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Abstract

Neural Ordinary Differential Equations (Neural ODEs) are deep learning neural net-
works with constraints specified by ordinary differential equations and initial values. Train-
ing Neural ODEs can be viewed as an optimal control problem. The weights and hidden
states of Neural ODEs are equivalent to controls and states in an optimal control problem
that aims to find an optimal set of controls for a dynamical system over a period of time.
Continuous Normalizing Flows (CNFs), a family of probabilistic generative models, con-
structed by Neural ODEs. Based on the model description of continuous normalizing flows
as optimal control problem, we introduce B-Spline basis functions to parameterize the Con-
tinuous Normalizing Flows controls across layers. This method produces time-dependent
weights by combining a fixed number of trainable parameters with B-Spline basis functions,
which makes it possible to learn complex time-dependent patterns by design. We execute
experiments for various toy datasets and solve the neural network by the Discretize-Then-
Optimize (DTO) approach and the Optimize-Then-Discrete (OTD) approach. Numerical
results show that the Spline-based CNFs have good performance for density estimation
and sampling. In this research paper, we also compare different right-hand side functions
for of the ODE network including concatsquash layers and linear-spline layers, under DTO
and OTD methods. Even though the OTD can guarantee the invertibility of the ODE net-
work, the DTO is more efficient for training. Further, the Spline-based CNFs can achieve
a dramatic reduction of parameters and number of evaluations while maintaining accuracy,
thus saving computational cost.
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Chapter 1

Introduction

1.1 State of the Art

A crucial application of machine learning is to model an unknown posterior distribution
given the data sampled from it. This is also called variational inference [Jordan et al., 1999]
[Wainwright and Jordan, 2008a]. Neural networks have the ability to learn and build
complex nonlinear models and enable the approximation of complex unknown distribu-
tions. This makes neural networks a popular choice in variational inference modeling.
Many machine learning methods for density estimation are based on neural networks, in-
cluding generative adversarial networks [Goodfellow et al., 2014], variational auto-encoders
[Kingma and Welling, 2013] and normalizing flows [Rezende and Mohamed, 2015].

In this research paper, we focus on continuous normalizing flows, a continuous version
of normalizing flows modeled by neural ordinary differential equations [Chen et al., 2018].
The goal of continuous normalizing flows has been to learn the approximate posterior
probability to estimate the unknown target density, by training with sample data from the
target density. The idea of this model is to assume that we can build invertible bijections
to map the sample data from the target distribution to the standard normal distribution.

Suppose we have the sample data that generated from the unknown target distribution
and we know the coordinates of the sample data denoted as x⃗ ∈ Rd0 . By assumption
that we can map the sample data from the target distribution to the standard normal
distribution by a bijective function f , we can obtain the coordinates of the after-mapping
sample data, denoted as z⃗ ∈ Rd0 , by equation (1.1). Since z⃗ is assumed to follow standard
normal distribution, it is easy to compute the probability of z⃗ by plugging it into the
standard normal density function (1.3).
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z⃗ = f(x⃗) (1.1)

x⃗ = f−1(⃗z) (1.2)

p(⃗z) = (2π)−
d0
2 exp(− z⃗T z⃗

2
) (1.3)

p(x⃗) = p(⃗z)−∆p (1.4)

Afterwards, we can calculate the difference between the original sample data probability
for x⃗ and after-mapping data probability for z⃗ by the instantaneous change of variables
theorem [Chen et al., 2018]. Denoting the density difference as ∆p, we can easily get the
approximate posterior density of the original sample data p(x⃗) by equation (1.4).

The intuitive idea of continuous normalizing flows is straightforward but how to con-
struct proper mapping flows is a complicated problem. There are two points we need to
think about when designing the model structure. The first point is to guarantee the in-
vertibility. This is required when doing the sampling process, that is, to get samples from
the approximate target density by sampling randomly from the normal distribution and
then apply the inverse mapping to get the datapoints we want. The second point we need
to pay attention to is the computational cost of the flow model. On the one hand, large
models are time-consuming for training; on the other hand, small models may not provide
accurate mappings. For example, we can never convert data from the standard normal
distribution to a distribution of MNIST images by simple linear bijective mappings.

In this work, we introduce B-spline basis functions [Günther et al., 2021] to parame-
terize the neural network constructed in continuous normalizing flows. Instead of using
the same parameters when discretizing the neural ordinary differential equations across
multiple layers for the numerical solution, we choose time-dependent B-spline functions
with a fixed number of trainable parameters to make up the neural network.

The spline-based networks are continuous in time by design, and we can establish
linear or nonlinear mapping flows by adjusting the degree of B-spline basis functions and
the number of spline knots or intervals. In particular, if we set the degree equal to one
and the number of spline knots equal to number of discretization steps, the network would
be equivalent to residual networks. B-spline basis functions have also been proved to
be advantageous to handle numerical partial differential equations in isogemetric analysis
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[Cottrell et al., 2009]. In this research paper, we want to investigate the capability of
spline-based continuous normalizing flows for dealing with generative probability tasks.
In experiments, we discover the numerical performance of the neural differential equation
model.

Furthermore, the neural ordinary differential equations in continuous normalizing flows
are solved by numerical methods for training and evaluation, that is, we make use of ODE
solvers to discretize the ODEs from continuous states to multiple layers, and then solve the
ODE forward and backward in time. All the time-dependent functions are evaluated at the
discrete time point of each layer. In this research paper, we compare two different schemes
for numerical solutions, which are named Discretize-Then-Optimize (DTO) and Optimize-
Then-Discretize (OTD). Discretize-Then-Optimize (DTO) first discretizes the Neural ODE
network, and then executes the backpropagation throughout all discrete layers. For each
iteration, the hidden states are memorized in forward propagation, and used to calculate
the gradients of the loss function with respect to the weights backward through the whole
network.

The other approach, the Optimize-Then-Discretize (OTD) method, also called the
adjoint-based method, first introduced for neural networks by [Chen et al., 2018], where
the objective is to optimize the continuous ordinary differential equations. Instead of ap-
plying traditional backpropagation for training, the OTD method optimizes Neural ODEs
by solving for the gradient by continuous formulas, making use of adjoint states. It then
discretizes the ODE network and applies ODE solvers such as forward Euler to numer-
ically solve the ODEs of the continuous formula during training and evaluation. Our
goal of this research paper is to investigate the performance of spline-based Neural ODEs
when applying to the CNF model, and to execute numerical experiments under DTO and
OTD schemes, comparing the number of forward evaluations, testing loss and inverse error
to check which is better regarding computational cost, accuracy and invertibility of each
model. Furthermore, we use a multi-spline-layer neural network while training and modify
the dimensions and number of intermediate layers to investigate the relationship between
model complexity, performance, and computational cost.

1.2 Outline

In this paper, we first introduce related background of this research in Chapter 2, including
details of Neural ODEs, CNFs and more basic materials like neural networks, B-spline
functions and etc. In Chapter 3, we introduce our spline-based methodology to specify the
right-hand side function of the Neural ODEs in CNFs model, the ODE solvers we pick,
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and the training schemes we use. In Chapter 4, we describe our numerical results with
respect to different experiments. In this chapter, we display the density estimation results
by figures and tables, so we can compare the models straightforwardly and quantifiably.
We also discuss the observations from the numerical experiments in chapter 4. Finally, in
Chapter 5, we draw conclusions.
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Chapter 2

Background

This chapter reviews background knowledge related to our methodology and algorithm.
Firstly, we introduce the basic materials about neural networks and functionals we use in
the following algorithms. Then, we investigate the neural ordinary differential equations
and numerical methods to solve ODEs with initial value conditions. We also introduce
several ODE solvers including fixed-step ODE solvers and adaptive ODE solvers. Fur-
thermore, we discuss the generative probability models for variational inference, especially
focusing on normalizing flows that we apply in our experiments. We address the differ-
ences and relationship between traditional normalizing flows and continuous normalizing
flows which are firstly introduced by [Chen et al., 2018]. Finally, we discuss the definition
and intuition for spline functions used in neural networks. In this chapter, we give de-
tailed intuition for continuous normalizing flows and B-spline functions, which contribute
to understanding our methodology and further experiments analysis.

2.1 Neural Networks

Neural networks are computing systems based on interconnected artificial neurons. Each
neuron unit can transform information via connection between neuron nodes. After pro-
cessing the information transmitted from the former neuron, it can pass the information to
neurons connected to it in the next layer. For multiple layers neural networks, which are
generally used in deep learning, there can be different transformations on the input of in
different layers. These transformations are typically specified by non-linear functions called
activation functions. Therefore, neural networks have the ability of fitting complex models
via multiple layers with various activation functions. This is one of the most important
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reasons that it is a popular choice to use neural networks in deep learning, especially when
we have no idea what the real model is. In the next two subsections, we give a mathemat-
ical definition of multi-layer artificial neural network, and discuss the activation functions
we use in our experiments.

2.1.1 Multi-layer Artificial Neural Networks

A fully connected multi-layer neural network is called a Multilayer Perceptron (MLP),
which is generally used in deep learning problems. The MLP is composed of an input
layer, an output layer, and several hidden layers with mappings between each layer. Next,
we give a mathematical definition of MLP and display a simple example of a 4-layer MLP.

Multilayer Perceptron (MLP): Suppose the input data is a d-dimensional vector
x⃗ ∈ Rd, the intermediate state x⃗k is dk-dimensional vector, x⃗k ∈ Rdk , fk is the activation
function for kth layer (start from 0, that is input layer), Wk is the weight matrix and b⃗k is
the bias vector at kth layer. Then the L-layer feed-forward MLP can be denoted as:

x⃗1 =f1(W1x⃗+ b⃗1),

x⃗k =fk(Wkx⃗k−1 + b⃗k), k = 2, 3, 4, ..., L− 1,

x⃗L =fL(WLx⃗L−1 + b⃗L),

(2.1)

where W1 ∈ Rd1×d, b1 ∈ Rd1 ; Wk ∈ Rdk×dk−1 , bk ∈ Rdk for k = 2, 3, 4, ..., L.

In Figure 2.1, we display a simple structure of a fully connected four-layer artificial
neural network, where the circles represent the artificial neuron units and interconnected
edges represent the mappings between layers. These mappings are done by a bunch of
activation functions. Once we have the input data at the input layer, we can process it
through forward propagation as displayed in equation (2.1) to get all hidden states values as
well as the final state output. Each interconnected line in Figure 2.1 represents a mapping
from the a previous layer to the next one in forward propagation process.

The training of the whole network in Neural ODEs is done by selected optimization
algorithm via backpropagation or reverse-mode automatic differentiation, it depends on the
discretization scheme we choose. We give a more detailed explanation for discretization
schemes in Section 2.5. For each training iteration, we update the parameters to reduce
the loss function value until we have the satisfying accuracy according to tolerance we set,
or the number of total training iterations reaches the maximum. In our experiments, we
choose the latter strategy, which allows 10,000 training iterations for each model.
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Figure 2.1: A 4-layer MLP: circles are artificial neurons, interconnected lines represent the
mappings between neurons in forward propagation.

2.1.2 Activation Functions

In this section, we display several activation functions that will be applied in numerical
experiments of continuous normalizing flows. Suppose the input of each function is x.
Then the output of each formula can be given as follows. Plus, we display some figures via
MATLAB to show the transformation and range of output of each function.

(1) RELU Activation:
f(x) = max {0, x} (2.2)

(2) Hyperbolic Tangent (Tanh) Activation:

f(x) =
ex − e−x

ex + e−x
(2.3)
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Figure 2.3: Tanh

(3) Logistic sigmoid Activation:

f(x) =
1

1 + e−x
(2.4)

(4) Softplus Activation:
f(x) = ln(1 + ex) (2.5)
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2.2 Neural Ordinary Differential Equations

2.2.1 Model Description

Neural ordinary differential equations parameterize the continuous dynamics of hidden
states using ordinary differential equations (ODEs) [Chen et al., 2018]. Instead of con-
structing the transformations between each layer, Neural ODEs directly model the gradient
of dynamics of hidden units with respect to time.

Denote the d0-dimensional initial value vector x⃗0 as x⃗0 ∈ Rd0 , the Neural ODEs can be
expressed as follows:

∂tx⃗(t) = ℓ(θ⃗(t), x⃗(t), t), for t ∈ (0, T ],

x⃗(0) = x⃗0,
(2.6)

where x : [0, T ] → Rd0 is the continuous dynamic of hidden units with respect to time,
θ : [0, T ] → Rp is the trainable parameter in this Neural ODE, and ℓ : Rp ×Rd0 × [0, T ] is
the model we build to approximate the derivative of the continuous dynamic hidden units
with respect to time. We usually specify the function ℓ by a multi-layer neural network
(MLP) that we discuss in the previous section.

2.2.2 ODE Solvers

In Neural ODEs settings, the problem is restricted by an ODE equation and the initial value
of the continuous dynamic. We refer to this kind of problem that finding a solution that
satisfies the ODE conditions as initial value problem (IVP). The numerical techniques we
apply to solve the the IVP built in Neural ODEs are called ODE solvers. Next, we introduce
several ODE solvers that related to our methodology as well as numerical experiments.

Forward Euler’s method: Given the IVP shown in equation (2.6), forward Euler
method discretize the ODE to an N-layer network as follows:

x⃗n = x⃗n−1 + hℓ(θ⃗n−1, x⃗n−1, tn−1), for n = 1, 2, 3, ..., N, (2.7)

where h = T/N is the step size, t0 = 0, tN = T , tn+1 = tn + h for n = 0, 1, 2, ..., N − 1.
The local truncation error of the forward Euler’s method is O(h2).

Backward Euler’s method: The backward Euler’s discretization is defined as:

x⃗n = x⃗n+1 + hℓ(θ⃗n+1, x⃗n+1, tn+1), for n = 0, 1, 2, ..., N − 1, (2.8)
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where h = T/N is the step size, t0 = 0, tN = T , tn+1 = tn + h for n = 0, 1, 2, ..., N − 1.
The local truncation error of backward Euler’s method is O(h2).

For different discretization scheme of Neural ODEs, we discuss the forward Euler’s
method and backward Euler’s method to show the difference between the schemes and
training process with respect to them.

Runge-Kutta method: Runge-Kutta methods are a family of ODE solvers that can
achieve higher accuracy than Euler’s method. In this research paper, we use the most
widely applied member in Runge-Kutta family, which we call RK4 method. The form of
RK4 is given as below:

x⃗n = x⃗n−1 +
1

6
h(k1 + 2k2 + 2k3 + k4), for n = 1, 2, 3, .., N,

k1 = ℓ(θ⃗n−1, x⃗n−1, tn−1),

k2 = ℓ(θ⃗n−1, x⃗n−1 + h
k1
2
, tn−1 +

h

2
),

k3 = ℓ(θ⃗n−1, x⃗n−1 + h
k2
2
, tn−1 +

h

2
),

k4 = ℓ(θ⃗n−1, x⃗n−1 + hk3, tn−1 + h),

(2.9)

where h = T/N is the step size, t0 = 0, tN = T , tn+1 = tn+h for n = 0, 1, 2, ..., N−1. The
local truncation error of the RK4 method is O(h5) which is higher than Euler’s method.
We apply the RK4 ODE solver in our numerical experiments using DTO approach for the
training, which we discuss more in Chapter 4.

Dopri5: Dopri5 method is an adaptive step size ODE solver [Shampine, 1986]. This
method is also a member of the Runge–Kutta family. In this method, we need to set
the tolerance values for absolute error and relative error. Only if both absolute error and
relative error are smaller than our tolerance values, can we accept the current step size and
go to next step/layer. Otherwise, we need to adjust to set smaller step size and re-compute
and re-evaluate the errors again until they are both accepted.

eabsolute =
∥∥∥x⃗p

n − ⃗xp−1
n

∥∥∥ , (2.10)

erelative =

∥∥∥x⃗p
n − ⃗xp−1

n

∥∥∥
max

{
x⃗p
n,

⃗xp−1
n

} , (2.11)
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where eabsolute is the absolute error and erelative is referred to relative error. x⃗p
n is the

approximate hidden unit value for nth step which use pth-order Runge-Kutta method,
x⃗p−1
n is the approximate hidden unit value for nth step which use (p − 1)th-order Runge-

Kutta method.

In our numerical experiments, we apply the dopri5 in OTD scheme for training. And
the combination of absolute error tolerance and relative error tolerance are shown as below:

eabsolute
tolabsolute + tolrelative ∗ erelative

≤ 1, (2.12)

where tolabsolute and tolrelative are absolute error tolerance and relative error tolerance re-
spectively, aerr and rerr are absolute error and relative error given in equation (2.10) and
(2.11). Once inequality (2.12) hold for the current step size we use, we can move to from
n-step to the next and repeat the whole process until finishing all iterations for training.

2.3 Continuous Normalizing Flows

Continuous normalizing flows are generative probabilistic models specified by Neural ODEs
that we discuss in last section. The goal of generative probabilistic modeling is to estimate
a posterior probability distribution given samples drawn from the target distribution that
we want to approximate. Before introducing the continuous normalizing flows, we firstly
analyze the normalizing flows [Rezende and Mohamed, 2015] generally used for variational
inference which is also called generative modeling.

2.3.1 Normalizing Flows

Normalizing flows [Rezende and Mohamed, 2015] are a family of generative models that
are able to do density estimation and sampling. Density estimation is to approximate
probability of an unknown target distribution, while sampling is to draw samples from the
unknown target distribution.

A normalizing flow is modeled a bijection mapping between an unknown target dis-
tribution and a known simple base probability distribution that usually presented by a
standard normal distribution. This kind of models make use of the discrete version of
change of variables theorem to calculate the changes in probability after mapping through
the bijective function. We denote the mapping function from target density to base density
as ℓ, then the transformation of the data and the change of probability are given as below:
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z⃗ = ℓ(x⃗),

log p(⃗z) = log p(x⃗)− log

∣∣∣∣det ∂ℓ∂x⃗
∣∣∣∣ , (2.13)

Through the change of variable theorem shown in equation (2.13), we can compute the
change of probability forward and backward through the bijective function ℓ. Figure 2.6.
gives an example to illustrate a normalizing flow model structure.

For density estimation, given the structure of mapping function ℓ and sample data
x⃗ from the unknown target distribution, we can compute the converted sample values z⃗
after mapping via ℓ. Then we can easily get p(⃗z) by plugging z⃗ into a standard normal
distribution. Next, through the change of variable theorem, we can get the log p(x⃗) by
equation (2.13). Finally, we take an exponential with respect to log p(x⃗) to get the p(x⃗).
This is the approximate posterior probability derived by normalizing flows.

For sampling, we need to know the inverse function of ℓ, denoted as ℓ−1. To do the
sampling from the target density, we firstly sample some data points z⃗ from standard
normal distribution, subsequently we can compute the coordinates of samples x⃗ in target
distribution by mapping from z⃗ via ℓ−1, i.e. x⃗ = ℓ−1(⃗z).

2.3.2 Continuous Normalizing Flows

Continuous normalizing flows are ODE-based normalizing flows, instead of using multiple
layers of flow-based mappings, continuous normalizing flows directly model the derivative of
hidden states with respect to time. The modeling for continuous dynamics is represented
by a Neural ODE, which is continuous in time. Next, given the gradient function of
hidden states with respect to time, we can compute the gradient of log likelihood of hidden
units with respect to time by instantaneous change of variables theorem that is proved by
[Chen et al., 2018]. The model structure of continuous normalizing flows is given below:

∂tx⃗(t) = ℓ(θ⃗(t), x⃗(t), t), for t ∈ (0, T ],

∂ log p(x⃗(t))

∂t
= −tr(

∂ℓ(θ⃗(t), x⃗(t), t)

∂x⃗(t)
), for t ∈ (0, T ],

x⃗(0) = x⃗0,

(2.14)

where x⃗ : [0, T ] → Rd0 are the continuous dynamics of hidden units with respect to time,
θ : [0, T ] → Rp are the trainable parameters in this Neural ODE, ℓ : Rp × Rd0 × [0, T ] is
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Figure 2.6: Normalizing Flows: We use a multi-layer neural network to represent the
mapping function ℓ, the red point is x⃗ from two dimensional eight-Gaussian distribution
and the orange point is z⃗ from the two dimensional standard normal distribution. These
two points can transfer to each other by function ℓ or ℓ−1.

the model we build to approximate the derivative of the continuous dynamic hidden units
with respect to time, tr is the trace operation.

The invertibility of continuous normalzing flows is guaranteed by the existence and
uniqueness of the solution of the ODE. Under assumptions that ℓ is Lipschitz continuous
w.r.t. x⃗(t) and θ⃗(t) are continuous in t, the solution exists and is unique given the initial
condition x⃗(0) = x⃗0 [Arnol’d, 2013]. However, for discrete normalizing flows, we can not
naturally get invertible bijections by design. This provides a motivation of using contin-
uous normalizing flows rather than traditional multi-layer normalizing flows especially for
sampling that requires to know ℓ−1, the inverse function of forward mapping.

The training for continuous normalizing flows is also different from training a finite
normalizing flows. We can choose different schemes to discretize the continuous dynamics
and solve the Neural ODEs numerically. Then we use different backpropagation algorithms
to train with the CNF network to minimize the loss function. These schemes are discussed
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in the next section.

2.3.3 Loss Function

We need to choose a metric to measure the training and evaluation loss for CNF model.
For example, the loss functional usually used for time-series regression is the Euclidean
distance between the approximate value of the objective computed by model and the true
value of the objective. However, the goal of continuous normalizing flows is to estimate the
unknown posterior distribution and we only have the samples from the unknown target
distribution. This is so called unsupervised learning since we do not have the true value of
the target distribution probability.

We hereby introduce the Kullback–Leibler divergence [Kullback and Leibler, 1951], a
statistical distance, which is normally chosen to measure the difference between two prob-
ability distributions. Suppose we have two distributions, P is the obsevations or a known
measured probability distribution, Q is the model we use to approximate the distribution P .
Then for P and Q defined on the same probability space X , the discrete Kullback–Leibler
divergence is given by

DKL(P ||Q) =
∑
X

P (x) log

(
P (x)

Q(x)

)
. (2.15)

The continuous Kullback–Leibler divergence is given by

DKL(P ||Q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx (2.16)

Then, consider the continuous normalzing flow model, denote the unknown target den-

sity as ρ0. The model we bulid to approximate ρ0 is represented by px⃗0(
⃗x(0)), and px⃗T

( ⃗x(T ))
is the base distribution we mentioned before, i.e. standard normal distribution. The Kull-
back–Leibler divergence for the CNF is given by:
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L(θ, x⃗) =DKL(ρ0||px⃗0),

=

∫
ρ0(x⃗(0)) log

ρ0(x⃗(0))

px⃗0(x⃗(0))
dx⃗(0),

=− Eρ0 [log(px⃗0(x⃗(0))] + const,

=− Eρ0

[
log(px⃗T

(x⃗(T ))) +

∫ T

0

tr(
∂ℓ(θ⃗(t), x⃗(t), t)

∂x⃗(t)
)

]
+ const,

=− Eρ0

[
−d0

2
log(2π)− 1

2
∥x⃗(T )∥2 +

∫ T

0

tr(
∂ℓ(θ⃗(t), x⃗(t), t)

∂x⃗(t)
)

]
+ const,

=Eρ0

[
const+

1

2
∥x⃗(T )∥2 −

∫ T

0

tr(
∂ℓ(θ⃗(t), x⃗(t), t)

∂x⃗(t)
)

]
+ const,

=Eρ0

[
const+

1

2

∥∥∥∥x⃗0 +

∫ T

0

ℓ(θ(t), x⃗(t), t)dt

∥∥∥∥2

−
∫ T

0

tr(
∂ℓ(θ⃗(t), x⃗(t), t)

∂x⃗(t)
)

]
+ const.

(2.17)

Notice d0 is the dimension of ⃗x(t), ⃗x(t) ∈ Rd, t = (0, T ].

During training, we cannot necessarily evaluate the target density ρ0, so we instead
estimate the expectation over ρ0 by Monte Carlo that gives an approximate value for the
expectation.

Notice that minimizing DKL(ρ0||px0) is equivalent to minimizing −Eρ0 [log(px⃗0(
⃗x(0))],

hence it is also equivalent to maximize Eρ0 [px⃗0(
⃗x(0)]. This leads us to training the contin-

uous normalizing flow for variational inference by maximum likelihood estimation, so we
can view the training for a CNF as maximum likelihood training.

In the next section we give more details about numerical methods of training the CNF.

2.4 Discretization Schemes

Training a Neural ODE can viewed as an infinite-dimensional optimal control problem
where the weights are controls and the hidden features are the states [Onken and Ruthotto, 2020].
Taking a standard neural ODE as an example, the goal of training is to minimize a loss
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function subject to the ODE constraint with initial value limit. Here, in order to distin-
guish trainable parameters represented by weight matrix and bias vector, we use a new

notation θ(t) = (W(t), ⃗b(t)) to describe the Neural ODE model:

min
θ,x⃗

L(θ, x⃗),

∂tx⃗(t) = ℓ(θ(t), x⃗(t), t), for t ∈ (0, T ],

x⃗(0) = x⃗0,

(2.18)

where x⃗(t) satisfy the neural ODEs for initial values given by the training data, and L is
the optimization objective of the whole model, i.e. the loss function.

We can not solve the continuous optimization problem directly through theoretical
analysis. Hence numerical methods are applied to train and evaluate the model. Here are
two schemes to do the discretization for Neural ODEs so we can solve the gradient of the
loss function with respect to trainable parameters numerically.

2.4.1 Discretize-Then-Optimize

The first approach we discuss is the Discretize-Then-Optimize method (DTO). This method
is to discretize the ODE network firstly by an explicit ODE solver scheme (e.g. forward
Euler, RK4), then apply the backpropagation during training to solve the gradient of loss
function with respect to trainable parameters. Afterwards, we can execute gradient-related
optimization algorithm (e.g. gradient descent) to minimize the loss function.

We take the Euler method as an example to show how DTO works. Notice the ODE
network is given by:

∂tx⃗(t) = ℓ(θ(t), x⃗(t), t), for t ∈ (0, T ]. (2.19)

Then we discretize the continuous ODE by applying Euler method to N layers with
fixed step size h:

x⃗n = x⃗n−1 + hℓ(θn−1, x⃗n−1, tn−1), for n = 1, 2, 3, ..., N, (2.20)

where h = T
N
. This is the same as the ResNet model structure.

By equation (2.20), training the Neural ODE model in CNF is transferred to a finite-
dimensional optimization problem (Gunzburger, 2003). Given the initial condition x⃗(0) =
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x⃗0, we can solve x⃗1, x⃗2, x⃗3, ..., x⃗N by forward propagation via equation (2.20). Afterwards,

we can naturally compute ∂L
∂x⃗N

as well as ∂ℓ(θn,x⃗n,tn)
∂x⃗n

for n = 1, 2, 3, ..., N.

Subsequently, we can apply backpropagation algorithm to solve the gradient of loss
function with respect to trainable parameters.

According to backpropagation, suppose given ∂L
∂x⃗n

, we can compute ∂L
∂x⃗n−1

by chain rule:

∂L
∂x⃗n−1

=
∂L
∂x⃗n

∂x⃗n

∂x⃗n−1

=
∂L
∂x⃗n

(I + h
∂ℓ(θn−1, x⃗n−1, tn−1)

∂x⃗n−1

), for n = 1, 2, 3, ..., N.

(2.21)

Denote the adjoint state at time t as a⃗(t) = ∂L
∂x⃗(t)

. Then equation (2.21) can be replaced
by:

a⃗n−1 =a⃗n(I + h
∂ℓ(θn−1, x⃗n−1, tn−1)

∂x⃗n−1

),

=a⃗n + h
∂ℓ(θn−1, x⃗n−1, tn−1)

∂x⃗n−1

a⃗n, for n = 1, 2, 3, ..., N.

(2.22)

We can then compute the gradient with respect to trainable parameters by the chain
rule:

∂L
∂θn−1

=h
∂ℓ(θn−1, x⃗n−1, tn−1)

∂θn−1

a⃗n−1,

a⃗(T ) =
∂L

∂x⃗(T )
,

a⃗n−1 =a⃗n + h
∂ℓ(θn−1, x⃗n−1, tn−1)

∂x⃗n−1

a⃗n, for n = 1, 2, 3, ..., N.

(2.23)

Then, we can apply a gradient-based optimization algorithm for the training.

2.4.2 Optimize-Then-Discretize

An alternative numerical method of solving the Neural ODE in the CNF model is Optimize-
Then-Discretize approach, which is firstly introduced by [Chen et al., 2018]. This method
is also named as adjoint-based approach. The idea is, we directly optimize the ODE
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network and then discretize the ODE after training. All the values of hidden dynamics are
computed by a black-box differential equation solver.

Given the ODE with initial value condition shown in equation (2.18), we can solve
x⃗(T ) by an arbitrary ODE solver which is treated as a black-box solver. Then we can
naturally compute a⃗(T ) = ∂L

∂x⃗(T )
and solve the gradient of loss function with respect to

trainable parameters via OTD approach. This is done by a reverse-mode derivative of an
ODE initial value problem that we take the x⃗(T ) as the initial condition and solve the
ODE backward over the CNF network by an arbitrary ODE solver.

In OTD method, the gradients are computed by solving the adjoint equation:

∂L
∂θ(t)

= a⃗(t)
∂ℓ(θ(t), x⃗(t), t)

∂θ(t)
,

a⃗(T ) =
∂L

∂x⃗(T )
,

∂a⃗(t)

∂t
= −a⃗(t)

∂ℓ(θ(t), x⃗(t), t)

∂x⃗(t)
, for t ∈ (0, T ].

(2.24)

According to Chen et al. (2018), the adjoint state is solved backward in time by an
accurate ODE solver. Taking the Euler method as an example, the numerical adjoint
method can be viewed as a discretization of equation (2.24):

∂L
∂θn−1

=h
∂ℓ(θn−1, x⃗n−1, tn−1)

∂θn−1

a⃗n−1,

a⃗(T ) =
∂L

∂x⃗(T )
,

a⃗n−1 =a⃗n + h
∂ℓ(θn, x⃗n, tn)

∂x⃗n

a⃗n, for n = 1, 2, 3, ..., N.

(2.25)

Comparing the OTD scheme (2.25) with DTO scheme (2.23), we notice the only differ-
ence between them is how they update the adjoint state value. The DTO method updates
the adjoint state at layer n − 1 via evaluating ℓ at layer n − 1 while for OTD method
updates the adjoint state at layer n− 1 via evaluating ℓ at layer n.

For the reverse-mode automatic differentiation algorithm of ODE solutions for OTD
method, we do not need to remember the intermediate hidden dynamics in forward propa-
gation, which is different from backpropagation algorithm, thus saving computer memory.
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However, we after need to solve the backward ODE with very small time steps to get suf-
ficient accuracy for the gradient. It needs more computations than OTD method since we
also need to recompute intermediate hidden dynamics via backward accumulative numer-
ical ODE integration. This might lead to more training time for OTD approach.

Besides, according to [Gholami et al., 2019], the adjoint-based method is not consistent
with forward propagation, and we incorectly replace the input of the neural network with
the backward ODE solution from the its output. As a consequence, the quality of the
gradient of loss function with respect to the trainable parameters can deteriorate. In our
numerical experiments, we use adaptive step-size ODE solver to somehow guarantee the
accuracy of OTD scheme, but this can also cause more computational cost while training.
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Chapter 3

Methodology

In this chapter, we introduce the spline-based layers [Günther et al., 2021] to CNF with
the structure of layers built in our neural network. We firstly introduce the definition
of the B spline basis functions and the explain the intuitive of using splines in our net-
work. We further discuss some properties of B-spline basis functions. Last, we define
our model functions of our spline-based layers while comparing with concatsquash layers
which is one of the well-behaved hyper network for reversible generative model according
to [Grathwohl et al., 2018].

3.1 Spline Functions

In previous sections, we treat training a CNF as an optimal control problem. Instead of
using the same bunch of trainable parameters θ across all the layers, we make trainable
parameters dependent on time denoted as θ(t).

When we apply numerical methods to solve CNF, we need to discretize the whole
network. According to Section 2.4, if we discretize the network to N layers, then we get
a set of θi as trainable parameters, i = 1, 2, 3, ..., N . Typically, when we use a smaller
step size to discretize the CNF network, we can get better accuracy, but the number of
trainable parameters also increases that leading to a growing complexity of the optimal
control problem. Meanwhile, if we use a larger step size for training, it can not guarantee
the sufficient continuity of the CNF model, this may also bring about unstable forward
propagation [Günther et al., 2021].
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In this research paper, we make use of spline-based method to specify the θ(t) that can
decouple the trainable parameters from the layers of the Neural ODE while maintaining the
time dependency of θ(t). More specifically, we choose B-spline basis functions to parame-
terize θ(t) by a fixed number of trainable parameters. Thus, we can use sufficiently small
step size when discretizing the Neural ODE in CNF while not increasing the complexity
of the whole model.

B-Spline basis functions: Here, we display the definition of one-dimensional B-spline
basis functions. Given t ∈ [0, T ], we divide [0, T ] into L equal-length intervals, therefore
we have (L+1) equally spaced knots, i.e. 0 = τ0 < τ1 < ... < τL = T . Any spline function
of given degree d can be expressed as a linear combination of B-spline functions of that
degree. We denote a B-spline function as Bl,d(t), where d is the chosen degree of the spline
function, l is the subscript of knots, with d, l ∈ N, 0 ≤ l ≤ L:

Bl,d(t) =
t− τl

τl+d − τl
Bl,d−1(t) +

τl+d+1 − t

τl+d+1 − τl+1

Bl+1,d−1(t), for d ≥ 1 (3.1)

Bl,0(t) =

{
1 for t ∈ [τl, τl+1),
0 otherwise

. (3.2)

Notice the B-spline function of degree d, Bl,d(t), is a piecewise polynomial function of
degree d − 1. Given all the knots are different, the first (d − 2) derivatives of Bl,d(t) are
continuous across the knots, and Bl,d(t) ≥ 0 for all d, l.

Each B-spline basis function Bl,d(t) is computed by a combination of Bl,0(t), Bl+1,0(t),
... , Bl+d,0(t), so each B-spline basis function Bl,d(t) has a local support in [τl, τl+d+1).
Besides, for any fixed d and t ∈ [τl, τl+1), only Bl−d,d(t), Bl−d+1,d(t), ... , Bl,d(t) are non-
zero. Important properties of B-spline basis functions are described by Figure 3.1 and
Figure 3.2.

Therefore, we can compute the B-spline function values for any t ∈ [0, T ] given degree
d and number of intervals L divided by (L+ 1) knots.

3.2 Parameterization via B-spline Basis Functions

The optimization problem for CNF is specified by:
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min
θ,x⃗

L(θ, x⃗),

∂tx⃗(t) = ℓ(θ(t), x⃗(t), t), for t ∈ (0, T ],

∂ log p(x⃗(t))

∂t
= −tr(

∂ℓ(θ(t), x⃗(t), t)

∂x⃗(t)
), for t ∈ (0, T ],

x⃗(0) = x⃗0.

(3.3)

By multi-layer artificial neural network modeling, ℓ(θ(t), x⃗(t), t) can be specified by a

linear transformation plus activation function ℓ(θ(t), x⃗(t), t) = G(W(t)x⃗(t) + b⃗(t)), where

θ(t) = (W(t), b⃗(t)) is the set of trainable parameters, W(t) is a linear transformation

matrix, b⃗(t) is the bias vector, and G is the activation function in the neural network.

We apply the spline-based network for neural network proposed by [Günther et al., 2021],

which define θ(t) = (W(t), b⃗(t)) using B-spline basis functions:

W(t) =
L−1∑
l=−d

ωlBl,d(t),

⃗b(t) =
L−1∑
l=−d

β⃗lBl,d(t),

(3.4)

where L is the number of time intervals divided by (L + 1) knots over [0, T ], d is the

degree we choose for B-spline basis functions, and W(t), ωl ∈ Rdout×din , b⃗(t), β⃗l ∈ Rdout .
Here, dout, din are the output dimension and the input dimension determined by the neural
network settings.

3.3 Spline-based layers in CNF

In the previous section, we introduced a general form of a neural network layer parameter-
ized by spline functions. However, in practice, we usually try a more complex structure of
multiple layers and various kinds of activation functions. Here, we propose a spline-based
neural network to model the derivative of continuous dynamics x⃗(t) with respect to time,
denoted as ℓ(θ(t), x⃗(t), t) in Equation (3.3). We make use of multiple spline-based layers
to construct ℓ(θ(t), x⃗(t), t).
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Figure 3.1: This blue area shows the non-zero interval with respect to B1,3(t). More
generally, by definition of B-spline basis functions, Bl,0 is only non-zero when t ∈ [τl, τl+1),
Bl+1,0 is only non-zero when t ∈ [τl+1, τl+2). Then, by simple calculation, Bl,1 must be non-
zero when t ∈ [τl, τl+2), more specifically, Bl,1 > 0 for all t ∈ [τl, τl+2). By accumulative
calculation, Bl,d is non-zero in [τl, τl+d+1).

Spline-based layer: Assume the continuous dynamic input x⃗(t) ∈ Rdin , and the
output dimension of the spline-based layer is dout, then a spline based layer is defined as
below:

Sdout,din(x⃗(t),θ, t) = G
(
σ(w⃗(t))⊙Dθf

(x⃗(t)) + b⃗(t)
)
, (3.5)

where Dθf
(x⃗(t)) is an affine function modeled by a set of fixed trainable parameters θf =

(Wf , b⃗f ) with respect to the input x⃗(t):

Dθf
(x⃗(t)) = Wf x⃗(t) + b⃗f , (3.6)

where Wf ∈ Rdout×din , b⃗f ∈ Rdout .
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Figure 3.2: This green area shows the non-zero functions in interval [τ3, τ4). More generally,
given t ∈ [τl, τl+1), for any fixed d, only Bl−d,d(t), Bl−d+1,d(t), ... , Bl,d(t) are non-zero, thus
the total number of non-zero functions is (d+ 1).

The time-dependent weight matrix and bias vector are given by a linear combination
of B-spline basis functions:

w⃗(t) =
L+d−1∑
l=0

ω⃗lBl,d(t)

b⃗(t) =
L+d−1∑
l=0

β⃗lBl,d(t)

(3.7)

where ω⃗l, β⃗l, w⃗(t), b⃗(t) ∈ Rdout .

Note that the trainable parameters for each layer are composed of Wf ∈ Rdout×din ,

b⃗f ∈ Rdout , ω⃗l, β⃗l ∈ Rdout . For multi-layer spline-based neural network, we need to choose
different input dimension, output dimension, and the activation type for each layer. In our
numerical experiments, we compare four different structure of spline-based neural networks
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which can be discussed later in Chapter 4. Here we give an example to show how we model
the gradient function by multiple spline-based layers.

Suppose we construct a right-hand side function using 4 spline-based layers, with in-
termediate dimensions d1, d2, d3 where the input dimension and the output dimension of
the neural network should be the same since the gradient of x⃗(t) with respect to t should
be in the same dimension as x⃗(t). Denote the input dimension of x⃗(t) as d0, then for any
t ∈ (0, T ], ℓ(θ(t), x⃗(t), t) is given by:

x⃗1(t) =Sd1,d0(x⃗(t),θ1, t)

x⃗2(t) =Sd2,d1(x⃗1(t),θ2, t)

x⃗3(t) =Sd3,d2(x⃗2(t),θ3, t)

ℓ(θ(t), x⃗(t), t) =Sd0,d3(x⃗3(t),θ4, t)

(3.8)

Here, θi is the set of trainable parameters for layer i. For each layer, we use the logistic
sigmoid function of (2.4) to specify the σ function. And for the first three layers, we use the
hyperbolic tangent function of (2.3) to define the activation function G. For the last layer,
we do not add any activation function, i.e. Sd,d3(x⃗3(t),θ4, t) = σ(w⃗4(t)) ⊙ Dθf4

(x⃗3(t)) +

b⃗4(t), avoiding limiting the range of the output value.

To evaluate the performance of our model, we compare the spline-based layers with
concatsquash-linear layers that perform quite well in image classification [Grathwohl et al., 2018],
time-series regression and generative probabilistic modeling [Onken and Ruthotto, 2020].

Concatsquash-linear layer: Denote a concatsquash-linear layer as Cdout,din , with
input dimension din, i.e. x⃗(t) ∈ Rdin and output dimension dout. The structure of the
concatsquash linear layers is as follows:

Cdout,din(x⃗(t),θ, t) = G (σ(Dθt(t))⊙Dθx(x⃗(t)) +Dθk
(t)) (3.9)

Each Dθ is an affine function with respect to the function input:

Dθt(t) = w⃗tt+ b⃗t, (3.10)

where w⃗t, b⃗t ∈ Rdout ;

Dθx(x⃗(t)) = Wxx⃗(t) + b⃗x, (3.11)

where Wx ∈ Rdout×din , b⃗x ∈ Rdout ; and
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Dθk
(t) = w⃗kt (3.12)

where w⃗k ∈ Rdout . Note that there is no bias vector in (3.12).

3.4 Discretization for Spline-based CNF

Training for spline-based CNF under DTO and OTD schemes both require discretization
when evaluating functionals over [0,T]. Considering ti as the ith grid point after discretiza-
tion over time, we can evaluate the spline-based functions at ti,

W⃗(ti) =
L−1∑
l=−d

ω⃗lBl,d(ti)

b⃗(ti) =
L−1∑
l=−d

β⃗lBl,d(ti)

(3.13)

Notice the number of time steps is independent of the number of trainable parameters,
which means reducing the time step while training does not increase the number of trainable
parameters, which is fixed by design.

Then we can additionally use the re-discretization trick when doing the evaluation.
Since the trainable parameters are not dependent in time, we can use different step size
as well as ODE solver for training and evaluation. Training with a tiny step size can be
time-consuming, we can instead train the whole network by a larger step size (e.g. 0.05),
but do the evaluation by a much smaller step size. It can increase the continuity of the
network and model accuracy for evaluation while maintaining an efficient training process.
Further details about numerical experiments are discussed in the next Chapter.
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Chapter 4

Numerical Experiments

In this chapter, we execute numerical experiments on 2D toy data that we know the ground
truth for density estimation. We investigate the performance as well as the invertibility of
our spline-based CNF models, and do comparisons between DTO and OTD discretization
schemes. Our goal is to compare the model performance under different discretization
schemes and investigate the influence of some hyperparameyers such as degree d. Further,
we compare our spline-based CNF with concatsquash-based CNF (Gholami, 2019) which
is constructed by concatsquash linear layers and behaves pretty well on several density
estimation tasks.

We display some tables and compare metrics among different experiments. The metrics
we use include Number of Parameters (NOP), Number of Forward Evaluations (NFE),
Negative Log Likelihood (NLL) and the inverse error. Notice the NLL is the loss function
value for testing case, and inverse error is defined as below.

Suppose the mapping function from the target distribution to the base distribution is
denoted by f , then the inverse error is given by:

∆inv(x⃗0) =
∥∥f−1(θ, f(θ, x⃗0))− x⃗0)

∥∥ (4.1)

Inverse error is used for measuring the invertibility of the CNF model. For sampling
task, the f−1 is required for computing. However, for density estimation task, this metric
is not as important as in sampling since the f−1 is not needed.
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4.1 Density Estimation via Spline-based Layers

In this section, we train the model of four spline-based layers on checkerboard 2D toy data,
with layers’ dimensions d0 = 2, d1 = 16, d2 = 16, d3 = 16. We set number of knots intervals
L = 5, degree of spline functions d = 2, learning rate = 10−3, T = 0.5, and apply Adam as
the optimizer of the neural network. Notice for DTO scheme, we use RK4 as ODE solver
with fixed step size 0.05. For OTD scheme, we use dopri5 solver which is an adaptive ODE
solver and set atol = rtol = 10−5. We can obtain results shown in Table 4.1:

Table 4.1: Results of spline-based model on checkerboard

T Scheme Solver NOP NFE NLL Inverse Error

0.5
DTO RK4 1327 40 3.7074 2.7579× 10−5

OTD dopri5 1327 320 3.7234 2.2769× 10−6

According to the results shown in Table 4.1, the testing loss (NLL) of DTO approach is
a little bit smaller than that of OTD while the number of forward evaluations is drastically
less than OTD approach. This shows the DTO approach can achieve a better accuracy
with a smaller compuational cost for density estimation.

Subsequently, we compare the inverse errors and can easily observe that the inverse
error of the OTD scheme is smaller than the DTO scheme. One of the reasons is that the
number of evaluations of the OTD scheme is much more than that of the DTO scheme,
which makes the step size for discretization smaller in OTD scheme, causing the neural
network to be more continuous.

Figure 4.1 and Figure 4.2 show the evaluation results of DTO scheme and OTD scheme
for checkerboard dataset respectively. Suppose we have mapping function f that can map
x from the target distribution to y from the standard normal distribution, i.e. y = f(x⃗).
The top left subfigure is the samples from the checkerboard distribution, denoted as x; the
top right subfigure shows f(x), where f is constructed by our CNF model; the bottom left
subfigure displays f−1(f(x)); the bottom right subfigure shows f−1(y), where y is sampled
from standard normal distribution. The inverse error of each model can be expressed as the
Euclidiean distance between x and f−1(f(x)), which reflects the invertibility of the model.
For density estimation, we expect to have the f(x) follows standard normal distribution and
f−1(y) follows the target distribution. According to these two figures, we can find that
under both OTD and DTO schemes, our spline-based model can map the sample data
from target distribution to nearly standard normal distribution (from top right subfigure),
and can map samples from standard normal distribution backward to approach to target
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x 0(x) f(x)

f 1(f(x)) f 1(y 1(y))

Figure 4.1: DTO for checkerborad

x 0(x) f(x)

f 1(f(x)) f 1(y 1(y))

Figure 4.2: OTD for checkerborad
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(a) ground truth (b) spline-based (c) concatsquash-linear

Figure 4.3: Results on 8gaussians

distribution (from bottom right subfigure). Besides, by comparison between top left and
bottom left subfigures, we can observe the invertibility of our model is quite good because
there is little difference between x and x and f−1(f(x)).

4.2 Compare with Concatsquash-Linear Layers

To evaluate the performance of spline-based layers, we compare our models with concatsquash-
linear layers that behave well on other Neural ODE problems such as image classification
[Gholami et al., 2019], time-series regression and continuous normalizing flows [Onken and Ruthotto, 2020].
We train the model of four spline-based layers and four concatsquash-linear layers on dif-
ferent datasets, with d0 = 2, d1 = 16, d2 = 16, d3 = 16.

Table 4.2: Results on 8gaussians

Layer Type Scheme Solver NOP NFE NLL Inverse Error

Spline-based
DTO RK4 1327 40 2.9259 1.4907× 10−6

OTD dopri5 1327 74 2.8975 5.2907× 10−6

Concatsquash-linear
DTO RK4 777 40 2.8632 5.4040× 10−6

OTD dopri5 777 116 2.8943 8.2833× 10−6

According to results shown in Table 4.2 and Figure 4.2, we can observe that both
spline-based layers and concatsquash-linear layers have similar performance on 8gaussians
dataset with respect to NLL and inverse error values. Compared to the ground truth, both
models can have a good approximation to the 8gaussians distribution. However, it is easy
to build bijective mapping function between 8gaussians to a standard normal distribuion.
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(a) ground truth (b) spline-based (c) concatsquash-linear

Figure 4.4: Results on checkerboard

Further, we want to investigate whether spline-based layers can deal with more complex
distributions than 8gaussians, so we also conduct numerical experiments on checkerboard,
2spirals, swissroll, to which it is hard to build the explicit mapping function from standard
normal distribution.

Table 4.3: Results on checkerboard

Layer Type Scheme Solver NOP NFE NLL Inverse Error

Spline-based
DTO RK4 1327 40 3.7074 2.7579× 10−5

OTD dopri5 1327 320 3.7234 2.2769× 10−6

Concatsquash-linear
DTO RK4 777 40 3.7429 3.1099× 10−6

OTD dopri5 777 110 3.7277 4.9029× 10−6

Table 4.4: Results on 2spirals

Layer Type Scheme Solver NOP NFE NLL Inverse Error

Spline-based
DTO RK4 1327 40 2.8074 4.7927× 10−5

OTD dopri5 1327 212 2.8620 1.1200× 10−5

Concatsquash-linear
DTO RK4 777 40 3.0648 1.7913× 10−5

OTD dopri5 777 116 2.9276 1.5375× 10−5

From the results shown in Table 4.3, Table 4.4, Table 4.5 as well as in Figure 4.2,
Figure 4.2, Figure 4.5, we can observe smaller testing loss with spline-based model over all
datasets while the spline-based layers can generate posterior distribution of better quality
compare to the ground truth.
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(a) ground truth (b) spline-based (c) concatsquash-linear

Figure 4.5: Results on 2spirals

(a) ground truth (b) spline-based (c) concatsquash-linear

Figure 4.6: Results on swissroll
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Table 4.5: Results on swissroll

Layer Type Scheme Solver NOP NFE NLL Inverse Error

Spline-based
DTO RK4 1327 40 2.7749 1.1356× 10−5

OTD dopri5 1327 122 2.6981 1.8557× 10−5

Concatsquash-linear
DTO RK4 777 40 2.8467 6.7051× 10−6

OTD dopri5 777 98 2.7322 1.1188× 10−5

By comparing the DTO and OTD schemes for each model, we find that spline-based
model can achieve a lower NLL value under OTD discretization scheme for 8gaussian and
swissroll datasets, while it have a lower NLL value under DTO discretization scheme for
2spirals and checkerboard datasets. However, the difference of the NLL values between
DTO and OTD of each model is smaller than 0.1, which means they can have a similar
performance on density estimation. Meanwhile, the NFE for OTD scheme is always larger
than that of DTO, this means the computational cost of OTD scheme is larger than that of
DTO. Therefore, DTO can be a perferable choice for discretization for spline-based CNF
model since it can achive comparable performance while maintaining low computational
cost.

Despite spline-based layers have a better performance than concatsquash-linear layers of
same number of layers as well as the intermediate layers’ dimensions, we should notice that
the number of parameters of our spline-based model is always larger than concatsquash-
linear model, and this might lead to a better performance. Therefore, we adjust the
dimension for each layer of concatsquash-linear model so that the number of parameters
can be close to spline-based model. Then we re-train the concatsquash-linear model and
re-do the evaluation on test set. Table 4.6 displays the results of adjusted concatsquash-
linear models and we can compare them with spline-based models of nearly equivalent
number of parameters.

According to Table 4.6, we can observe a better performance of spline-based models
with respect to NLL values on 2spirals, checkerboard, and swissroll datasets. For 8gaus-
sians dataset, the model of concatsquash-linear layers behave better than spline-based
layers under both DTO and OTD schemes. Therefore, it shows the spline-based model
can achieve better accuracy than concatsquash-linear model when processing with compli-
cate distributions, which indicates spline-based model may have a wider application than
concatsquash-linear model in coping with realistic problems.
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Table 4.6: Comparisons among all datasets

Data Layer Type Dims Scheme Solver NOP NFE NLL Inverse Error

2spirals

Spline 2-16-16-16-2 DTO RK4 1327 40 2.8074 4.7927× 10−5

Spline 2-16-16-16-2 OTD dopri5 1327 212 2.8620 1.1200× 10−5

CCS 2-22-22-22-2 DTO RK4 1329 40 2.9965 1.8138× 10−4

CCS 2-22-22-22-2 OTD dopri5 1329 104 3.0918 1.8955× 10−5

8gaussians

Spline 2-16-16-16-2 DTO RK4 1327 40 2.9259 1.4907× 10−6

Spline 2-16-16-16-2 OTD dopri5 1327 86 2.8975 5.2907× 10−6

CCS 2-22-22-22-2 DTO RK4 1329 40 2.8547 3.4301× 10−6

CCS 2-22-22-22-2 OTD dopri5 1329 74 2.8472 5.8758× 10−6

checkerboard

Spline 2-16-16-16-2 DTO RK4 1327 40 3.7074 2.7579× 10−5

Spline 2-16-16-16-2 OTD dopri5 1327 320 3.7234 2.2769× 10−6

CCS 2-22-22-22-2 DTO RK4 1329 40 3.7077 3.5431× 10−5

CCS 2-22-22-22-2 OTD dopri5 1329 110 3.7289 6.1915× 10−6

swissroll

Spline 2-16-16-16-2 DTO RK4 1327 40 2.7749 1.1356× 10−5

Spline 2-16-16-16-2 OTD dopri5 1327 122 2.6981 1.8557× 10−5

CCS 2-22-22-22-2 DTO RK4 1329 40 2.8013 1.2673× 10−5

CCS 2-22-22-22-2 OTD dopri5 1329 74 2.7646 1.0907× 10−5

4.3 Adjust Dimensions

From the results in previous sections, we observe that the negative log likelihood values
decrease with the increment of dimensions. In order to investigate the influence of number
of layers and hidden layers’ dimensions on model performance, we execute experiments
with spline-based and concatsquash-linear models of different layer type, layer dimension,
as well as number of layers. Table 4.7 – Table 4.10 show the results of spline-based model;
Table 4.11 – Table 4.14 show the results of concatsquash-linear model.

The results show that increasing the dimensions of hidden layers or the number of
hidden layers can both improve the model performance with respect to NLL and inverse
error values. One explanation to the results is that the model with hidden layers of lower
dimensions or less hidden layer is inadequate for approximating complex target distribution.
However, when we raise the number of hidden layers or dimensions of hidden layers, the
number of parameters of the model also increases, thus increasing the complexity of the
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Table 4.7: Spline-based model with different dimensions on 2spirals

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 335 40 3.2652 7.9447× 10−6

OTD dopri5 335 56 3.4427 1.6840× 10−5

2-16-16-16-2
DTO RK4 1327 40 2.8074 4.7927× 10−5

OTD dopri5 1327 212 2.8620 1.1200× 10−5

2-64-2
DTO RK4 1247 40 2.9750 6.1032× 10−6

OTD dopri5 1247 86 3.1016 2.0595× 10−5

2-64-64-64-2
DTO RK4 11359 40 2.6835 2.5667× 10−4

OTD dopri5 11359 296 2.6841 4.7184× 10−6

Table 4.8: Spline-based model with different dimensions on 8gaussians

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 335 40 2.9057 4.5679× 10−7

OTD dopri5 335 62 2.8912 1.5983× 10−5

2-16-16-16-2
DTO RK4 1327 40 2.9259 1.4907× 10−6

OTD dopri5 1327 86 2.8975 5.2907× 10−6

2-64-2
DTO RK4 1247 40 2.8376 7.1755× 10−8

OTD dopri5 1247 74 2.8434 5.4040× 10−6

2-64-64-64-2
DTO RK4 11359 40 2.8398 1.3483× 10−6

OTD dopri5 11359 104 2.8681 3.0110× 10−6

model. Adding more parameters into an insufficient model can improve the ability of
dealing with complex distribution but it can also raise the computational cost. Therefore,
there exists a trade-off between the number of layers, the dimension of each layer and the
model accuracy.
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Table 4.9: Spline-based model with different dimensions on checkboard

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 335 40 3.9290 4.3529× 10−6

OTD dopri5 335 56 3.9258 1.4311× 10−5

2-16-16-16-2
DTO RK4 1327 40 3.7074 2.7579× 10−5

OTD dopri5 1327 320 3.7234 2.2769× 10−6

2-64-2
DTO RK4 1247 40 3.8160 1.1955× 10−6

OTD dopri5 1247 68 3.7935 6.0533× 10−6

2-64-64-64-2
DTO RK4 11359 40 3.5667 4.4777× 10−6

OTD dopri5 11359 152 3.6262 3.3561× 10−6

Table 4.10: Spline-based model with different dimensions on swissroll

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 335 40 2.9528 3.9884× 10−6

OTD dopri5 335 62 2.9837 8.6344× 10−6

2-16-16-16-2
DTO RK4 1327 40 2.7749 1.1356× 10−5

OTD dopri5 1327 122 2.6981 1.8557× 10−5

2-64-2
DTO RK4 1247 40 2.7410 2.3483× 10−6

OTD dopri5 1247 98 2.7195 7.4774× 10−6

2-64-64-64-2
DTO RK4 11359 40 2.6787 1.8888× 10−5

OTD dopri5 11359 140 2.6980 4.5252× 10−6
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Table 4.11: Concatsquash-linear model with different dimensions on 2spirals

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 137 40 3.5439 1.2409× 10−6

OTD dopri5 137 50 3.5123 5.3191× 10−6

2-16-16-16-2
DTO RK4 777 40 3.0648 1.7913× 10−5

OTD dopri5 777 116 2.9276 1.5375× 10−5

2-64-2
DTO RK4 521 40 3.1748 4.5803× 10−6

OTD dopri5 521 50 3.1936 9.5877× 10−6

2-64-64-64-2
DTO RK4 9225 40 2.7220 2.8754× 10−5

OTD dopri5 9225 140 2.7471 8.6251× 10−6

Table 4.12: Concatsquash-linear model with different dimensions on 8gaussians

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 137 40 2.9604 1.4735× 10−6

OTD dopri5 137 50 2.8830 6.1683× 10−6

2-16-16-16-2
DTO RK4 777 40 2.8632 2.8324× 10−6

OTD dopri5 777 116 2.8943 8.2833× 10−6

2-64-2
DTO RK4 521 40 2.8821 1.1011× 10−6

OTD dopri5 521 50 2.8848 3.5526× 10−6

2-64-64-64-2
DTO RK4 9225 40 2.8419 1.9244× 10−6

OTD dopri5 9225 140 2.8295 4.4106× 10−6

38



Table 4.13: Concatsquash-linear model with different dimensions on checkboard

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 137 40 3.9380 1.4143× 10−6

OTD dopri5 137 56 3.8926 4.7784× 10−6

2-16-16-16-2
DTO RK4 777 40 3.7429 3.1099× 10−6

OTD dopri5 777 110 3.7277 4.9029× 10−6

2-64-2
DTO RK4 521 40 3.8538 9.1984× 10−7

OTD dopri5 521 62 3.8324 5.8539× 10−6

2-64-64-64-2
DTO RK4 9225 40 3.6018 4.8289× 10−6

OTD dopri5 9225 104 3.5967 2.7021× 10−6

Table 4.14: Concatsquash-linear model with different dimensions on swissroll

Dims Scheme Solver NOP NFE NLL Inverse Error

2-16-2
DTO RK4 137 40 3.0006 3.4805× 10−6

OTD dopri5 137 44 3.0446 6.5326× 10−6

2-16-16-16-2
DTO RK4 777 40 2.8467 6.7051× 10−6

OTD dopri5 777 98 2.7322 1.1188× 10−5

2-64-2
DTO RK4 521 40 2.7454 2.6538× 10−6

OTD dopri5 521 50 2.7865 5.0067× 10−6

2-64-64-64-2
DTO RK4 9225 40 2.7058 5.8436× 10−6

OTD dopri5 9225 74 2.7104 3.8043× 10−6
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Chapter 5

Discussion

In this chapter, we provide conclusions with respect to comparisons among numerical ex-
periments results. Besides, we discuss some future directions about spline parameterization
for continuous normalizing flows model.

5.1 Conclusions

We compare the Discretize-Then-Optimize (DTO) and Optimize-Then-Discretize (OTD)
methods for spline-based Continuous Normalizing Flows and concatsquash-linear Contin-
uous Normalizing Flows using Neural ODEs. The DTO method can achieve comparable
performance on density estimation as OTD method according to negative log likelihood
and inverse error, while DTO method have much lower computational cost. Therefore,
DTO method is the preferable choice for both spline-based Continuous Normalizing Flows
and concatsquash-linear Continuous Normalizing Flows.

Besides, we notice there is a trade-off between the number of parameters and the accu-
racy of the CNF model. We can raise the number of parameters by increasing the number
of hidden layers or increasing the dimension of each hidden layer. Both can contribute to
improving model performance on density estimation, but raising the computational cost
at the same time.

Last but not least, we find that the spline-based CNF have a better density estima-
tion for complex target distributions than concatsquash-linear CNF. Each of the models
produces a pretty small NLL as well as a small inverse error, which means the model is of
high accuracy on density estimation and is quite invertible. With an approximately equal
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number of parameters, spline-based CNF can generate more accurate posterior density
estimations on 2spirals, checkerboard, swissroll datasets than concatsquash-linear CNF,
it indicates the spline-based CNF has the ability of dealing with more general cases, thus
making it a more general choice as we want to approximate complex unknown distributions
in reality.

5.2 Future Directions

In this research paper, we conduct several numerical experiments on 2D toy datasets. Even
though we have tested on checkerboard, swissroll, 2spirals that can be more complex for
density estimation than 8gaussians dataset, it is necessary to carry out experiments on real
data or high-dimensional data, such as CIFAR 10, MNIST, and etc. Training with real data
can be time-consuming, especially under OTD method which needs more computations for
each iteration, we plan to investigate this for the next step.

Furthermore, we can adjust hyperparameters in the spline-based CNF network and try
to find an optimal set of hyperparameters that can achieve good accuracy, invertibility
while maintaining a low cost. This process is called hyperparameter tuning. However, it
needs to do a lot of work since we can have a large number of scenarios with different
combinations of hyperparameters. In our spline-based CNF model, we additionally have
hyperparameters including the degree of B-spline functions d, number of knots invervals
L, other than concatsquash-linear CNF model. It is important to find an optimal set of
hyperparameters that can raise our model’s performance. However, increasing the number
of knots and degree of spline functions can raise the complexity of model, thus making it
time-consuming. We plan to investigate how to find a proper set of hyperparameters in
the future. Some of the hyperparameter tuning results are displayed in Table A.1 – Table
A.3 in Appendix.
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Appendix A

Tables of Numerical Experiments

A.1 Adjust degree

For spline-based model, we can adjust the degree d and number of knots intervals L of
B-spline functions. These can be viewed as model’s hyperparameters. In this section, we
show the adjustment on degree of B-spline basis functions and compare the model accuracy
as well as invertibility among different datasets.

Table A.1: Spline-based model with different degrees on 2spirals

Degree Scheme Solver NOP NFE NLL Inverse Error

d=0
DTO RK4 263 40 3.2535 3.5810× 10−3

OTD dopri5 263 452 3.1716 1.7021× 10−4

d=1
DTO RK4 299 40 3.2055 1.2406× 10−5

OTD dopri5 299 128 3.2193 4.7123× 10−5

d=2
DTO RK4 335 40 3.2652 7.9447× 10−6

OTD dopri5 335 56 3.4427 1.6840× 10−5

However, according to the results shown in Table A.1 – Table A.3, we can not find a
consistent optimal set of hyperparameters among different datasets. For different datasets,
the optimal choice of degree is different. Therefore, for further study, we should try more
different combinations of hyperparameters to make the hyperparameter optimization.
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Table A.2: Spline-based model with different degrees on checkboard

Degree Scheme Solver NOP NFE NLL Inverse Error

d=0
DTO RK4 263 40 3.8879 2.9088× 10−4

OTD dopri5 263 446 3.8529 1.4228× 10−4

d=1
DTO RK4 299 40 3.8399 1.4713× 10−6

OTD dopri5 299 86 3.8944 4.8372× 10−5

d=2
DTO RK4 335 40 3.9290 4.3530× 10−6

OTD dopri5 335 56 3.9258 1.4311× 10−5

Table A.3: Spline-based model with different degrees on swissroll

Degree Scheme Solver NOP NFE NLL Inverse Error

d=0
DTO RK4 263 40 2.8206 8.1672× 10−4

OTD dopri5 263 380 2.8302 1.1326× 10−4

d=1
DTO RK4 299 40 2.8983 4.3935× 10−6

OTD dopri5 299 116 2.8881 2.8425× 10−5

d=2
DTO RK4 335 40 2.9528 3.9884× 10−6

OTD dopri5 335 62 2.9837 8.6344× 10−6
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