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Abstract

Synthetic asset price paths are crucial in various financial applications, such as risk man-
agement and strategy testing. In this study, we present the application of a Denoising
Diffusion Probabilistic Model (DDPM) to generate synthetic asset price paths. The objec-
tive is not to exactly replicate the original paths, but rather to capture their underlying
dynamics, thereby creating plausible yet unseen scenarios. Our methodology innovatively
incorporates a discrete cosine transform, which allows the DDPM to learn in the frequency
domain, substantially improving its learning efficacy. Unlike traditional approaches for
synthesizing asset price paths involving predefined assumptions about the original paths’
price dynamics, our approach avoids explicit model selection and calibration. Through
both qualitative and quantitative assessments, we show that the synthetic paths generated
by our DDPM closely align with the dynamics of the original paths, thereby affirming the
effectiveness of our approach.

iii



Acknowledgements

I am very grateful to my supervisor, Professor Justin Wan, for his invaluable guidance
and insightful feedback throughout my research journey. I would also like to thank Pro-
fessor Christopher Batty for his time and expertise in serving as the second reader of this
paper.

My sincere thanks also go to my high school math teacher, Mr. Hazon Rami, who
inspired me and believed in my pursuit of higher education in mathematics.

iv



Dedication

I dedicate this work to my parents, my brother, and my partner, Sky Qiao, whose
unconditional love and support have been my constant source of strength and inspiration.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures viii

List of Tables x

1 Introduction 1

2 Background 3

2.1 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Denoising Diffusion Probabilistic Model . . . . . . . . . . . . . . . . 4

2.2 Asset Price Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Geometric Brownian Motion . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Heston Stochastic Volatility Model . . . . . . . . . . . . . . . . . . 8

2.3 European Option Pricing Problem . . . . . . . . . . . . . . . . . . . . . . . 10

vi



3 Methodology 13

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Training Set Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Real Market Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Preprocessing With Discrete Cosine Transform & Mirror Reflection
Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Sampling & Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Summary of Steps For Synthetic Asset Price Paths Generation . . . . . . . 23

4 Evaluation Criteria 24

4.1 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 27

5.1 GBM Simulated Training Set . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Heston Model Simulated Training Set . . . . . . . . . . . . . . . . . . . . . 33

5.3 Market Data Bootstrap Training Set . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 45

References 47

vii



List of Figures

2.1 A simulated asset price path using GBM with parameters S0 = 100, µ =
0.05, σ = 0.3, N = 128, T = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A simulated asset price path using Heston model with parameters S0 = 100,
v0 = 0.12, µ = 0.05, κ = 1, θ = 0.32, ξ = 0.1, ρ = 0.5, N = 128, T = 0.5. . . 10

3.1 Original paths vs. generated paths, where DCT is not applied to the training
set of DPPM. Original paths are simulated using GBM with parameters
S0 = 100, µ = 0.05, σ = 0.1, N = 128, T = 0.5. . . . . . . . . . . . . . . . . 17

3.2 Time-domain vs. frequency-domain representation of asset price paths.
Time-domain paths are simulated using GBMwith parameters S0 = 100, µ =
0.05, σ = 0.1, N = 128, T = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Original paths vs. generated paths, where DCT is applied to the training
set of DPPM. Original paths are simulated using GBM with parameters
S0 = 100, µ = 0.05, σ = 0.1, N = 128, T = 0.5. . . . . . . . . . . . . . . . . 19

3.4 Original paths extended with mirror reflection vs. IDCT of the sampled
data, which brings the sampled data from the frequency domain back to
the time domain. Original paths are simulated using GBM with parameters
S0 = 100, µ = 0.05, σ = 0.1, N = 128, T = 0.5. . . . . . . . . . . . . . . . . 22

5.1 GBM - original paths vs. generated paths. . . . . . . . . . . . . . . . . . . 29

5.2 GBM - log returns drift and volatility distribution. . . . . . . . . . . . . . 30

5.3 GBM - log returns lag 1 autocorrelation values distribution. . . . . . . . . 31

5.4 Heston model - original paths vs. generated paths. . . . . . . . . . . . . . . 35

5.5 Heston model - log returns drift and volatility distribution. . . . . . . . . . 36

viii



5.6 Heston model - log returns lag 1 autocorrelation values distribution. . . . . 37

5.7 Market historical price data. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 Market bootstrap data - original paths vs. generated paths. . . . . . . . . 42

5.9 Market bootstrap data - log returns drift and volatility distribution. . . . . 43

5.10 Market bootstrap data - log returns lag 1 autocorrelation values distribution. 44

ix



List of Tables

3.1 Grid search configuration choices and their identified optimal choices for the
DDPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 GBM - default parameters that are held constant for simulating all three
volatility scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 GBM - KS-statistic value summary. . . . . . . . . . . . . . . . . . . . . . . 28

5.3 GBM - theoretical no-arbitrage prices and generated prices for different
strike prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Heston model - default parameters that are held constant for simulating all
three volatility scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Heston model - KS-statistic value summary. . . . . . . . . . . . . . . . . . 34

5.6 Heston model - theoretical no-arbitrage prices and generated prices for dif-
ferent strike prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7 Market bootstrap data - KS-statistic value summary. . . . . . . . . . . . . 41

x



Chapter 1

Introduction

The financial market, despite its general data abundance, often faces data scarcity chal-
lenges in many applications. This issue primarily arises from our reliance on historical
data, which limits our understanding to scenarios that have already occurred, without ac-
cess to other potential scenarios. For instance, while market crashes are a primary concern
for investors, they are infrequently represented in historical data. Consequently, synthetic
market price data can be useful in testing and validating the robustness of trading strate-
gies in hypothetical market crashes [2]. Beyond strategy testing, synthetic asset price data
is also valuable in areas such as risk management, portfolio construction, and regulatory
compliance [15, 2, 27].

Traditional methods for creating synthetic asset prices typically involve selecting a
model to describe price dynamics, calibrating its parameters, and then using it to generate
new data. This approach, however, comes with considerable challenges. Designing a
model that accurately reflect the complex nature of asset price movements is difficult.
Additionally, the calibration process is prone to inaccuracies, especially when calibration
data is limited.

The recent advancement of deep generative models in time series applications has
opened new possibilities for producing synthetic asset prices. These models, based on neu-
ral networks, offer a ‘model-free’ approach as they do not rely on predefined assumptions
about the dynamics of the studied time series. Notable successes have been achieved with
generative adversarial networks (GANs) in time-series applications, as seen with TimeGAN
[9, 37]. However, GAN-based methods can be difficult to train and may face stability and
model collapse issues.

In this study, we explore the Denoising Diffusion Probabilistic Model (DDPM), which
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outperformed GANs in image synthesis [14]. Although generative diffusion models in
general have seen applications in various time series tasks, their use in time series generation
remains limited [36]. Here, we focus on applying DDPM to synthesize asset price data. We
introduce a novel preprocessing step involving discrete cosine transform, which allows the
DDPM to learn in the frequency domain and significantly enhances its ability to capture
the dynamics of asset prices.

This paper is structured as follows: Chapter 2 presents necessary background informa-
tion. Chapter 3 formulates the problem and explains our methodology. Chapter 4 describes
the evaluation criteria used for the generated asset price paths. Chapter 5 discusses the
results and analysis of these generated paths. Finally, Chapter 6 concludes the study,
highlighting the main findings and contributions.
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Chapter 2

Background

In this chapter, we will discuss the essential background knowledge related to our study.
We begin with an introduction of deep generative models, focusing particularly on the
DDPM. Subsequently, we turn our attention to two stochastic asset price models: the
Geometric Brownian Motion and the Heston Stochastic Volatility Model. These models
form the foundational theoretical framework for generating our synthetic training datasets.
Furthermore, we will discuss methods for European option pricing, which is relevant for
evaluating the efficacy of the DDPM in generating synthetic asset price paths.

2.1 Deep Generative Models

Deep generative models, a subset of deep neural networks, are designed to capture the
characteristics of existing data and subsequently generate new data that bear similarities
but are not identical to the original. This process typically involves approximating the
training data distribution p with an estimated distribution p̃, based on observed x, and then
sampling x̂ from p̃ [5]. There exists a variety of generative models, including variational
autoencoders [22], generative adversarial networks [10], and generative diffusion models
[36]. These models are applied in a wide range of fields, for example, image and audio
synthesis, natural language processing, and temporal data modeling [23, 17, 36]. In this
section, our focus will be on the DDPM, a specific type of generative diffusion model [14].

3



2.1.1 Denoising Diffusion Probabilistic Model

The introduction of the DDPM [14] led to an advancement in image synthesis, enhancing
image fidelity and surpassing the performance of GANs. Following this innovation, a
variety of text-to-image generation models have been developed, building upon the DDPM
framework. Notable examples include Stable Diffusion and Midjourney [26, 29].

At its core, DDPM operates by incrementally introducing noise into a set of original
data during a forward process and subsequently learning to reverse this noise addition in a
backward process. This enables the generation of new data from Gaussian noise, that aligns
with the same probability distribution as the original data. We summarize this process into
three phases: 1) the forward process, 2) the reverse process, and 3) the sampling process.
In the following subsections, we will provide a detailed exploration of each of these phases.

Forward Process

In the forward process of DDPM, we assume the observed data points x0 are sampled from
a probability distribution q. This process employs a Markov chain [6] to incrementally
add Gaussian noise N (0, I) to x0, following a variance schedule β1, ..., βT , to generate a
sequence x1, . . . ,xT . For timesteps t = 1, ..., T , the transition probability is defined as:

q(xt|xt−1) ∼ N
(√

1− βtxt−1, βtI
)
.

Hence, given xt−1, xt can be obtained by:

xt =
√
1− βtxt−1 +

√
βtzt,

where zt ∼ N (0, I). As the final timestep T becomes large, the last data point xT converges
to N (0, I).

The use of Gaussian noise simplifies the derivation of the joint probability distribution
q(x1,...,T |x0) for the entire forward process as:

q(x1,...,T |x0) =
T∏
t=1

q(xt|xt−1) =
T∏
t=1

N
(√

1− βtxt−1, βtI
)
,

which implies
q(xt|x0) = N

(√
ᾱx0, (1− ᾱ)I

)
, (2.1)

where
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αt = 1− βt, ᾱ =
t∏

s=1

αs.

This closed-form representation enables direct sampling of xt for any timestep t from x0

when given a variance schedule β1, ..., βT .

The original work on DDPM [14] employed a linear variance schedule. However, sub-
sequent research by [25] demonstrated that such a linear schedule tends to destroy in-
formation more rapidly than necessary during the forward process. Thus, we utilized a
cosine variance schedule as in [25]. This modification aims to preserve information more
effectively throughout the forward process, potentially enhancing the model’s performance
in generating new data.

Reverse Process

The reverse process attempts to counteract the noise addition at each timestep of the
Markov chain. It is modeled by a neural network parameterized by θ, which takes noisy
inputs xt and timestep t, and learns to output approximated Gaussian distributions

pθ(xt−1|xt) ∼ N (µθ(xt, t),Σθ(xt, t)),

effectively reversing the noise added in the transition from xt−1 to xt. For a well-trained
network, the reconstructed distribution pθ(x0) from the reverse process should match the
original data distribution q(x0). By initializing noisy inputs x̂T ∼ N (0, I), we can generate
synthetic samples x̂0 from Gaussian noise.

To approximate the parameterization for pθ, we need to estimate the mean µθ and the
covariance Σθ. The original DDPM paper [14] advises setting Σθ(xt, t) to time-dependent
constants σ2

t I based on the variance schedule β1, ..., βT , where

σ2
t = β̃t =

1− ᾱt−1

1− ᾱt

βt.

The remaining task is to set µθ(xt, t) appropriately.

Given x0, we can reverse the forward process to retrieve the ‘true’ probability distribu-
tion, represented as follows:

q(xt−1|xt,x0) = N (µ̃t(xt,x0), β̃tI),
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where

µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt.

Ideally, we aim for µθ = µ̃t. However, since x0 is not available during the reverse process,
we must estimate it. In the literature, there are three common approaches:

1. Predict initial state: Predict x0 directly [14].

2. Predict noise: Using (2.1), we can represent xt =
√
ᾱtx0 +

√
1− ᾱtϵ where ϵ ∼

N (0, I). Then, given the noise ϵ, we can recover x0. Hence, we can predict ϵ with ϵθ
instead of predicting x0 [14].

3. Predict v-parameterization: Following the suggestion by [31], we can predict the v-
parameterization, where v = αtϵ − σtx0, leading to more stable sampling outcomes
and a faster sampling process.

Sampling Process

Upon the successful training of the reverse process, the sampling procedure is straightfor-
ward. We start with a sample drawn from N (0, I), representing the noisy data x̂T at the
final timestep. Then, given x̂t, we can obtain x̂t−1 by applying the learned reverse process
as follows:

x̂t−1 = µθ(x̂t, t)x̂t + σtẑt,

where ẑt ∼ N (0, I). This process sequentially ‘denoises’ the data by reversing the Markov
chain from t = T back to t = 0. The final denoised output x̂0 is the synthetic data
generated by the DDPM.

2.2 Asset Price Models

Predicting the movements of financial asset prices is a challenging problem. Empirical
studies indicate that financial asset prices exhibit significant randomness [3]. Consequently,
stochastic processes are often employed to model the behavior of financial asset prices
[28, 7]. In this section, we introduce two stochastic asset price models based on stochastic
differential equations (SDEs): the Geometric Brownian Motion (GBM) and the Heston
Stochastic Volatility model (Heston model).
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2.2.1 Geometric Brownian Motion

We begin our discussion with a definition of the GBM:

Definition: A GBM St is a continuous-time stochastic process that satisfies the fol-
lowing SDE:

dSt = µSt dt+ σSt dWt,

where µ is called the drift rate, σ is called the volatility, and Wt is a Wiener process [24].
Here, we assume µ and σ are constants. Using Ito’s lemma [16], this SDE has a unique
solution:

St = S0 exp

(
(µ− σ2

2
)t+ σWt

)
.

This closed-form solution can be discretized to get the following update rule for St+1 given
St, where ∆t represents a time increment, and Zt ∼ N (0, 1):

St+1 = St exp

((
µ− 1

2
σ2

)
∆t+ σ

√
∆tZt

)
(2.2)

With this update rule, we can simulate an asset price path of length N given (S0, µ, σ, T )
using Algorithm 1 (see Figure 2.1 for an illustration). This will enable us to construct a
training set representing GBM dynamics in Chapter 3.

Algorithm 1 Simulation of an asset price path following GBM dynamics
Input: S0, µ, σ,N, T
Output: An asset price path of length N following GBM dynamics

1: Initialize an array S with S[0] = S0

2: ∆t← T
N

▷ Time increment
3: for i = 1 to N − 1 do
4: Z ← Sample from N (0, 1)

5: S[i]← S[i− 1] exp
(
(µ− σ2

2
)∆t+ σ

√
∆tZ

)
6: end for
7: return S

GBM is widely applied to model asset price dynamics and is used in the Black-Scholes
model [4]. However, GBM does not perfectly capture real-world asset price dynamics, as it
is based on several simplifying assumptions. GBM assumes that the asset log returns follow
a normal distribution, while empirical studies found that returns are often skewed and have
fatter tails [35]. In addition, from empirical asset price paths, we observe behaviors such
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Figure 2.1: A simulated asset price path using GBM with parameters S0 = 100, µ = 0.05,
σ = 0.3, N = 128, T = 0.5.

as varying volatility levels through time, sudden jumps [19], and regime switching [12].
Various models are proposed to better capture these dynamics, and in the next section, we
will discuss one of such models – the Heston model – which captures the varying volatility
level behavior by modeling volatility as a stochastic process.

2.2.2 Heston Stochastic Volatility Model

We start with a definition of the Heston model:

Definition: A continuous-time stochastic process St is said to follow the Heston model
if it satisfies the following SDE:

dSt = µSt dt+
√
vtSt dW

(1)
t , (2.3)

where µ is a constant representing the drift rate for St, and vt is a stochastic process
representing the variance at time t satisfying the following SDE:

dvt = κ(θ − vt) dt+ ξ
√
vt dW

(2)
t ,

where θ represents the long-term variance, κ represents the variance mean reversion rate,
and ξ represents the volatility of the volatility (note that volatility is calculated as

√
vt).

In these two SDEs, dW
(1)
t and dW

(2)
t are Wiener processes with correlation ρ, where

dW
(1)
t dW

(2)
t = ρ dt.
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Applying Ito’s lemma [16], the exact solution to the SDE (2.3) can be obtained by:

St = S0 exp

(∫ t

0

(
µ− 1

2
vs

)
ds+

∫ t

0

√
vs dW

(1)
s

)
.

Using the Euler discretization scheme [34], the exact solution can be discretized to obtain
the following update rules:

St+1 = St exp
((

µ− vt
2

)
∆t+

√
vt∆tZ

(1)
t

)
(2.4)

vt+1 = vt + κ(θ − vt)∆t+ ξ
√

vt∆tZ
(2)
t (2.5)

With these update rules, when we are given (S0, v0, T, µ, κ, θ, ξ, ρ), where S0 represents the
initial price and v0 represents the initial variance, we can simulate an asset price path and
a volatility path each of length N using Algorithm 2 (see Figure 2.2 for an illustration).
This will help us construct a training set in Chapter 3 representing the Heston dynamics.

Algorithm 2 Simulation of an asset price path following Heston dynamics

Input: {S0, v0, µ, κ, θ, ξ, ρ,N, T}
Output: An asset price path of length N following Heston dynamics

1: Initialize arrays S with S[0] = S0 and v with v[0] = v0
2: ∆t← T

N
▷ Time increment

3: Set µvec = [0, 0] and Σ =

[
1 ρ
ρ 1

]
▷ Parameters for correlated Brownian motions

4: for i = 1 to N − 1 do
5: Sample Z from N (µvec,Σ) ▷ Correlated standard normal random variables

6: S[i]← S[i− 1] exp
(
(µ− v[i−1]

2
)∆t+

√
v[i− 1]∆tZ[0]

)
7: v[i]← max(v[i− 1] + κ(θ − v[i− 1])∆t+ ξ

√
v[i− 1]∆tZ[1], 0) ▷ variance cannot

be negative
8: end for
9: return S

Despite the greater flexibility the Heston model allows for in modeling volatility com-
pared to the GBM, it still operates under certain assumptions that may not align with real
market behaviors. For example, the Heston model assumes that volatility is mean-reverting
at a constant rate. This assumption can lead to the model’s inability to accurately produce
extreme volatility paths during market crises, which are often observed in real financial
markets [20].
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Figure 2.2: A simulated asset price path using Heston model with parameters S0 = 100,
v0 = 0.12, µ = 0.05, κ = 1, θ = 0.32, ξ = 0.1, ρ = 0.5, N = 128, T = 0.5.

2.3 European Option Pricing Problem

A European option is a financial contract that grants the holder the right, but not the
obligation, to trade an underlying asset at a predetermined price (strike price K) in a
predetermined time (time to maturity T ). There are two types of European options: a
call option, granting the right to purchase, and a put option, granting the right to sell. In
this study, we focus on European call options. On the maturity date, if the asset price
ST exceeds the strike price K, the call option holder can exercise the option, buying the
asset at K and selling it in the open market at ST , realizing a profit of max(ST −K, 0).
Conversely, if ST ≤ K, exercising the option is not economically beneficial. The call option
payoff is therefore max(ST −K, 0). A call option is termed in-the-money (ITM) when the
strike price K is less than the current market price S0; at-the-money (ATM) if K = S0;
and out-of-the-money (OTM) if K > S0.

When the asset price follows a GBM dynamic, the Black-Scholes formula [4] can be
used to obtain the price of a European call option as:

C(St, t) = StN(d1)−Ke−r(T−t)N(d2), (2.6)

where

• C is the price of the call option,
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• St is the price of the underlying asset at time t,

• K is the strike price of the option,

• T is the time to maturity of the option,

• t is the current time,

• r is the risk-free interest rate,

• N(·) is the cumulative distribution function of the standard normal distribution,

• d1 and d2 are given by

d1 =
ln
(
St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, (2.7)

d2 = d1 − σ
√
T − t, (2.8)

• and σ is the volatility of the underlying asset’s returns.

Note that the Black-Scholes formula is derived to ensure the option price obtained is
arbitrage-free, and thus we refer to it as the theoretical ‘no-arbitrage’ price [4].

If the underlying asset price follows the Heston model, an analytic solution for the no-
arbitrage option price is not available [13]. However, the Monte Carlo method provides a
numerical approach for estimation [21]. This method involves simulating a large number of
asset price paths using discretized Heston model update rules (2.4) and (2.5) and computing
the expected value of the discounted payoffs from these paths. Specifically, when these
paths are simulated under the assumption that their drift rate equals the risk-free rate r,
discounting the payoffs at the same rate r and averaging them yields a value identical to
the no-arbitrage price as the number of paths M approaches infinity [18, 21]. In practice,
we set M to be a large number (e.g., M = 1, 000, 000) to get a close estimation of the
no-arbitrage price.

This Monte Carlo approach of approximating the no-arbitrage price is also applicable
when the asset prices evolve with a GBM dynamic, in which case the asset price paths can
be simulated using discretized GBM update rules such as (2.2).

It is important to note that in actual financial markets, the drift rates of asset prices
typically do not align with the risk-free rate r. Therefore, we think of the asset price paths

11



simulation under the assumption of a drift rate equal to r as if we were in a ‘risk-neutral’
world, where all assets are presumed to grow at rate r. While this ‘risk-neutral’ world is
hypothetical and not realistic, it is useful for obtaining the no-arbitrage option price using
the simplistic Monte Carlo method.
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Chapter 3

Methodology

In this chapter, we will formulate our problem and discuss the process for generating
synthetic asset price paths using the DDPM. We begin by compiling a large training set of
asset price paths, which is either generated synthetically or resampled from market prices.
We then discuss our approach to preprocess these data, including a novel application of
the discrete cosine transform, to facilitate DDPM’s learning. Next, we detail the training
and sampling process. We will conclude with a description of the post-processing steps,
which convert the generated data into synthetic asset price paths.

Throughout this chapter, we refer to the asset price paths in the training sets as the
‘original asset price paths’, and refer to the ones generated from the learned DDPM as the
‘generated asset price paths’.

3.1 Problem Formulation

Let St represent the price of an asset at time t, and consider an asset price path {St}N−1
t=0

with length N and initial price S0. Suppose this asset price is governed by an underlying
stochastic process. When two asset price paths {Si

t}N−1
t=0 and {Sj

t }N−1
t=0 are governed by the

same underlying stochastic process, we say they share the same price dynamic. With this
setup, we are ready to formulate our problem:

Problem 1 (Synthetic asset price path generation problem). Given an asset price path
{St}N−1

t=0 , how to generate a synthetic asset price path {Ŝt}N−1
t=0 that replicates the original

path’s underlying stochastic dynamics?
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The core challenge in this problem arises from the fact that the underlying stochas-
tic process of {St}N−1

t=0 is not directly observable and must be inferred from empirical
data. Traditionally, this challenge is addressed by approximating the process with SDEs,
calibrating these equations with empirical data, and then synthesizing a path using the
calibrated models. However, choosing suitable SDEs for modeling asset price dynamics
is a complex task. As discussed in Chapter 2, both GBM and the Heston model have
inherent limitations and do not perfectly capture real asset price dynamics. In addition,
the model parameter calibration process is prone to errors, especially when empirical data
for calibration is limited.

In contrast to the traditional approach, we propose to utilize a DDPM and leverage the
capability of neural networks to learn complex mappings. By training the DDPM to learn
asset price dynamics, we can directly generate synthetic asset price paths from the trained
model, eliminating the need for explicit model selection or calibration. It is worth noting
that our goal is not merely creating paths identical to the original one, but to capture
the dynamics of the original path’s price evolution, allowing for the generation of new, yet
plausible, price paths that could have been observed under the same dynamic conditions.

However, training a DDPM effectively requires a substantial training set instead of
just one original asset price path. Therefore, in the following section, we explore the
methodologies for constructing such training sets.

3.2 Training Set Construction

In this section, our objective is to assemble a training set of M asset price paths, each of
length N , all governed by the same stochastic process. Ideally, M should be sufficiently
large to ensure effective training (e.g., M = 10, 000). This task is straightforward if we
consider training sets comprised of synthetic data, as we can simulate numerous paths
using a chosen stochastic process and a fixed set of defining parameters. However, if we
want to construct training sets containing real market data, techniques like bootstrapping
are necessary. Once we have the M paths, we then preprocess them to enhance the training
for DDPM.

3.2.1 Synthetic Data

For synthetic data, we consider simulating asset price paths using a chosen stochastic
process introduced in Chapter 2, i.e., the GBM or the Heston model. Recall that given pa-
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rameters {S0, µ, σ,N, T}, the GBM uses the discretized update rule (2.2) to evolve from St

to St+1; given parameters {S0, v0, µ, κ, θ, ξ, ρ,N, T}, the Heston model uses the discretized
update rules (2.4) and (2.5) to evolve from St to St+1. With these update rules, for each
stochastic process and each set of defining parameters, we simulate M paths as our training
set. Each path, represented as {Si

t}N−1
t=0 for i = 1, . . . ,M , is a discrete sequence of length N ,

where Si
t denotes the simulated price at time t for the ith path. These M paths share the

same specified dynamic, but each path has its unique realized values due to the inherent
randomness in both the GBM and Heston models.

3.2.2 Real Market Data

For real market data, we face the challenge of only having access to a single realized path for
an asset whose underlying dynamic is unknown. Unlike synthetic data, we cannot directly
observe a set of potential paths that the asset price might have followed. To overcome
this limitation, we employ a bootstrapping technique to generate a representative sample
of paths from the single observed path [11]. We start by gathering a long historical price

path for an asset from Yahoo Finance1, denoted by {St}
Nlong−1
t=0 , where Nlong is the length of

this path. We operate under the assumption that the dynamic of this path remains constant
over time, i.e. the segment {St}

tj
t=t1 has the same dynamic as the segment {St}

tj+k
t=t1+k for

t1 ≤ tj = 0, . . . , N − 1 and k = 0, . . . , N − 1 − tj, thereby enabling the resampling of
M paths of length N (with N ≤ Nlong) that mirror the original path’s dynamics. This
resampling is detailed in Algorithm 3.

3.2.3 Preprocessing With Discrete Cosine Transform & Mirror
Reflection Extension

Discrete Cosine Transform

If we train DDPM on asset price paths without any data preprocessing, it can be chal-
lenging for DDPM to effectively capture the underlying dynamics. Figure 3.1 illustrates
a comparison of five original paths against five generated paths from a fine-tuned DDPM
trained on raw asset price paths. The generated paths exhibit unnatural boundary spikes
and fail to mimic the original volatility dynamics. This issue arises because within each
training set, despite sharing the same dynamic, individual paths vary significantly in values

1Data retrieved from Yahoo Finance (https://finance.yahoo.com/)
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Algorithm 3 Training Set Construction With Bootstrapping

Input: Historical price path {St}
Nlong−1
t=0 , number of desired short paths M , short path

size N with N ≤ Nlong

Output: M bootstrap paths of size N , each denoted by {S ′m
t }N−1

t=0 , for m = 1, . . . ,M
1: Initialize an empty list, Paths, to store bootstrapped paths.
2: for m = 1 to M do
3: Compute return series R from the historical prices {St}

Nlong−1
t=0 .

4: Create an empty list, BootstrapReturns
5: while len(BootstrapReturns) ≤ N − 1 do
6: Sample a block size k from a geometric distribution.
7: Let k = min(k, N − 1− len(BootstrapReturns))
8: Select a contiguous block of returns of size k from R at random.
9: Append the selected block to BootstrapReturns.
10: end while
11: Reconstruct the price path {S ′m

t }N−1
t=0 from BootstrapReturns and add to Paths.

12: end for

at each timestep due to the randomness of asset prices. As a result, the DDPM struggles
to determine the appropriate values for each path, leading to the generation of paths where
all paths exhibit similar value ranges at each timestep, as shown in Figure 3.1.

Similar challenges are also encountered in fields such as signal analysis, where signals
can be complex and noisy, exhibiting a wide range of variation in values. To tackle such
issues, signals are often processed using tools like the Discrete Fourier Transform (DFT)
[33, 8], which simplifies the analysis by decomposing signals into constituent frequencies.
Inspired by this, we adopt a similar approach by applying the discrete cosine transform
(DCT) [1] to preprocess the raw asset price data. DCT is a variant of the DFT, but
using only real numbers, making it more suitable for our purpose. Given a sequence
{fn ∈ R|n = 0, . . . , N − 1}, DCT converts it into a sequence of cosine coefficients of the
same length {Ck ∈ R|k = 0, . . . , N − 1} by:

Ck =
N−1∑
n=0

fn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, 1, . . . , N − 1.

We refer to the original sequence fn as the time-domain representation of the data, and refer
to the cosine coefficients Ck as the frequency-domain representation. DCT is equipped with
an inverse operation, namely the inverse discrete cosine transform (IDCT), which allows
reconstruction of the original sequence from the cosine coefficients.
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Figure 3.1: Original paths vs. generated paths, where DCT is not applied to the training
set of DPPM. Original paths are simulated using GBM with parameters S0 = 100, µ =
0.05, σ = 0.1, N = 128, T = 0.5.

Transforming the raw asset price paths into the frequency domain through DCT al-
lows us to analyze the frequency patterns that are generally more stable than the raw
time-domain data. In Figure 3.2, we illustrate this by comparing the time-domain repre-
sentation and the frequency-domain representation of two price paths governed by the same
GBM price dynamics. The original time-domain paths appear very different, exhibiting sig-
nificant variability across all timesteps, yet their frequency-domain representations reveal
more consistent patterns. Specifically, the low-frequency components representing the core
patterns of the data have higher DCT coefficients, while the high-frequency components
which often correspond to noise have values close to 0. This highlights the effectiveness of
frequency domain analysis in uncovering fundamental similarities, which can simplify the
learning for DDPM.

Applying DCT to each path in our training set, we obtain a set of transformed paths
of length N . Figure 3.3 compares five original asset price paths with five DDPM generated
paths, where the DCT is applied to all the paths in the training set of the DDPM. We
observe significant improvement in generated paths’ alignment with the original paths’
dynamics. However, there are minor discrepancies at the left boundaries of the generated
paths, characterized by sudden spikes, which are not present in the original paths.
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Figure 3.2: Time-domain vs. frequency-domain representation of asset price paths. Time-
domain paths are simulated using GBM with parameters S0 = 100, µ = 0.05, σ = 0.1, N =
128, T = 0.5.
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Figure 3.3: Original paths vs. generated paths, where DCT is applied to the training set of
DPPM. Original paths are simulated using GBM with parameters S0 = 100, µ = 0.05, σ =
0.1, N = 128, T = 0.5.

Mirror Reflection Extension

Typically, DCT are applied to input signals presumed to be periodic over a period N with
the condition f0 = fN−1. However, the time series representing asset price paths in our
study are not inherently periodic. Simply extending each path with a value equal to S0

could result in an abrupt transition at the last point of the original data set, which could
misrepresent the signal’s natural progression. To address this, we utilize mirror reflection,
appending the time-reversed paths to the end of the original. This technique ensures the
extended paths do not introduce abrupt transition, while achieving the desired periodicity
with a period length of 2N and the condition S0 = S2N−1, thereby making them suitable
for DCT analysis. As we will see in Section 3.4 and Figure 3.4, this mirror reflection
extension can help us address the boundary issues observed previously in Figure 3.3.

Using mirror reflection extension in conjunction with the DCT, we construct a training
set comprising M paths represented in the frequency domain, each extended to a length
of 2N . With this pre-processing step completed, we proceed to the training phase.
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3.3 Training

Training a DDPM entails a forward process where noise is systematically introduced and
a reverse process where a neural network learns to revert this noise addition. For this
reverse process, we employ the same model architecture as in the original DDPM study,
namely a U-Net architecture [14]. While U-Net was initially developed for medical image
segmentation [30], its superior performance in capturing both local and global information
makes it well-suited for the denoising tasks in DDPM. The U-Net processes inputs at
various noise levels and their corresponding timesteps, and it learns to predict the noise
added at each forward step. Considering the original DDPM work focused on 2D image
generation and our specific task involving 1D time series data, we adopted a 1D U-Net
architecture where the number of input channel is set to 1 to accommodate the dimensional
differences.

Other model architectural configurations and hyperparameter choices for the DDPM
are determined by a thorough grid search, detailed in Table 3.1. We set the length of each
asset path in the training set to be N = 27 = 128. While N can be any positive integer,
we select N = 128 to align with the requirement of the U-Net architecture, which prefers
step lengths to be the power of 2.

Configurations Choices Optimal Choice

Training Set Size 104, 105 104

Batch Size 10, 50, 100, 200 100

Learning Rate 10−4, 10−5, 10−6 10−5

Number of Epochs 50, 100, 200 100

Sampling Timesteps 1000, 2000, 3000 3000

Training Objective 1 Predict noise; predict initial
state; predict v-parameterization

predict
v-parameterization

1 As discussed in Section 2.1.1.

Table 3.1: Grid search configuration choices and their identified optimal choices for the
DDPM.
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3.4 Sampling & Post-processing

Upon completion of the training, we can generate synthetic signals from the trained DDPM,
which we refer to as the ‘generated data’. Since we performed DCT on the original as-
set price paths in the training set, the generated data mimics the dynamics of original
paths’ frequency-domain representations. Consequently, to reconstruct the time-domain
representation of the data, we apply IDCT to the generated data.

Since the asset price paths in the training data are extended with mirror reflection as
shown by the five exemplary paths in the first plot of Figure 3.4, the IDCT of the generated
data should also reflect symmetry. The second plot in Figure 3.4 shows the time-domain
representation of the generated data, which is almost symmetrical, demonstrating DDPM’s
effectiveness in capturing symmetry. We observe that the ‘first half’ of the generated data
(from t = 0 to t = N−1) exhibits atypical boundary behavior. In contrast, the ‘second half’
(from t = N to t = 2N − 1) which corresponds to the portion learned from the mirrored
original, more closely aligns with the original data’s dynamics after flipping, particularly at
the boundaries. Hence, we select the ‘second half’ as the more accurate generated paths.

It is also worth noting that, all paths in the training set commence from the same
initial value S0. The sampled paths approximate this starting value, with minor deviations
resulting from denoising inaccuracies. Such deviations are less critical since our primary
focus is to model the price evolution. To reconcile this, we can adjust the paths to com-
mence from our specified starting point S0, ensuring consistency across the dataset. These
adjusted paths are considered as our final generated asset price paths.
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Figure 3.4: Original paths extended with mirror reflection vs. IDCT of the sampled
data, which brings the sampled data from the frequency domain back to the time domain.
Original paths are simulated using GBM with parameters S0 = 100, µ = 0.05, σ = 0.1, N =
128, T = 0.5.
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3.5 Summary of Steps For Synthetic Asset Price Paths

Generation

In this section, we provide a concise summary of the steps involved in our proposed method-
ology. These steps guide the DDPM to learn and subsequently generate new asset price
paths that accurately reflect the dynamics of the original asset price series.

1. Begin with simulating or bootstrapping a set of asset price paths. Extend each path
with its mirror reflection to create a periodic structure suitable for DCT.

2. Apply the DCT to the extended signals, thereby obtaining the cosine transform
coefficients that encapsulate the frequency domain characteristics of the paths.

3. Train a DDPM using the model architectural configurations and hyperparameter
choices listed in Table 3.1 to learn the characteristics of these cosine coefficients,
which inherently learns to approximate the underlying stochastic process governing
the original asset price paths.

4. Sample synthetic sets of cosine coefficients from the trained DDPM, which are anal-
ogous to the original data in the frequency domain.

5. Convert the sampled coefficients back to the time domain by applying the IDCT,
resulting in the sampled paths.

6. Divide the sampled paths into two halves. Select and flip the ‘second half’ of each
path, derived from the mirrored section of the extended path, as it generally yields
a closer approximation to the original series.

7. Adjust the selected ‘second half’ of each path to start from the same initial value S0,
ensuring uniformity in the starting conditions across the generated synthetic dataset.
These adjusted paths are considered our final generated synthetic asset price paths.
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Chapter 4

Evaluation Criteria

Determining the extent to which the generated asset paths reflect the dynamics of the
original asset paths requires careful assessment. Our aim is not to prove identicality be-
tween the series but to confirm they exhibit analogous dynamic patterns. We employ a
combination of qualitative and quantitative methods for this purpose, which provides a
robust framework for assessing whether the generated asset paths accurately capture the
essence of the original paths’ dynamics.

4.1 Qualitative Analysis

Similar to how synthetic images generated by DDPMs are assessed, where there is no exact
‘original’ for comparison, the realism of the generated images is often judged visually. For
instance, common challenges such as accurately rendering images of hands in generative
models are typically identified through visual inspection rather than quantitative analysis.

In our context, qualitative assessment involves examining the boundary behavior and
overarching patterns of the generated asset price paths to gauge their resemblance to the
original paths. For example, the generated paths presented in Figure 3.1 show noticeable
issues at the boundaries and discrepancies in dynamics, thus they fail to capture the original
paths’ dynamics.
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4.2 Quantitative Analysis

Our quantitative evaluation prioritizes the behavior of returns over direct analysis of asset
price paths. This is because returns provide a normalized measure that facilitates com-
parison across different assets and time periods. In particular, log returns are particularly
suitable for our analysis, as we assume continuous compounding for asset prices. Given
asset prices St and St+1, the log return Rt is calculated as:

Rt = log

(
St+1

St

)
.

Kolmogorov-Smirnov Statistic

To determine the statistical resemblance between the log returns of the generated paths and
the original paths, we employ the Kolmogorov-Smirnov (KS) test. This test assesses the
null hypothesis that the two samples are drawn from the same distribution. The KS test
provides two critical values: the KS-statistic, which quantifies the maximum discrepancy
between the cumulative distribution functions of the two samples, and the KS p-value,
which evaluates the significance of any observed differences.

The KS test is sensitive to large sample sizes, often rejecting the null hypothesis on
small deviations. Hence, in our analysis, the KS-statistic is given precedence since our
primary concern is identifying any substantial discrepancies. Minor differences, even if
statistically significant, may not be as critical for the purpose of practical applications.

Drift and Volatility Analysis

We proceed to examine the drift and volatility inferred from the generated paths’ log
returns. Drift and volatility are the annualized mean and standard deviation, obtained by
scaling the mean by 1

dt
and standard deviation by 1√

dt
. We plot the distribution of the

drift and volatility across all generated and original paths for a visual comparison of their
distributional characteristics.

Autocorrelation Analysis

Autocorrelation is a fundamental aspect of time series analysis, reflecting the degree of
correlation between the values of the series and their lagged selves. Autocorrelation is
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particularly useful in revealing repeating patterns or periodic signals within the data, with
values near zero indicating a lack of such autocorrelation.

By setting a specific lag for the autocorrelation function and examining its value distri-
bution across generated paths, we can examine the similarity in autocorrelation structure
to the original paths. A close alignment in the distribution suggests that the time series
share similar autocorrelation properties.

European Call Option Pricing Analysis

When original paths are simulated using GBM or the Heston model, an additional evalu-
ation method can be applied to the generated paths. This method involves utilizing the
generated paths to approximate the no-arbitrage European call option prices. By treating
the generated paths as if they were simulated via the Monte Carlo method, the no-arbitrage
option price can be estimated by averaging the discounted payoffs from each path. As dis-
cussed in Section 2.3, this option pricing method requires simulating the synthetic training
set with a drift rate equal to the risk-free rate. Consequently, if the generated paths are
accurately learned, they should exhibit drift rates that are close if not equal to the risk-free
rate, thereby aligning with the assumptions of the risk-neutral valuation framework. The
option prices derived through this process are referred to as the ‘generated prices’.

In Section 2.3, we also explored the approaches for obtaining the theoretical no-arbitrage
option price when asset price follows GBM or the Heston model. Comparing the generated
and theoretical prices offers insights into the accuracy of the generated paths in reflecting
the original asset price dynamics.

However, this approach is not applicable when training sets consist of actual market
data, as the learned drifts from actual market prices do not correspond to the market risk-
free rate. As a result, the expected payoff derived from such paths would not represent
no-arbitrage option prices. Therefore, any comparison between these generated option
prices and actual market option prices would not be meaningful.

26



Chapter 5

Results

This chapter evaluates the efficacy of the DDPM in generating synthetic asset price paths
to mirror different training set dynamics. We organize the discussion into three sections,
each corresponding to a different construction methodology of the training sets: 1) GBM
simulated training sets, 2) Heston model simulated training sets, and 3) market data
bootstrap training sets. In each section, we will assess the DDPM’s performance based on
10,000 generated asset price paths using the evaluation criteria outlined in Chapter 4.

5.1 GBM Simulated Training Set

In this section, we examine DDPM’s performance in generating asset price paths when the
original paths’ dynamics are characterized by GBM. To do this, we consider training sets
simulated to follow GBM at different volatility levels, while keeping the other parameters
the same (as shown in Table 5.1). Specifically, we examine three volatility scenarios: low
volatility (σ = 10%), medium volatility (σ = 30%), and high volatility (σ = 50%).

Parameter S0 T µ
Value 100 0.5 0.05

Table 5.1: GBM - default parameters that are held constant for simulating all three volatil-
ity scenarios.
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Qualitative Analysis

In Figure 5.1, for each volatility scenario, we illustrate five randomly selected paths from
the training set and five randomly generated paths from the trained DDPM. A visual
comparison indicates that across all three scenarios, the generated paths closely mirror the
dynamics of the original paths by reflecting similar ranges of volatility, with no apparent
issues at the left or right boundaries.

KS-Statistic

By employing the KS-statistic, we analyze if the generated paths’ log returns distribution
is similar to that of the original paths. Table 5.2 summarizes the KS-statistic values for
each volatility scenario. Notably, all the values are below 0.05, indicating a close alignment
in the distribution of log returns between the generated and original paths across all three
volatility scenarios.

σ = 0.1 σ = 0.3 σ = 0.5
KS-statistic value 0.0247 0.0256 0.0291

Table 5.2: GBM - KS-statistic value summary.

Drift and Volatility Analysis

Next, we qualitatively compare the distributions of drift and volatility between the gener-
ated and original paths’ log returns for each volatility scenario based on Figure 5.2. The
drift distributions exhibit a high degree of congruence. The volatility distributions reveal
underestimation in the generated paths compared to the original. Such deviation is the
most apparent in the high volatility scenario, which also shows heavier tails in generated
paths when compared to the original. Despite these discrepancies, the general resemblance
between the shapes of the distributions indicates that the DDPM effectively captures the
inherent randomness present in the original paths. Rather than generating a uniform set of
paths characterized by identical drift and volatility, the DDPM demonstrates its capability
to produce a diverse array of paths. Each path exhibits unique variations, yet collectively,
they closely represent the underlying dynamics.
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Figure 5.1: GBM - original paths vs. generated paths.
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Figure 5.2: GBM - log returns drift and volatility distribution.
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Figure 5.3: GBM - log returns lag 1 autocorrelation values distribution.

Autocorrelation Analysis

We then proceed to analyze the autocorrelation of log returns for both the generated
and original paths within each volatility scenario. This examination involves assessing
the distributions of autocorrelation values from lag 1 to 20. As depicted in Figure 5.3,
the distribution of lag 1 autocorrelation values is provided as a representative example.
Notably, the autocorrelation values across all examined lags predominantly cluster around
0, indicating a lack of autocorrelation for the majority of paths in the range of lag 1 to 20.
This pattern is consistently observed in both the generated and original paths for all three
volatility scenarios, suggesting a close alignment in their autocorrelation structures.

Option Pricing Analysis

Lastly, we perform an option pricing analysis to determine if the generated paths effec-
tively mirror the original paths’ dynamics, specifically in the context of approximating
no-arbitrage prices for European call options. We assume that the risk-free rate equals
to the drift rate used to simulate the training set, which is 5%. For a given strike price
K, we employ the approach outlined in Section 4.2 to estimate the no-arbitrage prices for
European call options, denoted as the ‘generated prices’. Correspondingly, the ‘theoretical
prices’ are derived using the Black-Scholes formula (2.6), (2.7), and (2.8).

Table 5.3 displays the generated prices for a range of strike prices K, along with the
theoretical prices. Using the notation from Section 2.3, we categorize different call options
based onK into ITM, ATM and OTM options. We start by examining the absolute average
relative error for each option type. Across all three volatility levels, the generated prices for
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σ = 0.1
Option type ITM ATM OTM
Strike price 70 80 90 100 110 120 130
Theoretical price 31.7283 21.9756 12.3068 4.1923 0.6166 0.0348 0.0008
Generated price 31.6375 21.8845 12.2138 4.0966 0.5613 0.0218 0.0003
Relative error -0.29% -0.41% -0.76% -2.28% -8.96% -37.36% -57.46%
Absolute avg. relative error 0.49% 2.28% 34.59%

σ = 0.3
Option type ITM ATM OTM
Strike price 70 80 90 100 110 120 130
Theoretical price 31.9779 23.0891 15.4860 9.6349 5.5871 3.0441 1.5728
Generated price 31.9808 23.1429 15.5662 9.6964 5.5836 2.9884 1.4994
Relative error 0.01% 0.23% 0.52% 0.64% -0.06% -1.83% -4.67%
Absolute avg. relative error 0.25% 0.64% 2.19%

σ = 0.5
Option type ITM ATM OTM
Strike price 70 80 90 100 110 120 130
Theoretical price 33.7942 26.3842 20.1600 15.1272 11.1841 8.1723 5.9173
Generated price 31.0170 23.8428 17.9220 13.1771 9.4986 6.7180 4.6874
Relative error -8.22% -9.63% -11.10% -12.89% -15.07% -17.79% -20.78%
Absolute avg. relative error 9.65% 12.89% 17.88%

Table 5.3: GBM - theoretical no-arbitrage prices and generated prices for different strike
prices.

ITM and ATM options have higher accuracy than those for OTM options. For instance,
at σ = 0.1, the absolute average relative errors for ITM and ATM options are 0.49% and
2.28% respectively, in contrast to the 34.59% error for OTM options. This difference can
be attributed to the smaller number of positive payoffs at higher strike prices. This issue
becomes particularly pronounced in the low volatility scenario, which has the least number
of paths yielding positive payoffs. While increasing the number of generated paths could
improve accuracy, computational constraints limit this study to 10, 000 paths. In typical
Monte Carlo methods for option pricing, it is common to use a significantly larger set of
paths (e.g., 1 million paths) to ensure accuracy.

By comparing the different volatility scenarios, it is evident that the medium volatility
scenario exhibits the lowest absolute average relative error: 0.25% for ITM options, 0.64%
for ATM options, and 2.19% for OTM options. The low volatility case shows good accuracy
overall, except for the OTM options. In addition to the previously discussed reason of
having a small number of paths yielding positive payoffs, this can also be attributed to
the relatively small magnitudes of both theoretical and generated prices for these OTM
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options (less than one dollar). With small magnitudes of prices, even minor discrepancies
can result in significant relative errors. In the high volatility scenario, we see an overall
high level of relative errors. This is attributable to the greater divergence in volatility
distribution between the generated and original paths in the high volatility scenario, as
depicted in Figure 5.2.

Overall, our option pricing analysis suggests that the DDPM is more effective at cap-
turing the GBM dynamics in the lower volatility scenarios. Although the intent is not to
utilize the generated paths for option pricing, rather to assess the quality of the generated
paths, the low relative errors observed in low and medium volatility scenarios, especially
for ITM and ATM options, signal a close alignment between the dynamics of the generated
and original paths.

In summary, our evaluation demonstrates that the DDPM is a proficient tool for syn-
thesizing asset price paths within the GBM framework, showing particular effectiveness in
the low and medium volatility scenarios.

5.2 Heston Model Simulated Training Set

In this section, we analyze DDPM’s capability in synthesizing asset price paths that cap-
ture the Heston model dynamics, which introduces additional complexity compared to
the GBM by incorporating stochastic volatility. In alignment with our GBM setup, we
construct training sets representing three different volatility scenarios by altering the long-
term variance θ while holding other parameters constant (as detailed in Section 2.2.2). The
default parameter settings for the Heston model can be found in Table 5.4, and the θ val-
ues considered are 0.12, 0.32, and 0.52, corresponding to low, medium, and high volatility
scenarios respectively. It is noteworthy that θ is a variance measure, hence

√
θ provides a

volatility measure analogous σ in GBM.

Parameter S0 T µ v0 κ ξ ρ
Value 100 0.5 0.05 0.12 1 0.1 0.5

Table 5.4: Heston model - default parameters that are held constant for simulating all
three volatility scenarios.
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Qualitative Analysis

We begin with a visual comparison of five original and five generated paths for each volatil-
ity scenario (see Figure 5.4). Similar to the GBM scenarios, the boundary behaviors do not
present any noticeable issues. In addition, given the initial variance setting of v0 = 0.12, the
original paths in the medium and high volatility scenarios (θ = 0.32 and θ = 0.52) demon-
strate increased volatility level through time. The generated paths mirror this dynamics
effectively, with the paths at later timesteps displaying a higher degree of variation.

KS-Statistic

In Table 5.5, we present the KS-statistic values for assessing the similarity between the
log returns distributions of the generated and original paths. All values fall below 0.05,
confirming minimal deviation between these distributions.

θ = 0.12 θ = 0.32 θ = 0.52

KS-statistic value 0.0238 0.0221 0.0301

Table 5.5: Heston model - KS-statistic value summary.

Drift and Volatility Analysis

Figure 5.5 offers a visual comparison between original and generated paths’ log returns
drift and volatility distributions. The drift distributions between the original and generated
paths show no significant deviations. In line with our findings from the GBM scenarios, the
volatility distributions indicate a slight underestimation in the generated paths’ volatility,
particularly noticeable when θ = 0.52. Moreover, when θ = 0.12, the generated paths
exhibit a volatility distribution with lighter tails compared to those in the original paths.
Despite these discrepancies, the DDPM overall successfully generates paths with a range
of individual drifts and volatilities, collectively forming distributions that closely mirror
those of the original paths.

Autocorrelation Analysis

Our autocorrelation analysis suggests that the distributions of autocorrelation values for
the generated paths closely mirror those of the original paths across lags 1 to 20. Figure
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Figure 5.4: Heston model - original paths vs. generated paths.
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Figure 5.5: Heston model - log returns drift and volatility distribution.
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Figure 5.6: Heston model - log returns lag 1 autocorrelation values distribution.

5.6 provides an illustration for the distribution of lag 1 autocorrelation values. This re-
semblance indicates that the generated paths maintain autocorrelation structures similar
to those of the original paths.

Option Pricing Analysis

Option pricing analysis offers additional insights into how effectively the generated paths
replicate Heston model dynamics by assessing the accuracy of the resulting option prices.
We assume a risk-free rate of 5%, aligning it with the drift rate used in the Heston model
training set simulations. The generated prices are computed using the method described
in Section 4.2, and we compare them with their theoretical counterparts1.

Table 5.6 displays both the theoretical and generated prices for a range of strike prices
across varying volatility levels. Consistent with our findings from the GBM scenario disc-
cussed in Section 5.1, the highest accuracy in generated prices is observed for ITM options,
followed by ATM and then OTM options. This pattern is largerly due to the reduced num-
ber of paths with positive payoffs at higher strike prices, consequently affecting accuracy.
Additionally, significant errors tend to occur when both theoretical and generated prices
are relatively low. For example, with θ = 0.12 and K = 130, the theoretical price is 0.0113
and generated price is 0.0028, leading to a relative error of −74.82%. This is not surpris-
ing when dealing with small price magnitudes, where even minor absolute discrepancies

1The theoretical option prices under the Heston model are approximated using a Monte Carlo simu-
lation with 107 paths, providing two-digit accuracy (see Section 2.3 for details). The parameters for this
simulation align with those used for the Heston model training set, ensuring consistency in the comparison.
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can result in large relative errors. Similar to the GBM scenario, increasing the number of
generated paths could improve the accuracy in generated prices.

θ = 0.12

Option type ITM ATM OTM
Strike price 70 80 90 100 110 120 130
Theoretical price 31.7315 21.9785 12.2667 4.0939 0.7416 0.0966 0.0113
Generated price 30.9191 21.1660 11.4658 3.5412 0.5030 0.04089 0.0028
Relative error -2.56% -3.70% -6.53% -13.50% -32.18% -57.68% -74.82%
Absolute avg. relative error 4.26% 13.50% 54.89%

θ = 0.32

Option type ITM ATM OTM
Strike price 70 80 90 100 110 120 130
Theoretical price 31.7238 22.0057 12.8390 5.8684 2.0961 0.6169 0.1596
Generated price 31.6945 21.9788 12.8639 5.8884 2.0320 0.5312 0.1053
Relative error -0.09% -0.12% 0.19% 0.34% -3.06% -13.89% -34.04%
Absolute avg. relative error 0.13% 0.34% 17.00%

θ = 0.52

Option type ITM ATM OTM
Strike price 70 80 90 100 110 120 130
Theoretical price 31.7785 22.4451 14.2948 8.1578 4.2109 2.0015 0.8927
Generated price 31.6164 22.2991 14.1640 8.0051 4.0463 1.8435 0.7657
Relative error -0.51% -0.65% -0.92% -1.87% -3.91% -7.89% -14.23%
Absolute avg. relative error 0.69% 1.87% 8.68%

Table 5.6: Heston model - theoretical no-arbitrage prices and generated prices for different
strike prices.

A comparison across different volatility levels reveals that the medium volatility case
has the highest accuracy for both ITM and ATM options, followed by the high volatility
case, and then the low volatility case. This can be explained by our previous findings from
Figure 5.5, where the medium volatility case shows a more precise alignment in the volatility
distribution of the generated and original paths, compared to the less accurate alignment
in the high and low volatility cases. Interestingly, the high volatility scenario in the Heston
model show significantly lower absolute relative errors ( 0.69%, 1.87% and 8.68% for ITM,
ATM and OTM options) than what is observed in the GBM’s high volatility scenario
(9.65%, 12.89% and 17.88% for ITM, ATM and OTM options). Although this seems like
a contradiction, it can be explained by the Heston model’s time-varying volatility, which
starts at an initial level of

√
v0 = 0.1 and gradually converges to

√
θ = 0.5. Consequently,

the majority of paths average out to a volatility range between 0.2 to 0.3, as depicted in
Figure 5.5. This characteristic makes the high volatility scenario under the Heston model
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more analogous to the medium volatility scenario under the GBM, where a similarly high
accuracy level is observed.

Overall, the low absolute relative errors for ITM and ATM options demonstrate DDPM’s
capability in generating asset price paths that capture the Heston model’s dynamics. The
comparatively higher errors noted for OTM options suggest potential for improvement
through the generation of additional paths.

To summarize, our analysis suggests that the DDPM-generated paths effectively mimic
the Heston model’s dynamics across various volatility levels. This indicates that the DDPM
can be a valuable method for producing synthetic asset prices that reflect more realistic
price dynamics like time-varying volatility.

5.3 Market Data Bootstrap Training Set

In this section, we explore DDPM’s effectiveness in capturing real market data dynamics
by analyzing three stocks: Procter & Gamble (PG), Apple (AAPL), and Tesla (TSLA).
We consider the historical price data for each of these stocks from January 4, 2021, to
October 25, 2023, and we provide an illustration of these data in Figure 5.7. We perform
our study under the assumption that the price dynamics of these stocks remain stable
during this period. The historical annualized volatility of these stocks during this period,
which are 17.63%, 28.34%, and 59.79%, make them suitable proxies for low, medium, and
high volatility scenarios. Applying Algorithm 3, we construct a training set of bootstrap
asset price paths for each stock2.

Note that with real market data, we cannot evaluate the quality of generated paths
using ‘generated’ option prices as we do with the GBM and Heston model data for reasons
explained in Section 4.2. Therefore, we rely on the rest of the metrics discussed in Chapter
4 to assess the quality of the DDPM-generated paths.

Qualitative Analysis

We begin by comparing five original bootstrap paths against five generated paths for each
stock, as shown in Figure 5.8. To facilitate comparison, we standardize the asset price range
for all stocks to span from S0 − 100 to S0 + 100. This standardization allows us to easily

2The initial stock prices S0 are set to the closing prices on January 4, 2021, which are $137.82 for PG,
$129.41 for AAPL, and $243.26 for TSLA.
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Figure 5.7: Market historical price data.
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compare their volatility levels despite different initial prices. Visually, the generated paths
closely mirror the original ones, with PG and AAPL exhibit lower variations in comparison
to TSLA. Additionally, no notable issues are observed in the boundary behavior of these
paths.

KS-Statistic

The KS-statistic values presented in Table 5.7 are all below 0.05, indicating a close align-
ment in the distributions of log returns between the generated and original paths for all
three stocks.

PG AAPL TSLA
KS-statistic value 0.0391 0.0310 0.0346

Table 5.7: Market bootstrap data - KS-statistic value summary.

Drift and Volatility Analysis

We conduct an analysis of the log returns drift and volatility distributions based on Figure
5.9. The drift distributions of the generated paths exhibit a high degree of resemblance
with those of the original paths. This is particularly evident in the case of TSLA, where
the slight rightward skew in the original paths’ drift distribution is accurately mirrored in
the generated paths. The examination of the volatility distributions indicate an overall
close alignment between the generated and original paths, with a slight underestimation
observed in the case of TSLA.

Autocorrelation Analysis

We conduct an analysis on log returns autocorrelation values for lags 1 to 20 for all three
stocks. Figure 5.10 illustrates the distribution of these values at lag 1 as a representative
example. Echoing our observations from the synthetic training sets, the log returns auto-
correlation values for all examined lags display similar distributions between the original
and generated paths, predominantly clustering around zero. This similarity indicates a
consistent autocorrelation structure in the log returns of both the original and generated
paths.
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Figure 5.8: Market bootstrap data - original paths vs. generated paths.
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Figure 5.9: Market bootstrap data - log returns drift and volatility distribution.
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Figure 5.10: Market bootstrap data - log returns lag 1 autocorrelation values distribution.

In conclusion, our analysis suggests that the DDPM is capable of generating synthetic
asset price paths that mirror the diverse volatility dynamics of the selected stocks, demon-
strating the model’s potential for practical applications in financial markets.
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Chapter 6

Conclusion

In this study, we have introduced a novel method for generating synthetic financial asset
price paths using the DDPM. Our approach uniquely incorporates a DCT in preprocessing
the training data. This technique shifts the learning process from the time domain into
the frequency domain, significantly enhancing the DDPM’s performance. Our method can
generate synthetic paths that resemble the dynamics of the original paths, eliminating the
need for explicit assumptions about the model form of the original paths’ dynamics and
avoiding the traditional calibration process.

We evaluated the DDPM’s efficacy under various volatility scenarios using synthetic
training data based on GBM and Heston model and bootstrap market training data. The
analysis revealed the DDPM-generated paths qualitatively closely resemble the original
paths. From a quantitative perspective, the statistical characteristics of the log returns
from the generated paths showed a strong alignment with those of the original paths. This
is evidenced by the KS-statistic values which fall under 0.05 for all examined scenarios, as
well as the closely aligned distributions for drift and autocorrelation values bewteen the
original and generated paths. In addition, with synthetic training data, when applying the
generated paths to approximate the no-arbitrage European call option prices, we obtained
high level of accuracy for certain volatility and option types. In particular, with σ = 30%
for GBM and θ = 30% for Heston model, the approximated option prices incurred less
than 1% absolute relative errors for ITM and ATM options. These findings confirm the
DDPM’s effectiveness in synthetic asset price generation.

Despite its effectiveness, our DDPM model comes with limitations. One limitation
is the underestimation of volatility levels in our generated paths, particularly in cases
where original paths exhibit high volatility (e.g., σ = 50% for GBM training set). Future
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research can explore potential methods for refining the model to more closely capture the
high volatility dynamics.

Another challenge lies in the requirement for a substantial training dataset with consis-
tent underlying dynamics. This is less of an issue with synthetic data, as we can generate
a large number of synthetic samples under the same price dynamic. However, with real
market data, we relied on a bootstrapping technique for sampling additional training data.
This technique may distort the structure of the original data, potentially creating a train-
ing set that does not accurately represent the dynamics of the original series. For instance,
if the market data has volatility dynamics similar to the Heston model, which gradually
transition from one level to another, our bootstrapping approach cannot retain such dy-
namics in the resampled data. This presents another area for future research: developing
methods to refine the construction of the training dataset. Such development would ensure
that the training paths consistently represent the specific dynamics we aim for the DDPM
to learn, thereby enhancing the model’s applicability and accuracy in replicating complex
market dynamics.
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