /. So, when allSSI([) is called,
the procedure is summarized as follows:

1. Generate all subsets of I
2. For each subset J, check if the corresponding entry of allSi is still equal to ¢

e if the entry is not equal to ¢, that is S’{ 7y value has been computed and has
replaced c, extract its value from allSt

e if the entry is still equal to ¢, then call allSST(J) with .J as an input to compute
Sy

This procedure is repeated recursively until the value of 5’{ ry is computed. This is a
brief description of the procedure, in fact, other functions are involved to perform the above
steps. for example, when we call allSSI(K) with |K| greater than |I|, for all previously
input |7|’s, we have to expand our vector of subsets allsubs. Also, to find the index of the
entry in allS7 corresponding to a subset I, we need a function called subsetind. For details
of the implemention of allSSI, we refer the reader to check the matlab code below.
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.1 Function allDriver

% Define the globally used variables

global s 7% the dimension

global N % the size of the sample

global B % the number of bootstrap samples

% the first and second Sobol’ samples
global sample
global resample

global fs % N-by-1 vector of the function values at the sample point set
global fO % the mean of the function values at the sample point set
global D 7 the variance of the function values at the sample point set

% all the sensitivity indices computed are saved in allSi
global allSi
global allsubs

% generateSamples: generates two N-by-s samples, in this case the samples generated
% are going to be Sobol’ sequences of N points

generateSamples;
s= 20;
N= 4096;

% initialize the first s elements of allSi randomly
allSi= ones(s,1)*5;

% initialize allsubs to [1,2,...,s]

allsubs= (1:8)’;

% f returns a vector of the values of f evaluated at each point in sample
fs= f(sample);

f0= mean(fs);

D= mean(fs."2) - f0°2;
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.2 Function for generating Sobol’ samples

function generateSamples

global s

global N

global sample
global resample

% Call i4_sobolAlt once to initialize its variables.
% i4_sobolAlt generates Sobol’ samples point by point
seed=0;

i4_sobolAlt (2xs, seed );

% in this case we will start our Sobol’ sequence from the 2710 point
seed = 2710;

for i=1:N

[ bigpoint(i,:), seed ] = i4_sobolAlt (2xs, seed );
end

sample= bigpoint(:,1:s8);

resample= bigpoint(:,s+1:2%s);
bigpoint=[];
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.3 Function for computing SSI’s and their BCI’s

% Input : A subset of {1,2,...,s}
% Output: Si, estimate of Sobol Sensitivity indices of the input subset

function [Si] = allSSI(indices)

global s
global sample
global resample

global allSi
global allsubs
global fO
global D
global fs

% eliminate any possible zero entries in the input indices
ind= indices(logical(indices));
L= length(ind);

% resample all variables except those given by indices
x=resample;

x(:,ind)= sample(:,ind);

fx= f(x);

product= fs.x*fx;
Di = mean(product) - £072;
Si= Di/D;

% define B the number of bootstrap samples
B= 1000;

% if the input vector has one element, save the above computed Si and compute its BCIs
if L==

allSi(ind)=Si;

pick_Nsamples_Btimes = ceil(rand(N,B)*N);

Di= mean(product(pick_Nsamples_Btimes)) - £f0°2;

Si_B= Di/D;
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mean_Si_B = mean(Si_B); diff= Si_B-mean_Si_B;
ese = 1.96%sqrt(1/(B-1)*diff*diff’);

% 1Si is the lower bound and uSi is the upper one
1Si= Si-ese; uSi = Si+ese;

return
else

% if the input vector has more than one index,

% First expand the vectors allSi and allsubs in case the input vector

% requires the computation of new SSI’s other than the ones saved in allSi
[p,q] = size(allsubs);

for j=q+1:L

% newsubsets is a matrix of all new subsets of {1,2,...,s} containing j elements
newsubsets= subsets(j,(1:8));

1n= size(newsubsets,1);

allsubs= [allsubs,sparse(p,1); newsubsets];

allSi= [allSi; ones(ln,1)*5];

end

% Generate all subsets of the input vector
indices_subs= allsubsets(ind);
1= size(indices_subs,1);

% loop over all the subsets and check if the corresponding SSI is already computed
% and saved in allSi or needs to be recursively computed
for i=1:1-1

subs = indices_subs(i,:);
k= subsetind(subs) ;

% this condition implies that SSI of this subset is computed earlier
if allsi(k) "= 5
subt= allSi(k);
% Make sure the SSI subtracted is positive otherwise consider it zero

if subt>0
Si= Si- subt;
end

% otherwise, call the function again to compute the SSI of this subset
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else
subt= allSSI(subs);
if subt>0
Si= Si- subt;
end
end

% k returns the location of ind in the vector allsubs
k= subsetind(ind);

% save the computed SSI in the corresponding location
allSi(k)=Si;

end end

.4 Function for computing the effective dimension in
the superposition sense

function ds= sdim(prop)

global s
global sample

ds = 0;
SUM = 0;
SET= (1:s);

while (SUM<prop) & (ds<1)

ds = ds+1;
S = subsets(ds,SET);
1= size(S,1);

for i=1:1
s(i)= allSSI(S(i,:));

if s>0
SUM= SUM + s;
end

end
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end

.5 Function for computing the effective dimension in
the truncation sense

function dt= tdim(prop)

global s

global sample
global resample
global fs
global fO
global D

dt = 0 ;

SUM =0;

s=[1;

while SUM<prop dt< s
dt= dt+1;
% resample all variables except those given by indices to compute their SSI
X= resample;
x(:,(1:dt))= sample(:,(1:dt));
product= fs.*f(x);
Di = mean(product)- £f0°2;
SUM= Di/D

end
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