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Abstract

In this paper, we focus on solving global optimization problems using only the values of
the objective function. In particular we explore the Simulated Annealing method, and

find improvements using techniques in Derivative Free Optimization methods.

The first part of the paper examines the well known Simulated Annealing algorithm.
We discuss important theoretical results, and we then demonstrate how each component
of Simulated Annealing contributed to solving the global optimization problem invoking

only the objective function values.

The second part of the paper will be dedicated to techniques from Derivative Free Trust
Region method. We discuss how Derivative Free Trust Region determines a second order
local optimum. We then propose a method to bypass local optima using Simulated

Annealing hill climbing moves.

Lastly, we address the shortcomings of Simulated Annealing on continuous optimiza-
tion problems with strong non-linearity. We present a new method which take into
consideration topological information to determine search direction and neighborhood

function.

We then look at a real life application of the Simulated Annealing method in Appendix
A.
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Chapter 1

Introduction

1.1 Preliminary

Global optimization problems are generally expressed in the following form:

min f(z)
such that z € Q

where f :  C R"™ — R is called the objective function, and the space € is called the

feasible region or the set of feasible solutions.

In this paper we will assume 2 C R™. The problem is called unconstrained if 2 = R™,

and constrained if  # R™.

We shall explore methods to solve global optimization problems with the objective func-

tion value only.

1.2 Motivation

Global Optimization problems have been a field of great interest; primarily due to their
wide range of applications spanning across various fields. Many modern day problems
in physics, biology, engineering, and in industries such as container terminals courier
service, etc require extensive use of optimization techniques. New methods has arisen

to take advantage of the advancement in computer processing power.

Classical optimization theory, using calculus and convex analysis, provides us with ways

to thoroughly categorize and determine solutions to optimization problems.

1



Chapter 1. Introduction 2

The gradient of the objective function, in particular, remains one of the most essential
tools in the field of global optimization with importance ranging from conditions on
optimum solutions to construction of algorithms. First and second order optimality
conditions, with the gradient and Hessian of the objective function provides us with
strong categorizations of local solutions to an optimization. Deterministic methods such
as Conjugate Gradient, Steepest Descent, and Trust Region methods allow us to, with
the gradient of the objective function, determine local (or even global) solutions with

reasonable proficiency.

There are, however, some draw-backs. First of all, many real life problems are large

scale problems with a lot of noise in the data, resulting in a lot of local solutions.

Classical deterministic optimization methods are derivative dependent and are non-
decreasing local optimization methods. Whilst these methods allow us to solve for
global optimum in some special cases', they are generally limited to solving for local
optima depending on initial states chosen. We shall discuss this in further detail in

chapter 2 of this paper.

FI1GURE 1.1: Example of an objective function with data noise on the right, and noise
free on the left

Furthermore, in many optimization problems we simply do not have the luxury of hav-
ing a reliable derivative, as the computation of derivative of the objective function is

impractical in many cases.

Perhaps one of the most challenging cases is where the optimization problem is being
given as a “Black-boz” simulation model. Black-box simulation models are commonly
encountered in real life situations in the form of legacy systems or sophisticated ex-
perimental simulations. In these situations, the evaluation of the objective function are
sometimes expensive, and it would be unrealistic to estimate the derivative with method
such as repeated finite differencing. Thus classical deterministic optimization methods

will be inaccurate and inefficient.

le.g. when objective function is concave and feasible region is convex
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In summary, unavailability of derivatives and difficulty to evaluate objection function
limits the adaptability of classical deterministic optimization methods to solve real life

problems.

1.3 Outline of the paper

Classical deterministic methods are not effective when searching for global optimums in

the following scenarios:

1. Black-box models

2. Problems with multiple local optima

We will examine how Simulated Annealing can be adapted to solve such optimization
problems more effectively than classical deterministic methods. In the Appendix A, we
will demonstrate a real life application of the Simulated Annealing method: a container
terminal vessel loading optimization problem. Container vessels, prior to entering the
port terminal, provides the port with a list of containers to be loaded onto the vessel.
The objective of this problem is to determine the more efficient way of loading a single
vessel. We will also discuss shortcomings of Simulated Annealing, and discuss possible

ways to overcome them using techniques from Derivative Free Optimization methods.

Chapter 2 of the paper presents a survey of the Simulated Annealing method, a stochastic
method inspired by the physical annealing process of metallurgy. We will explore the
method’s components in detail, and we will show that the method generally provides a

good approximation to the global optimum.

In Chapter 3 we will investigate the inefficiencies of Simulated Annealing when dealing
with non-linear continuous optimization problems. We will then discuss the Deriva-
tive Free Trust Region method, and propose new modifications to the neighborhood

generating function to overcome the shortfalls of Simulated Annealing.



Chapter 2

Simulated Annealing

2.1 Overview

In this chapter, we will discuss the Simulated Annealing algorithm. We will first look
at a skeletal version of a general Simulated Annealing algorithm, in particular, the
heuristic nature of Simulated Annealing method, i.e. some parts of the algorithm are
left undefined, which grants us the flexibility to adapt this algorithm to a great variety

of problems.

We will then briefly discuss the difference between discrete and continuous optimization
problems applications of Simulated Annealing, followed by a summary of convergence
results from existing literatures. Proofs of the results will be omitted and can be found

in the cited papers.

Lastly, we will modularize the algorithm, and explore how we could tailor each compo-
nent to adapt the algorithm to various problems. We will also discuss shortcomings of

Simulated Annealing, and discuss possible ways to overcome them.

2.2 Origin

Simulated Annealing is a meta-heuristic adaptation of the Metropolis method published
by Metropolis et al. in 1953 [1]. It is an iterative stochastic method designed to address
the limitations of classical deterministic methods in overcoming local optima, and to find
a good approximation to the set of global solution of an optimization problem. Simulated
Annealing has been a popular method in practice for its adaptability to various problems
and its convergence property which mimics physical systems. The most distinguished

feature of the method is the ability to escape local optima by means of hill-climbing

4



Chapter 2. Simulated Annealing 5

moves, i.e. by accepting intermediate points that might have a worse objective function
value. This allows us to bypass local optimums, and eventually converge onto solutions

that are at least as good as classical deterministic optimization methods.

Simulated Annealing was inspired by, and hence named after, annealing process in met-
allurgy. Annealing is a heat treatment technique applied to metal compound to achieve
lower energy states. This is achieved by first heating the metal compound, and then
letting it cool down in a controlled manner. Given an optimization problem, a cooling
schedule and an initial guess, Simulated Annealing draws analogy to the physical an-
nealing process by mimicking the heating and cooling processes. “Heating” is done by
allowing a great selection of neighboring solutions of the initial guess to be accepted;
“Cooling” is done by carefully reducing the choices of selection in each iteration. The
nature of the annealing cooling schedule will limit our choices of solutions chosen at each
iteration, and the algorithm will eventually “freeze” upon reaching the state of lowest

energy (ground state): or in the optimization frame work, the global optimum.

Example 2.1. The following diagram illustrates how Simulated Annealing “escapes” a

local optimum:

25} -

15}

10F

FIGURE 2.1: Simulated Annealing (dotted line) escapes local optimum (at x ~ —2),
whilst classical down-hill method, represented by solid line, gets trapped
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2.3 Assembly of the Algorithm

Consider a global optimization problem set up as in section 1.1:

min f(x)
such that z € Q

We establish the following general framework of Simulated Annealing according to [2—4]

as follows:

Algorithm 1 Skeletal Simulated Annealing Algorithm
INPUT: Initial solution = € €2. Initial temperature ¢y. | Repetition schedule| {Mp}en
Cooling schedule | Ul {z;} CQ =R, | Acceptance function| A : Qx QxR — [0,1] C R

OUTPUT: Anncaling chain Z = {z;} > Also called annealing schedule
Lk« 0; 2+ {x}
2: repeat > Quter loop: iterates on k
3: Repetition counter: m < 0
4 repeat > Inner loop: iterates on m
5 Generate Tpe,, € N(x)from P (x,-) > N(z) is a | neighborhood | of =
6: > P{"(z,-) is the | candidate distribution |
7 Sample p € UJ0, 1]
8 if p < A then
9 T 4 Tpew

10: else

11: <

12: end if

13 Z <+ ZU{x}

14: m<+—m-+1

15: until m = M,

16: thy1 < U(Z)
17: k+—k+1
18: until | Stopping criterion| is satisfied

Remark 2.1. Some components of the algorithm are left undetermined, namely those that
are boxed by [-]. These undetermined components give the algorithm the flexibility to
be modified to deal with a great variety of problems. We shall discuss these components

in greater detail in the following section

Remark 2.2. Simulated Annealing is generally depicted as a Markovian method. That
is, each step only depends on the previous iteration. Hence in the following sections
we will assume, unless otherwise specified, that all functions g on the annealing chain

depend only on the previous iteration. In other words, g(Z) = g(x}) at the k** iteration.
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2.4 Survey of Convergence Criteria

In this section we will discuss convergence results from existing literatures. It is worth
noting that, whilst Simulated Annealing was originally designed to tackle discrete op-
timization problems, we could extend it to continuous optimization problems. Our
discussions in this chapter can be applied to both continuous and discrete optimization

problems with the following conversion [5]:

Discrete problems Continuous problems

W Uniform measure Lebesgue measure
g:Q2—R Y oveq9() [ g(z)dx

The components of the Simulated Annealing algorithm, namely the set of neighborhoods,

cooling schedule and acceptance function, all play a significant role in determining the
equilibrium distribution of the annealing schedule [6]. Therefore the convergence analysis
below may vary depending on the adaptation of the algorithm. In this paper, we follow

loosely the convergence analysis summarized by Henderson et al [3]:

There are two approaches to convergence results of Simulated Annealing, where the
annealing chain is treated as a sequence of homogeneous Markov chain, or as an inho-

mogeneous Markov chain.

2.4.1 As a sequence of homogeneous Markov chains

The first approach assumes that, for each outer loop k, the number of inner loops M, is
sufficiently large such that the annealing chain converges to the equilibrium distribution

7. The temperature function ¢ is constant throughout each inner loop.
Definition 2.3. A Markov chain is #rreducible if Va;, x; € Q, In;; € N'\ 0 such that
P(xn,; = xjlxo = 2;) >0

i.e. we can get from any state to any other state in a finite number of steps.

A state T € Q of the Markov chain is aperiodic if dn € N such that VIV > n:

i.e. state T returns to itself at irregular times. An irreducible Markov chain Z is aperiodic

if there exists one aperiodic state X € Z.

A finite Markov chain is regular if and only if it is both ¢rreducible and aperiodic.
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A Markov chain is reversible if for all states x,y € Q and all iteration k:

() P(2ni1 = ylon = ) = m(y) P(2n1 = 2|z, = y)

The following theorem by Cinlar [3, 7] asserts the existence uniqueness of the equilibrium

distribution:

Theorem 2.4 (Cinlar, 1974). For states x,y € €, let P(m’k)(:n, y) denote the transitional
probability matrixz from x to y in k inner loops and m outer loops. If the Markov chain
Z defined by PU™F) is reqular, then the following limit exists for all z,y € Q, for all k:

me(y) := lim P(m’k)(%y)

m—o0

Moreover m(y) the unique strictly positive solution of:

m(y) = > () Pz, y) (*1)

Remark 2.5. Depending on the adaptation of Simulated Annealing, proofs comes in
different flavor. However, when the the annealing chain is treated as a sequence of ho-
mogeneous Markov chains, regularity and reversibility of the annealing chain is essential
to guarantee the uniqueness of the stationary distribution 7. In fact, as Henderson et
al [3] remarked, reversibility of the annealing chain is the sufficient condition of all such

proofs of convergence.

If the reversibility condition is not satisfied, the explicit form of the stationary distribu-
tion 7, would be very difficult to compute, as this typically involves solving large linear

systems (*1) and (x2) [8].

2.4.2 As a inhomogeneous Markov chain

The second approach treats the annealing chain as a single inhomogeneous Markov chain.
This approach no longer requires an arbitrarily large inner loop to assert convergence to
the stationary distribution, and instead considers the limiting behavior of the annealing

chain on the outer loop.

The proof of convergence by Mitra et al [9] requires the annealing chain to satisfy the
weak and strong ergodicity, as well as existence of eigenvectors mj in the form given by

(*1) and (*2) in theorem 2.4. The proof also requires 7 to converge to the equilibrium
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distribution 7°P!, where 7°P! is the probability distribution where only global optima has

probability greater than 0.

The theorem by Hajek [10] below, on the other hand, imposed a lower bound on the
probability to escape local optima (but not global optima). Hajek furthermore showed
that the logarithmic cooling schedule is a necessary and sufficient condition for conver-

gence [11].

Definition 2.6. Given x € €2, a neighborhood N (z) of x, and iteration counters m, k €
N (the k" outer loop and the m!® inner loop, the candidate distribution (or the
generation probability distribution) is described by: P/"(z,y) = P*(x¢ = ylv; =
x), the probability distribution function over N (x) for generating a point y € N(x) from

x.

Theorem 2.7 (Hajek, 1988).

d” = min {max {f(P(z, ")} - f(2)}

where Q* is the set of global optimums, and max {f(P(x,Q*)} is the largest function
value along the path from x to Q*. In other words, d* largest depth of local optimum

that is not a global optimum [12].

Then the Simulated Annealing algorithm converges if and only if

2. ) . exp {%} =00
Remark 2.8. In particular, annealing chain with the following cooling schedule converges;

c
Ul' = ———

k log(k + ko)
where ¢ > d*, and kg > 0 is a positive constant. This is known as the logarithmic
cooling schedule. and it provides us with a necessary condition of convergence. We

shall discuss cooling schedules in greater detail in section 2.5.2.

2.5 Component Analysis

From Algorithm 1, we have identified the components of Simulated Annealing that
we must specify when dealing with a given optimization problem in practice. In the
following sections, we shall analyze each of these components and discuss how we could

temper these components to adapt the method to various problems.
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2.5.1 Acceptance Function

The most distinguished feature of Simulated Annealing lies in its ability to perform hill
climbing moves to escape local optima. That is, the ability to accept intermediate points

in the feasible region that worsen the objective function value.

In this section we will see how the algorithm decides whether or not to accept new

candidate points by defining a reasonable acceptance rule.

Franz et al. [6, 13] provided us with a general framework for a general acceptance rule

for the acceptance function A should satisfy (for the k™ iteration):

A: OxQxR—=[0,1]CR

{xkamnewatk} —=qc [07 1]

1. Ais a function on Af := f(Zpew) — f(2k), and the temperature ¢
2. At tj, = oo, all moves will be accepted, i.e. A(Af,o0) = 1.
3. For a fixed t;, < oo:

(a) Downbhill moves are always accepted, i.e. Af <0=A=1

(b) Uphill moves can be accepted with acceptance probability monotone decreas-

ing with respect to Af.

(¢) Drastic uphill moves are rarely accepted. i.e. Af — o0 = A — 0.

In other words:

1. A is monotone increasing with respect to temperature T’ C R

2. A is monotone decreasing with respect to Af := f(@new) — f(zk)

We will look at a few examples of acceptance rules in existing literature.

In lieu of the origin of the method, most literature uses the Metropolis criterion as

the acceptance rule:

Py = Az, Tnew, L) = min {1, exp (_tif>} (2.1)

Equivalently, we would have the following in the Simulated Annealing algorithm:
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L if f(Zpew) < f(xg) then

2 Tk+1 < Tnew

3: else

4: Generate p € U|0, 1]
5 if exp <_t—if> < p then
6: Tk4+1 < Tnew
7 else

8 Thk+1 < Tk

9 end if

10: end if

Remark 2.9. The total probability of accepting uphill moves generated by the Metropolis

criterion is exactly tx:

/0 T Pu(ANAAS) = by

In other words, the Metropolis criterion, whilst always accepting downhill moves, has a
chance of accepting uphill moves as well. This provides us with the flexibility to avoid
being trapped in local optima. Moreover, as t; — 0, exp (%t) — 0, and therefore we
will have less and less uphill moves as the system “cools down”, eventually converging
onto a global optimum. These observations agree with the general properties stated in

the beginning of the section.

At a constant temperature function U (ty), the equilibrium distribution 7 of the anneal-

ing chain is given by the Boltzmann distribution [6].

Depending on the nature of adaptation, there are a variety of acceptance rules. One of

the variations of the Metropolis function is the Barker criterion:

1
PB = A(xkvxnewvtk) = —A
14+ exp (—f)

123

The annealing chain under Barker criterion has the same stationary distribution as
Metropolis criterion at a constant temperature function. However, authors of [14, 15] are
able to derive a faster algorithm while varying the neighborhood candidate distribution
with a cooling schedule (which we shall discuss in the next section). This method is
thus called fast annealing, and the annealing chain satisfies FermiDirac distribution [6],

which leads to a faster convergence.

In lieu of the enhancements achieved by the fast annealing algorithm, it would be natural
to ask whether an optimal acceptance function exists. In particular. Franz et al. [13]

proved that, if  is finite, and if the objective function f depends linearly on the final
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probability (or the objective function value) of the global optimum, then the following
holds:

1 if Af <0
- _ 1 : 1-q¢g A
Pp = A(xk7$n€11)?tk> =Y iv@) if Af >0 and ﬁt_kf <1
. 1-q Af
0 1fAf>OandﬁK>1
The annealing chain performs optimally in the limiting case when ¢ = —oco, where Pr
becomes the Threshold acceptance criterion [16, 17):
1 ifAf <t

PThreshold = A(CEk, Tnew tk) =
0 otherwise

Just like Metropolis criterion, the total probability of accepting uphill moves by threshold

acceptance also equals to ¢, i.e. it also satisfies the conditions in Remark 2.9.

Remark 2.10. It is worth noting that, despite the optimality of threshold acceptance,
other acceptance rules may be preferred depending on the adaptation and implementa-

tion of the algorithm.

2.5.2 Temperature schedule

In this section we will look at the temperature schedule of an annealing chain, which

can generally be described by the following components:

1. Initial temperature ¢

2. Cooling schedule U : {z;} = ZCQ —= R
3. Repetition schedule {M}}, o

4. Stopping criterion

Remark 2.11. In practice, we would naturally want the algorithm to terminate in finite

time steps, this implies that the generated annealing chain Z will be at most finite.

In the following discussion we may assume, without lost of generality, that the state

space {2 is finite (though it could be arbitrarily large).
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2.5.3 Initial temperature and Stopping criterion

The initial temperature and the stopping criterion is generally determined by the phys-

ical nature of the problem.

The initial temperature ¢y is usually defined to be sufficiently large such that almost all

moves from the initial guess will be accepted.

The stopping criterion on the other hand, comes with more variety and requires different
sets of computation for different cooling schedules. The general rule of thumb based on
existing literatures is to terminate when no significant progress can be made after a

certain number of iterations [4].

2.5.4 Repetition schedule

The implementation of a repetition schedule is optional, and is generally set up according
to the adaptation of the algorithm. It is generally employed for convergence purposes

as described in section 2.4.1.

2.5.5 Cooling schedule

A good cooling schedule is crucial to the performance of the Simulated Annealing algo-
rithm. Fast cooling schedules enable fast convergence but depending on the nature of
the problem, may restrict the range of feasible region explored. Slower cooling schedules,
on the other hand, allows more feasible region to be explored, and hence a better chance

of obtaining a good approximation to the global solution.

Therefore an appropriate rate of cooling determines solution quality and algorithm ef-
ficiency. In practice, the rate of cooling depends largely on the problem specifications

and the user’s preference.

Ideally we would prefer cooling schedules that assert convergence of the algorithm to the
set of global optima. However, a study conducted by Cohn and Fielding [12] suggests
that convergent cooling schedules are too slow, while repeated independent executions

of the algorithm with non-convergent cooling schedules still provide reasonable results.

Cooling schedules can be categorized into two groups: stalic schedule and adaptive
schedules. Static schedules are set prior to the execution of the algorithm. Adaptive
schedules, on the other hand, adjusts the rate of cooling during the execution or between

executions of the algorithm according to information obtained.
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2.5.5.1 Static Cooling Schedule

Static schedules are defined completely prior to the execution of the algorithm, and
are typically dependent on a control parameter that allows users to adjust the rate of

cooling. We present below two of the most popular cooling schedules:

One of the most popular choice of cooling schedules is given by the exponential sched-

ule:
U/zn == t[) . Oék

where a < 1 is called the cooling factor.

And from Hajek’s theorem (Theorem 2.7), we define the logarithmic cooling schedule
as follows:
c
U' = ———
k7 log(k + ko)
where ¢ > d*, and kg > 0 is a positive constant. This not only provides us with a
necessary condition of convergence, but a study of Cohn and Fielding [12] also suggests

that critical points of the limiting behavior of the annealing chain occurs when the

cooling schedule is close to the logarithmic schedule.

Intuitively the quality of the cooling schedule improves as we utilize more information
of the objective function. Hence we will look into adaptive cooling schedules, which aim

to optimize the rate of cooling by exploiting the information of the annealing chain.

2.5.5.2 Adaptive Cooling Schedule

Adaptive schedules can be implemented either during the execution or between mul-
tiple runs of the algorithm, where the latter is generally more popular due to ease of
parallelization. As proposed by [6], we may adjust the schedule according to the rate
of convergence, objective function value, or both. There are various forms of adaptive
cooling schedules depending on the implementation of the algorithm, and we will discuss

an example defined by Bohachevsky et al [18] as follows:

v =5 [ fw) - f]°

where 3,g > 0 are constants, and f is an estimate of the optimal objective function

value. The estimate f is adjusted according to the objective function value during the
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execution of the algorithm subject to the rules: (for a minimization problem) f<f (zk)

for all points xy visited, and if f(zy) — f>> 0 then f can be increased.

This allows up-hill moves to occur more frequently when the current objective function
value is far from optimal value. And on the other hand, when the current objective
function value is close to the estimated optimal objective function value f , fewer up-hill

moves will be accepted. This allows us to further avoid being trapped in local optima.

Though the cooling schedules described above are popular for their simplicity, they both
are non-increasing functions of k£, which is not ideal for most optimization problems. In
fact, the experiments conducted by Strenski and Kirkpatrick [19] suggests that the ideal

cooling schedule are not monotone decreasing.

Lastly, it is worth noting that the choice of cooling schedule depends largely on the
empirical behaviors of the optimization problem. Although the general intuition is that
the more information we utilize, the better the performance of cooling schedule, inferior
schedules may yield a better performance subject to the nature of the optimization

problem.

2.5.6 Neighborhood and Candidate Distribution

Recall from Algorithm 1: each iteration a new point e, is generated from N(z), a
neighborhood of the current point x, with candidate distribution P;"(z,-) (from defi-
nition 2.6). The algorithm then determines whether to accept or reject the new point

according to the acceptance function, which we have discussed in section 2.5.1.

The neighborhood and candidate distribution will be defined naturally by the following

function:

N:Q—DCPEQ)
z = {N(z)} = N(z)

where P(Q) is the power set of Q. Given a point x € , N(z) is chosen from the
subset N (z) of P(€), and the candidate distribution function P["(z,-) is a probability
distribution over N(x).

This suggests that the neighborhood function N (x) is therefore determined by the topol-
ogy of the feasible region and the objective function. In other words, the neighborhood
function is determined by the geometry and physical nature of the optimization problem.

Hence, the choice of neighborhood functions are usually quite restrictive.

The choice of candidate distribution, however, provides us with more flexibility.
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For the rest of the section we will focus on generating points from a neighborhood. We
further partition our discussion into two parts. In the first part of the discussion, we will
assume we already have a given a neighborhood N(z) € N (z) of a given point . We
will look at a couple choices of candidate distribution P;"(z,-) to generate new points
from N(z). In the second part of the discussion, we will look at ways to choose a “good”
neighborhood from the set N(x).

2.5.6.1 Generation of points

Suppose we are given a point € , and a neighborhood N(z) of . We will present
and discuss possible choices of candidate distribution according to Dekkers and Aarts

[20], Locatelli [4], and Henderson et al [3]:

As discussed insection 2.4, the Markov chain generated by the Simulated Annealing

algorithm (the annealing chain) must be both regular and reversible.

Therefore it is natural to choose an isotropic distribution over the neighborhood N(z).
In particular, one of the most natural choices of such candidate distribution would be

the uniform distribution over N (x):

P (z,y) = Yy € N(z), Yk, Vm (2.2)

1
p(N(z))’
where p is either the Lebesgue measure on or the uniform measure on N () for continuous

or discrete problems respectively, as we have discussed earlier on in section 2.4.

This candidate distribution function allows us to examine the entire neighborhood in
an unbiased fashion. Moreover, the annealing chain generated by this probability dis-
tribution function is reversible and regular, and therefore ensures convergences of the

Simulated Annealing algorithm.

However, this candidate distribution does not consider any information of the neigh-
borhood N(z), and assumes that the objective function has the same behavior for the

entire N(x), which is often not the case.

Dekkers and Aarts [20] thus proposes an alternative:

. LS(z) ifw>t
P (x,y) = ) , Yy € N(x), Vk, Vm (2.3)

AN otherwise

where ¢ € [0, 1) is fixed, and w € U[0,1). LS(x) is an arbitrary local descent directional

search method that generates a point from .
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Or equivalently we would have the following algorithmic form:

Fix t € [0,1)
Generate w € U|0, 1]
1: if w >t then
2: y « LS(x)
3: else
4: PM(z,y) = m, Vy € N(z), Yk, Vm

5. end if

It was shown, by Dekkers and Aarts [20], that despite the fact that the annealing chain
generated by this candidate distribution is not reversible (in (2.3): P/"(x,y) # P"(y,x)),

it still converges to a good approximation to the global optimum.

However, classical local search methods rely heavily on information of the objective
function. In particular for continuous functions, we require at least the derivative of
the objective function. Therefore there is no easy way to apply classical local search

methods to a Black-box model.

In Chapter 3, we will further address this issue with A Derivative Free local search

method known as Derivative Free Trust Region method.

For the rest of the paper we will stick to the uniform distribution as in equation (2.2)

for the candidate distribution.

2.5.6.2 Choice of Neighborhood

Given a point z € Q, [N (z)| > 2, since {z} C Q € N (x). This provides us with some
flexibility when choosing a neighborhood N(x).

The choice of neighborhood comes in two options, neighborhoods can be chosen by size
or by the topology, which depends on the nature of the optimization problem. Choosing
a “good” neighborhood is an essential to designing an efficient Simulated Annealing

algorithm [21].

Moreover, to ensure the quality of approximation of and the efficiency of finding a global
optimum, the size of the neighborhood plays an important roll in limiting the choices
of points during the cooling process. The rate of decrease in size of neighborhood per

iteration therefore affects the rate of convergence of Simulated Annealing.

The most common approach is to scale the size of the neighborhood according to the

temperature parameter t;. i.e. the size of neighborhood is a function that increases
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monotone with respect to the temperature parameter t. We shall observe a similar

behavior exhibited by the Trust Region radius in chapter 3.

The specific size function, however, would vary from problem to problem, and should be

scaled according to the desired rate of convergence.

On the other hand, we have more flexibility in terms of the topological structure we can

impose on the neighborhoods.

Discrete optimization problems are typically motivated by physical problems, and the
neighborhood function is generally completely determined by the nature of the problem
tackled. Continuous problems, on the other hand, provide us with more interesting
variety and flexibility in terms of the topology we can impose on the neighborhood

function.

For the rest of the discussion we will, without lost of generality, assume 2 = R™ (implying
N(z) = P(R") Vz), in other words we will be solving the following unconstrained
continuous optimization problem:

min f(z)

where f is locally differentiable, i.e. the gradient V f(z) exists for all x.

For a Black-box model, without any prior knowledge of the objective function whatso-
ever, the general approach would be to let N(z) be of unit size in all directions (i.e. a
unit (n — 1) dimensional sphere for continuous problems). This allows us to explore the
feasible region () in an unbiased manner as per the discussion for a uniform candidate
distribution in (2.2). As was pointed out in previous discussion by Locatelli [4], Van-
derbilt and Louie [22], objective functions generally do not exhibit the same behavior
in all directions, hence a unit sphere approach would fail to encapsulate the topological

information of the system.
We illustrate this issue with following diagrams inspired by Locatelli [4]:

Suppose the entire contour V f of f (level set of f) is given (Fig 2.2 and Fig 2.3), with

starting point x.

In Fig 2.2, the neighborhood N(x) are chosen to be (n — 1) dimensional sphere of two
different sizes (N1(x) and Na(x)).

Notice that f changes slowly in 2!, the only descent direction of f from z. If we generate
a new point using the uniform candidate distribution function on Nj(z), chances of

obtaining a better solution is quite low. Hence the new point will likely be rejected.
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FIGURE 2.2: Due to the incoherence between neighborhoods Nj(z) or Na(z) and the
contours V f, new points sampled will likely be rejected.

Furthermore, this problem persists even if the step size decreases, and new points are

sample from a smaller neighborhood illustrated by Na(x) in Fig 2.2.

Therefore the choice of neighborhood must take into consideration the topological infor-
mation of the objective function, and the feasible region should be searched anisotropicly,

mimicking the geometry of the objective function.

In Fig 2.3, the neighborhood N3(x) is chosen such that the support of N3(x) approxi-
mates the shape of the contours V f.

This choice of neighborhood takes into consideration the topology of the objective func-
tion, and allows us to sample points skewed towards the direction of steepest descent.
This allows us to take larger steps in directions with slower change (z'), and smaller
steps in directions with faster change (x2), which is in essence a uniform search bias

towards local optima that satisfies first order optimality conditions

To find a neighborhood such as N3(x), Vanderbilt and Louie [22] proposed the following

approach that is similar to a quasi-Newton method:

Assume Hessian of the global optimum x* is known and positive definite:
H* := H(x")

The new point e, will be generated as follows:
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N3 (x) {/'

FIGURE 2.3: N3(z) is chosen to approximate the contours V f, and has a better chance
of obtaining more desirable points along the z! axis

INPUT: Starting point x € (2, Hessian of global optimum H*.
OUTPUT: A new point Zneqy.

: Compute S := (H*)~!

—_

2: Compute S = QQ T > @ is the Cholesky factor of S
3: Generate r € Ula, 8" >, € R™ [a,B]™ is a hypercube in R™
4 Tpew <~ x+Q -1 > Skewing the hypercube as in Fig 2.3

In the black-box model, even though the gradient V f exists, it is not available to us, let

alone obtaining any information of H*.

Vanderbilt and Louie [22] hence proposed the following method to approximate S, and
the geometry of f by utilizing points generated from the algorithm:

Suppose each outer loop of Algorithm 1 has size M (where M is sufficiently large), in
other words Mj, = M for all k. At the end of the ¢*" outer loop, we obtain a segment of
the annealing chain {xeMH, ceey xeMJrM} Z, C Z, thus we compute A’ and S, the first

and second moment of Z, respectively as follows:

1
= gy Sl
M (2

M
1
l CM+k l LM +E l
Sii =77 > [wz Ai} ' [%’ - Ag}
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Thus at the (¢ + 1) outer loop, we computer the matrix S := S+ by

gle+1) _ XS gt
BM
where xg > 1 is called the growth factor, and § > 0 is based on the geometric average

of the second moment.

By computing the Cholesky factor @ of S ~ H~!, this method draws analogy to quasi-
Newton methods. As the search direction Az = @ - r draws strong correlations to the
quasi-Newton direction Azqn = H —1. _Vf. However, quasi-Newton methods do not

guarantee second order optimality conditions.

2.6 Summary

Simulated Annealing is a highly adaptive optimization method with wide practical ap-
plication. As was pointed out earlier, typical Simulated Annealing is based on pure
random search (candidate points are sampled uniformly over isotropic neighborhood
systems) when no prior knowledge of the optimization problem is available. Hence the
major drawback of Simulated Annealing is the slow theoretical convergence rate pri-
marily due to its insensitivity towards topological information. In Appendix A, we will
demonstrate a real life application of Simulated Annealing method to a container port

terminal optimization problem.

Global optimization problems with strong non-linearity will therefore have to be tackled
with techniques from Derivative Free Optimization, which we will discuss in the following

chapter.



Chapter 3

Derivative Free Optimization

3.1 Introduction

The major draw back of the Simulated Annealing method is that it overlooks topo-
logical information when choosing the neighborhood function. Simulated Annealing
method generally cannot determine a ”good” choice of neighborhood function during
execution of the algorithm, which leads to the method’s theoretical inefficiency when
solving optimization problems with strong non-linearity. In this chapter we will discuss
various methods to improve this particular aspect of Simulated Annealing by techniques
of Derivative Free Optimization. We will then present a new method which generates

search direction utilizing topological information of the objection function f.

In this chapter, we will consider the unconstrained optimization problem of the following
form:

min f(x

min f(z)
where f : R® — R is a nonlinear function that is ”sufficiently smooth”. i.e. V'f(x)

exists for all z € R and is continuous up to some i > 1, and V! f(x) is Lipschitz

continuous, even though they cannot be computed or approximated directly.

Derivative Free optimization can be roughly categorized into several classes [23, 24]:
directional simplicial search methods such as Nelder Mead [25] and generalized pattern
search [26]; line search methods such as Powell’s method [27]; and sampling methods

such as implicit filtering and trust region methods based on polynomial interpolation.

22
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We will discuss ways to utilize the search direction generated by these different classes of

Derivative Free Optimization methods to increase the efficiency of Simulated Annealing.

Remark 3.1. The general approach is to utilize the search direction s; generated by
Derivative Free Optimization to Simulated Annealing method to generate a ellipsoidal

neighborhood similar to that described in Fig 2.2 and 2.3:

1. In each iteration in Simulated Annealing, use Derivative Free optimization method

to generate a search direction s.

2. Skew the unit (n — 1) dimensional sphere by the direction +sj, and search for a

new candidate point x,., uniformly in the new neighborhood.

In this chapter we will discuss how to obtain a particular search direction by Derivative
Free Trust Region method. However, it is worth noting that any method that generates

a reasonable search direction can be applied in a similar manner.

3.2 Derivative Free Trust Region method

Derivative Free Trust Region methods were introduced by Powell [28] and Winfield
[29]; they are an approximation based optimization method that utilized trust region

technique, and approximation models of the objective function.

Derivative Free Trust Region methods comes in different flavors, depending on the ap-
proximation method used. We will focus on the polynomial interpolation based approx-

imation methods described by Conn, Scheinberg and Vicente [24].

To construct the polynomial interpolation based Derivative Free Trust Region method,
we first look at how to determine a ”good” interpolation set Y. This is done by examining

a property called A-poisedness of the interpolation set Y on a closed ball B D Y.

We will then see, in the second degree case, that the error of the approximation of the

it" derivative is bounded by A and A(Y'), the diameter of Y and the trust region radius.

Then we will discuss two model improvement algorithms to explicitly construct, main-
tain, and improve the poisedness of a given set of interpolation points Y which may not

be poised.

Finally we will discuss the main algorithm of the quadratic interpolation Derivative Free
Trust Region method, and from the sufficient conditions of global convergence, we will

derive a reasonable search direction.



Chapter 3. Derivative Free Optimization 24

3.2.1 Interpolation model and Poisedness

Before we establish the main algorithm of an interpolation based Derivative Free Trust
Region method, we must first construct a “good” interpolation model for the objective

function f.

Consider a sample set of interpolation points ¥ = {yo, e ,yp} C B C Q, where €

denotes the feasible region.

Let Pg denote the space of polynomials of degree less than or equal to d in R™. Suppose

m(x) € P:f interpolate f at Y, then it satisfies the interpolation conditions:

m(y') = f(y'), Vy' €Y (3.1)

Let ¢ = {¢o(),...,0q(7)} C P be a basis of ¢+ 1 = (n:d) polynomials in PZ. We can

rewrite m(x) in the following form:
q
m(x) =) aj - ¢;(2)
j=0
where o are constants. Hence (3.1) can be expressed in the following form:
- q . . -
m(y') =Y ;- ¢;(y") = fy'), vy €Y
3=0

Or equivalently we have the following matrix form:

do(y°) d1(y") - ey o F@)
¢o(.y1) ¢1('y1) %(.yl) e f(yl) (32)
L do(yP) 1(yP) o dg(P) | | ag | | fWP)

For the rest of the chapter, the Vandermonde matrix in the equation above will be

denoted by:

0% d1(¥°) - (¥
do(yt) oY) - og(yt)

do(yP) 1(yP) - Be(yP)

Moreover, for simplicity we further abbreviate M := M (¢,Y) if ¢ = ¢, where ¢ is

the natural basis in PZ. The natural basis of monomials over R" is given by (for z =
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(x1,...,2,) € R™) [25]:

In other words:

2 d—1 d
_ X T, 1Tn X
¢ = {1,%1,3}‘2,...,1’7“—171}1.%2,..,7 (;_11;7 d_T} (3.3)

To determine the interpolation polynomial m(xz), we compute the coefficients «; by
solving the linear system (3.2). In particular, the linear system has a unique solution

when the matrix M (¢,Y) is non-singular. Hence we have the following definition from
[24, 25]:

Definition 3.2. A set of interpolation points Y = {yo,...,yp} is called poised (or
d-unisolvent in [24, 30]) for polynomial interpolation in R™ if M (¢,Y") is non-singular

for some basis ¢ of P2,

Remark 3.3. The notion of poisedness can be viewed as a non-linear version of affine
independence. In particular if d = 1, Y is poised in P} if and only if YV is affine

independent.

Remark 3.4. Tt is clear that if Y is poised, then we must have (for M (¢,Y") non-singular):

d
Yi=p+1= (njl_ )

where (”jl'd) is the dimension of P%. Moreover, if M($,Y) is non-singular for some basis

¢, then it is non-singular for any basis P¢, and the notion of poisedness is independent

of ¢.

Hence the following result arises naturally [25]:

Lemma 3.5. Given a function f : R™ — R, and a poised set Y, there exists a unique

interpolation polynomial m(x) € P2.

The quality of the interpolation polynomial m(x) thus depends on the choices of the set
of interpolation points Y. Hence it is natural to define a notion of “well” poisedness of
Y. In particularly we define such notion by the basis of Lagrange polynomials as follows
[24]:
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p

Definition 3.6. Given a set of interpolation points Y = {3°,...,4?}, a basis {¢; (m)}j:()

of P4 is called a basis of Lagrange polynomials if:

1 ifi=j

0 ifij

0i(y') = 6i5 =

Lemma 3.7. If Y is poised, then there exists a unique basis of Lagrange polynomials
{4 (x) ?:0 of P& specified by Y as in definition 3.6.

Remark 3.8. Alternatively, we can define the basis of Lagrange polynomials as follows
24]): Given a set of poised interpolation points Y = {y%, ..., yP}, let ¢ = {do(),..., dp(z)}
be a basis of P¢. By abuse of notation, we can let ¢(z) = [¢o(x), ..., ngp(z:)]T be a vector
in R+,

Since Y is poised, M(¢,Y’) is non-singular, and therefore {¢(y’)} spans ¢ (Conv(Y)),
where Conv(Y') is the convex hull of Y. Hence for any z in the convex hull of Y, we can

express ¢(x) uniquely by:

o) =Y Nil2)o(y")

1=0

or equivalent we have the following matrix form:

o(x) = M(6,Y) " A(x)

where A(z) = [Ao(2), ..., A\p(z)] " is a vector in of polynomials of degree at most d, and

{Ai(z)}r_, is the basis of Lagrange polynomials defined as in definition 3.6.

The basis of Lagrange polynomials provides us with an important measurement of
poisedness of the interpolation set Y, and the quality of the interpolation polynomial

In particular, Ciarlet and Raviart showed that (in Theorem 1, [30]): given a function f,
a poised interpolation set Y = {yo, e ,yp}, and the interpolation polynomial m(z) of

f; for any z in Conv(Y'), the convex hull of Y:

|DFm(z) — DX f(z)| < ﬁ(} Z ly' — 2| Dk ()] (3.4)
=0

where DFg(z) is the k" derivative of a function g(z), and G is the upper bound of
D f ().
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Suppose, without lost of generality, that Y is centered at 3°, then the diameter of the

convex hull of Y is given by:
A =A(®Y) = max [ly' —y°|
K3

Therefore, for k = 0, the bound in (3.4) can be simplified to:

im(z) — f(z)] < %GAYMH (3.5)

where

Ay := max max |[{(;(x)]
0<i<p =

This means G depends only on f, and Ay depends only on Y. Moreover, since A(Y) is
the trust region radius, we need to ensure the right hand side of (3.5) goes to 0 as A(Y)
vanishes for the convergence of the Derivative Trust Region method. That is, we want

the following relationship:

AY) = 0= (p+1)-) |y’ =™ = 0= |m(z) - f(z)] =0
=0

In other words, Ay will have to be uniformly bounded for all Y in the algorithm.

3.2.2 A-poisedness

In this section we will discuss characteristics of Ay, and we will discuss methods to
construct a "well-poised” set.

Let us first formally define the notion of “well-poisedness” of Y (Definition 3.2 [24]):

Definition 3.9. Given A > 1, let ¢ = {¢o(),...,dp(z)} be a basis of PZ. A poised set
Y = {yo, . yp} C B C Qis A-poised in B if for any = € B, there exists A(z) € R+
such that

¢(r) = Zx\i(w)ﬂyi) where [[AMz)] <A

p
=0

where ¢(z) = [o(x), ..., ¢p(x)]" is a vector in R®+D),
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Equivalently [25]: if {¢;(x)}!_, is the basis of Lagrange polynomials corresponding to
Y (as in lemma 3.7), then Y is A-poised if:

A > max max |¢;(z)|
0<i<p z€B

In other words, if we replace any point § € Y by any x € B, the volume of ¢(Y) changes
by at most a factor of A.

Remark 3.10. Conn, Scheinberg and Vicente (Lemma 3.8,3.9 of [25]) showed that the

constant A defined above is independent of scaling and translation.

For the rest of the discussion, we may assume without lost of generality that the the
smallest closed ball containing Y = {yo, e ,yp} is B(0,1), the unit sphere centered at

0. This can be done by the following transformation:

1_,0 p_ .0
3 . . Y Y Y Y
YV ={0,9"....9°} =10 B(0,1 3.6
{ 7y’ 7y } { Y A(Y) Y bl A(Y) }C ( ? ) ( )
We will now see how A-poisedness relates to (M) := ||M]| - [|M~!||), the condition
number of M := M(¢,Y), where ¢ is the natural basis in P? described in (3.3):
2 d—1 d
T ﬂ ‘rnfl‘rn 'T_n
¢ = {1,$1,l’2,...,(1§'n, 2 y L1L2y -+ - (d— 1)|7 d! }
Hence the Vandermonde matrix is given by:
1 0 0 --- 0 0 o - 0 0
W1 s N 01)% <1, (G- 0 @D
X 1 y% y% yrlz = y%y% (dl—.l)! (yd‘!) (37)
R “ N ~D\2 D A *27 d*lAZ /IAg d
I Logy 95 - 9h (yé) gage - (@ (;21)! Y (Jd!) |

Suppose Y C B (0,1) is A-poised, by the first categorization of A-poisedness, for any
z € B(0,1), there exists A(z) € R@*1 such that

Bx) =D Ni(x)o(") where [A()] < A

p
=0
or equivalently

¢(x) = M " X(z) where |A(z)] <A
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Since A(Y) = 1, 3§° € Y such that ||§?|| = 1, hence |[M]|| < (p + 1)% Moreover,
x € B(0,1) implies ||M|| > 1, This implies ||M| is bounded: 1 < |[[M| < (p + 1)%
Therefore to derive the relationship between x(M) and A, it suffices to determine the
correlation between |[M~!|| and A. The following theorem [25] provides us with an

explicit bound:

Theorem 3.11 (Theorem 3.14 of [25]). Suppose Y © B(0,1) is a poised, and M :=
M(p,Y) then the following holds

1. If M is non-singular, and HM‘lH <A, then'Y is \/p+ 1 - A-poised in B(0,1).

2. If Y is A-poised in B(0,1), then M is non-singular, and ||M_1|| <6 -(p+ 1)%[\.
The constant 6 > 0 is independent on and A, but is dependent on n,d.

Moreover 0 is bounded above by 1, and 4 -+/p+ 1 for d =1 and d = 2 respectively

Remark 3.12. Despite the fact that Vandermonde matrices are ill-conditioned, in practice
the upper bound of the condition number of M is generally not very large, as the degree

d is typically small (d = 1,2).

Theorem 3.11 allows us to construct a bound of the error between the object function
and the interpolation polynomial directly. In particular we will consider the case when
d = 2, where m is a quadratic interpolation of f as discussed in [25]. Note that the
result discussed in the following section can be generalized to polynomial interpolations

of any degree d.

3.2.3 Error bound of quadratic interpolation model

Let Y = {yo,...,4"} be a poised set of interpolation points in B(y°, A(Y)), where

n (d=2) (n n
pt1=(rg) =T g

Suppose we construct the scaled set of interpolation points Y asin (3.6), and partition

the respective Vandermonde matrix M as follows:

110 O --- 0 0 0 cee 0 0
~ I TG s G0 G
10 Vgt @ oooah W gla o Y @ Gy -
A :: . . . . . . . . = M
€| Q S :
D AD ~D )2 pap (Aﬁf 4= tgn gh )@
i Loy 95 - on (yé) Uiy - . (dl_l)! . (ydy) |
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where € denote the vector of all ones, and Q denote the lower right-hand submatrix
My, of M.

Before we state the error bound for the quadratic interpolation, let us first prove an

exercise from [25]:

Lemma 3.13 (Exercise 11 of [25]). Suppose M and Q are defined as in (3.8) above,
then

Q7 < far~

Proof.

By Schur complement we obtain M~ in block matrix form:

o ¢ U I 0
Tl-greay o] T [ -o ¢

Hence
MY > (17

O

The following theorem thus provides us with an error bound of quadratic interpolation
model. As we have discussed, the following result can be generalized to polynomial

interpolation models of any degree d:

Theorem 3.14 (Theorem 3.16 of [25]). SupposeY = {yo, ..., y"} is a poised in B(y°, A(Y)),
and f is continuously differentiable in an open set Q containing B(y°, A(Y)), and V2 f

is Lipschitz continuous with Lipschitz constant L > 0. Then for any y € B(y°, A(Y))

the following holds:

1. The error of the approximation of Hessian is bounded by:
IV2f(y) = V2m(y)|| < kuA(Y)

where

3-v2
2

1 A
Ky = pzLIQ7Y|
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2. The error of the approzimation of Jacobian is bounded by:
IV f(y) = Vm(y)|| < rsAY)?

where

3-(1+V2) 1.0
ny= 2D

3. The error of the approximation of function is bounded by:

1f(y) = m(y)| < kpAY)?

where

L
6

6+9-v2) 1 .
iy = CE0 VD g1

3.2.4 Summary of A-poisedness results

If the set of interpolation points Y = {yo, e, yP } is A-poised, then by remark 3.10
Y is also A-poised. This implies, by theorem 3.11, that ||[M~!|| is bounded above by:
MY <0 (p+1)7A

Combining this with lemma 3.13, we have:

QY < MY <6-(p+1)7A < oo

Therefore the constants kg, xj and kf of theorem 3.14 are all bounded above in terms of
A, which implies the errors of approximation of the i*" derivative are bounded by A and
A(Y)37% This agrees with the error bound derived by Ciarlet and Raviart (Equation
3.4, Theorem 1, [30]).

3.2.5 Model Improvement Algorithms

During the execution of of an interpolation based Derivative Free Trust Region method,
the set of interpolation points changes depending on the points reached, hence the
corresponding polynomial interpolation also changes accordingly. To retain or improve
the quality of the interpolation model, it is thus crucial to maintain the quality of the

set of interpolation points.
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In this section, we will discuss the algorithms from [25] to construct, maintain, and

improve the poisedness of a given set of interpolation points.

Given a set of interpolation points Y = {yo, e ,yq} (not necessarily poised), and the
corresponding basis of Lagrange polynomials {£;(z)} C PZ from definition 3.6 (the
Lagrange polynomials can be determined by Algorithm 1 of [25]):

1 ifi=j
0 ifij

Ui(y') = 645 =

Suppose we want to replace a point y" € Y by a new point y;,,,, we would have following

new set of interpolation points:

V" =Y\ {y"} U {Ynew )
We will have one of the following cases depending on the value of £,(y/ .., ):

If 0, (yyew) # 0 then

The new set of Lagrange polynomials {E;‘ew(x)} can be constructed as follows [25]:

Otherwise, if ¢.(y),.,,) =0 then
Since the Lagrange polynomials {/;(z)} is a basis of PZ

n?

matrix M ({¢;(z)},Y™") is singular, and the new set Y"* is not poised.

this implies corresponding

Hence the set of Lagrange polynomials provides us with a natural way to construct a

poised set from a given non-poised set Y. The following algorithm (Algorithm 2 of [25])

deals with the cases where Y is either non-poised or Y| < ("zird).

For simplicity, let us denote p by the integer such that

L1 n+d
prl={"

Note that if |[Y| < p+ 1, then M(#,Y) cannot be non-singular for any basis ¢ of P2,

and Y must be non-poised. Therefore new points must be added to Y.
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Algorithm 2 From non-poised sets to poised sets

INPUT: A set of interpolation points ¥ = {yo, . ,yq} (not necessarily poised,
g+ 1 = |Y| not necessarily equal to p + 1)
OUTPUT: A poised set of interpolation points Y, and the correspond basis of La-
grange polynomials {¢;(x)}
1: Initiate an approximation to the basis of Lagrange polynomials, the simplest example
would be the monomial basis: {¢;(z)} := {¢;(z)}.
2: fori=0,...,pdo

3: Point Selection: j; <— argmax;<j<,q 14 (y7)|
4: if |¢;(y’")] >0 and i < ¢+ 1 then

5: Swap y* and % in YV

6: else

7: y' < argmax, g [6i ()] > 4i(y') # 0 as {¢;(z)} is a basis
8: end if

9:  Normalization: ¢;(z) + é_i((;i))

10: Orthogonalization:

11: for j=0,...,p,j #ido

12: éj(:r) — Zj(x) — Ej(yl)&(x)

13: end for

14: end for

Remark 3.15. The point selection step in the above algorithm above serves three pur-
poses;

1. Includes all points in Y that forms a poised set

2. Any point makes Y non-poised will be discarded

3. If |Y| < P then it will augment Y by new points by determining argmax, g |¢;(x)|.

The normalization and orthogonalization step on the other hand constructs the Lagrange

polynomial corresponding to the constructed poised set Y.

Now suppose we are given a poised set Y in a closed ball B, the corresponding ba-
sis of Lagrange polynomials {¢;(z)}, and a constant A > 1. Recall from the second

categorization of A- poisedness from definition 3.9: Y is A-poised in B D Y if:

A > max max |{;(z)|
0<i<p z€B

If Y is not A-poised in B, then there exists index i; € {0,...,p} such that:
A1 = < A
ot = max £, (2)] >

In order to make Y A-poised, we must replace the point y* € Y by 3., € B. In

new

other words we update Y by Y"* =Y \ {y“ﬂ} U {yik } The corresponding basis of

new
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Lagrange polynomials must also be normalized and orthogonalized as in Algorithm 2,

in particular:

b, (x) + M = mal%(\&k(xﬂ <1<A
fAS

Cir, (Yriew)

The following algorithm (Algorithm 6.3 of [25]) constructs a A-poised of Y by based the

above arguments.

Algorithm 3 From poised sets to A-poised sets

INPUT: A poised set Y = {yo, . ,yp} C B, the corresponding basis of Lagrange
polynomials {¢;(z)}, and a constant A > 1

OUTPUT: A A-poised set of interpolation points Y in B, and the correspond basis
of Lagrange polynomials {/;(x)}

1: k+1

2: repeat

3: Ap_q1 maxo<;<p MaxXzeB |£,(I)|

4: if Ap_1 > A then

5: i 4 argmaxg<;<, maxgep [4i(z)|

6: Zkew < argmax;cp Mtk ('T)|

n Y ev\ {0y,

8: else

9: Ar_1 < A implies Y is A-poised and stopping criterion is satisfied.

10: end if

11: k< k+1

12: Compute and update the basis of Lagrange polynomials corresponding to Y
13: until Stopping criterion is satisfied

3.2.5.1 Summary of model improvement algorithms

Algorithm 2 and algorithm 3 provide us with a natural and intuitive way to maintain
the poisedness of the set of interpolation points during the execution of the Derivative

Free Trust Region algorithm.

In light of the correspondence between A-poisedness of Y and the condition number of
M = M(,Y), authors of [24, 25] presented two alternative methods which factorizes

M or M with LU factorization or QR factorization respectively

It was shown in [25] that these alternative methods produces similar, if not better,
results than algorithm 2 and algorithm 3. In particular, these alternative methods do
not recompute the basis of Lagrange polynomials in the alternative methods and hence

the overall complexity will be reduced.
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However, these alternative methods require additional machinery, and hence are omitted
for the purposes of our discussion. Detailed descriptions and analysis can be found in

the cited papers.

For the remainder of the chapter, an execution of model improvement algorithms

will be refereed to algorithms 2 if Y is not poised, and algorithm 3 if Y is poised.
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3.2.6 Derivative Free Trust Region Algorithm (Quadratic Interpola-
tion based)

In this section we will discuss the main algorithm of the quadratic interpolation based
Derivative Free Trust Region method,and conditions that guarantees global convergence

to second order local optima [25].

3.2.6.1 Derivative Free Trust Region (Quadratic interpolation)

The main algorithm of Derivative Free Trust Region (Algorithm 10.2, 10.4, 11.2 of [25])

is as follows:

Algorithm 4 DFO Trust Region method

INPUT: Initial solution xy € €2, maximum radius A,q; > 0, initial trust region radius

Ag € (0, Apaz), a set of interpolation points Yy, and mg the set of Lagrange polynomials
corresponding to Yy
Constants: p > f > 0, w € (0,1), ;1 € (0,1), 17 > 1 > v > 0, €. > 0, poisedness
coefficient A > 1, poisedness improvement threshold A;p,, and an arbitrarily small
stopping coefficient ¢ > 0
OUTPUT: A local (possibly global) optimum that satisfies second order optimality
conditions
1: k<0
: 1ho < mo; Jo < Vmo; Hy < Vmg
o = max { o, ~Amin (Ho) }: Yo < Yo

: repeat

if 57" > €. then
mp < ﬁzk; Yk < Yk; Ak < Ak

2

3

4

5: Criticality step:
6

7

8 else if Ay > puopt OR Y} is not A-poised in B(xy, Ay then
9

Invoke criticality step with (A, w, p, xk,ﬁk,}ufk) > (1)
10: Obtain 77y, and Y A-poised in B(zy, Ay) > Ay € (0, po]
11: mg < my; Y < Yi; A < min {max {Ak, 66}?} ,ﬁ%k}
12: else
13: my < Mg; Yi < Yfk; Ay — Ay

14: end if

15: Step computation:

16: Compute step s, and :z:z — xp + Sk € B(xg, Ag) > (1)
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17:

18:
19:
20:

21:
22:
23:

24:
25:
26:
27:
28:

29:
30:
31:
32:
33:
34:

36:
37:

38:
39:

Point acceptance:

if pr > n1 then
Successful step: .1 < x:; increase or retain A by radius update step
Generate Yj41 by applying model improvement algorithm to Yj, U {#;41} on
B(&ks1, Aet1)
else if 71 > p, > 0 AND Y} is A-poised in B(zy, Ay) then
Acceptable step: Zp41 < ac;:, reduce A by radius update step
Generate Y@H by applying model improvement algorithm to Y3 U {Zx41} on
B(#k41, A1)
else if 71 > pr AND Y} is not A-poised in B(xg, Ay) then
Model improving step: Tp,1 < x
Generate YkH by invoking model improvement below
else if p, <0 AND Y} is A-poised in B(zk, Ag) then
Unsuccessful step: reduce Ap by radius update step, everything else
remains unchanged, i.e. 41 < 2 and Y/;H_l ~— Y.
end if
Model improvement:
if 71 > pr AND Y} is not A-poised in B(xy, Ay) then

repeat
Apply model improvement algorithms to Y; on B(xzy, Ag)
until Yy is at least (A + Ajy,p)-poised
lv/kH  Yi; My is the set of Lagrange polynomials corresponding to f/kﬂ
end if

Trust region radius update:

,

{min {1 Ak, Amax } } for Successful step AND A, < Bo}"
[Ag,min {712, Amax}] for Successful step AND A, > o)

Ak:—i—l € 9 {Ax} for Acceptable step
{Ax} for Model improving step
{7AL} for Unsuccessful step

k< k+1

until Ay < €
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(f): Criticality step invoked in the algorithm can be described as follows [25]:

Note that the following algorithm is invoked only if in the k** iteration:

1. 5;" < e AND one of the following holds:

2. e Ap> s

e Y} is not A-poised in B(xy, Ag

Algorithm 5 Criticality step

INPUT: A set of interpolation points Y, a point = € Q, trust region radius A, and
constants w € (0,1), u > 0, and poisedness coefficient A > 0.
OUTPUT: A A-poised set Y in B(z, A)

1: i < 0; let m(x) denote the interpolation model associated with Y, and let o := o}

be computed as in (3.9)

2: repeat

3: Apply model improvement algorithm to Y on B(z, AY)

£ A A

5: 11+ 1

6: until A < u(0)? OR 'Y is A-poised in B(xz, A)

(1): Step computation: At the k*" iteration, to compute the step sj, we consider the

local model problem known as the Trust Region Subproblem on my(z) € P4:

sp= min mg(zk + 8)
s€B(0,A)

1
where my(xp + 8) = mg(z) + s gk + §STHksT

and gj, == Vmy(xy); Hp := V>my(zy)

The Trust Region Subproblem is a well-studied problem in many literatures, and there

are a handful of ways to generate possible solutions.
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The most natural choice of the step direction s; would be the Cauchy step: the direction

of steepest descent. The Cauchy step is sj is given by:

si = —t5 o
where tkc = argmin my (g — tgr)

120,z —tgr € B(zk,Ak)

The change of function value by taking the steepest descent direction is bounded below

by:

Theorem 3.16 (Theorem 10.1 of [25]).

1 . 9k
my(zr) — my(xp + Skc) > =|lgxll mm{ g Ak}

However, to ensure global convergence to local optima with second order optimality
conditions, we must take care of the negative curvature of the interpolation function
my(x). Therefore we will have to consider, in addition to the steepest descent direction

alone, the path of greatest negative curvature in the step generation:

Assume Apin(Hi) < 0, where Apin(Hy) is the smallest eigenvalue of Hy, then the
etgen step SE is the eigenvector of Hj (or the principal direction) corresponding to

Amin(Hi) < 0 satisfying the following conditions [25]:
(s5) " gr <0, lIsgll = A, (s5) " Hi(55) " = Amin (Hy,) A

The change of function value by taking the eigen step is bounded below by:

Theorem 3.17 (Lemma 10.2 of [25]).

1
mk(Tk) — mk(a:k -+ ng) Z _§Amin(Hk)A%

For the convergence of the algorithm, the explicit Cauchy steps or eigen steps is not
required; instead we are only required to obtain a step s that improves the value of my,
by a fraction of Cauchy or eigen step, in particular we would require the following to
hold:

my () — mi(zg + s;) > K [me(er) — min {mg(zx + 55 ), me(zr + s7) ]

> z max { | gx|| min { (73] 7Ak} ) _/\min<Hk>A%} (%)
2 [ H |

where k € (0, 1] is a constant, and the second inequality (x) is given by Theorem 3.16
and Theorem 3.17.
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3.2.6.2 Global convergence of Derivative Free Trust Region

To establish the convergence of the main algorithm, let us make the following additional

assumptions about f and the interpolation model my(z) [25]:

1. Given an initial state 2y and a maximum radius A4z, f is continuously differen-

tiable, and Lipschitz continuous in Ley,;(zg), where:

L(zo) = {z € R"|f(z) < f(x0)}
Lenl(xﬂ) = U B(ZL‘, Amax)

x€L(xo)

2. f is bounded below in L(xg).

3. |[Hg|| is bounded above for all k, where Hj, denote the Hessian matrix of the

polynomial approximation my(z) in the k™" iteration

Furthermore, we require a notion to measure the second order optimality condition of

the interpolation model my(z) at the k' iteration:

op = maX{Hng, _>\min<Hk)} (3'9)

where g, = Vmy(x), H; = V?my(z), and A\pnin (Hy) is the smallest eigenvalue of Hj,.

Remark 3.18. As o' — 0 then both |[|gx|| — 0, and —Ayin(Hy) — 0, which implies

Vmy(xr) = 0, and V2my(x) is positive definite respectively.

Conn, Scheinberg and Vicente [25] proved that, with the assumptions above, the quadratic
interpolation based Derivative Free Trust Region method with step satisfying (%) achieves

second order limit-type global convergence to local optima:
Theorem 3.19 (Theorem 10.24 of [25]). Suppose the above assumptions hold, then

lim o, =0
k—o0

where o == o} = max { ||V f(zx)|l, ~Amin(V2f (2x) }

By remark 3.18, the main algorithm converges to a local optimum satisfying second order

optimality conditions

This theorem suggests that Derivative Free Trust Region method only guarantee global

convergence to local optima, similar to the classical Trust Region method.

In the following section we will discuss ways to escape local optima withe technique

borrowed from Simulated Annealing.
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3.3 Escaping local optima with Metropolis criterion

Recall from section 2.5.1, Simulated Annealing method escapes local optima by accepting
uphill moves that could potentially worsen the objective function value. An acceptance
rule is employed depending on the adaptation of the algorithm, to decide whether uphill

moves should be accepted

Thus in this section, an acceptance rule is incorporated to enable acceptance of uphill
moves. In particular, we will incorporate Metropolis criterion into the point acceptance

step:

Point Acceptance with Metropolis Criterion

1. Compute py:

Pk = )
my,(zx) — my ()
2: if pr > 11 then
3: Successful step: T xz; increase or retain Ay by radius update step
4: Generate )v/k_H by applying model improvement algorithm to Y U {Zp41} on

B(Zhy1, Apy1)

5: else if 1 > pr, > 0 AND Y}, is A-poised in B(zy, Ax) then

6: Acceptable step: Ty + xz, reduce Ay by radius update step
7: Generate Yfkﬂ by applying model improvement algorithm to Y U {Zx+1} on

B(Fr11, A1)

8: else if 7y > pr AND Y} is not A-poised in B(zy, Ay) then

9: Model improving step: &p,; < xg

10: Generate Yfkﬂ by invoking model improvement below

11: else if prp < 0 AND Y}, is A-poised in B(zg, Ag) then

12: Unsuccessful step:

13: Generate p € U[0,1]; —=Af « f(zx) — f(z})

14: if exp (g—ﬁ{) < p then

15: :1:;: treated as an acceptable step:

16: Tht1 xz, reduce Ag by radius update step

17: Generate iu/kﬂ by applying model improvement algorithm to Y3 U{Zx+1} on
B(#gt1, Apta)

18: else

19: Reduce Ag by radius update step, everything else remains unchanged, i.c.

i‘k+1 < xp and ?k+1 Y
20: end if
21: end if
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Remark 3.20. We have modified the unsuccessful step by the Metropolis criterion:

i —Af
P —mm{l,exp <§Ak)}

where — Af = f(xg) — f(2]), and £ € Ry

This will only occur when Yj is A-poised in B(xg,Ar) and pr < 0 (& Af > 0).
Furthermore, as k — 400, Ar — 0 (lemma 10.20 of [25]), we can replace temperature
function t; by a scaled trust region radius € - Ag. The scaling constant £ € Ry will

thus determine the initial temperature and the rate of cooling.

This allows us to accept uphill moves with probability Py; = exp <%), which vanishes

k
as & A — 0.

In the following section, we will address the shortcomings of Simulated Annealing by
utilizing the search direction sj in determing a ”good” neighborhood function N of the

Simulated Annealing algorithm.

3.4 Topological Annealing

In this section we will address the insensitivity of Simulated Annealing towards topolog-
ical information. We present a new approach, Topological Annealing, which utilizes the
search direction s; generated by the Derivative Free Trust Region method described in

the previous sections to generate neighborhoods.

Topological information can be incorporated into Simulated Annealing in different forms
with different behaviors depending on the Derivative Free Optimization method used to
generate the local search direction. We will demonstrate below the bidirectional version

using search direction sy generated by Derivative Free Trust Region method.

Recall from section 3.2.6: when given an unconstrained optimization problem with ob-
jective function f, for each iteration k the algorithm finds a quadratic polynomial inter-
polation my on a A-poised interpolation set Y;. And from the interpolation model my
we determine a suitable step s; by solving the Trust Region Subproblem on my:
: T Lr T
Sp = seg(l(l)&k)mk(xk) +5 g+ 5 Hy.s

where gy, := Vmg(zr); Hy := Vimy(zy)

Furthermore, it was shown that, if s; contains a fraction of improvement of the Cauchy

step and eigen step, then the algorithm converges globally to a local (global) optima
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with second order optimality condition, therefore the step s should satisfy:

mi(z) — mi(zk + sk) = K [me(zr) — min {mg(z, + s, mp (@ + skE)}] (0)

where £ € (0, 1].

As the Trust Region radius vanishes Ay — 0, so does the error |Vif — Vim| — 0.
Therefore we may assume, without lost of generality, that topology of the hyper-surface
defined by the interpolation polynomial m is a good approximate of the hyper-surface

defined by f; and hence s is a good approximation of the Trust Region Subproblem of
f.

With this idea in mind, we turn our attention to the framework of the Simulated An-

nealing algorithm:

Suppose at the k¥ iteration of the Simulated Annealing algorithm, we are given a point
xr € Q C R™ Without prior knowledge of the objective function f, we choose the
neighborhood N (z}) to be an (n — 1)-dimensional sphere of radius Ay := A(¢y), where

ti is the temperature parameter, i.e.
N(zy) := B(xg, Ag)

Instead of choosing a new candidate point uniformly from N(zj), we compute the

quadratic (d = 2) interpolation based Trust Region search direction s as follows:

1: Sample p+ 1 := (";2) points Yy from N (xy)

2: Apply model improvement algorithms to Y until Y is A-poised in N ()

3: Generate quadratic polynomial interpolation m € P2 of f on Y.

4: Generate step sp by solving Trust Region Subproblem of m such that the search

direction sy satisfies the inequality (O)

Remark 3.21. For simplicity of the above algorithmic expression, the set of interpolation
points Y} are re-sampled and readjusted with model improvement algorithms in each
iteration. However, in practice we might wish to recycle the interpolation points Y} for

the (k + 1)% iteration.

Suppose we let 0}, := 6(s),) be the angle of s, relative to an arbitrary fixed reference axis
x" in some basis B of R™ centered at x;. We generate the ellipsoidal neighborhood with

the Trust Region search direction s; as follows:

1: Scale N(xy) by Ak + ||sk|| in the +2" direction
2: Rotate N(z) by 05 (align B with sy,)

3: Scale N(z) by m in all directions
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Remark 3.22. Scaling of directions (step 1 and 3) can be done by multiplication by
diagonal matrices, hence the operations described above is a composition of diagonal
action and rotation, which is an affine transformations on N(xj), which preserves the

geometry of the neighborhood.

This modification of the neighborhood N(zj) allows us to incorporate topological in-
formation of the objective function f into Simulated Annealing. As we search for new
candidate points uniformly on the modified neighborhood, we take larger steps bias to-
wards local optima that satisfies second order optimality conditions, and at the same

time larger steps away from such local optima to avoid being trapped.

On the other hand, this also allows us to take smaller steps that are not directed towards

any local optima, thus increasing the efficiency of the overall algorithm.

Remark 3.23. Similar approaches can be applied with any Derivative Free Optimization

method that generates reasonable search directions.

For instance, we can utilize directional search methods, such as Generalized Pattern
Search [25], which generates a set of (n + 1) to 2n possible directions with a positive

spanning basis Dy and chooses one d € D;, as the local search direction.

Positive spanning bases Dy guarantee an existence of a descent direction of the objective
function f (Theorem 2.3 (iv) [25]) as there exists d € Dy such that —VfTd > 0.
Therefore in each iteration of Simulated Annealing, instead of generating a random
point from a neighborhood of x;, we can choose a new candidate point uniformly from

the finite set {x + d|d € Dy}.

Remark 3.24. It is worth noting that, whilst Topological Annealing with Trust Region
direction searches for new points from an infinite set per iteration, it is biased towards
second order optimum. Topological Annealing with positive spanning bases, on the
other hand, searches for new points within a finite set per iteration and is only biased

towards first order optimum.
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Conclusion

In this research paper, we presented and discussed properties of two major algorithms,
namely Simulated Annealing (SA) and Derivative Free Trust Region (DFTR) to solve

global optimization problems using only the values of the objective function.

Using techniques from DFTR method, and the quadratic interpolation of the objection
function, we can generate search directions that leads us to second order local optima.
By incorporating hill climbing techniques from SA, we allow DFTR to bypass local

optima by accepting points that might worsen the objective function value.

We discuss the insensitivity of Simulated Annealing towards topological information and
present a new approach, the Topology Annealing (TA) which incorporates modifications
that takes into consideration topological information using Trust Region search direction

to generate neighborhood function.

TA comes in different flavors depending on the Derivative Free Optimization method
used to generate search direction, and is theoretically effective in solving for global
optimum in continuous optimization problem with strong non-linearity. Future research
will include implementation of TA, and further enhancements of TA by incorporating

the notion of positive spanning basis Dg;.

45



Appendix A

Single Vessel Loading Problem

In this Appendix, we will show how we can adapt the components of Simulated Annealing

to solve real life global optimization problems involving “Black-box” model.

A.1 Problem Description: Single Vessel loading problem

A container port terminal is a facility that stores, handles, and transfers containers
to various container vehicles and vessels for onward transportation. Containers placed
in the yard of the port terminal are organized into blocks, and each block is further
partitioned into stacks consisting of column of containers. This is illustrated in Fig A.1

below.

F1GURE A.1: The figure on the left shows an example of a block in the yard, whereas
the figure on the right is a stack of containers within a block. Containers are sorted
into different categories, which are represented by different colors.

46
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hatch cover —>

bay 1 bay 2 bay 3 bay 29 bay 30

FIGURE A.2: This is a simplified representation of a container vessel’s loading plan.
Once again containers are sorted into different categories, and are represented by dif-
ferent colors.

Prior to entering the port terminal, container vessel provides the port terminal with a
list of containers to be loaded onto the vessel also known as the vessel loading plan. Fig
A.2 is a simplified representation of a loading plan. The port terminal then generates an
extraction list, a list of containers in the yard to be loaded on to the vessel that matches
the specification of the loading plan. The objective is to determine the most efficient

way for the port terminal to load a single vessel.

A.1.1 Definitions and Assumptions

Given a vessel and its vessel loading plan, let {2 be the set of extraction lists that satisfies
the vessel loading plan. i.e. w € € is a sequence of containers from the yard that maps

bijectively onto the vessel loading plan.

Since containers are organized into blocks of stacks in the yard, we cannot physically
move a container when there are other containers stacked on top of it, and hence we

have the following definition:

Definition A.1. A container extraction move is called a productive move if the
container is loaded directly from its stack to the vessel. Otherwise it is called a non-

productive move



Appendix A. Single Vessel Loading Problem 48

Example A.1 (Non-productive move). The following figure illustrates an example of
non-productive moves. Containers #258 highlighted in the figure below can only be loaded
by first removing the three #516 containers on top, resulting in three non-productive

moves when relocating the three #516 containers.

FicURE A.3: The figure on the left shows the stack prior to the loading move, and
the figure on the right shows the stack after the loading move. Notice the three #516
containers are moved out of the way but still remains in the stack

Example A.2 (Productive move). The following figure illustrates an example of a pro-

ductive move. Container#258 can be loaded onto the wvessel directly where no non-

productive move is required.

510 500

510 500

510 500

510 500

FIGURE A.4: The figure on the left shows the stack prior to the loading move, and the
figure on the right shows the stack after the loading move. Since no containers are in
the way, we can load container #258 straight into the vessel.

Therefore given a vessel loading plan, we may conclude that the "most efficient way to

load a vessel” is equivalent to determining an extraction list such that the number of



Appendix A. Single Vessel Loading Problem 49

non-productive moves is minimized. Hence we define the objective function as follows:

f:Q—=N

w — Non-productive moves of w

In other words we would like to solve the following optimization problem:

min {Total number of non-productive moves of extraction list}

such that Containers in extraction list satisfies the vessel loading plan

or equivalently:

minf(w) (1)

stw e Q

Furthermore, we will make the following assumptions:
1. Containers are classified into different categories; containers that belong to the
same category are interchangeable

2. There is an existing black-box algorithm to compute the objective function f :

Q0 — N for any given w € 2.
3. There is an existing black-box algorithm to determine a feasible extraction list

wo € €2, which will act as the initial guess.

Moreover, we would assume extraction lists w € {2 are represented by sequences of

containers of the following form:
w = {z1,29,...} ,
N— ——

each z; represent a container

where z; := {yard location, category, bay location}

A.2 Simulated Annealing Configuration

To solve (f) with Simulated Annealing, we must set up the components of Algorithm 1

describe in Chapter 2, section 2.3:



Appendix A. Single Vessel Loading Problem 50

Acceptance Function:

For simplicity, we adopt the Metropolis criterion as the acceptance function:

P, = A(zg, Tpew, ti;) = min {l,exp (tAf) }

k

Temperature Schedule:

Set tg = oo, define the cooling schedule as the exponential schedule:
tk; = Uk; = exp (—E>
@

where « is a control parameter adjustable depending on the size of the problem.

NOte that a repetition schedule is not employed in this case, therforeU;"* = Uj.

Neighborhood function
To maintain feasibility of extraction list, the sequence of category extracted must

remain the same. Hence the neighborhood function A (w) is chosen as follows:

N:Q—=DCPQ)
w = {N(w)} = N(w)

where for each extraction list y € N(w), the sequence of container categories of y
must be the same as that of w. In particular, we can move from w to y € N(w)
by:

1. Pick a container in x in w

2. Obtain the container’s category c(x)

3. Find other containers in w of the same category, i.e. determine the set C(z) :=
{Zew|c(z)=clx)} Cw

4. Shuffle and replace the original set C'(x) in w

The amount of change of neighborhood is completely determined by the size of
C(z), and therefore |C(z)| is controlled by the temperature function. In this ex-
periment we set: |C(z)| = max {[/ - tx], 1}, where 3 is another control parameter

adjustable depending on the size of the problem.

In step 4 above, points in C'(x) are chosen uniformly, which also serves as the

candidate distribution.
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A.2.1 Experimental Results

The following diagram is a simplified version with 26 containers. Two categories have

been highlighted to indicate the precise swaps performed between the iterations

Input Simulated _ Output

Annealing

Origina lztion Eay lomation GCE |Catzzory Originalleation Bay lcation G0f [Catezoy
[z s 2 1 ) 2 1 3 2 ) v 2 E) 2 1 o 2 1 El 2 =8
= 3 z 1 B 1 1 3 2 58 »[ 2 5 2 1 B 1 1 = z 58
5 5 1 B 1 5 3 2 52 3 5 1 B 1 5 = z 52
4 z 1 1 3 3 1 1 55 4 4 1 1 3 3 1 1 s
6 3 1 Y 3 B 1 1 3 5 4 1 Y 3 B 1 1 3
[ B s 1 31 z 10 1 1 = [ a2 = s 1 31 B 10 1 1 =
Lz 4 s 1 51 2 10 1 1 s [ P 5 1 31 2 10 1 1 s
B 2 1 N 7 5 1 1 11 B 2 1 E 2 [ 1 1 11
6 3 1 1 2 1 1 1 [ 3 2 1 1 2 1 1 1 52
4 1 1 1 2 5 1 1 56 a 2 1 1 2 3 1 1 56
3 2 1 1 1 1 1 1 &2 5 3 1 1 1 1 1 1
5 3 1 1 1 5 1 1 52 5 5 1 1 1 5 1 1
[ = 2 1 1 3 m o 1 1 = [ = 2 1 i 31 1 8 1 1
|2 3 5 1 31 1 10 1 1 5 | s 3 5 1 31 1 10 1 1
5 5 z 1 a 1 z z &0 4 3 z 1 4 1 2 z %0
& 6 2 1 3 1 2 2 €0 B B 2 1 3 1 2 2 =
5 2 2 1 5 3 2 z &8 5 z = 1 & 3 2 z 58
[ = 3 B 2 o B 3 2 2 S8 [ 2 2 1 2 1 s 3 F] 2 S8
[ 2 1 3 1 z 5 7 g 58 o3 3 5 2 1 2 3 2 2 58
5 ] 2 1 o o 2 2 54 a4 a4 2 1 2 £ 2 2 54
5 & 1 51 z 1 2 z e} 5 5 1 31 z 1 z z 5
[ = 3 5 1 31 2 2 2 2 s { 1 5 s . 31 2 2 2 2 s
5 a 1 B 1 5 2 2 ) B 3 1 En 1 H 2 2 i3
5 4 7 31 1 3 z z = 5 3 1 31 1 3 2 z 3
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Non-productive moves: 34 Non-productive moves: 26

FiGURE A.5: Simplified input and output of Simulated Annealing applied to Single
Vessel loading problem

The resulting extraction list is clearly feasible, and has a better objective function value.

In practice loading of a single vessel normally involve a large number of containers and
the extraction list gets pretty large. In the following experiment we look into a bigger
extraction list with 226 containers, where o = 650, 8 = 4. The horizontal line represents
the objective function value of the initial guess, and accepted solutions are labeled by a

circle o, while rejected solutions are also displayed.

Note that each step of the annealing chain exhibits the behavior of a pure random search,

and it also exhibits the behavior of a Boltzmann distribution.



Appendix A. Single Vessel Loading Problem
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