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Abstract

Segmentation of brightfield microscopy images can provide useful information about
the behaviour of the cells to biologists. However, its features: poor contrast, broken halo,
and missing boundaries, bring great challenges for programmers to develop an automated
algorithm that can detect the boundaries of the cells as accurately as the human eye.

In this paper, we present two algorithms based on graph-cut segmentation via Bhat-
tacharyya measure to segment cells in brightfield images. The first model, referred to as
the global-local technique, is a two-step procedure. It begins by segmenting the entire
image to obtain a global information, the location of isolated cells or groups of cells. It is
then followed by a segmentation process that focuses on individual blobs to obtain a re-
fined segmentation result of that specified blob. The second model, referred to as the \;-Ay
technique, is also a two-step process. It uses the effect of under- and over-segmentation
that result from two different parameters, A; and As, to obtain a result that is in-between.
The effectiveness of both methods are demonstrated on C2C12 cells of brightfield images.
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Chapter 1

Introduction

All living organisms are made of cells. By studying its behaviour, biologists can attain
valuable information to aid them in the development and discovery of tissue engineering,
stem cell research, drugs, and other related fields [15]. Behaviours of cells, which includes
movement, change in area and shape over time, can be studied by observing the position
and/or the outline of the cell using a time-lapse microscopy. Time-lapse microscopy is a
way of photographing a set of objects at regular intervals for a fixed period of time using
a microscope. Each experiment produces hundreds of images, referred to as a frame, with
tens to hundreds of cells per frame. Manual detection and segmentation of each cell can
be tedious and error prone. Thus, a way to find the outlines of cells automatically, or
semi-automatically, has been of great interest to many researchers in the field of medical
imaging for several years [14].

Image segmentation is a process of locating the boundaries of objects in a given image.
One of the most challenging problems that programmers face is developing a segmentation
method that can detect edges of an object as accurately as the human eye [I1]. Some
common cell images that have been studied in this field are fluorescent and brightfield
images (see Figure 1.1). Fluorescent and brightfield images have their own advantages and
disadvantages to biologists and image processors. These will be discussed in the rest of
this chapter.

Fluorescent images are produced by labelling cells with protein markers that will flu-
oresce when exposed to light of a particular wavelength. When a cell is successfully fluo-
resced, a bright, convex shaped object that can easily be distinguished from its background
appears [8][13]. This high contrast feature of fluorescent images brought success to various
segmentation techniques, such as level set segmentation (see Figure 1.2 left) [8]. However,



Figure 1.1: A frame of cells imaged using fluorescent microscopy (left) and brightfield
microscopy (right).

fluorescent markers are object-specific. That is, only those organelles, such as the nucleus,
that are labelled with special proteins will fluoresce under a fluorescent microscope. For
experiments that require information on the morphology of the cells, fluorescent images
alone are insufficient. In addition, studies have shown that the agents that are used to
fluoresce molecules can cause unwanted damage or destruction of the cell [1][12]. Fur-
thermore, disappearance and reappearance of cells have been of great issue in fluorescent
images. This forces biologists to guess if a cell that has made a sudden appearance in
the middle of an experiment is a result of cell differentiation or limitation of fluorescent
microscopy imaging. Although fluorescent images are suitable for some biological studies,
its aforementioned features makes them insufficient to study the change in shape of the
entire cell, as well as an unreliable way to track the behaviour of a cell, over time [16][17].

Brightfield microscopy is one of the other microscopy techniques that is commonly
used today. In brightfield microscopy, a sample is illuminated from below with white light,
and observed from above. When light is emitted, the complex structure of a cell absorbs
light to various degrees. This results in a non-uniform blotches of dark and bright spots
depicting a cell on a uniformly gray background (see Figure 1.1 right). As light tries to
pass through the cell membrane, its thickness distorts and reflects the path of the light.
Distortion results in a black belt portraying the border of the cell, and the reflection creates
a brightened light around the border called a halo, giving emphasis of the cell’s boundary
on a brightfield image [14]. Unfortunately, a well-connected halo is not present in all cells



Figure 1.2: Level set and graph-cut method on fluorescent and brightfield images. Left:
Level set method performed on a fluorescent image. Centre: Level set method performed
on a brightfield image. Right: Graph-cut method performed on a brightfield image.

of brightfield images. Only those that are round have a relatively clear outline with respect
to its background. Others, such as flattened cells, tend to have broken boundaries and/or
partial halos because the thickness of the membrane is not able to distort and reflect enough
light to create a distinguishable cell-to-background contrast. Although brightfield images
provide enough information for biologists to study cell’s morphology and is a reliable way
to track a cell’s activity, the low contrast between the background and the cells, as well as
its discontinuous to absent halo brings great challenges for programmers to segment (see
Figure 1.2 centre).

The difficulties involved with segmenting brightfield images have challenged many re-
searchers in the field of image processing. Numerous work on segmentation of brightfield
images have been published with a broad range of approaches. Some models use the
solution of the transport of intensity equation to produce high-contrast images. These
high-contrast images are then segmented using basic segmentation methods. However,
various results found that this technique is sensitive to noise. In [18], Wu et al. presented
a statistical approach by using a thresholded variance map. This approach is not appli-
cable to images containing multiple cells, and requires specific modifications of the image
data. In [8], Bradbury presented an approach based on K-means clustering and spectral
partitioning to separate variances. However, to segment images with multiple cells, this
method required prior information on the location of the cell, and multiple cells could not
be segmented synchronously.

The goal of this project is to develop an algorithm that can segment cells in brightfield



images as accurately as the human eye with minimal user input and no prior information of
the cell. We present two techniques based on graph-cut approach with a statistical measure,
the Bhattacharyya measure, to solve this problem. The first technique, the global-local
technique, involves segmenting an image with multiple cells to determine the location of
each cell or collection of nearby cells. Each blob is isolated and segmented individually
to obtain a detailed result. The second method, the A;-As algorithm, involves using two
different sets of parameters to obtain a segmentation.

The remainder of this paper is arranged as follows: Chapter 2 contains background
information on graph theory and a brief introduction to a statistical measure, the Bhat-
tacharyya measure; Chapter 3 describes the application of graph theory and Bhattacharyya
measure in image processing, followed by two new algorithms that can be used to segment
cells in brightfield images; Chapter 4 presents and compares the results of two methods
proposed in the previous chapter, and Chapter 5 is the conclusion of this paper.



Chapter 2

Background

In this chapter, we describe the background knowledge that is required to understand
the formulation that was used in the development of the methods to segment brightfield
images. Both methods presented in Chapter 3 uses one of the popular methods in computer
vision to segment images, graph-cut. The method presented in this paper differs from other
graph-cut approaches, in that it uses a statistical measure known as the Bhattacharyya
measure. Therefore, we will give a brief introduction to graph theory, followed by an
overview of the Bhattacharyya measure.

2.1 Graph Cut

A graph G = (V,€) is defined as a set of nodes (vertices) V and a set of edges £ that
connect the nodes. As in Figure 2.1, a graph usually contains two additional special nodes
called terminal nodes, which are referred to as the source, s, and the sink, ¢, node. An
edge e € £ that connects an unordered pair of nodes p,q € V is denoted e = {p, ¢}, and
is referred to as an undirected edge. Edges that connect ordered pair of nodes result in
two distinct types of edges called directed edges, and are denoted (p,q) and (q,p). That
is, while an undirected edge {p,q} is the same as {q,p}, directed edges (p,q) and (q,p)
arc distinct (sece Figure 2.1). In this paper, we will make references to undirected edges
only, thus all edges will simply be referred to as ‘edges’ rather than ‘undirected edges.” In
addition, edges can be further categorized into two types: n-links and t-links. Edges that
connect a pair of neighbouring nodes are called n-links, while edges that connect nodes
to terminal nodes are called t-links, where n stands for “neighbours” and t stands for
“terminals.” All edges in a graph are assigned some weight, or cost, w,.



(a) Undirected Graph (b) Directed Graph

Figure 2.1: Graphs. Circles represent nodes and lines/arrows represent edges. Coloured
nodes, s and ¢, are terminal nodes, and lines with arrows (right) are directed edges.
Coloured edges are t-links and black edges are n-links.

2.1.1 Min-Cut and Max-Flow Problems

An s-t cut, or cut, partitions the nodes of a graph into two disjoint subsets, S and 7. A
cut C is a set of edges in &£, that are involved with separating the nodes into two disjoint
subsets, S and 7. That is, an edge {p,q} € Cifp e S, ¢ € T,and SNT = (. In
combinatorial optimization, the cost (capacity) of a cut C, is defined as the sum of the
costs of the edges that it severs,

Cl =) w..

ecC

To solve a min-cut problem of a graph, means to find a set of edges that give the smallest
cost value among all possible cuts. The solution generates a segmentation that is optimal
in terms of the properties that are built into the edge weights, which differ from problem to
problem. Chapter 3 will describe a way to assign appropriate weights to segment brightfield
images.

Given a sequence of distinct edges that connect s to ¢, the largest weight among the
edges in the set is referred to as flow. A determination of maz-flow to the corresponding
graph allows one to find the solution to the min-cut problem with ease using the max-
flow /min-cut theorem, which states that the value of the maximum flow is equal to the
minimum cut capacity [1]. In other words, by finding a flow that saturates a set of edges
from s to t, one can find a cut that divides the nodes into two disjoint sets S and 7T, which
correspond to a minimum cut. Thus, a problem of finding min-cut or max-flow of a graph
is referred to as maz-flow/min-cut.



2.1.2 Algorithms to Compute Max-flow/Min-Cut

There are many algorithms that can compute the maximum flow of a graph, such as aug-
menting paths [J] and push-relabel [10]. However, implementation of these algorithms
tend to be inefficient when applied to vision problems. In [7], Boykov and Kolmogorov
introduced an innovative algorithm that was able to solve the max-flow/min-cut problem
efficiently. Implementations presented in this paper used the graph-cut algorithm intro-
duced by Boykov and Kolmogorov in [7].

2.2 The Bhattacharyya Measure

To address the issue of low contrast in brightfield images, intensity distributions are care-
fully considered. The difference in intensity profiles can be detected using the Bhat-
tacharyya measure B(f, g), which evaluates the amount of overlap (or similarity) between

two distributions f and ¢:
B(f.9) =Y VFf(2)g(2), (2.1)

zEZ

where z is a dependent variable of f and g, and Z is a set that contains z.

Consider two identical distributions f and g as in Figure 2.2 top-left. If f and g are as in
Table 2.1, then the product of the two distributions sum to 1. That is, the Bhattacharyya
coefficient of f and g is 1, while the sum of the ratios is equal to the cardinality of Z.
Conversely, two non-overlapping distributions f and ¢ as in Figure 2.2 top-right (example
depicted in Table 2.2 for some 1,2 > 0 and ¢; < €3), the Bhattacharyya coefficient tends
to 0, and the sum of the ratios approach to infinity as 1,69 — 0. Thus, the difference
between the Bhattacharyya measure and the sum of the ratio is smaller for two similar
distributions than of two very different distributions. Although it may be enough to use
the Bhattacharyya coefficient alone to determine the similarity of two distributions, since
0 corresponds to no overlap between distributions, and 1 to a perfect match, it can be
further compared by observing the discrepancy between the Bhattacharyya coefficient and
the sum of the ratios.



1) | o2) | VIR®) | /1

z

9
0 [0.005 [ 0.005 0.005 1
1 | 002 002 0.02 1
2 [ 0.025 | 0.025 0.025 1
3 1005 | 0.05 0.05 1
4 | 02 | 0.2 0.2 1
5 | 04 | 04 0.4 1
6 | 02 | 0.2 0.2 1
7 1 0.05 | 0.05 0.05 1
8 10.025 | 0.025 0.025 1
9 | 0.02 | 0.02 0.02 1
10 | 0.005 | 0.005 0.005 1

[Sum | 1 [ 1 | 1 | 11 |

Table 2.1: Example of identical functions f and g.

2 1) | 92) | VIRaG) | /1
0 0.01 | & V0.01e, oo
1 0.04 | &9 /0.04e, 0.04
2 0.25 | & V0.25¢5 02
3 04 | e 0.4s5 g4
4 0.25 | & V/0.25¢5 025
5 0.05 | &9 /0.05¢9 0.05
6 €1 €9 VE1E2 \/%
7 g1 | 0.15 0.15¢; =L
8 e | 0.7 V0.7el 3
9 e1 | 0.15 0.15¢; =L
10 €1 €9 VEIE2 g—;
|Sumassl,€2—>0| 1 | 1 || 0 | 00 |

Table 2.2: Example of non-overlapping functions f and g.



Figure 2.2: Bhattacharyya Measure and Ratio Comparison. The functions f (blue) and
g (red) are shown on the top row. +/f-g (green) and \/g (purple) of its respective

distributions are displayed in the bottom row. The difference between /f - g and \/g is

less than 1 for identical distributions f and g (bottom-left), while the difference is greater
than 108 for non-overlapping distributions (bottom-right).



Chapter 3

Methodology

The main algorithm presented in this paper that is used to segment objects from the
background of image I, evolves from the Bhattacharyya measure that is introduced in
Section 2.2. Suppose p represents the pixel-location of an image I, and I, contains the
intensity value of the image at p. Let L be a binary mask whose elements L, € {0,1}
describe the labels of p'. If we let M to be a learned distribution of the background (or
object), and Ppr (or Pre) a distribution of the regions in I that correspond to L, =1 (or
L, =0), where RY = {p € P|L, = 1} and R¥ = {p € P|L, = 0}, then we want to find L
such that
m?XB(PRf,M),

since larger Bhattacharyya coefficients correspond to more similar distributions, which is

equivalent to
mLin —B(Pge, M). (3.1)

However, optimization of (3.1) has been found to be difficult, and computationally expen-
sive [3]. Thus, Ayed et al. proposed an approach to solve (3.1) by computing a sequence
of labels {L""!} using graph-cut optimization.

In the following sections, we will describe the application of graph-cut optimization
in image segmentation, followed by the use of the Bhattacharyya measure in graph-cut
optimization. This chapter will conclude by presenting two algorithms using graph-cut
optimization via Bhattacharyya model to segment cells in brightfield images.

'In this paper, L, = 0 implies that p is labelled as the object, and L, = 1 as the background.
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3.1 Graph Theory in Image Processing

In the context of using graphs to process images, nodes are often used to depict pixels p
of an image I. The two terminal nodes, s and ¢, correspond to labels “object” and “back-
ground,” respectively. Edges either provide information about the relationship between its
neighbouring pixels, which are typically set up in a grid-like fashion as in Figure 3.1, or
give information about its labels. Like the bottom-left diagram of Figure 3.2, a graph is
initially set by joining every node to both its terminal nodes, and its neighbouring nodes.
A cut severs one of two t-links of p and some n-links to partition the nodes into two disjoint
sets S and T (see Figure 3.2 bottom-right). The nodes that belong to set S correspond to
pixels that are labelled as “object,” and the nodes that belong to set T represent pixels la-
belled as “background” (sece Figure 3.2 bottom-right to top-right). n-links that are severed
as a result of a cut tend to be affected by the boundaries that are near the segmentation
of an image. Thus, the weights that are assigned to n-links represent the boundary prop-
erties of the segmentation. Severed t-links, on the other hand, represent the labelling, or
regional properties, of its segments. Therefore, the minimum cost of a cut corresponds to
a segmentation of a balance between boundary and regional properties of an image [5].

OQOOO
O O
00000

(a) 4 n-system (b) 8 n-system (c) 16 n-system

Figure 3.1: Neighbourhood systems. Circles with dark edges represent neighbouring nodes
of the dark circle in its corresponding neighbourhood system. The lines between the nodes
represent all possible n-links in its neighbourhood system.
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Figure 3.2: Image segmentation via graph-cuts. Top-left: Image given by the user. Bottom-
left: Tmage represented in a form of a graph. Bottom-right: Graph is cut by C, where
C = {{r,w}, {v,w},{v,y},{u,xz}}. Top-right: Mask of the image that contains labels,
object and background, of the regions of the image. (Red represents the “object” label,
and blue the “background” label.)

Suppose P is a set of all pixels in I, and N a set of all pairs of neighbouring elements
under a standard 4-, 8-, 16-, or 24-neighbourhood system (as in Figure 3.12) in P. An
energy function to segment an image using boundary and regional properties of L can be
defined as:

E(L)y=X-B(L)+ R(L), (3.2)

where

B(L)= Y By (3.3)

{p.qyeN

represents the boundary term, which assigns weights to n-links between p and ¢, and

R(L) = Z Rp<Lp) (3.4)

peEP

2The 24-neighbourhood system is not shown in Figure 3.1 due to its complex structure.
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represents the regional term, assigning weights to t-links of p. The presence of A > 0 in
(3.2) can specify the relative importance of the regional property R(L) from the boundary
property B(L), and vice versa.

3.1.1 Boundaries of L

The weights By, that are assigned on the n-links of p and ¢ act as penalties for the
discontinuity between p and q. A separation of neighbouring pixels p and ¢ that belong to
the same region, either p,q € S or p,q € T, as a result of a min-cut can be prevented by
assigning a large By, value. Conversely, a separation between two neighbouring pixels p
and ¢ that belong to different regions, p € S and ¢ € T or vice versa, can be emphasized
for a cut by assigning a small By, ;3 value. One of the ways of expressing the cost of By,

is:
I,—1,)?
Bip.gy o< exp <—M> (3.5)

202

In (3.5), if I, and I, contain the same intensity values, that is, I, — I, = 0, then By, is
maximized for some constant o. On the contrary, a pair of very different pixel intensities
is assigned a small weight to edge {p,q}. That is, By, — 0 as [, — I, — oo.

Furthermore, the penalty of p and ¢ can be strengthened for neighbouring nodes that
are close together by including a distance function of p and ¢ in the definition of By, ;1 as
in [5]:

1 (I, — 1,)?
By 6 ———— exp (—u> 36
= Jip =] 202 (3.6)

3.1.2 Regions of L

Since every node in a graph is initially connected to both terminals, s and ¢, prior to a cut,
weights that connect to the two terminals must be considered simultaneously. Say wy,
and wy, s denote the weights of edges that connect node p to s, and p to t, respectively.
Then R(L) in (3.4) can be written as:

R(L) =) wiepy + Y wWipsy. (3.7)

pEP peP

A cut removes exactly one of the two t-links, preferably the link with a smaller weight. As
in Figure 3.3, if w,,1 > w4y, then min-cut severs the t-link that connects p to ¢, and p

13



belongs to set S, which is a set that contains the terminal node s but not t. If a t-link that
connects node ¢ to s, on the other hand, weighs less than the t-link that connects ¢ to t
(Wis,qp < Wyqey), then {s,q} is disconnected, and g € 7. Mathematically speaking, prior to
min-cut, S = {s}, T = {t},and P ={... . p,q,... }. If wyspy > wipyy and wy gy < wygyy,
then S = {s,p,...}, T = {t,q,...}, and P = () after min-cut occurs, where SNT = ()
before and after min-cut. Therefore, like n-links, assigning large weights to edges that are
likely to belong to one set than the other, will lessen the likelihood of that t-link being cut.
The weights that are assigned on t-links of p act as penalties for labelling p as “object” or
“background.”

Figure 3.3: Min-cut. Thickness of t-links indicate the relative weights of each edge. That
is, Wispy > wipy and wyg ey < wygs- Left: A weighted graph before it is cut. Right: A cut
separates pixels into two distinct sets S and T such that p € S and ¢ € T, where s € S,
teT,and SNT = 0.

Many methods that segment images via graph-cuts use learned histograms to define
weights for t-links. In this project, we follow the approach by Ayed et al., and use the
Bhattacharyya measure to assign weights for t-links. Note that due to the nature of
brightfield images, which has extremely low contrast between cells and the background,
we carefully chose to use the intensities of the background when constructing the intensity
distribution rather than the cells since cells tend to have more variations in intensity (see
Figure 3.4). Thus, the learned distribution M is of the background. Correspondingly, the
distribution of the regions in I to be compared to in the Bhattacharyya measure are those
regions that correspond to L, = 1, the background. Before we proceed on to define the
penalties for labelling nodes as “object” or “background,” we introduce some definitions
and notations.

14
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50 00 150 200 250

Figure 3.4: Distribution Comparison: Cells vs. Background. Intensity distribution of
image on left is shown on right with cells in red and background in blue. The width of the
distributions indicate the variance of intensity per region. The narrow width of the blue
distribution indicates that the background has less variable intensity.

Let Z be a set of all numerical values that I, can take. For example, if I, represents
an intensity value that ranges from 0 to 255, then Z = {z € N | 0 < z < 255}. Let A(R)
denote the number of pixels in region R, that is, A(R) = > 5 1, and K,(I,) the Gaussian
kernel of I, which is mathematically written as:

K.(I,) = \/%exp (—%) VzeZ (3.8)

where w > 0 is the width of the kernel. The value of w in (3.8) determines the smoothness
of the distribution. As w — 0, the Gaussian kernel (3.8) approaches the Dirac function:

K.(I) = oo ifz=1,
TPlo itz AL

a discrete normalized histogram, while w > 0 corresponds to a smooth, continuous nor-
malized histogram. Note that large w values complement smooth Gaussian distributions.

PRIL is formally defined as a kernel density estimate (KDE), which is very closely related
to histograms. KDE is a sum of kernels, such as Gaussians, producing a smoothened
histogram. A KDE Ppe (2) of image I in region RE can be defined as:

Zpenf Kz(jp)
A(RY)

PR%(Z): VZEZ.

15



Following the approach by Ayed et al., we assign the terminal weights the following
way:

Wispy = (1 —a) (%) , and (3.9)

Wipy = Ly ( PL7 Z A RL ((3> ’ (310)

where B(+, ) is the Bhattacharyya measure as described in Section 2.2 for « € [0, 1]. Thus,
the weights for the t-links defined in (3.9) and (3.10) can be substituted into (3.11) such
that

B = (1-a) 3 BT ZL( = ZARL M((j;)-(am

pERL GRL

Relationship between the t-links

One may notice that the two t-links defined in (3.9) and (3.10) are dependent solely on
the comparison of background distributions, rather than of both background and object
distributions. Although this may seem strange at first, the relationship between the two
terminal weights as defined in (3.9) and (3.10) can be seen by observing the difference
between the two for all those pixels that are labelled as “background.” First, we note that

W{s,py — W{p,t}

_ B(PLM)\ (-B) 1 [M(,) .
=1-0) (5 )‘( ARD A PLup)) e

) . (3.12)

1 M(1,)
~ARD (‘“B e M= B,

Two cases follow:

1. 0 < Wispt — W{p,t}
2. 0> WYsp} — W{p,t}

If 0 < wispy —wipyy, then for all p € RE p must be removed from the current “background”
region, which can be done by setting L, to 0. This forces the /M (I,)/P(1,) value of

16



(3.12) to increase, reducing the difference between /M /Py, and a3(Pp, M) corresponding

to more alike distributions (see Section 2.2). Conversely, if 0 > w, ), — Wiy, then p must

remain in the “background” region. Otherwise, the discrepancy between B(Pp, M) and
M(1,)/Pr(1,) would be increased, which is unfavourable (see Section 2.2).

Hard Constraints

In many real images, especially brightfield images, objects do not have sufficiently distinct
regional properties. This causes the algorithm to label nodes incorrectly especially those
near the boundary of the segmentation. If pixel p is known to belong to one class, say
“object,” then by assigning the t-link that connects the p node to the sink node s (node
that corresponds to the “object” label) with a cost of infinity would enforce the algorithm
to label p as “object” rather than “background” when it terminates after finding min-cut
of the graph [5]. Boykov and Jolly [0] referred to this constraint as a “hard constraint,”
and emphasized the importance of including this constraint within the energy function
when computing the global minimum of (3.2). In this project, we restrict the use of
hard constraints on “objects” only, to emphasize the growth of the “object” region as the
algorithm proceeds. This can be done by adding some large value K to the weight of the
t-link that joins p to the terminal node s, which labels p as “object”:

Wiy = (1—a) (%) LK1= L,).

Finding the solution to the Energy function

Solving the energy functional (3.2) with B(L) and R(L) defined as (3.6) and (3.11) can be
computationally expensive. An alternative way to find L is by computing a sequence of
labels {L"™!}, which are solutions of the minimization problems parametrized by a,:

" ) _B(PL"7M>
I+l = arg min {)\B(L) +(1—ay) ] W
PER;
(P, M M(z)
K{1-LM 5. 1
+€ZRL ( e ZARL" an(z)>+ ( ,)} (3.13)
p

As a,, — 0, L™ converges to the solution of min; AB(L) — B(Pr, M) [2].
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3.1.3 Summary
In summary, by solving the optimization problem:

mLin AB(L)+ R(L)

where B(L) = 3, hen Wipgy and R(L) = >0 cpwispy + D cp Wipsy Whose weights are
summarized in Table 3.1, one can generate a binary labelling mask L of an image.

Edge e Weight w,
I,—1,)?
{p, a4} m exp <—%>
—B(Ppn n
{sp}  (-ay (W) +K(1-Ly)
n [ —B(Prn K (Ip) (=)
{p7 t} Lp ( A(RLL" + zzGZ A( RLZ;L PLn(z)>

Table 3.1: Weights.

3.2 Algorithms

In this section, we describe the numerical approach to segment cells in a brightfield image
by solving (3.2). The core methodology was adapted from [2]. However, experiments
revealed that the main algorithm proposed by Ayed et al. often resulted in over-, or under-
segmentation when applied to brightfield images. Thus, Ayed et al.’s main algorithm was
used with various approaches such that it can be applied to segment brightfield images
with high accuracy. In this paper, we present two algorithms: the Global-Local, and the
A1-Ag approach. Before we explore these novel approaches, the principle steps that are
involved to solve (3.2) is outlined:
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Main Algorithm
1. Initialize L": set L' = Ly =1 VYp € P
2. Initialize a,,: set o, = ag with 0 < ag < 1
3. Optimize L:
LM = argming AD S0, ey Wipgh + Lpersm Wisp) T 2 pent” Wips)
4. If L™ #£ LY
i) Setn=n+1
ii)  Decrease «y, by a factor of p: o, = o/, for some constant p > 1
iii) Repeat from step 3
If Ln = Lt
i)  Terminate. L™ is the final mask of the image.

Table 3.2: Main Algorithm.

L™ in the optimization step of Table 3.2 can be computed in low-order polynomial
time using the max-flow algorithm of Boykov and Kolmogorov in [7].

3.2.1 The Global-Local Technique

The global-local (GL) technique is a two-step segmentation approach that can capture
the boundaries of cells in brightfield images effectively. First step of the technique, global
segmentation, obtains information about the positioning of the cells. The latter step, local
segmentation, captures the fine details of the cells.

The challenging properties that brightfield images possess, such as poor contrast, broken
halo, and missing boundaries, makes it difficult to locate the position and the boundary
of the cells accurately. Global segmentation takes the original image as a whole, and
identifies groups of cells or individual cells into cell blobs (red regions in Figure 3.5).
Each blob from global segmentation is identified and is framed into a local region (red
dashed boxes of Figure 3.5). For every local region, the Bhattacharyya measure based
graph-cut segmentation is applied again. This segmentation process is able to fine-tune
the segmentation, separating closely located non-overlapping cells into well separated cells.
This step is able to detect the boundary of the cells with low contrast, which tend to be
over- or under-segmented during global segmentation, with great detail. The segmentation
results from the local step is combined onto the original frame to give the final segmentation
of the image. The series of steps involved in the global-local technique can be visualized
in Figure 3.5.
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Figure 3.5: A schematic diagram of the global-local technique. Grey objects represent the
cells in a given image. Red objects represent the “object” mask. Red-dashed boxes are
the local regions to be used for local segmentation.

For each cell blob, one may apply local segmentation recursively. That is, for each
new connected blob that appears as a result of “global” segmentation, another “local”
segmentation can be performed. One may think of this as a telescopic zoom-in process.

3.2.2 The )\-\y Technique

The Ai-Ag technique is also a two-step algorithm. It is based on the role that A plays in
(3.2). Large A tends to put more emphasis on the boundary term, B(L) = >Z,, 1cn Wipa}s
while small A values put more emphasis on the regional term. As a result, large As tend
to produce a mask that is well-connected but under-segmented, while small A values tend
to produce disconnected yet over-segmented masks (see Figure 3.6). The A;-Ap algorithm
finds the mask using the Bhattacharyya measure based graph-cut segmentation technique
with two different A values, A\; and Ay. The first A to be used, Ay, is the one that tends to
over-segment cells, while Ay tends to under-segments cells. The segmentation result using
A1 is used as the initial mask for the segmentation using s with a fixed number of layers
removed (refer to Appendix A for removal of layers).
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Figure 3.6: Over- and under-segmentation can occur using a different set of A values.
Left: Disconnected over-segmentation occurs with a smaller value of A\, A = 1073, Right:
Well-connected under-segmentation occurs with a large value of A\, A = 1072,

It requires trial-and-error to determine which two A\ values under- and over-segment
cells. However, in a set of images per experiment, specific values of A\; and A\, tend to share
the same property among all other frames.

The A1-Xg algorithm is outlined in the following table:
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)\1')\2 Algorlthm

1.
2.
3.

S

Initialize L™: set L = L) =1 Vp e P
Initialize a,,: set o, = ag with 0 < ag < 1
Optimize L:

L' = argming A Yo, ey Wipay + 2pert” Wisp} T 2 peri Wipt)
If L™+ L,
i) Setn=n+1
ii)  Decrease «, by a factor of p: «a,, = «
iii) Repeat from step 3
If L" = L™+,
i)  Proceed to step 5.
Remove some layers of L™, and set it to L}
Reinitialize «,,: set a,, = ap with 0 < ag < 1
Optimize L:

L™t = argming A2 Yo, nen Wipg) + 2 pentn Wisp + 2 penin Wipgy
If L™ # L,
i) Setn=n-+1
ii) Decrease «, by a factor of p: o, = o | for some constant p > 1
iii) Repeat from step 7.
If L = L"F,
i)  Terminate. L"™! is the final mask of the image.

p

P _, for some constant p > 1

Table 3.3: The A{-\y Algorithm.

One may note that steps 6 to 8 are identical to 2 to 4 in the A\;-As algorithm. Note that
step 5, where the final mask from the segmentation corresponding to optimization for \;
is the initial mask of the segmentation process with As, is a crucial step for this method.
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Chapter 4

Numerical Results

In this chapter, we present the numerical results of the two methods in sections 3.2.1 and
3.2.2. The algorithms were applied to live C2C12 (muscle) cells that were obtained from
the Department of Medicine and Human Genetics at McGill University. In our numerical
experiments, we used an 8 neighbourhood-system with the following parameters: ¢ = 10,
ag = 0.85, p = 1.1, and K = 1000. It is only w and A\ parameters that varied per
experiment. The learned distribution M was obtained by measuring the frequency count
of intensities on the border of the image of interest. Images whose borders contained cells
had to be manually excluded when obtaining M. The calculations were performed on a
MAC with a 2.7GHz processor using MATLAB.

The size of each image frame is 512 x 512. It was found that graph-cut segmentation
on lower resolution images, down-sampled from the original image frame, improved the
quality of the segmentation with greater efficiency (see Figure 4.1 and Figure 4.2).

The percentage of the pixels that are correctly classified by the proposed methods can
be measured by calculating accuracy in the following way:

|L N Ltrue‘

accuracy = 7 ,

where L is the segmentation result, and Ly, is the ground truth, which can be computed
using manual segmentation.
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Figure 4.1: Multi-resolution segmentation comparison. Left: Cropped from a 512 x 512
image. Size: 129 x 175. Time: 6.31 sec. Parameters: w = 107, A = 1. Right: Cropped
from a 256 x 256 image. Size: 65 x 88. Time: 1.08 sec. Parameters w = 10~* and )\ = 10.

Figure 4.2: Multi-resolution segmentation comparison. Left: Segmentation of 512 x 512
image took 1377.86 sec. Right: Segmentation of 256 x 256 took 12.35 sec. Parameters:
w=10"* X = 0.01 were used for both segmentations.

4.1 Results of the Global-Local Technique

The first two results (Figure 4.3 and Figure 4.4) in this section will be displayed in two
rows to demonstrate each step of the GL-scheme in Figure 3.5. The top row will display 3
images: the original image, the global segmentation result, and the final segmentation result
in left-to-right sequence. The bottom row will consist of results from local segmentation.
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Table 4.1 and Table 4.2 will give information on the parameters that were used to obtain
images in Figure 4.3 and Figure 4.4, respectively.

BB 1N

Figure 4.3: Top-left: original image. Top-middle: result of global segmentation. Top-right:
result of final segmentation. Bottom-left to bottom-right images are local segmentation
results of blobs 1,...,5.

| || Global Blob 1 Blob 2 Blob 3 Blob 4 Blob 5 |

Size || 256 x 256 65 x 88 156 x 89 T8 x 127 31 x 37 117 x 91
w 1074 1074 10~4 10~4 1074 107
A 1072 10 0.1 0.1 10 0.1

Time || 12.63 sec 1.25sec 4.09sec 3.39sec 1.60 sec 3.40 sec

Table 4.1: Parameters and the running times of each segmentation result in Figure 4.3.

In Figure 4.3, global segmentation (top-middle) is able to define five major regions
of the original image (top-left). However, the cell boundaries are not very precise, and
nearby cells are identified as one big blob. In local segmentation, the trio of cells (left-most
bottom) that were identified as a blob because they were close together, is identified as
three individual cells. The final mask has an accuracy of 92.89%.
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Figure 4.4: Top-left: original image. Top-middle: result of global segmentation. Top-right:
result of final segmentation. Bottom-left to bottom-right images are local segmentation
results of blobs 1,...,4.

| || Global Blob 1 Blob 2 Blob 3 Blob 4 |

Size || 256 x 256 129 x 143 111 x 67 71 x 131 101 x 130
w 1074 1072 1074 c=10"* o=10"3
A 10~2 1072 A=1 A=1 A=0.1

Time | 14.58 sec  3.50 sec  4.08 sec  6.44 scc 4.01 sec

Table 4.2: Parameters and the running times of each segmentation result in Figure 4.4.

In Figure 4.4, global segmentation is able to identify four blobs via graph-cut seg-
mentation using the Bhattacharyya measure. Again, the boundaries obtained in global
segmentation are not very precise, especially those cells with low contrast. However, in
local segmentation, the boundaries of poorly contrasted cells are well defined (bottom-mid-
right). The final mask has an accuracy of 92.55%.

Table 4.3 displays a sequence of frames in a single experiment to track the activity of
the cells by segmenting each frame individually.

26



Original Image Global Segmentation Final Segmentation

Table 4.3: Sequence of frames segmented using the GL-technique.
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4.2 Results of the \;-)\; Technique

Unlike the global-local method, which begins each graph-cut segmentation with a blank
mask in both global- and local-segmentation steps, the Aj-As technique uses the final
segmentation result of A\;-segmentation as the initial mask of the \s-segmentation. Through
experiments, it was found that a more desired solution is achieved when A\; < Ay. That
is, a more accurate mask is determined when the first graph-cut segmentation emphasizes
the regional terms, the labelling of the pixels, then on the boundary term to balance the
two in (3.2).

The results of A\; segmentation and Ay segmentation are displayed in Table 4.5, and
the parameters that were used, as well as its run times and the accuracy of its results can
be found in Table 4.4. Note that the images for A\;-A\y were not down-sampled because
we were able to attain relatively accurate results without down-sampling. Thus, running
times will be incomparably longer than those from the global-local technique.

| || Image 1 Image 2 Image 3 Image 4 |

w 1074 1074 1071 1074
A1 1073 1073 1073 1073
A2 1072 1072 1072 1072

Time 212.98 sec 302.81 sec 295.01 sec 868.19 sec
Accuracy 92.04% 91.00% 90.64% 89.61%

Table 4.4: Parameters used to attain results in Table 4.5.
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Original Image Ai-segmentation Ao-segmentation

Table 4.5: Sequence of frames segmented using the A;-Ay technique.
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4.3 Comparison of the two methods

In this section, we compare between the two methods proposed through qualitative and
quantitative analysis in Table 4.6. Both algorithms are able to capture cells of different sizes
and shapes but some cells with low contrast are over- and/or under-segmented. Although
the global-local technique is able to capture fine details on well-separated cells, A\i-As
technique is able to segment overlapping cells with greater precision. The A{-Ag algorithm
takes longer than the global-local algorithm by several factors. However, as mentioned
earlier, this is because the images were not downsized in the A;-Ay experiments, as they
were for the global-local algorithm.

GL Results A1-A2 Results Quantitative Comparison

accuracy g, = 92.89%
timegr, = 26.36 sec

accuracyy, , = 91.00%
timey, », = 302.81 sec

accuracyg;, = 90.50%
timegy, = 28.22 sec

accuracyy, », = 89.61%
timey, », = 868.19 sec

Table 4.6: Segmentation method comparisons of the global-local (GL) and the A;-Ag tech-
niques.

By comparing Tables 4.1 and 4.2 with 4.4, one can see that the parameters for the
global-local method requires specific parameters per case to obtain a good result, while
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A1-Ao algorithm is able to segment images with consistent accuracy with a fixed set of
parameters.

4.4 Remarks

The segmentation results of both techniques can be improved by providing more informa-
tion to its initial mask. That is, instead of providing a mask, which is entirely labelled
as the background, providing some hard constraints prior to segmentation can improve
the results. This can be done by manually identifying some cells as “object,” using the
segmentation result from previous frames as initial of current frame, or by using the result
of the global-local techniques as the initial mask for the A;-As algorithm and vice versa.
This was not shown in preceding sections to emphasize that the two algorithms presented
in this paper are capable of segmenting brightfield images without prior information with
high accuracy.
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Chapter 5

Conclusion

This paper has presented a solution to one of the challenges of segmenting cells in brightfield
microscopy images. In particular, the two different techniques were introduced using graph-
cut segmentation via the Bhattacharyya measure.

The first model, referred to as the global-local technique, is a multi-scale procedure
that involves determination of the location of the cells to fine-tune the segmentation of
each cell or collection of cells that are close together. The second model, A;-\y technique,
uses two different \ values to put different emphasis on the energy function that we wish
to minimize.

Both algorithms were able to segment cells in images that contained multiple cells with
high accuracy, and required very little input from the user. Information from previous
frames were found to be unnecessary, although they can be helped to obtain an even more
accurate solution.

Possible future work includes further investigation to identify individual cells that over-
lap one another.
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APPENDIX
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Appendix A

Removing a layer of a mask

Suppose a binary mask is given as in Figure A.1. To remove a layer, consider pixel (i,j),
and look at its surrounding 8-pixels. If any one of the eight pixels do not have the same
black (or white) label as pixel (i,j), then pixel (i,j) must change its label from black to
white (or white to black). This is applied to all pixels in the mask for a single layer of
removal. In Figure A.1, since all eight surrounding pixels of (i,j) are of the same label as
(i,j), black, (i,j) maintains its black label. However, pixel (i-1,j-1), for example, does not
have the same black label as four of its 8-neighbouring pixels. Namely, (i-1,j-2), (i-2,j-2),
(i-2,j-1), and (i-2,j). Therefore, in a single layer removal stage, the (i-1,j-1) is converted to
its opposite label, white. Similarly, pixels (i,j-1) (i-1,j-1), (i-1,j), (i-1,j+1), (i,j-1), (i,j+1),
(i+1,j), and (i+1,j+1) are also converted in a single layer removal stage. To remove n-
layers, (2n + 1)? — 1 neighbouring pixels must be considered.

Figure A.1: Removing a layer of a mask. Left: Original Mask. Right: Resulting mask
with 1 layer removed.
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