
Location Tagging in Text

by

Shawn Brunsting

A research paper
presented to the University of Waterloo

in partial fulfilment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof. Hans De Sterck

Waterloo, Ontario, Canada, 2015

c© Shawn Brunsting 2015

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

Location tagging, also known as geotagging, is the process of assigning geographical
coordinates to input data. In this project we present an algorithm for location tagging
text.

Our algorithm makes use of previous work in natural language processing by using a
state-of-the-art part-of-speech tagger and named entity recognizer to find blocks of text
which may refer to locations. A knowledge base is then used to find a list of possible
locations for each of these blocks of text. Finally, one location is chosen for each block
of text by assigning distance-based scores to each location and repeatedly selecting the
location and block of text with the best score.

We tested our location tagging algorithm with geotagged Wikipedia articles, where
classification approaches have achieved median errors as low as 11 km [5]. However, the
maximum accuracy of these approaches is limited by the class size, so future work may not
yield significant improvement.

Our algorithm tags a location to each block of text that was identified as a possible
location reference, meaning one text can have multiple tags. When we considered only
the tag with the highest distance-based score, we achieved a 10th percentile error of 490
metres and median error of 54 kilometres. When we considered the five location tags with
the greatest scores, we found that 50% of articles were assigned at least one tag within
8.5 kilometres of the article’s true location. Other classification-based approaches may
be reaching their upper limit for accuracy, but our precision-focused approach has high
accuracy for some articles and shows significant potential for improvement overall.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Hans, for his support. His valuable guid-
ance began before I had applied to gradudate school and continued through to the com-
pletion of this paper.

I would also like to thank the people at Spotzi, in particular Remco and Teun, for their
direction in this project. I hope the software I developed will prove to be a useful tool in
their products.

iv

Dedication

This paper is dedicated to my wife Alanna, whom I had the honour of marrying while
completing this project. She generously prepared many delicious snacks, meals, and cups
of tea to keep me going throughout the programming and writing for this project.

v

Table of Contents

List of Tables ix

List of Figures x

List of Algorithms xi

1 Introduction 1

1.1 Previous Work in Classification Approaches 1

1.2 Drawbacks of Classification Approaches . 2

1.3 Natural Language Processing . 3

1.3.1 Part of Speech Tagging . 3

1.3.2 Named Entity Recognition . 4

1.3.3 Named Entity Disambiguation . 4

2 Algorithm 5

2.1 Overview . 6

2.2 Terminology . 6

2.2.1 Simple Example . 7

2.3 Location Extraction . 8

2.3.1 Tagging the Text . 8

2.3.2 Extracting Terms . 9

vi

2.3.3 Removing Terms . 10

2.3.4 Postal Codes . 11

2.3.5 Example . 11

2.4 Searching a Knowledge Base . 13

2.4.1 Example . 14

2.5 Disambiguation . 16

2.5.1 Distance . 16

2.5.2 Weights . 16

2.5.3 Scoring Functions . 20

2.5.4 Disambiguation Algorithms . 23

2.5.5 Example . 24

2.6 Summary . 26

3 Results 29

3.1 Test Data . 29

3.2 Filtering by NER and POS Tags . 30

3.3 Comparison of Disambiguation Algorithms 30

3.4 Further Analysis with the Winning Algorithm 31

3.4.1 Results by Article Type . 34

3.4.2 Confidence Estimation . 35

3.5 Analysis of Top 5 Results . 37

4 Conclusion 40

4.1 Future Work . 40

4.1.1 Extraction and Disambiguation Feedback 41

4.1.2 POS and NER Taggers . 41

4.1.3 Representation of Locations . 41

4.1.4 Postal Codes . 42

vii

APPENDICES 43

A External Software 44

B Wikipedia Data 45

References 46

viii

List of Tables

2.1 Part of Speech Tags Used in the Tagging Algorithm 9

2.2 Part of Speech Tags for Example Text . 12

2.3 Example Nominatim Results . 15

2.4 Conflicting Terms in “New York City” . 17

2.5 Example Interpretations for “New York City” 19

2.6 Weights W t1
t2 for Terms in “New York City” where t1 /∈ G(t2) 19

2.7 Example Weights . 25

2.8 Example Score Calculation . 26

3.1 Filter Methods Used For Test Articles . 30

3.2 Accuracy Comparison for Different Article Types 35

ix

List of Figures

3.1 Error for Disambiguation Algorithms . 32

3.2 Error for Disambiguation Algorithms at the 10th Percentile 33

3.3 Error for Disambiguation Algorithms at the 25th Percentile 33

3.4 Error for Disambiguation Algorithms at the 50th Percentile 34

3.5 Error versus Scores for Weighted Inverse Frequency (1 Phase) 36

3.6 Top 5 Error for Disambiguation Algorithms 39

x

List of Algorithms

1 Simplified Overview of Tagging Algorithm 6
2 Technical Overview of Tagging Algorithm 7
3 1-Phase Disambiguation Algorithm . 23
4 2-Phase Disambiguation Algorithm . 25
5 Summary of Tagging Algorithm . 27

xi

Chapter 1

Introduction

This paper explores the problem of extracting location information from text. The goal
is to assign high precision geographical coordinates to places that are mentioned in texts
from various sources.

This chapter discusses some background information and previous work in the area
of location tagging. In the literature this is also referred to as geolocation. Chapter 2
describes in detail the algorithm that we developed to solve this problem. We test this
algorithm using geotagged Wikipedia articles in Chapter 3. Finally, we summarize the
results and discuss some future work in Chapter 4.

Appendix A lists the external software that was used in the implementation of this
project, and Appendix B describes how the test data for Chapter 3 was obtained.

1.1 Previous Work in Classification Approaches

Most studies in location tagging formulate it as a classification problem and use various
machine learning approaches to solve it.

Classification problems begin with a defined set of classes. In location tagging, these
classes can take many forms including cities, countries, or areas within a range of latitude
and longitude coordinates. The goal of the classification problem is to assign the correct
class to each text.

Wing and Baldridge created classes using simple geodesic grids of varying sizes [9].
For example, one of their grids divided the surface of the Earth into 1◦ by 1◦ regions.

1

Each of these regions was a class for their classification problem. They compared different
models on various grid sizes, and tested these models using geotagged Wikipedia articles.
They measured the distance between the article’s true location and the location that was
predicted by the model, and their best model achieved a median distance of 11.8 km.

Roller et al. realized that defining classes using a uniform latitude and longitude grid
can be sensitive to the distribution of documents across the Earth [5]. They looked at
building an adaptive grid, which attempts to define classes such that each class has a
similar number of training documents. They also tested their models using geotagged
Wikipedia articles, and found a median error of 11.0 km. This is an improvement over the
previous work [9].

Han et al. focused on location tagging of Twitter messages [4]. They attempted to find
the primary home location of a user by assembling all their tweets into a single document,
which was then used as input to their models. Their classes were major cities along with
their surrounding area. Their best model that only used the text of the tweet obtained a
median error of 170 km. They obtained much greater accuracy when they incorporated
additional information such as the home location on the user’s profile, but this type of
data is not available for general text geolocation.

One of the major challenges with Twitter messages is their unstructured nature. Tweets
often contain spelling errors, abbreviations, and grammar mistakes which can make them
difficult to interpret. Furthermore, some early work on this project discovered that most
geotagged tweets contain little geographic information in their text. This means that
there is a very low threshold for the maximum accuracy we can expect to achieve when
attempting to apply any location tagging algorithm to tweets. For this reason accuracy
tests with tweets are left for future work.

1.2 Drawbacks of Classification Approaches

It was decided that formulating our problem as a classification problem would not be
feasible for this project, as our goal was to obtain high precision. For example, if a text
mentions the CN Tower then we want to return the coordinates of that building, rather
than the coordinates for the city of Toronto where it is located. Formulating this as a
classification problem with this level of precision would require defining a class for every
named location in the world. Furthermore, to apply these machine learning approaches
we would need to have a large training set, ideally with multiple sample texts for each
class. Obtaining this training data would be difficult, and even if the data was available it

2

would likely be computationally infeasible to train such a model without significant time
and computing resources.

In general, we did not want to use any approach that relies heavily on training data, as
we want our location tagger to be as general as possible. A tagger trained with Wikipedia
articles might show worse performance when given other types of text, such as news articles
or tweets. Acquiring good training data that is representative of all the types of texts we
want to geolocate would be very difficult.

Instead we abandoned the classification approaches and turned towards natural lan-
guage processing.

1.3 Natural Language Processing

Natural language processing (NLP) encompasses many tasks that are related to under-
standing human language. In this project we wish to understand location references in
text, so it is natural to apply NLP techniques to this problem.

1.3.1 Part of Speech Tagging

Part-of-speech (POS) tagging is the process of assigning part-of-speech tags to words in a
text. The tagset may vary by language and the type of text, but typically includes tags
such as nouns, verbs, and adjectives. Assigning these tags is an important step towards
understanding text in many NLP tasks.

The Stanford Natural Language Processing Group provides a state-of-the-art POS tag-
ger based on the research of Toutanova et al. [8, 7]. They use various models that observe
features of words in the text (such as capitalization, for example) and predict the most
likely part-of-speech tag for each word. They train these models using a large set of anno-
tated articles from the Wall Street Journal.

Their software has two main types of models. One of these types is called the left-3-
words model. The tag that is applied to each word in this model is influenced by the tags
assigned to some of the previous words in the sentence.

The other type of model is known as the bidirectional model [7]. Tags in these models
are influenced by tags on both sides of the word, not just the previous words. This makes
these models more complex. They have a slight accuracy improvement over the left-3-words
models, but at the cost of an order of magnitude longer running time.

3

In this project we use Stanford’s POS tagger with one of their pre-trained left-3-words
models. How our algorithm uses this software will be discussed in Section 2.3.

1.3.2 Named Entity Recognition

A Named Entity Recognizer (NER) finds proper nouns in text and determines to what
type of entity the noun refers. This will be a valuable tool in our approach to location
tagging, as we are primarily looking for locations that are named entities in the text.

The Stanford Natural Language Processing Group also provides an NER based on the
work of Finkel et al. [2]. Their software uses a conditional random field model to identify
different classes of named entities in text. Their pre-trained model that was used in this
project attempts to identify each named entity as a location, person, or organization. In
Section 2.3 our algorithm will use entities that are identified as locations by this software.

1.3.3 Named Entity Disambiguation

After completing an NER task there is often some ambiguity. For example, if the NER soft-
ware determines that some text mentions a location called London, does it refer to a city in
the UK or a city in Ontario? Choosing the correct interpretation is called disambiguation.

Habib explored both the extraction and disambiguation steps for named entity recog-
nition, along with the link between these steps [3]. He discovered that there is a feedback
loop, where results from the disambiguation step can be used to improve the extraction
step. This occurs because the disambiguation step can help to identify false positives, that
is, words that were identified as a named entity by the extraction step but are not true
named entities.

Named entities which refer to locations are called toponyms, and a major portion of
Habib’s [3] work discusses the extraction and disambiguation of toponyms in semi-formal
text. He disambiguated toponymns in vacation property descriptions to determine in which
country the property was located. While country-level locations do not provide the level
of precision we desire for this project, his work served as inspiration for many steps of the
algorithm we present in Chapter 2.

4

Chapter 2

Algorithm

Given a segment of text, we want to find locations that are mentioned in the text. For
example, in a text that states “Bob drove from Waterloo to Toronto” we want to find the
names Waterloo and Toronto and determine which locations are meant by those words.
Does Waterloo mean a city in Ontario, Iowa, Belgium, or somewhere else? The mention
of Toronto, which can refer to another city in Ontario, suggests that the correct answer
is Waterloo, Ontario. This type of reasoning was developed into an algorithm which is
formally described in this chapter.

Section 2.1 gives an overview of the algorithm. Section 2.2 formally defines the termi-
nology we will use in the rest of the paper. Section 2.3 describes how names like Waterloo
and Toronto are extracted from the text using part-of-speech tagging and named entity
recognition. Section 2.4 describes how we discover that geographic names like Waterloo
can refer to multiple locations (e.g., Ontario, Iowa, or Belgium) by searching a knowledge
base. Section 2.5 describes how we disambiguate between the possible locations for each
name (e.g., determine that Waterloo and Toronto refer to cities in Ontario). Finally, the
algorithm is summarized in Section 2.6.

Much of this algorithm was developed with particular examples in mind. Looking at
these examples gave insights into the information that is available for our algorithm to use.
The above example with Waterloo and Toronto will be revisited and explained in more
detail in Section 2.2.1. Another development example will be used in Sections 2.3.5, 2.4.1,
and 2.5.5 to summarize the details for each step.

5

2.1 Overview

The geotagging algorithm that we developed follows a number of steps. Each step contains
many subtleties, so for now we start with a general overview which we call Algorithm 1.

Algorithm 1 Simplified Overview of Tagging Algorithm

1: Extract potential location references from the text. This is described in detail in
Section 2.3.

2: Search for each potential location reference in a knowledge base. This will give a list of
locations that are possible matches for the reference. This is described in Section 2.4.

3: For each potential location reference, determine to which of the knowledge base matches
it most likely refers. This is called disambiguation, and is described in detail in Section
2.5.

Section 2.2 will define some terminology which will allow us to write Algorithm 1
more precisely. Section 2.6 will summarize this chapter to give a more detailed version of
Algorithm 1.

2.2 Terminology

Before we continue with our description of the algorithm, we need to precisely define our
terminology:

• A phrase is a word or sequence of adjacent words in the text. In our implementation
a phrase is stored as a single string. We let P be the set of unique phrases that we
consider to be possible location references in a text.

• A term is an object associated with a phrase. This object includes some metadata,
such as the position of the phrase in the text. Let T be the set of terms that we
consider to be possible location references in the text. Note that if a phrase occurs
multiple times in the text, there will be one term for each occurrence. Therefore
|P | ≤ |T |. For some t ∈ T , let tphr be the phrase associated with the term.

• A result is a single location that is listed in the knowledge base. For each phrase
p ∈ P we have a set of results Rp. For each result r ∈ Rp, the name of result r is
similar to the phrase p (“similarity” is defined by the knowledge base software we
use in Section 2.4). As a shorthand, let Rt ≡ Rtphr ∀t ∈ T .

6

• For a term t ∈ T and a result r ∈ Rt, we define the score of the result to be St
r.

This score will be used in the disambiguation step.

• For two terms t1, t2 ∈ T we define W t1
t2 to be the weight of term t2 when we assume

that term t1 is a true reference in the text. Weights are used to reduce bias in some
score calculations when we find terms in T that conflict with each other. Section
2.5.2 will precisely define conflicts and weights.

We can now give an overview of the algorithm using this terminology. Algorithm 2 is
a re-writing of Algorithm 1 using the terms defined above.

Algorithm 2 Technical Overview of Tagging Algorithm

1: Find all terms in the text that are potential location references. This is done using
part-of-speech tagging and named entity recognition, and gives us the sets T and P .

2: For each phrase p ∈ P , use p as a search query in the knowledge base. The results of
the query are the set Rp.

3: Reduce the set T to remove terms which conflict with each other. Update the set P
accordingly to reflect changes in T . For each phrase p ∈ P , match p to a single result
r ∈ Rp. This is done by assigning distance-based scores to each result, and selecting
results with the greatest scores.

In step 3 of Algorithm 2 we can see that each phrase, rather than each term, is matched
to a single result. This means all terms with the same phrase are assumed to refer to the
same location. This assumption lowers the computational complexity of the algorithm and
simplifies its implementation.

For example, a text with two occurrences of Waterloo will assume both terms refer to
the same location. However, terms with phrases Waterloo Ontario and Waterloo Belgium
will not be assumed to refer to the same location as they have different phrases.

2.2.1 Simple Example

In this section we revisit the “Bob drove from Waterloo to Toronto” example that was
presented at the beginning of this chapter. We can now describe how our algorithm finds
location tags for this example using our terminology and Algorithm 2.

In step 1 of Algorithm 2 we use NLP tools (in particular, part-of-speech tagging and
named entity recognition) to identify the words Waterloo and Toronto as possible locations.
Waterloo and Toronto are phrases, and we will have one term in T for each of these phrases.

7

In step 2 of this algorithm we search a knowledge base for both Waterloo and Toronto.
We discover cities in Ontario, Iowa, and Belgium with the name Waterloo. Each of these
cities is a result. Similarly, for Toronto we discover a city in Ontario and a city in Ohio.

In this example there are no conflicts between terms. So in step 3 we simply need to
choose which of the results to use for each phrase. Weights have no effect on the score
calculations in this example.

We calculate scores for each result based on the distance to other results. Waterloo,
Belgium has the worst score because it is very far away from all results for Toronto.
Waterloo, Ontario and Toronto, Ontario have the best scores because each one is close to
a result for the other term. Our algorithm picks one of these as a true location in the text.
Let’s say Toronto, Ontario is chosen. Then the result in Ohio is discarded, and scores are
recalculated. Now Waterloo, Ontario has the best score out of all results for terms that
still have multiple results, because it is closest to the Toronto that we chose in Ontario.
So we choose Waterloo, Ontario and the other two results for Waterloo are discarded.

Our algorithm can now terminate, as it has chosen one location for Waterloo and one
location for Toronto. It returns two cities: Waterloo, Ontario and Toronto, Ontario.

2.3 Location Extraction

The extraction phase of the algorithm uses the part-of-speech (POS) tagger and named
entity recognizer (NER) from Stanford that were described in Section 1.3. The entire text
is tagged by both of these models. Based on the output of these taggers, the algorithm
creates the set of terms T which represents all potential location references in the text.

Neither the POS tagger nor the NER are perfect. If they were, then we could simply use
the NER to find all locations in the text and this step of the algorithm would be complete.
Instead, this algorithm supplements the NER tags with the POS tagger.

2.3.1 Tagging the Text

The POS tagger from Stanford assigns tags to each word in the text. The full list of
possible tags is given in [6], but our algorithm only looks for a subset of tags which are
relevant to our approach. Some of these tags are grouped together and considered to be
equivalent by our algorithm. The tags used and how they are grouped are described in
Table 2.1.

8

POS Tag POS Tag Description Our Grouping
CC Coordinating conjunction conjunction
CD Cardinal number adjective
IN Preposition or subordinating conjunction preposition
JJ Adjective adjective
NN Noun, singular or mass noun
NNS Noun, plural noun
NNP Proper noun, singular noun

NNPS Proper noun, plural noun
TO to preposition

Table 2.1: Part of Speech Tags Used in the Tagging Algorithm

The NER tags each word in the text with one of four possibilities: LOCATION, PER-
SON, ORGANIZATION, or O (meaning “other”). In the discussion in Section 2.3.2 any
word with a LOCATION tag from the NER is considered equivalent to a word with a
noun tag from the POS tagger. The distinction between LOCATIONS and nouns becomes
important in Section 2.3.3.

2.3.2 Extracting Terms

After each word in the text has been tagged by both the POS tagger and the NER, we
build our set of terms T which holds all potential location references. Any phrase in the
text is considered a potential location reference if it satisfies two properties:

1. The phrase contains at least one word with a noun tag from the POS tagger or a
LOCATION tag from the NER.

2. All words in the phrase are tagged with a noun or adjective tag from Table 2.1, or a
LOCATION tag from the NER.

The details about why these properties were chosen is described in the rest of this
section. Note that for the remainder of this section, a noun refers to any word that is
tagged with LOCATION by the NER, or with one of the noun tags in Table 2.1 by the
POS tagger.

Some locations, such as New York, have multiple words in their name. Each word is
tagged individually by the POS tagger and NER, so we need to consider these multi-word
possibilities when building T .

9

If multiple nouns occur adjacent to each other in the text, then we do not know if these
nouns refer to multiple locations or to one location. So we add all possibilities to the set
T , and we will resolve conflicts in Section 2.5.

For example, if the algorithm discovers the phrase “New York City” in the text, with
each of the three words tagged as a noun, then the algorithm would add six terms to the
set T : New, York, City, New York, York City, and New York City.

During the development of our algorithm it was discovered that some location references
contain words tagged as adjectives. For example, given the text “georgian college” the POS
tagger decides that georgian is an adjective and that college is a noun. georgian is part
of the name, even though it was not tagged as a noun. So our algorithm was modified to
consider adjectives when they are part of a multi-word phrase with other nouns. However,
it does not consider phrases that only contain adjectives (otherwise we could simply add
adjectives to the noun group in Table 2.1). In the “georgian college” example, both college
and georgian college are added to T .

If a text contains a street address, we want the street number to be part of the term.
This will allow for greater precision in finding the proper location. Numbers are treated
the same way as adjectives for this reason. So the example text “200 University Avenue”
would generate five terms: University, Avenue, University Avenue, 200 University, and
200 University Avenue.

Note that our set T is not finalized yet. Some of the terms we added in this section
may be removed, as described next in Section 2.3.3.

2.3.3 Removing Terms

In Section 2.3.2 we built a large set T of terms which could be location references in the
text. In this section we describe how T is filtered.

The amount of time required for the knowledge base searches in Section 2.4 grows
linearly with |P |, and the amount of time required for the disambiguation in Section 2.5
is cubic in |T |. Furthermore, including too many terms in T which are not true location
references may make it difficult to disambiguate properly. Therefore it is advantageous to
keep the size of T small.

The first step in reducing T is to check whether any of the terms contain words that
were tagged as locations by the NER model. If there are LOCATION tags for any word
in any term in T , then we keep only terms which contain at least one word tagged with
LOCATION. All others are removed from the set T .

10

If no words were tagged with LOCATION, then the algorithm must rely solely on the
results of the POS tagger. However, the set of nouns in a text can be quite large, so we
still wish to filter T .

In the case where no LOCATION tags were found, the next step is to look for terms
that occurred after prepositions. Many prepositions describe spatial relationships, so they
can be strong indicators that a term does refer to a location. For example, the text “Bob
travelled from Waterloo” contains the preposition from. In this case, the preposition tells
us that Waterloo is a location, and that Bob departed there.

However, prepositions can describe not only spatial relationships, but also temporal
ones. For example, “Bob lived there for five years” uses for as a temporal preposition.
This type of preposition should not be included in our algorithm. The implementation
that was used in this project explicitly ignored the word for as a preposition, as this was
observed to increase accuracy for some development examples. Future work could refine
this list to exclude more non-spatial prepositions.

If the text contains terms that occurred after prepositions but no words tagged with
LOCATION, then these terms are retained while all others are discarded from T . A term
is considered to be after a preposition if all words between the preposition and the term
are tagged with any of the tags in Table 2.1. It is for this reason that conjunctions are
included in that table. Including conjunctions ensures that a text such as “Guests travelled
from Waterloo and Toronto” will consider both Waterloo and Toronto.

If the text contains no LOCATION tags and there are no terms that follow prepositions,
then no terms are removed from T .

2.3.4 Postal Codes

Some of the development example texts contained postal codes. Postal codes can give
very precise location information, so regular expressions were used to find postal codes
that match the formats used by Canada, the United States, and the Netherlands. (The
Netherlands were included because Spotzi, a partner company for this project, is based
there.) All occurrences of postal codes are added to the set T if they are not already in
the set due to previous steps. This occurs after the filtering in Section 2.3.3.

2.3.5 Example

To demonstrate how the extraction step works, we will walk through an example in this
section. This short example was used in the development of this algorithm, and shows

11

Word NER Tag POS Tag POS Tag Description
A O DT Determiner

beautifull O NN Noun, singular or mass
clean O JJ Adjective
house O NN Noun, singular or mass

for O IN Preposition or subordinating conjunction
rent O NN Noun, singular or mass

, O ,
Walking O VBG Verb, gerund or present participle
distance O NN Noun, singular or mass

to O TO to
RVH O NN Noun, singular or mass
and O CC Coordinating conjunction

Georgian O JJ Adjective
college O NN Noun, singular or mass

Table 2.2: Part of Speech Tags for Example Text

many of the cases that were described in the previous sections. We will continue using this
example in Sections 2.4.1 and 2.5.5.

The text is from a Kijiji listing, and consists of a single sentence: “A beautifull clean
house for rent, Walking distance to RVH and Georgian college.” This text is not properly
structured. In particular, it has a spelling error and some improper capitalization. This
makes the text challenging.

First we use the NER and POS tagger to tag all words in the text. The full list of tags
for this example is given in Table 2.2. We can see that the NER assigns no LOCATION
tags in this text, so we must rely solely on the POS tags.

Next, we start building our set T . We take all nouns, along with adjectives that are
adjacent to them. So our set P that corresponds to T is:

P = {beautifull, beautifull clean, beautifull clean house, clean house, house,

rent, distance,RVH,Georgian college, college}

Now we start to reduce this set. We have no terms that contain words tagged with
LOCATION, but we do have terms that occur after prepositions.

The terms with phrases beautifull, beautifull clean, beautifull clean house, clean house,
house, and distance are all discarded because they do not occur after a preposition. The

12

term with rent occurs after a preposition, but as described in Section 2.3.3 this preposition
is the word for and is assumed to not be a spatial preposition. So rent is also discarded.

The preposition to occurs before RVH, so the term for RVH remains in T . Similarly,
Georgian college and college are considered to occur after this preposition, because they
are separated from this preposition only by tags in Table 2.1.

So our set P that corresponds to our final set T is:

P = {RVH,Georgian college, college}

This set is used in the next step of the algorithm.

2.4 Searching a Knowledge Base

After we generate our set T (and the set P that corresponds to it), the next step is to
search for each p ∈ P in a knowledge base. OpenStreetMap is used as the knowledge
base for this project. The OpenStreetMap data is queried using a tool called Nominatim
(https://nominatim.openstreetmap.org/).

OpenStreetMap is a database that contains mapping data for the entire globe, including
roadways, cities, and points of interest. This data is created and corrected by a large
community of contributors, and is freely available.

Nominatim is an open-source tool that allows users to search the OpenStreetMap data.
Using clever indexing and a large amount of system resources, Nominatim allows queries
of the vast OpenStreetMap data to be completed in seconds. 1

Nominatim allows a number of parameters to be specified with the query. For example,
searches can be limited to a particular region or country. One can also specify the maximum
number of search results that should be returned for each query. In this paper the maximum
number was set to 10.

1 There are donated servers running Nominatim which are free for light use, but they have a usage
policy to prevent users from overloading the server. This usage policy gives a limit of one query per second.
Our algorithm requires one query for each p ∈ P , so anyone who wants to use this algorithm extensively
should set up their own Nominatim server. The tests in Chapter 3 did use the freely available servers
with a delay written into the code to ensure that at least one second passed between each query sent to
Nominatim. This meant the tagging algorithm completed much slower than it would otherwise, but it
saved time on the engineering effort required to set up a Nominatim server.

13

https://nominatim.openstreetmap.org/

For each phrase p ∈ P we query Nominatim and obtain a set of results Rp, where
0 ≤ |Rp| ≤ 10. If |Rp| = 0 then we have no results for p, and we discard all terms t ∈ T
that satisfy tphr = p.

If |Rp| ≥ 1 then we use these results in the disambiguation step (step 3 of Algorithm
2), which selects for each phrase p the correct result in Rp. Each result r ∈ Rp contains
latitude and longitude coordinates which are used to calculate distances between results
as described in Section 2.5.1.

Another field that is included with each Nominatim search result is called “importance”.
This field is not well-documented, but after reading the source code it appears that a
number of different factors are used to calculate this importance. These factors include:

• The type of location (building, city, country, etc.)

• The PageRank of the Wikipedia article about the location (if applicable)

• The string similarity between the query string and the name of the location

The importance field is used as a tie-breaker in some steps of the disambiguation al-
gorithm in Section 2.5. It is also used by Nominatim to sort results. If Nominatim finds
more than 10 results for a query, it will return only the 10 most important results.

2.4.1 Example

Here we continue the example from Section 2.3.5. When we last saw this example we had
three terms, and their corresponding phrases were

P = {RVH,Georgian college, college}

We use each phrase as a search query with Nominatim. However, for this example we
will limit Nominatim to return a maximum of three results for each phrase (instead of 10,
which was used for the rest of this project).

The results for each query are given in Table 2.3. Nominatim found only one result for
RVH, two for Georgian college, and three for college. The phrase college would have more
results if we increased the result limit.

14

Query
Results

Name Address Latitude Longitude

RVH 1

Royal
Victoria
Regional
Health
Centre

201, Georgian Drive,
Barrie, Ontario,

Canada
44.41476385 -79.663043119369

Georgian
college

1
Georgian
College

Georgian Drive,
Barrie, Ontario,

Canada
44.4127259 -79.6710631228231

2
Georgian
College

Raglan Street,
Collingwood, Ontario,

L9Y3J4, Canada
44.48446015 -80.1917274556815

college
1 College

Yonge Street,
Church-Wellesley
Village, Toronto,

Ontario, M5B 2H4,
Canada

43.6613331 -79.3830661

2 College
Fairbanks North Star,
Alaska, United States

of America
64.8569444 -147.8027778

3 College
Los Baños, Laguna,

Calabarzon,
Philippines

14.1624278 121.2409175

Table 2.3: Example Nominatim Results

15

2.5 Disambiguation

The disambiguation step of the algorithm chooses the best result for each phrase in the
text. It does this by assigning scores to each result. Multiple scoring functions were tested,
and each one is described in Section 2.5.3. Most of these scoring functions use weights
that are assigned to each term, and these weights are described separately in Section 2.5.2.
Section 2.5.4 describes two algorithms that use the scores to perform the disambiguation.

2.5.1 Distance

The key to the disambiguation step in our algorithm is the physical distance between
results. For example, suppose a text mentions London. Does this mean London, UK or
London, Ontario? Clues can often be found in the rest of the text. If the text also mentions
Toronto, Ontario, for example, then this is a good indication that London was meant to
refer to the city that is also in Ontario.

To calculate the distance between two results, we use the following formula. Let a and
b be two search results from Nominatim. Let ax and bx be their longitude coordinates, and
let ay and by be their latitude coordinates, respectively. Nominatim gives the coordinates
in degrees, but for this discussion we will assume they have been converted to radians. The
distance between a and b is then calculated with Equation 2.1.

d(a, b) = 6371 arccos (sin(ay) sin(by) + cos(ax) cos(bx) cos(ax − bx)) (2.1)

Equation 2.1 is the great circle distance on a sphere, where 6371 is the mean radius
of the Earth in kilometres. The Earth is not a perfect sphere, but this gives a good
approximation for the distance between the two results.

2.5.2 Weights

Weights are used when there are terms in the set T which conflict with each other. Terms
conflict when they overlap. This is best explained with the New York City example that
was presented in Section 2.3.2.

Six terms were added to the set T when the extraction step found the nouns New, York,
and City adjacent to each other in the text: New, York, City, New York, York City, and
New York City. The terms York and New York conflict with each other because the text

16

Term Conflicting Terms
New New York, New York City
York New York, York City, New York City
City York City, New York City

New York New, York, York City, New York City
York City York, City, New York, New York City

New York City New, York, City, New York, York City

Table 2.4: Conflicting Terms in “New York City”

could not have meant to refer to a location called York and a different location called New
York. This is because the terms York and New York overlap. The full list of conflicting
terms for this example is given in Table 2.4.

The purpose of the weights we will define in this section is to properly account for
conflicting terms in the disambiguation step. The scoring functions we will define in Section
2.5.3 are based on the total distance to other terms in the text. For this New York City
example, the text might only refer to one location in that segment of text. However, we
have six terms in T to represent that piece of text. Assigning weights to these six terms will
allow us to reduce bias in the scoring functions until we can determine which interpretation
of that segment is correct.

We can think of the weight W t1
t2 as the probability that term t2 is a true location

reference in the text given that t1 is a true location reference. The weights we calculate
are heuristically defined and do not correspond to true probabilities, but they obey many
of the same properties as probabilities.

Weights are defined such that 0 ≤ W t1
t2 ≤ 1 ∀t1, t2 ∈ T . If no terms in T conflict with

each other then all weights are equal to 1. The remainder of this section describes how
weights are calculated when some terms do conflict.

We begin our mathematical definition of weight with the conflicting case:

W t1
t2 = 0 ∀t1, t2 ∈ T |t1 and t2 conflict (2.2)

Equation 2.2 comes from our previous definition of weights: W t1
t2 is the weight of term

t2 when we assume that t1 is in the text. Thinking of the weight in terms of probabilities,
if t1 is truly referenced in the text, then any terms that conflict with t1 cannot be truly
referenced in the text. So when t1 and t2 conflict, the weight W t1

t2 is zero.

17

Note that a term does not conflict with itself. Thinking of the weights as the probabil-
ities we described earlier, we can define:

W t
t = 1 ∀t ∈ T (2.3)

Before we define the weight in the other cases, we need another definition. Conflicting
terms result in groups. Removing a term in a group will affect the weights of all other
terms in the group.

We define G(t) to be the group of term t. G(t) is the smallest set of terms that satisfies
the following properties:

t ∈ G(t) ∀t ∈ T

G(t1) = G(t2) ∀t1, t2 ∈ T |t1, t2 conflict

This definition implies that

G(t1) = {t1} ∀t1 ∈ T |t1 does not conflict with any t2 ∈ T

Using this definition, we can conclude that all terms in Table 2.4 are in the same group.

Groups have a number of different interpretations depending on the amount of overlap.
An interpretation is a subset of a group which contains terms that do not conflict. An
interpretation does not have to cover all words in the segment of text, but it must contain
enough terms such that no non-conflicting terms can be added to the group.2 Table 2.5
lists all four interpretations for the New York City example.

Next we will define the weight W t1
t2 for the case where t1 /∈ G(t2). It is given by:

W t1
t2 =

1

of interp. of G(t2)

∑
interp. of G(t2)
that contain t2

1

of terms in this interp.
(2.4)

The weights given to each term in each interpretation are included in the last column
of Table 2.5.

Table 2.6 continues the calculations from Table 2.5 to give the weights W t1
t2 for the case

where t1 /∈ G(t2) and t2 is a term in the New York City group. For example, this table
tells us that when t1 /∈ G(New) then W t1

New = 5
24

.

2In our New York City example all our interpretations cover all words in that segment of text. How-
ever, if the term New was missing from T because it was tagged as an adjective, then {York,City} and
{New York,City} would both be valid interpretations. However, {York} would not be valid, since the term
for City can still be added.

18

Interpretation
Number

Terms In
Interpretation

Number of
Terms

Weight Given
To Each Term

1 New, York, City 3 1
4
∗ 1

3
= 1

12

2 New York, City 2 1
4
∗ 1

2
= 1

8

3 New, York City 2 1
4
∗ 1

2
= 1

8

4 New York City 1 1
4
∗ 1

1
= 1

4

Table 2.5: Example Interpretations for “New York City”

Term t2

Weight
from

Interp. 1

Weight
from

Interp. 2

Weight
from

Interp. 3

Weight
from

Interp. 4
Weight

New 1
12

0 1
8

0 5
24

York 1
12

0 0 0 1
12

City 1
12

1
8

0 0 5
24

New York 0 1
8

0 0 1
8

York City 0 0 1
8

0 1
8

New York City 0 0 0 1
4

1
4

Interp. Total 1
4

1
4

1
4

1
4

Table 2.6: Weights W t1
t2 for Terms in “New York City” where t1 /∈ G(t2)

19

We can see from Table 2.6 that each interpretation has the same total weight (1
4

in
this case), and that all weights in a group total to 1. This is true for every group in any
set T in our approach. Weights were defined such that these properties were satisfied, but
this was a heuristic choice. Future work may discover that a different definition of weights
gives better performance.

Finally, we must define W t1
t2 for the case where t1 ∈ G(t2) and t1 and t2 do not conflict.

As discussed earlier, the weight W t1
t2 is the weight of t2 when we assume that t1 is in the

text. Therefore, all we need to do to calculate the weight in this case is temporarily remove
terms from T that conflict with t1. This will change the groups G(t1) and G(t2) such that
t1 is no longer in G(t2) (because t1 no longer conflicts with any terms, G(t1) = {t1}). Our
calculation of the weights then proceeds as before with Equation 2.4.

For example, suppose we want to calculate WNew
t2

for t2 ∈ G(New). WNew
New York =

WNew
New York City = 0 because those terms conflict. We remove those terms, so New becomes

the only member of its own group. So WNew
New = 1. Finally, the remaining terms have only

two interpretations: {York,City} and {York City}. When we calculate those weights we
find that WNew

York = WNew
City = 1

4
and WNew

York City = 1
2
.

2.5.3 Scoring Functions

There are a few more definitions we need in order to describe the scoring functions that
are used in the disambiguation step:

• For two search results r1 and r2, let d(r1, r2) be the distance between them in
kilometres. This is calculated using Equation 2.1.

• As a shorthand, for a search result r and a term t we define c(r, t) = minr′∈Rt d(r, r′).
Then c(r, t) is the shortest distance between result r and any result for t.

The definitions above and in Section 2.2 are now combined in different ways to provide
eight unique scoring functions, which are described in detail in the rest of this section.
All scoring functions are defined such that greater scores are considered “better.” Scoring
functions 2.5 and 2.6 are “better” when the scores are closer to zero, because this means
there is less total distance to the other terms. Without the minus signs they would always
be non-negative, so by adding the minus signs we can still say that the greatest scores are
best for all scoring functions.

The first scoring function we consider is called Total Distance and is given by Equation
2.5. For a term t1 ∈ T and a result r1 ∈ Rt1 , this function simply adds up the minimum

20

distance between r1 and the closest result for each other term in T . Note that for any
term t such that tphr = t1phr (including the original term t = t1) we have c(r1, t) = 0.
Therefore we do not need to explicitly ensure that t2 6= t1 in the summation in Equation
2.5. However, we do explicitly ensure that W t1

t2 6= 0 so we do not consider conflicting terms.

St1

r1
= −

∑
t2∈T

W t1

t2
6=0

c(r1, t
2) (2.5)

The Total Distance score is always negative, because the distances c(r1, t
2) are always

positive then multiplied by −1. The result with the best score would be the one whose
score is closest to zero.

The second scoring function we consider is called Weighted Distance, given by Equa-
tion 2.6. This is equivalent to Equation 2.5 except for the multiplication by the weight
term. The reasoning behind these weight terms and how they are calculated is described
in Section 2.5.2.

St1

r1
= −

∑
t2∈T

W t1

t2 c(r1, t
2) (2.6)

Scoring functions 2.5 and 2.6 may be sensitive to terms that are extremely far away
from the others. This can occur when the location extraction step (step 1 of Algorithm 2)
extracts a phrase that does not refer to a location, but does have results in the knowledge
base. The location extraction step is not perfect, so this is a common occurrence. The
remaining scoring functions attempt to deal with this.

The next two scoring functions we consider are called Inverse (Equation 2.7) and
Weighted Inverse (Equation 2.8). They are similar to Equations 2.5 and 2.6 respectively,
except that we use the reciprocal of the c function. To avoid issues with division by zero,
we take the maximum of c and 10−3.

St1

r1
=

∑
t2∈T

t1phr 6=t2phr

W t1

t2
6=0

1

max (c(r1, t2), 10−3)
(2.7)

St1

r1
=

∑
t2∈T

t1phr 6=t2phr

W t1

t2

max (c(r1, t2), 10−3)
(2.8)

21

Next we attempt some normalization of Equation 2.8 to ensure that scores are com-
parable to each other. This scoring function is called Weighted Normalized Inverse,
given by Equation 2.9.

St1

r1
=

∑
t2∈T

t1phr 6=t2phr

W t1

t2

(
min

r′1∈R
t1 max(c(r′1,t2),10−3)

max(c(r1,t2),10−3)

)
∑

t2∈T
t1phr 6=t2phr

W t1

t2

(2.9)

Equation 2.9 was constructed by multiplying the numerator in Equation 2.8 by the
minimum distance between any result for t1 and any result for t2, not just between result
r1 and any result for t2. Finally, we divide the whole expression by the total weight of
all terms we looked at. This means that the score St

r is always between 0 and 1. A score
of St

r = 1 means that when we consider the closest pair of results between t and another
term, r is always the result from t that is part of that closest pair.

In scoring functions 2.7, 2.8, and 2.9 we skip all terms t2 ∈ T that have the same
phrase as t1. However, if a phrase appears many times in the text then it should be more
important. So it might be helpful to give a bonus to the scores based on how often the
phrase occurs. We add this feature to Equations 2.7, 2.8, and 2.9 to produce scoring func-
tions Inverse Frequency (Equation 2.10), Weighted Inverse Frequency (Equation
2.11) and Weighted Normalized Inverse Frequency (Equation 2.12) respectively. In
Equations 2.11 and 2.12 this is done by multiplying the original expression by the total
weight of all terms with the same phrase. Since scoring function 2.7 is the same as 2.8 but
with all non-zero weights set to 1, we similarly set all non-zero weights to 1 in Equation
2.10.

St1

r1
=

∑
t2∈T

t1phr 6=t2phr

W t1

t2
6=0

1

max (c(r1, t2), 10−3)

∑
t2∈T

t1phr=t2phr

1 (2.10)

St1

r1
=

 ∑
t2∈T

t1phr 6=t2phr

W t1

t2

max (c(r1, t2), 10−3)

 ∑
t2∈T

t1phr=t2phr

W t1

t2 (2.11)

22

St1

r1
=

∑
t2∈T

t1phr 6=t2phr

W t1

t2

(
min

r′1∈R
t1 c(r′1,t

2)

max(c(r1,t2),10−3)

)
∑

t2∈T
t1p 6=t2p

W t1

t2

∑
t2∈T

t1phr=t2phr

W t1

t2 (2.12)

We have now created eight unique scoring functions, which we will test in Chapter 3.
Combined with the two disambiguation algorithms discussed in the next section, this gives
16 versions of our algorithm to compare.

2.5.4 Disambiguation Algorithms

There are two versions of the disambiguation step of our location tagging algorithm, which
are both explained here. The first version, called the 1-phase disambiguation algorithm, is
described in Algorithm 3.

Algorithm 3 1-Phase Disambiguation Algorithm

1: Calculate W t1
t2 ∀t1, t2 ∈ T using Equations 2.2, 2.3, and 2.4 (as described in Section

2.5.2)
2: while (∃p ∈ P |(|Rp| > 1)) or (∃t1, t2 ∈ T |(W t1

t2 6= 1)) do
3: for all t ∈ T do
4: for all r ∈ Rt do
5: Calculate St

r using scoring function 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, or 2.12
6: end for
7: end for
8: t∗, r∗ ← (t ∈ T, r ∈ Rt) that maximize St

r and satisfy (|Rt| > 1) or (∃t′ ∈ T |W t′
t 6=

1)
9: Rt∗p ← {r∗}

10: for all t ∈ T do
11: if W t∗

t = 0 then
12: T ← (T \ {t})
13: end if
14: end for
15: Update P to reflect changes in T
16: Recalculate W t1

t2 ∀t1, t2 ∈ T as in step 1
17: end while

23

Step 2 repeats while there are still terms that need to be disambiguated. A term needs
to be disambiguated if its phrase has more than one result, or if it conflicts with another
term.

Step 8 is the key step in this algorithm. It finds the term t∗ and result r∗ that have the
best score St∗

r∗ . (In the case of a tie, the importance that Nominatim assigned to the results
is used as the tie-breaker.) Step 8 only considers terms that need to be disambiguated.

After step 8 finds the result r∗ with the best score, step 9 makes r∗ the only result
that is considered for phrase t∗p. Also, steps 10 to 14 remove any terms that conflict with
t∗. This means that after step 14 the term t∗ has been completely disambiguated, and the
algorithm is one step closer to disambiguating all terms in the text.

The other version of the disambiguation algorithm is called the 2-phase disambiguation
algorithm, which is described in Algorithm 4. The difference between the 1-phase and
2-phase versions is that the 2-phase algorithm attempts to resolve all conflicting terms
before disambiguating between search results.

Instead of one while-loop as we had in Algorithm 3, we have two. The first loop from
steps 2 to 16 reduces the set T until there are no more conflicting terms. The second loop
from steps 17 to 25 picks a search result for each remaining term. The reason for having
these two phases is to resolve term conflicts as quickly as possible. These conflicts can
have a large effect on result scores, especially with the unweighted scoring functions. If
this effect is removed quickly, then it may improve the accuracy of the algorithm.

2.5.5 Example

Here we continue our example from Section 2.4.1. When we left that example we had just
found search results from Nominatim for each phrase, shown in Table 2.3.

First we calculate the weights for each term. The weights are given in Table 2.7. Note
that we have two interpretations for the “Georgian college” substring, and each has one
interpretation. (Note that Georgian was tagged as an adjective, so it does not appear in
its own term.)

Next we calculate the scores for each term. We will use the Weighted Distance scoring
function, which was defined by Equation 2.6. We will also use the 1-Phase disambiguation
algorithm (Algorithm 3).

Table 2.8 demonstrates how the scores are calculated. There is a row and a column
for each result from Nominatim. Each cell contains the contribution to the score of the

24

Algorithm 4 2-Phase Disambiguation Algorithm

1: Calculate W t1
t2 ∀t1, t2 ∈ T using Equations 2.2, 2.3, and 2.4 (as described in Section

2.5.2)
2: while ∃t1, t2 ∈ T |(W t1

t2 6= 1) do
3: for all t ∈ T do
4: for all r ∈ Rt do
5: Calculate St

r using scoring function 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, or 2.12
6: end for
7: end for
8: t∗, r∗ ← (t ∈ T, r ∈ Rt) that maximize St

r and satisfy ∃t′ ∈ T |W t′
t 6= 1

9: for all t ∈ T do
10: if W t∗

t = 0 then
11: T ← (T \ {t})
12: end if
13: end for
14: Update P to reflect changes in T
15: Recalculate W t1

t2 ∀t1, t2 ∈ T as in step 1
16: end while
17: while ∃p ∈ P |(|Rp| > 1) do
18: for all t ∈ T do
19: for all r ∈ Rt do
20: Calculate St

r using scoring function 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, or 2.12
21: end for
22: end for
23: t∗, r∗ ← (t ∈ T, r ∈ Rt) that maximize St

r and satisfy |Rt| > 1
24: Rt∗p ← {r∗}
25: end while

Table cells contain t1
W t1

t2 RVH Georgian college college

t2

RVH 1 1 1
Georgian college 0.5 1 0

college 0.5 0 1

Table 2.7: Example Weights

25

RVH Georgian college college
1 1 2 1 2 3

RVH 1 N/A 1 * 0.7 1 * 42.7 1 * 86.7 1 * 4637.8 1 * 13166.5
Georgian
college

1 0.5 * 0.7 N/A N/A N/A N/A N/A
2 0.5 * 42.7 N/A N/A N/A N/A N/A

college
1 0.5 * 86.7 N/A N/A N/A N/A N/A
2 0.5 * 4637.8 N/A N/A N/A N/A N/A
3 0.5 * 13166.5 N/A N/A N/A N/A N/A

Total Score -43.7 -0.7 -42.7 -86.7 -4637.8 -13166.5

Table 2.8: Example Score Calculation

column result from the row result. We do not consider scores between results for the same
term, nor between results with a weight of 0, so those cells have been given N/A.

Since we are using the Weighted Distance scoring function, the score is the negative of
the total distance between a result and the closest result for each other term. So for RVH,
the closest result for college is about 86.7 km away. Farther results have been crossed out
since they will not contribute to the score. The weight WRVH

college is 0.5, as we see in Table 2.7.
Thus the contribution to the total score for RVH from college is about 0.5 ∗ 86.7 = 43.35.
Similarly, the contribution from Georgian college is 0.5 ∗ 0.7 = 0.35, giving a final score of
−(43.35 + 0.35) = −43.7 for result 1 for RVH.

Following Algorithm 3, we find the result and term with the greatest score. This is
result 1 for Georgian college. We select this result to be a correct location reference in the
text by removing all other results for Georgian college, and also removing any terms that
conflict with Georgian college. This means removing college from T .

Now we recalculate the weights for our new set T . No terms conflict any more, which
means that all weights are 1. Also, we observe that all remaining terms have exactly one
result remaining. This means our disambiguation is complete, and we say that RVH refers
to the Royal Victoria Regional Health Centre in Barrie, while Georgian college refers to
the college in Barrie.

2.6 Summary

Now that each step in Algorithm 2 has been explained in more detail, we can write a more
comprehensive summary of the entire algorithm. This is given by Algorithm 5.

26

Algorithm 5 Summary of Tagging Algorithm

1: Tag the input text using the POS and NER taggers from Stanford.
2: S ← ordered list of words in the text
3: T ← ∅
4: for every s ⊆ S where s is an ordered sequence of adjacent words do
5: if s contains at least one word tagged as a LOCATION or noun then
6: if every word in s is tagged as a noun, adjective, number, or LOCATION then
7: t← a term made from the words in s
8: T ← (T ∪ t)
9: end if

10: end if
11: end for
12: if T contains terms that have words tagged with LOCATION then
13: Remove terms from T that do not contain any words tagged with LOCATION.
14: else
15: if T contains terms that occured after prepositions then
16: Remove terms from T that did not occur after prepositions.
17: end if
18: end if
19: for every s ∈ S where s matches a Canadian, American, or Dutch postcode format do
20: if s is not represented by any term in T then
21: t← a term made from the words in s
22: T ← (T ∪ t)
23: end if
24: end for
25: P ← set of phrases represented in T
26: for every p ∈ P do
27: Rp ← search results from the knowledge base for query p
28: if |Rp| = 0 then
29: for every t ∈ T do
30: if tphr = p then
31: T ← (T \ {t})
32: end if
33: end for
34: end if
35: end for
36: Complete Algorithm 3 for 1-phase or Algorithm 4 for 2-phase disambiguation
37: Return set of non-conflicting terms T and one result in Rp for every p ∈ P .

27

At the end of Algorithm 5 we have a collection of terms that are mentioned in the text
along with a single location for each. Scores can be recalculated for these results using the
same scoring function that was used for the disambiguation. (Note that all weights will be
1 at this point.) Then they can then be sorted in order of decreasing score to provide a
ranking for the top places mentioned in the text. This was done in Chapter 3 to compare
the best results to the true location for articles.

28

Chapter 3

Results

In this chapter we describe the performance of our algorithm with each of the eight scoring
functions that were presented in Section 2.5.3, along with both disambiguation algorithms
that were discussed in Section 2.5.4.

3.1 Test Data

We tested our location tagging algorithm with a subset of English geotagged Wikipedia ar-
ticles, that is, articles where the authors have provided latitude and longitude coordinates.
This data required a significant amount of preprocessing, which is described in Appendix
B.

Our full dataset contained 920,176 geotagged Wikipedia articles1, but the tests in this
chapter used only a sample of 5,976 articles. This subset was used due to time and resource
constraints (in particular, the one query per second limit on the free Nominatim servers
which was discussed in Section 2.4).

1 It is worth noting that our set of articles is different than the one created by Wing and Baldridge
[9], which was also used by Roller et al. [5]. They used a dump of the English Wikipedia from September
4, 2010 while we used a dump from June 2, 2015. Their dataset contained 10,355,226 articles (including
non-geotagged ones), while ours contained 4,855,711. It should be expected that the more recent data
would contain more articles, but the opposite is observed. However, Wing and Baldridge had to explicitly
remove redirect articles, giving a total of 3,431,722 content-bearing articles. For this project we did not
explicitly remove such articles, and none have been observed in our dataset. Therefore it is likely that these
were automatically excluded in our download or by the processing software we used. Wing and Baldridge
used their own processing software to extract article coordinates and obtained 488,269 geotagged articles.
We used the set of coordinates that are directly available from Wikipedia.

29

Terms Used Number of Articles Percent of Articles
LOCATION tags only 5446 91.13%

Terms after prepositions 28 0.47%
All Terms 2 0.03%

Error 500 8.37%

Table 3.1: Filter Methods Used For Test Articles

3.2 Filtering by NER and POS Tags

Section 2.3.3 described how we filter our set of terms. If the text contains LOCATION
tags, then we only use terms that have at least one word with this tag. If there are no
LOCATION tags then we only keep terms that occur after prepositions. If there are no
terms that follow prepositions, then we do not filter our set of terms.

Table 3.1 shows how often each of the filtering methods were used. Over 91% of articles
were able to use terms with LOCATION tags. If this holds in general for other forms of
text, then this implies that by restructuring this step in the algorithm we might improve
its efficiency. Rather than adding all terms then discarding a large subset of them, we
could instead add only the terms with LOCATION tags. Only when no LOCATION tags
are found would the algorithm add other types of terms.

Table 3.1 also shows that over 8% of articles incurred an error. In all cases this was
due to the implementation of our location tagging algorithm, which assumes that the POS
tagger and NER tokenize the text in identical ways. If the implementation detects that
there is not a one-to-one correspondence between how the two programs divided the text
into words, then it stops and returns an error. This occurred in all 500 articles in the Error
row of Table 3.1. Future work will be to determine why these differences occur and correct
them so that the algorithm can continue for these articles.

3.3 Comparison of Disambiguation Algorithms

Our next step was to determine which versions of the algorithm are the most accurate.
There are eight scoring functions and two disambiguation algorithms, giving a total of 16
versions to compare.

Each geotagged Wikipedia article in our data set has one set of coordinates which is
considered to be the true location for the article. Our algorithm provided a list of terms

30

with one Nominatim result each. This means we needed to compare our list of multiple
locations to the one true location for the article. We first measured error by calculating
the distance between the true location and the result with the highest score, where scores
were calculated using the same scoring function that the disambiguation algorithm used.
(In Section 3.5 we will use a different error measurement.)

Articles were sorted in order of increasing error for each version of the algorithm. The
fraction of these articles (out of 5476) were plotted along the horizontal axis of Figure 3.1,
giving us the percentile of articles for which the disambiguation step was attempted.

Note that the horizontal axis of Figure 3.1 does not reach 100%. This is because dis-
ambiguation algorithms were terminated when their execution time exceeded 100 seconds.
Out of 87,616 disambiguation attempts (16 algorithm versions times 5476 articles), this
cutoff was used 496 times (0.57%).

The vertical axis gives the error in the geolocation. So, for example, this graph tells us
that all versions of the algorithm had an error of less than one kilometre for at least 11%
of articles.

We expected this graph to show one or two algorithms that were clearly better than
the others, but this is not the case. All algorithms showed very similar results, and there
was no clear winner. So instead we sliced the graph at the 10th, 25th and 50th percentiles,
which are shown in Figures 3.2, 3.3, and 3.4 respectively.

Again there was no algorithm which was a clear winner. However, the 1-phase algorithm
with the Weighted Inverse Frequency scoring function (Equation 2.11) was one of the two
best algorithms in each of the three figures. Thus we chose it as our winning algorithm,
and we will study it further in Section 3.4.

3.4 Further Analysis with the Winning Algorithm

There was no disambiguation algorithm that was clearly superior in our experiment (de-
scribed in Section 3.3), but the Weighted Inverse Frequency scoring function (Equation
2.11) with the 1 phase disambiguation algorithm (Algorithm 3) seemed to be a good
choice. In this section we further analyze the performance of the overall location tagging
algorithm using this scoring function and disambiguation algorithm.

31

Figure 3.1: Error for Disambiguation Algorithms

32

Figure 3.2: Error for Disambiguation Algorithms at the 10th Percentile

Figure 3.3: Error for Disambiguation Algorithms at the 25th Percentile

33

Figure 3.4: Error for Disambiguation Algorithms at the 50th Percentile

3.4.1 Results by Article Type

The author-provided location tags for Wikipedia articles each have a type associated with
them. We investigated whether some of these types are more difficult for the algorithm to
geolocate than others.

Nineteen different types of tags were observed in the test set, in addition to a NULL
(or missing) type. Ten of these types, including the NULL type, occurred at least 50 times
in the 5476 articles that were tested. Table 3.2 shows the median error (50th percentile)
for each of these types.

We can see from Table 3.2 that airports and railway stations appear to be the easiest
to geolocate, as they have the lowest median error. These types of articles are likely to
name both the location and the nearby cities they serve, so our algorithm can expect to
find a small cluster of results with good scores resulting in easy disambiguation.

Rivers and second-level administrative regions (districts, counties, etc.) appear to be
the most difficult to locate. This makes sense, as these types of locations can be spread
across a large area but are only represented by a single point in our algorithm. For example,
if an article is about a river and our algorithm returns a location beside the river, this could
show very poor accuracy if the returned point is far from the centre point that is assigned
to the river by OpenStreetMap. The future work to correct this will be discussed in Section
4.1.3.

34

Article Type Number of Articles Median Error (km)
airport 60 6

railwaystation 178 6
waterbody 76 42

city 2414 44
mountain 124 54
landmark 1109 65

NULL 970 94
edu 187 110
river 86 187

adm2nd 105 295

Table 3.2: Accuracy Comparison for Different Article Types

3.4.2 Confidence Estimation

A valuable addition to our location tagging algorithm would be an estimator for the ac-
curacy of the algorithm when the true error is unknown. This would allow us to assign a
confidence value to each location tag.

Figure 3.5 shows the error in the location tagging as a function of the score of top
result. It was expected that there would be a clear downward trend, where larger scores
correlate to smaller errors. This would give us a simple relationship where the score of the
top result would also be our confidence measure. However, our results did not indicate
such a relationship and, as shown in Figure 3.5, there were three main clusters instead.

The bottom left cluster does show some of the desired trend, where larger scores indicate
lower error. However, this is not simple to interpret, as there is another cluster directly
above with a horizontal shape.

The third cluster is on the right, and spans the entire range of the graph. This cluster
shows some vertical stratification starting around 1000 km. This is likely an artefact of
the maximum we imposed on the denominator of Equation 2.11, where any distances less
than 1 metre were increased to 1 metre as an attempt to avoid division by zero. Every
time this restriction is imposed the score increases by 1000. This is likely the major cause
of the stratification that is observed around the integer multiples of 1000 in Figure 3.5.

The results indicated in Figure 3.5 do not give us a simple answer in our search for
a confidence measure. A few other confidence measures were tried with similar results,
including the ratio between the top two scores, as well as the score multiplied or divided

35

Figure 3.5: Error versus Scores for Weighted Inverse Frequency (1 Phase)

36

by the number of terms used to calculate the score. None of these showed a clearer
relationship, so we do not yet have a confidence measure for our algorithm. This is left for
future work.

We replotted the error in location tagging as a function of the score of the top result
using the Weighted Distance (1-phase) version of the algorithm, and the result did not
show the stratification that was apparent in Figure 3.5. However, there was still no clear
relationship between score and error. Future work includes investigating all 16 versions,
although given the similarities between them it is unlikely that this will result in a clear
confidence measure.

3.5 Analysis of Top 5 Results

In previous sections we used the distance between the true location and the result with
the greatest score as a measurement of error. This may not be the best approach, as our
algorithm provides a list of multiple locations mentioned in the text. So far we used only
one of these locations to calculate the error.

For example, if there is a text that describes a river and the cities that lie along it,
then the location tagging algorithm should produce a location for each city as well as a
location for the river. The true location for the article would be a single point somewhere
along the river. If one of the cities on the river has the highest score, and this city is far
from the point for the river, then this would give a very high error value even though our
output may be considered correct.

It may make more sense to consider a group of locations that are returned by the
location tagging algorithm. We re-defined our error measure to be the shortest distance
between the true location and any of the five locations with the greatest scores, rather
than just the top location with the greatest score.

Figure 3.6 is an updated version of Figure 3.1 which uses this Top 5 error measurement.
Here we see the curves converge closer to each other than in Figure 3.1, meaning the 16
algorithms are more similar in this case. We also see a significant improvement in error.
For example, the Weighted Inverse Frequency (1 phase) algorithm had a 10th percentile
error of 490 metres with the Top 1 error, while for the Top 5 this error is 163 metres.
Similarly, the error at the 25th percentile improved from 4.70 km to 0.87 km. Finally, the
median error improved from 54 km to 8.5 km.

This new error measurement makes our errors similar to those observed by Roller et
al. [5]. However, this error measure has access to the true answer can and pick the top 5

37

result that is closest to it. Despite this lack of experimental validity, it does tell us that
we might significantly improve our accuracy by using a more-informed scoring function to
rank the final results. This is left for future work.

38

Figure 3.6: Top 5 Error for Disambiguation Algorithms

39

Chapter 4

Conclusion

This paper has presented an algorithm for finding precise locations that are named in
text. It uses part-of-speech tagging and named entity recognition to find potential location
references, which we call terms. A phrase is the text associated with a term. Our algorithm
then uses the open source tool called Nominatim to search the OpenStreetMap database
and obtain a list of possible locations for each unique phrase. Finally, conflicting terms
are resolved and one location is chosen for each phrase. The algorithm returns a list of
non-conflicting terms and the location that was chosen for each one.

Sixteen versions of the algorithm were compared, and none proved to be significantly
better than the others. The Weighted Inverse Frequency scoring function (Equation 2.11)
with the 1-phase disambiguation algorithm (Algorithm 3) was chosen as the best one, so
we used this as our final version of the algorithm and reported accuracy using this version.

When the location with the highest score was chosen to represent the overall location
of the article, our median error was 54 km. This is worse than the 11.0 km reported by
Roller et al. [5]. However, when we consider the closest of the five highest-scoring results
this median error reduces to 8.5 km. This implies that our algorithm, which is designed to
return multiple locations, includes some very accurate results in most cases. Future work
on the final sorting of results may significantly improve our 54 km median error.

4.1 Future Work

There are many ways in which our location tagging algorithm can be improved. Although
the algorithm was developed heuristically, this was a good starting point for a new class

40

of algorithms for high-precision location tagging. Some improvements were discussed in
previous chapters, and several more are described here.

4.1.1 Extraction and Disambiguation Feedback

Habib demonstrated that there is a feedback loop between the extraction step and the
disambiguation step in named entity recognition [3]. Results from the disambiguation step
can be used to improve results from the extraction step, which can then improve results for
the disambiguation step. This concept was partially used in this project. In particular, the
extraction step gathered all possible interpretations, then the disambiguation step refined
the list of extracted terms by resolving those that conflicted.

Our location tagging algorithm could benefit from more use of this feedback loop. The
disambiguation algorithm could be modified to discard terms which have extremely low
scores, not just those that conflict with better terms, as these terms may not refer to real
locations and should not have been included in the extraction step. This may improve
accuracy when disambiguating the other terms in the text.

4.1.2 POS and NER Taggers

If this algorithm is to be applied to a specific type of text, then the algorithm could
be improved by training part-of-speech taggers and named entity recognizers that are
specifically trained for the target style of text. For example, if this algorithm were to
be applied to tweets then the Stanford POS tagger we used could be replaced by the
state-of-the-art Twitter POS tagger developed by Derczynski et al. [1].

4.1.3 Representation of Locations

As we described in Section 3.4.1, some extended areas can be difficult to geolocate, likely
due to the representation of these areas in our algorithm. For example, consider the
text “Waterloo is a city in Ontario.” Nominatim represents each result for Ontario with a
single point. This point can be hundreds of kilometres away from the city of Waterloo. Our
location tagging algorithm should consider the distance between Waterloo and Ontario to
be zero, as Ontario is the province which contains Waterloo. This change may significantly
improve the accuracy of our algorithm, particularly for the large regions.

41

4.1.4 Postal Codes

As described in Section 2.3, the location extraction step uses regular expressions to search
for postal codes in the text. It currently only searches for postal codes that follow the
American, Canadian, and Dutch formats. This could be expanded to follow the formats of
other countries.

Additionally, not all postal codes can be found in OpenStreetMap. Some postal codes
are sent to Nominatim and receive no results. If OpenStreetMap were updated to contain
all postal codes, then texts which contain those postal codes can expect to receive more
accurate results.

42

APPENDICES

43

Appendix A

External Software

The following software was used in the implementation of this project. All links were at
the time of writing and are subject to change.

• Apache Spark version 1.4.0. Based on the work of [10]. Available at http://spark.
apache.org/.

• Nominatim. It was queried using the API described at http://wiki.openstreetmap.
org/wiki/Nominatim. It can also be used through a user interface at https://

nominatim.openstreetmap.org/.

• PHP-Stanford-NLP. October 18, 2014 version. Written by Anthony Gentile. Avail-
able at https://github.com/agentile/PHP-Stanford-NLP. Used as a PHP-wrapper
to access the Stanford POS tagger and NER.

• Stanford Log-linear Part-Of-Speech Tagger version 3.5.2 (April 20, 2015). Based on
the work of [8] and [7]. Available at http://nlp.stanford.edu/software/tagger.
shtml. There are multiple pre-trained models available with this software, and this
project used the model titled english-left3words-distsim.

• Stanford Named Entity Recognizer version 3.5.2 (April 20, 2015). Based on the work
of [2]. Available at http://nlp.stanford.edu/software/CRF-NER.shtml. There
are multiple pre-trained models available with this software, and this project used
the model titled english.all.3class.distsim.crf.

• WikiExtractor. June 14, 2015 version. Written by Giuseppe Attardi. Available at
https://github.com/attardi/wikiextractor.

44

http://spark.apache.org/
http://spark.apache.org/
http://wiki.openstreetmap.org/wiki/Nominatim
http://wiki.openstreetmap.org/wiki/Nominatim
https://nominatim.openstreetmap.org/
https://nominatim.openstreetmap.org/
https://github.com/agentile/PHP-Stanford-NLP
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
https://github.com/attardi/wikiextractor

Appendix B

Wikipedia Data

At the time of writing, data dumps of the English Wikipedia could be obtained from
https://dumps.wikimedia.org/enwiki/. This report used articles from a dump of the
English Wikipedia on June 2, 2015 (file name enwiki-20150602-pages-articles.xml.bz2).
Location tags were also obtained from the June 2, 2015 dump, and are available as a
separate download on the same site (file name enwiki-20150602-geo tags.sql.gz).

The raw dump file was processed using WikiExtractor (https://github.com/attardi/
wikiextractor), which takes the XML file and produces the raw text for each article, re-
moving special formatting and annotations such as images, tables, or references. However,
the output of WikiExtractor does not contain location tags, so we had to join this data
with the set of location tags ourselves.

The geo tags file contains all location tags in the English Wikipedia. There are two
types of tags: primary and non-primary. Primary tags apply to an entire article. Non-
primary tags apply to a particular mention in the text of an article. This project only used
primary tags.

These two data sets were joined using Apache Spark, which is a scalable cluster com-
puting system [10]. Spark now has a highly active community of both developers and
users. Spark’s APIs made it easy to read in both data sets, match location tags to their
articles, and output in a clear format using less than 80 lines of Scala code. The output
of this Spark program was directly usable by our implementation of our location tagging
algorithm.

45

https://dumps.wikimedia.org/enwiki/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor

References

[1] Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. Twitter part-of-
speech tagging for all: Overcoming sparse and noisy data. In Recent Advances in
Natural Language Processing, pages 198–206, 2013.

[2] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-
local information into information extraction systems by Gibbs sampling. In Pro-
ceedings of the 43nd Annual Meeting of the Association for Computational Linguistics
(ACL 2005), pages 363–370, Stroudsburg, PA, USA, 2005.

[3] Mena Badieh Habib Morgan. Named entity extraction and disambiguation for informal
text: the missing link. PhD thesis, Enschede, May 2014. SIKS Dissertation Series No.
2014-20.

[4] Bo Han, Paul Cook, and Timothy Baldwin. Text-based twitter user geolocation pre-
diction. Journal of Artificial Intelligence Research, 49(1):451–500, January 2014.

[5] Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing, and Jason
Baldridge. Supervised text-based geolocation using language models on an adaptive
grid. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 1500–1510, Stroudsburg, PA, USA, 2012.

[6] Beatrice Santorini. Part-of-speech tagging guidelines for the Penn Treebank project
(3rd revision). Technical report, Department of Linguistics, University of Pennsylva-
nia, Philadelphia, PA, USA, 1990.

[7] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational

46

Linguistics on Human Language Technology (HLT-NAACL), pages 173–180, Strouds-
burg, PA, USA, 2003.

[8] Kristina Toutanova and Christopher D. Manning. Enriching the knowledge sources
used in a maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint
SIGDAT Conference on Empirical Methods in Natural Language Processing (EMNLP)
and Very Large Corpora (VLC): Held in Conjunction with the 38th Annual Meeting of
the Association for Computational Linguistics, pages 63–70, Stroudsburg, PA, USA,
2000.

[9] Benjamin P. Wing and Jason Baldridge. Simple supervised document geolocation
with geodesic grids. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL): Human Language Technologies (HLT), pages
955–964, Stroudsburg, PA, USA, 2011.

[10] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI), Berkeley, CA, USA, 2012.

47

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Previous Work in Classification Approaches
	Drawbacks of Classification Approaches
	Natural Language Processing
	Part of Speech Tagging
	Named Entity Recognition
	Named Entity Disambiguation

	Algorithm
	Overview
	Terminology
	Simple Example

	Location Extraction
	Tagging the Text
	Extracting Terms
	Removing Terms
	Postal Codes
	Example

	Searching a Knowledge Base
	Example

	Disambiguation
	Distance
	Weights
	Scoring Functions
	Disambiguation Algorithms
	Example

	Summary

	Results
	Test Data
	Filtering by NER and POS Tags
	Comparison of Disambiguation Algorithms
	Further Analysis with the Winning Algorithm
	Results by Article Type
	Confidence Estimation

	Analysis of Top 5 Results

	Conclusion
	Future Work
	Extraction and Disambiguation Feedback
	POS and NER Taggers
	Representation of Locations
	Postal Codes

	APPENDICES
	External Software
	Wikipedia Data
	References

