
Predicting AMOC Collapse in
Low-Order Models with CNN-LSTM

Networks

by

Stefan Vladusic

A Major Research Project
presented to the University of Waterloo

in fulfillment of the
major research paper requirement for the degree of

Masters of Mathematics
in

Computational Mathematics

Waterloo, Ontario, Canada, 2022

Author’s Declaration

I hereby declare that I am the sole author of this work. This is a true copy of the work,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

The potential shutdown of Atlantic Meridional Overturning Circulation (AMOC) presents
a highly significant, if not devastating, future scenario for the Earth’s climate. Drawing on
dynamical systems theory and machine learning, we train several neural networks to pre-
dict whether a simulated time series of a low-dimensional oceanic model precedes AMOC
collapse. More specifically, we create a time series generator for the four box model of the
Atlantic ocean to generate a data set of 500,000 multivariate time series. Half of the time
series correspond to simulated scenarios resulting in AMOC collapse, while the other half
correspond to scenarios with no such collapse. We train several hybrid Convolutional Neu-
ral Network - Long Short Term Memory (CNN-LSTM) networks on 95% of the generated
data. We then compare our networks’ performance to a CNN-LSTM network developed
by Bury et al. in [5]. Bury et al.’s network is a classifier which predicts whether or not an
input time series, representing some dynamical system, will soon transition to a new dy-
namical regime by way of a local bifurcation. Trained on a data set of time series given by
a thousands of two-dimensional dynamical systems, Bury et al.’s classifier associates each
input time series with one of four possible labels. Three of these labels infer that a specific
kind of local bifurcation will induce a sudden transition, while the fourth predicts that no
such transition will occur. Since one of the labels of Bury et al.’s network describes the
kind of bifurcation exhibited in the four-box model — namely, a saddle-node bifurcation
— this network should, a priori, accurately label four-box model data.

We find that our networks significantly outperforms one of Bury et al.’s classifiers
on four-box model test data. In particular, our best CNN-LSTM network achieves an
accuracy of 98.86% accuracy on test set of 5,000 multivariate four-box model time series.
Meanwhile, Bury et al.’s model performs worse than a random classifier on this set with an
accuray of 16.19%, though retraining the classification layer of this model model increases
its accuracy to 85.90%. In order to explain the poor performance of Bury et al.’s model,
we argue that the identically zero eigenvalue of the four-box model’s Jacobian results in
time series which Bury et al.’s model falsely associates with a transcritical bifurcation.
However, other simple models of oceanic circulation, including Stommel’s original two-box
model, do not exhibit this identically zero eigenvalue. As a result, possible extensions of
our work involve training networks on time series generated by many low-order models,
and determining if Bury et al.’s network still performs poorly on data generated by these
myriad models.

iii

Acknowledgements

I would first like to thank my supervisors Chris Bauch and Chris Fletcher, whose
knowledge, insight, and support were invaluable when writing this report. I also thank
Tom Bury for enthusiastically answering all of my questions about his own research, and
Ben Fattori, who was always willing to help me navigate the vast world of machine learning.

Completing this report would have been nearly impossible without the lovely commu-
nity I found in Waterloo. As a result, I owe a debt of gratitude to all of my friends I
made during my master’s. This includes, but is not limited to, the other students in the
CM program, members of the Bauch and Fletcher labs, all my teammates on Computer
Blue, and the regulars of the MGSA pub night and Stammtisch. I also want to give spe-
cial thanks to Kevin for those countless drives back home, all of those Raptors games we
watched together, and our friendship over the past decade.

Finally, I must thank my family. Words simply fail to describe how much their love,
support, patience, and kindness has meant to me over the years. So, I won’t even try.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables x

1 Background & Motivation 1

1.1 AMOC & Box Models . 3

1.2 Dynamical Systems & Bifurcations . 4

1.2.1 Equilibria, Bifurcations, & EWS . 4

1.2.2 Predicting Tipping Points with Early Warning Signals 8

1.3 Motivating Questions . 9

2 Methods & Data 13

2.1 Deep Neural Networks & the CNN-LSTM Architecture 13

2.1.1 Neural Networks & Supervised Learning 13

2.1.2 The CNN-LSTM Network Architecture 15

2.2 The Four-Box Model . 18

v

2.2.1 Overview & Dynamics . 18

2.2.2 Stability, Bifurcations & EWS in the FBM 20

2.2.3 Generating Four-Box Model Training Samples 24

3 Results 29

3.1 Model Architectures & Training . 30

3.2 Network Performance . 34

3.3 Comparing our Methods to Bury et al. 40

3.4 Limitations & Extensions . 41

4 Conclusions 43

References 44

APPENDICES 48

A Box Model Jacobians 49

A.1 Four-Box Model . 49

A.2 Two-Box Model . 50

B Supplementary Notes on Data Generation 51

B.1 The Linear Support Vector Machine Sampler 51

B.2 Determining White Noise Amplitude for EM Method 52

vi

List of Figures

1.1 Examples of two-dimensional system behaviour near equilibria of varied sta-
bility. In particular, all initial states of the system lie on the unit circle,
except for the centre plot, whose initial conditions lie on circles of radius
0.1n, 1 ≤ n ≤ 10. Fixed points are denoted by blue Xs. The left, centre, and
right plots represent asymptotically stable, stable, and unstable equilibria,
respectively. 6

1.2 Solutions to IVPs for ẋ = f(x;µ) = x2 − µ, µ = ±1, 0. Stable, unstable,
and semi-stable equilibrium solutions are given by the solid, dashed, and
dot-dashed red lines, respectively. 7

1.3 Solutions for µ(t) = 1 − t. Notice for the right plot that solutions with
initial conditions less than 1, are converging toward the sable equilibrium
at t=0, but eventually fall out of its basin of attraction due to emergent
nonlinearities. At t = 1, all solutions begin diverging to infinity, as expected. 9

1.4 Normalized time series data of stable equilibrium solutions to the saddle-
node normal form forced with equal amounts of white noise (σ = 0.01)
, and their corresponding rolling variance and autocorrelation values. We
note that when µ = −0.01, the system exhibits much higher variance and
autocorrelation compared to µ = −10, as expected. 10

2.1 Common activation functions for networks. The sigmoid, tanh, and ReLu
functions are defined as 1/(1 + e−x), (e2x − 1)/(e2x + 1), and max(0, x),
respectively. 14

2.2 An “unrolled” LSTM network where feature vectors and the hidden state
are two-dimensional. Red edges denote a weight of 1, while a missing edge
denotes a weight of zero. 17

vii

2.3 Schematic representation of the four-box model. Note that box i is defined
by its fixed volume Vi, and its variable temperature and salinity given by
Ti, Si respectively. Meanwhile, the circulation speed of the ocean is specified
bym, which in turn depends on T1, T2, S1, S2. Finally, notice that the surface
boxes are each forced towards a relaxation temperature T ∗

i , 1 ≤ i ≤ 3 in the
absence of internal circulation, and box salinities are forced by freshwater
fluxed F1 and F2. 19

2.4 Examples of the FBM passing through a saddle-node bifurcation under indi-
vidual forcings of F1, T

∗
1 , T

∗
2 as shown in the upper left, upper right and lower

left subplots, respectively. The passage of each system through a tipping
point is confirmed by the fact that these subplots all result in a negative
overturning circulation. Also notice that even when there is an extreme forc-
ing of T ∗

3 , as shown in the lower right subplot, the overturning circulation m
is always positive. Hence this extreme forcing does not result in the system
undergoing a critical transition. 23

2.5 A time series resulting from performing LOWESS on a time series ofm where
χ(P init

F) = 2 and χ(Pfinal
F) = 0. The top plot represents the unprocessed

time series of m in blue, and the linear dynamics inferred by LOWESS are
shown in orange. The bottom plot represents the preprocessed time series
of m. 27

3.1 Architectures of Bury et al.’s network (top), the transfer and circulation
networks (middle), and the all variable and proxy networks (bottom). The
kernel (light blue) of multiple convolutions slides over the input sequence
(orange), yielding a new sequence of encodings (red). For the all variable
and proxy networks, these encodings are over the kernels of the convolutional
layers. These encodings pass through a max-pooling layer, and then through
a first LSTM f1 which outputs all of its hidden states (green). This hidden
state sequence is passed into another LSTM f2 and outputs the final hidden
state h

(2)
250. Finally, the components of h

(2)
250 pass through into a softmax layer

to R4 for the Bury network, and a sigmoid layer for all other networks. . . 30

3.2 Accuracy and loss plots of the training and validation sets for the transfer
learning, proxy, circulation, and all data models. 33

3.3 Heat map of Bury Model confusion matrix when evaluated on our FBM test
set. 35

viii

3.4 ROC curves for the transfer, circulation, all variables, and proxy networks.
These networks have an AUC of Note that the left subplot is a restriction
of the . 36

3.5 Examples of time series incorrectly classified by our own classifiers. In each
case, the time series precede AMOC collapse. 37

3.6 Examples of time series correctly classified by our own classifiers, but not
the Bury network. Notice that the time series of m with higher variance
correspond to collapse scenarios. We can also see that box temperatures
have larger variance for the samples approaching a tipping point, while the
variance of salinity time series are not obviously related to the sample labels. 38

ix

List of Tables

2.1 Parameter names and descriptions for the FBM. As noted by [29, 34], the
model is calibrated so that F1 matches the equilibrium value produced by
Petoukhov et al.’s CLIMBER-2 model (see [23] for a summary of CLIMBER-
2). 21

3.1 Hyperparameter and other constants associated with network architecture/learning
for all models relevant to our analysis. 32

3.2 Accuracy, precision and recall of our four models. 35

3.3 Counts for each type of bifurcation inferred by the Bury model. Note that
the underlying system exhibits a saddle-node bifurcation 39

3.4 Differences between our methodology, and the methodology of Bury et al. . 42

x

xi

xii

Chapter 1

Background & Motivation

Tipping points — roughly characterized as an abrupt change in the relevant regime of a
dynamical system — present a significant threat of irreversible, long-term changes to the
climate system [1, 3, 13, 14]. When tipping points of the climate system were first consid-
ered in the International Panel on Climate Change’s First Assessment Report, researchers
concluded that a critical transition in the climate system was likely only if global warming
reached 5◦C above pre-industrial temperatures [14]. However, there is mounting evidence
that tipping points for a wide array of climate phenomena ranging from rain forest pre-
cipitation levels, forest fire areas and ocean circulation speeds, may be surpassed even if
global warming is kept below 2◦C above pre-industrial temperatures [1, 14].

A notable sub-component of the earth system which could theoretically undergo a
critical transition is the rate of Atlantic Meridional Overturning Circulation (AMOC) [2,
3, 6, 8, 14, 16, 26, 30]. The main circulation system of the Atlantic ocean, AMOC is, at
present, largely driven by density gradients induced by thermal differences in the ocean [24].
However, paleoclimate data, and models of intermediate complexity provide considerable
evidence that AMOC may suddenly transition into a considerably weaker, salinity driven
circulation under sufficiently large freshwater forcings in the Atlantic [2, 3, 8, 23, 26, 30, 34].

Given the significant, potentially disastrous (see [14]), consequences of AMOC collapse,
many authors have leveraged techniques from dynamical systems theory to try and predict
the likelihood of such a collapse for given freshwater forcing experiments [3, 13]. In partic-
ular, many models and real life systems which pass through tipping points exhibit so-called
early warning signals (EWS) before their abrupt shift in dynamics. Since EWS often ap-
pear as increases in rolling variances and autocorrelation in system time series, researchers
have created traditional, statistical classifiers which predict if a system is approaching a

1

tipping point [4, 27, 28].

More recently, Bury et al. trained a state-of-the-art neural network on a wide variety
of noisy data generated by low-dimensional, simple dynamical systems [5]. Although the
data set used to train the network is simple, this network outperforms traditional classifiers
on a set of empirical and model time series, ranging from epidemiological models to ther-
moacoustic data. Furthermore, the success of this network given its simple training set can
be explained in part by theoretical results in dynamical systems theory [5]. These results
suggest that neural networks may be leveraged to predict AMOC collapse in simulated
time series with a high degree of accuracy, and possibly predict the likelihood of AMOC
collapse at present day.

In this report, we present a method of generating a data set which is used to train neural
networks that can detect AMOC collapse in low-dimensional models of ocean circulation.
In particular, we create a data generator which returns stochastically forced time series of
Zickfeld et. al.’s four-box model of Atlantic circulation (see [34]), and labels the time series
depending on whether or not it approaches a tipping point. Given this data set, we train
several neural networks to predict AMOC tipping points. The networks are distinguished
by which dynamic variables of the model are taken as inputs, as we also investigate whether
a so-called proxy variable can detect tipping points associated with one variable through
time series of other variables. We compare the results of our own network to one of the
networks trained by Bury et al. in [5]. By comparing network accuracy, precision and recall,
we demonstrate that all of our networks outperform Bury et al.’s network when classifying
four-box model data. However, we also caution that these results may not generalize to
other simulated AMOC data given the simplicity and mathematical idiosyncrasies of the
four-box model.

We structure our report as follows. Chapter 2 covers important background material
for our analysis. Section 1.1 is a summary of AMOC and box models. Section 1.2 covers
dynamical systems theory, focusing on local bifurcations, early warning signals, and the
theoretical aspects which motivate Bury et al.’s own methodology. We then motivate our
methodology and research goals in section 1.3. Chapter 2 is dedicated to the methods
used to train our networks. In particular, section 2.1 discusses neural networks: how
they are defined, trained, and the best architectures for classification tasks. Section 2.2
is then a summary of the four-box model, including our data set generating procedure.
Our results are found in chapter 3. We first describe the specific features of our neural
networks in section 3.1. We then compare the performance of our classifiers to one of Bury
et al.’s classifiers, and tentatively explain why our models outperform Bury et al.’s models
in section 3.2. Section 3.3. compares the methodology of our report to [5]. Finally, we
describe some limitations and possible extensions of our work in section 3.4.

2

1.1 AMOC & Box Models

As the chief objective of this project is to train a state-of-the-art deep network to predict
tipping points in low-order models of oceanic circulation, we briefly describe the phe-
nomenon of Atlantic Meridional Overturning Circulation, or AMOC (see [25, 34]). AMOC
describes the large-scale circulation in the Atlantic, with relatively warm surface waters
rushing from the south towards the north, and relatively cold deep water flowing from the
north Atlantic into the southern hemisphere1. While there are many contributing factors
for this circulation pattern, AMOC is innately linked to so-called Thermohaline Circulation
(henceforth THC). THC describes the circulation of the Atlantic given unequal changes
in temperature and salinity of oceanic waters. In particular, unequal fluxes of heat and
freshwater lead to thermal and salinity differences between different regions of the ocean.
These differences then result in density gradients, which in turn lead to vigorous circula-
tion. It is important to clarify that THC and AMOC are conceptually distinct. AMOC
describes the general meridional circulation of the Atlantic, which cannot be explained by
THC alone, and THC is not constrained to the meridional direction.

Although AMOC and THC are not to be conflated, the latter in large part determines
the dynamics of the former [24]. So, the evidence for a bistable THC given by models
of intermediate complexity [23, 24, 26], empirical data (see [2, 14], and some generalized
circulation models [3, 16] suggests that that AMOC is also bistable (with the important
caveat that state-of-the-art Earth System Models tend to exhibit monostable THC; see
[16]). It has long been theorized that increasingly large salinity gradients between northern
and tropical waters given large enough freshwater forcings in the north Atlantic, could
cause the presently thermally-driven THC to “collapse” towards a weakened, reversed,
salinity-driven circulation. Such investigations began with Stommel’s seminal 1961 model
of Atlantic circulation [24]. Described in [31], the model treats the ocean as two, connected
boxes with well-defined temperatures and salinities, and specifies the rate of circulation
between these two boxes as a linear function of their temperature and salinity differences.
Given this model, he then demonstrates that increasing the model’s freshwater forcing
parameter values causes the circulation between boxes to suddenly weaken and reverse. In
this way, the model provides a simple demonstration of AMOC collapse due to changes in
THC.

Though Stommel’s original “box model” is very simple, this simplicity is a virtue for
our task. First, the model, and similar box models inspired by Stommel’s work (see, for
instance, [17, 34]), are much simpler and quicker to simulate when compared to more com-

1This paragraph is largely based on Rahmstorf ’s summary of AMOC found in [24].

3

plicated models of AMOC. More importantly for our purposes, these box models ultimately
exhibit AMOC collapse due to the presence of a so-called local bifurcations under varia-
tions of freshwater forcing parameters. This insight is crucial, since there already exists a
large literature on training traditional and deep-learning classifiers that successfully predict
sudden dynamical changes for many systems that exhibit local bifurcations (see [27, 28]).
As a result, there is strong reason a priori to believe that a state-of-the-art neural network
could successfully predict AMOC collapse in box models given a sufficiently large training
set of simulated AMOC data. And because box models are simple to simulate, it follows
that generating such a training set via box models is computationally feasible. Indeed, we
describe both what a local bifurcation is, and how their corresponding properties may be
leveraged to predict sudden changes in relevant dynamical systems.

1.2 Dynamical Systems & Bifurcations

1.2.1 Equilibria, Bifurcations, & EWS

The dynamics of many natural and social systems — ranging from thermal processes,
to infectious diseases and disinformation — are well described by systems of ordinary
differential equations (henceforth ODE systems) [5, 11, 27, 32]. Following much of the
literature, we will also refer to ODE systems as dynamical systems, or just systems. For our
purposes, dynamical systems specify how the derivative of function in Rn — representing
the state of a relevant system — is related to its current state. In particular, the precise
relationship between these two variables is specified by some evolution operator f , which
in turn depends on the current system state x(t) ∈ U ⊆ Rn, the time t ∈ T ⊆ R, and a
vector of parameters µ ∈ Rm:

ẋ = f(t, x;µ)

Oftentimes, the evolution operator does not explicitly depend on t. In this case, the
dynamical system is said to be autonomous [11, 32], and is written as ẋ = f(x;µ) or
ẋ = fµ(x) . Furthermore, the parameters µ are often fixed. When this is the case, we will
simply write ẋ = f(x).

Given a dynamical system of the form ẋ = f(x;µ), we are often interested in deter-
mining the behaviour of initial value problems (IVPs). That is, we want to determine the
behaviour of solutions x(t, x0) satisfying ẋ(t) = f(x(t)), x(t0) = x0, should they exist.
Although it is guaranteed that a unique solution exists over an open subset U ⊆ Rn when-
ever f has continuous partial derivatives over an open set U ⊆ Rn — denoted f ∈ C1(U)

4

— this solution, actually solving for x(t) is generally impossible [22]. Thus, we turn to
examining the generic behaviour of many systems, rather than the specific behaviour of a
single system.

We begin by considering an IVP of a arbitrary dynamical system where f ∈ C1(U)

ẋ = f(x), x(0) = x0

As noted above, it is generally difficult to account for the dynamics of this system. However,
one obvious exception to this generalization occurs when x0 = x∗ such that f(x∗) = 0.
Indeed, in this case ẋ = 0 ⇒ x(t) = x0. Since these solutions to the IVP are constant in
time, we say that x∗ are fixed points or equilibria.

One important feature of all dynamical systems with fµ ∈ C1(U) is that we can often
infer the asymptotic behaviour of solutions whose initial conditions lie x0 in a delta neigh-
borhood Nδ(x

∗) := {x ∈ U | ∥x − x∗∥ < δ}. In particular, it turns out that the so-called
stability of a fixed point is intimately related to it’s linearization ẋ = Df(x∗)[x−x∗] about
x∗, where Df is the Jacobian of f .

Definition: Let U ⊆ Rn be an open set, f ∈ C1(U), and ẋ = f(x) represent a dy-
namical system defined for all times t ∈ R. A fixed point x∗ is stable iff for all ε > 0,
there exists δ > 0, such that the solution to the IVP ẋ = f(x), x(0) = x0 satisfies
∥x(t, x0) − x∗∥ < ε for all t ∈ R, whenever x0 ∈ Nδ(x

∗) := {x ∈ U | ∥x − x∗∥ < δ}. If in
addition limt→∞ ∥x(t, x0) − x∗∥ = 0 for all x0 ∈ Nδ(x

∗), then x∗ is asymptotically stable.
Finally, if x∗ is not stable, it is unstable [22].

Furthermore, define the dominant eigenvalue λD(x
∗) of a fixed point x∗ as the eigenvalue

of Df(x∗) with the largest real component. It can be shown that Re(λD(x
∗)) ≤ 0 only if

x∗ is stable, and Re(λD(x
∗)) > 0 if x∗ is unstable. Finally, Re(λD(x

∗)) < 0 entails that
x∗ is asymptotically stable [22]. In figure 1.1, we provide some examples of systems with
asymptotically stable, stable and unstable fixed points at the origin.

Having defined stability, we now turn to the task of defining a bifurcation. To this end,
consider an arbitrary, parameterized dynamical system:

ẋ = f(x;µ)

Intuitively, a parameterized system exhibits a bifurcation when a small change in parameter
values leads to a drastic change in solution behaviour. For instance, figure 1.2 shows how
solutions for the system ẋ = x2−µ differ between µ = −1, 0, 1. More specifically, it can be

5

Figure 1.1: Examples of two-dimensional system behaviour near equilibria of varied sta-
bility. In particular, all initial states of the system lie on the unit circle, except for the
centre plot, whose initial conditions lie on circles of radius 0.1n, 1 ≤ n ≤ 10. Fixed points
are denoted by blue Xs. The left, centre, and right plots represent asymptotically stable,
stable, and unstable equilibria, respectively.

shown that this system has two equilibria when µ < 0, one when µ = 0 and no equilibria
when µ > 0.

To capture this intuitive notion, we say a parameterized system ẋ = f(x, µ) exhibits a
bifurcation when there exists a parameter value µ0 ∈ Rm such that any arbitrarily small
change to the value of µ0 changes the number or stability of equilibrium solutions to the
relevant dynamical system. Furthermore, we say that µ0 is a bifurcation value of the
dynamical system. We note that this informal definition provides sufficient conditions for
a local bifurcation, but that a more rigorous definition in terms of structural stability can
be found in [11] or [22].

Given our definition of a local bifurcation, we note that several different kind of bifur-
cations exist. For instance the system given by equation ẋ = x2 − µ exhibits the so-called
saddle-node bifurcation: a bifurcation which describes two fixed points of opposite sta-
bility to appear, or coalesce and disappear, when a system parameter is varied through
its bifurcation value [32]. Other kinds of bifurcations include the transcritical bifurcation,
which changes the stability of a persistent fixed point. Another significant fact about bi-
furcations is that if the system ẋ = f(x, µ) a bifurcation at value µ0, then, oftentimes, the
matrix Df(x∗, µ0) must have an eigenvalue with real component zero for at least one equi-

6

Figure 1.2: Solutions to IVPs for ẋ = f(x;µ) = x2 − µ, µ = ±1, 0. Stable, unstable, and
semi-stable equilibrium solutions are given by the solid, dashed, and dot-dashed red lines,
respectively.

librium x∗2. Indeed it is this insight which motivatves the study of early warning signals
(henceforth EWS).

Roughly characterized, EWS denote the response of many mathematical and empirical
systems as their parameters are varied towards a bifurcation. More specifically, suppose
that x∗ is a stable fixed point, and that a variation of system parameters towards a bifur-
cation point µ0 causes Re(λD(x

∗))→ 0−. In these instances, solutions near an equilibrium
often exhibits two characteristic phenomena: critical slowing down, and what we call non-
linear emergence. The first phenomenon describes how solutions near a stable equilibrium
x∗ often converge more slowly towards x∗ as Re(λD(x

∗)) → 0− [5, 27, 28]. Nonlinear
emergence describes how nonlinear dynamics are no longer negligible for solutions close to
x∗ when the dominant eigenvalue of x∗ approaches [5]. In some sense, these phenomena
emerge from the failure of a system’s linearization to adequately capture its dynamics as
Re(λD(x

∗)) → 0−. Indeed, consider a one-dimensional parameterized system ẋ = f(x;µ)
at x ∈ Nδ(x

∗) for δ small. Taking the Taylor expansion of f about (x∗, µ) fixed reveals

2In particular, this is a necessary condition for codimension 1 bifurcations; see §3.1 of [11] for more
details).

7

that

ẋ =�����f(x∗;µ)0 + f ′(x∗)ϵ+
f ′′(x∗)

2
ϵ2 +O(ϵ3) ≃ λ1ϵ+ λ2ϵ

2 (1.1)

where ϵ := x − x∗ and λi denotes the ith coefficient of the relevant Taylor expansion.
We see that λD(x

∗) = λ1, so as λD(x
∗) → 0− (i) the linear restorative force acting on

x diminishes in magnitude, and (ii) that the quadratic term λ2ϵ
2 may be of comparable

magnitude to the linear term if |λ2| ≫ |λD(x
∗)| ≃ |ϵ|. These two observations lead to

critical slowing down and nonlinear emergence, respectively (see box 2 of [5] for more
details).

1.2.2 Predicting Tipping Points with Early Warning Signals

EWS provides a fruitful framework for analysing parameterized, non-autonomous, dynam-
ical systems. More concretely, consider the dynamical system ẋ = f(x;µ(t)) where the
model parameters continuously depend on t. We say that the system passes through a
tipping point at t∗ if and only if µ(t∗) is a bifurcation value. If the bifurcation removes or
changes the stability of a stable equilibrium x∗, then the system is likely to exhibit early
warning signals at times earlier than t∗. Indeed, we see this is the case for the system
ẋ = x2 − (1− t), as shown in figure 1.3.

Since many systems model present states empirical systems as stable equilibria, includ-
ing several models of ocean circulation (see [17, 31, 34]), it is worth considering whether
EWS can be tracked over time to infer a system tipping point. At first glance, this ap-
pears impossible, as it would require that system states somehow move from their stable
equilibria. However, systems often include noisy dynamics which perturb the system state
away from its stable equilibrium x∗, and into a small neighborhood Nδ(x

∗) [27]. As a sys-
tem approaches a tipping point, it often exhibits critical slowing down and nonlinearities
in response to noisy perturbations. These EWS then manifests themselves as statistical
properties of the state’s time series, particularly increasing time series variance and auto-
correlation [3, 4, 5, 27]. These statistical properties are clearly visible in figure 1.4, where
we have applied the same amount of noise to stable equilibrium solutions of the saddle-node
normal form when µ = −10,−0.01.

Given these statistical features of systems nearing tipping points, it is common to use
traditional classification techniques like the Kendall-τ test to predict the occurrence or
non-occurrence of a tipping point [3, 27, 28]. However, Bury et al.3 theorized that a deep

3Note that unless otherwise specified, all commentary related to Bury et al’s work is based on [5].

8

Figure 1.3: Solutions for µ(t) = 1− t. Notice for the right plot that solutions with initial
conditions less than 1, are converging toward the sable equilibrium at t=0, but eventually
fall out of its basin of attraction due to emergent nonlinearities. At t = 1, all solutions
begin diverging to infinity, as expected.

neural network trained on a sufficiently large data set will be able to predict both whether
or not a system will pass through a tipping point via early warning signals. Their networks,
trained on generated time series from simple, two-dimensional dynamical systems, is able
to predict whether or not a system will pass through a tipping point with higher accuracy
and fewer false positives than traditional methods. Their network can also accurately
predict what type of bifurcation the system will exhibit on many sets of generated and
empirical data alike.

1.3 Motivating Questions

Motivated by the success of Bury et al.’s networks, we use their work as a sort of blueprint
for our own. In particular, we aim to generate a data set of stochastically forced time series
from low-order box models of AMOC, and use the data to train CNN-LSTM classifiers
that predict AMOC collapse. We are primarily interested in comparing the performance of

9

Figure 1.4: Normalized time series data of stable equilibrium solutions to the saddle-node
normal form forced with equal amounts of white noise (σ = 0.01) , and their corresponding
rolling variance and autocorrelation values. We note that when µ = −0.01, the system
exhibits much higher variance and autocorrelation compared to µ = −10, as expected.

10

FBM-specific multivariate classifiers versus Bury et al.’s original models. In particular, we
believe that AMOC dynamics generated from, and classifiers trained on box model data
differs from the training procedure and data generation methods outlined by Bury et al.
in three important regards. First, AMOC is not generally represented as a variable in box
models, but by a linear combination of box temperatures and salinities (see, for instance,
[17, 31, 34]). As a result, EWS present in the time series of the box model state may
not necessarily appear in AMOC data, as the linear combination may introduce noise that
either amplifies or diminishes the presence of such EWS. Second, Bury et al.’s models are
univariate time series classifiers. However, box models generally have states described by
no fewer than four dynamic variables. As a result, our classifiers may be able to leverage
these additional variables, and their corresponding time series, to better classify AMOC
data. It may even be the case that we can successfully train a classifier to detect AMOC
collapse, even when it is only trained on box temperature and salinity data. Finally, we
note that Bury et al.’s models predict both if a system is approaching a tipping point,
and which kind of bifurcation induces this tipping point, resulting in four possible output
values — 3 for different kinds of bifurcations, and one for no tipping point. However, we
are only concerned with whether or not an AMOC time series is approaching a tipping
point. To this end, it is insightful to ask if slightly modifying one of Bury et al.’s networks
so that it only outputs two labels yields a better performance on our box model AMOC
data when compared to the original, unmodified network. Given these concerns, we wish
to concretely address the following four questions:

1. How well does one of Bury et al.’s model perform on a test set of AMOC data
generated on box model data with no additional training?

2. How well does one of Bury et al.’s model perform on a relevant test set if it is
modified to only output two labels, corresponding to whether or not AMOC collapse
will occur?

3. How much better does a neural network which takes in time series for all box model
variables perform when compared to a similar network which only takes in time series
corresponding to AMOC?

4. Can a neural network successfully predict whether AMOC collapses even when it is
not directly trained on AMOC data? That is, can time series of box temperatures
and salinities be used as proxies to infer AMOC dynamics?

In order to address these questions, we must first determine which kind of neural
network is best suited to our classification task, which box model we should use to generate

11

training data, and how we can generate this box model data efficiently to create a data set
for model training. These topics are covered in §2. Given a relevant network architecture,
box model and data set, we then create and train several neural network based classifiers
to address questions 2-4. The performance of our networks, including comparisons to Bury
et al.’s networks, are discussed in §3.

12

Chapter 2

Methods & Data

2.1 Deep Neural Networks & the CNN-LSTM Archi-

tecture

2.1.1 Neural Networks & Supervised Learning

Machine learning broadly concerns itself with “teaching” a computer to “learn” how to
perform a specific task1. Given our desire to train an AMOC classifier, we are specifically
interested in so-called supervised classification tasks: tasks where given some labelled
input, we are interested in finding a function which predict the appropriate label from
its corresponding input. In particular, inputs are represented by so-called feature vectors
x ∈ Rn, while labels are specified by targets y ∈ {1, ..., k}. The networks are then “taught”
or trained to learn targets from data sets of labelled feature vectors.

A feed-forward neural network is nothing more than the composition of many layer
functions f : Rm → Rn of the form f(x;W, b) = σ(Wx + b). Here W is an n × m
weight matrix, b ∈ Rn is a bias vector, and σ : Rn → Rn applies a nonlinear activation
function component-wise to Wx+ b. In principle, the activation could be any sufficiently
differentiable function. But in practice only a few functions, including the sigmoid, tanh
and ReLU functions shown in figure 2.1, are used as activations.

1This section is based on the first two chapters of [20].

13

Figure 2.1: Common activation functions for networks. The sigmoid, tanh, and ReLu
functions are defined as 1/(1 + e−x), (e2x − 1)/(e2x + 1), and max(0, x), respectively.

Given L layers, f1, ..., fL, the neural network FΘ(x) is defined as by :

FΘ(x) := fL(fL−1(· · · (f1(x;W1, b1) · · · ;WL, bL) (2.1)

= σL

(
WLσL−1

(
· · ·σ1

(
W 1x+ b1

)
· · ·+ bL−1

)
+ bL

)
(2.2)

Where Wl, bl denote the weight matrix and bias vector of layer 1 ≤ l ≤ L, and Θ is
the set of all weights and biases. The predicted label ŷ of x is usually taken to be the
layer activation σL is often the softmax function S, as this function yields a probability
distribution over all possible labels k ∈ {0, 1, ..., K−1}. Binary classification tasks provide
an exception to this generalization. In these tasks, σL is usually the sigmoid function, and
ŷ := I{FΘ(x) > 0.5}, where I is an indicator function.

S(z)i =
ezi∑K−1

j=0 ezj
; 0 ≤ i ≤ K − 1 (2.3)

Having specified in full generality what a neural network is, we now describe supervised
learning. The general aim of supervised classification is to have the network accurately
predict the discrete label k ∈ {0, ..., K − 1} of an input x that the network has not “seen”
before. More specifically, let D := {(xi, yi)}ni=1 be a data set associated with a classification
task. The concrete aim of supervised learning is to find neural network parameter values

14

that minimizes the average loss over a training set Dtr ⊆ D:

Θ̂ = argmin
Θ

 1

n

∑
(xi,yi)∈Dtr

L(FΘ(xi), yi)

 := argmin
Θ

[Lave (Dtr,Θ)] (2.4)

where L is a so-called loss function and Lave is the average loss. A loss function encodes
some measure of inaccuracy. Common loss functions include the mean-squared error loss
L(fΘ(x), y) := [yi − fΘ(x)]

2, and in the case of binary classification (i.e. k ∈ {0, 1}) the
binary cross-entropy loss L(fΘ(x), y) := −[y log(fΘ(x))+(1−y)(1− log fΘ(x))]. Assuming
a fixed training set, define L(Θ) = Lave(Dtr; Θ). Rudimentary calculus reveals that ∇L(Θ)
is the direction which causes the steepest decrease in L.. As a result, adjusting Θ by a
sufficiently small step size α in the direction −∇L(Θ), should lead to a new parameter
values Θ′ = Θ−α∇L(Θ) which decrease L. The procedure just described corresponds to a
single iteration of the famous gradient descent optimizer, which at iteration i+ 1 updates
network parameters as follows:

Θi+1 ← Θi − α∇L(Θi)

Note that α /∈ Θ. For this reason, α is called a hyperparameter, as its value cannot be
directly inferred or optimized by minimizing L.

One difficulty of gradient descent is that it assumes ∇L(Θ) is computable, but it is
not clear a priori that this computation is possible. However, the famous backpropagation
algorithm exploits the particular structure of deep neural networks to find components of
∇L(Θi) recursively. While we do not describe the algorithm in this paper, backpropagation
and gradient descent work in tandem to train networks (see §13.3 of [18]). In particular,
evaluating L(Θi), then performing backpropagation to get ∇L(Θi), and finally updating
Θi → Θi+1 defines an epoch of training.

Of course, the training must terminate at some point. As a result, the number of epochs
is either set in advance as a hyperparameter, or is terminated according to the networks
performance on a validation set. By artificially separating a training set Dtr into a new,
smaller training set T ′, and a new validation set V , the model’s loss on the validation set
can be determined after each epoch. Then training can finish when the average loss on the
validation set does not decrease after a certain number of iterations (see [20]).

2.1.2 The CNN-LSTM Network Architecture

Recall that the aim of Bury et al. is to classify time series of sequential state data by
discrete labels. Although we have clarified how supervised learning can train a network,

15

what remains unclear is how to design the neural network f so that it will be successful
at this sequence classification task. In particular, we seek a network which tasks in time
series data Xi := {x(1)

i , ..., x
(T)
i }; x

(j)
i ∈ Rm(j), 1 ≤ j ≤ T and returns and inferred targetŷi,

where each sequence has length m(j) ∈ N. The most popular family of architectures for
these classification tasks are Recurrent Neural Networks (RNN), and the Long-Short Term
Memory Network (LSTM) in particular [9, 18].

Let Xi := {x(1)
i , ..., x

(T)
i } be a sequence in Rm×T . For the purposes of classification,

a recurrent classifier consists of a recurrent network f , and a classification layer2. The
recurrent network is a neural network that for each index t ∈ {1, ..., T}, takes in a single

feature vector x
(t)
i ∈ Rm, and a so-called hidden state ht−1 ∈ Rp as inputs, where p ≥ 1 is a

hyperparameter. The parameterized network fΘ : Rm+p → Rp then outputs a new hidden
state ht = f(xt, ht−1), after which x

(t+1)
i and ht are fed into the network, to produce ht+1 =

f(xt+1, ht; Θ), and so on. The cycle repeats until the final feature vector x
(T)
i . Finally,

the hidden state hT = f(x
(T)
i , hT−1) is fed into the single layer ℓ(·) : Rp → Rk, which is

usually the softmax or sigmoid function following our discussion in §2.2.1. Although it may
initially appear that recurrent classifiers do not conform to neural network architectures,
we note that “rolling out” an RNN, as shown in figure 2.2 yields a standard neural network.
As a result, both gradient descent and backpropagation can be performed on RNNs [18].
The purpose of the hidden state ht is to provide a representation of the sequence Xi at
time t. The hope is that by feeding both x

(t)
i and ht−1 into the recurrent network f , the

hidden state ht represents the sequence up to t by accounting for both the changes to the
sequence at index t, as well as the behaviour of the sequence up to t − 1. In practice,
however, the hidden state often fails to represent more than the past few timesteps. Long-
short term memory networks were specifically designed to remedy this concern. These
networks enhance RNNs by augmenting the hidden state ht with a memory state ct, which
provides additional control over how much the hidden state changes between t − 1 and t.
This modified RNN has resulted in improved performance for a wide range of sequence
classification tasks, especially time series classification [15].

While LSTMs perform well in sequence classification tasks, some state-of-the art time
series networks do not apply LSTMs directly on raw time series data. Instead, these
classifiers first pass each sequence through a set of one-dimensional convolutional layers
[7, 19]. A convolution extracts particular features from the input x and encodes higher-
order, more abstract features of x [12]. More technically, let x ∈ Rn be a feature vector, and
denote by xi:j the vector (xi, xi+1, ..., xj) ∈ Rj−i where 1 ≤ i < j ≤ n. A one-dimensional
convolution between a kernel w ∈ Rm and x ∈ Rn yields an encoding z ∈ Rn−m+1 of x,

2This summary is based on [18].

16

Figure 2.2: An “unrolled” LSTM network where feature vectors and the hidden state are
two-dimensional. Red edges denote a weight of 1, while a missing edge denotes a weight
of zero.

whose components are given by zk = xk:k+m · w, 1 ≤ k ≤ n −m. Oftentimes, the vector
x ∈ Rn is padded to x′ = (0, ..., 0, x1, ..., xn)

T ∈ Rn+(m−1) so that the encoding of x′ has the
same dimension as x. Since convolutions return linear dot products of features, these layers
are nothing more than highly structured weight matrices. So, performing backpropagation
and gradient descent, allows the network to “learn” the best kernels for a classification
task.

Finally, we note that input layers are often convolved with many kernels of the same
length to yield multiple encodings. These nz ∈ N encodings, where nz is a hyperparameter,
ensure that many higher-order features are available to later layers of the network, and
generally results in better classifier performance [18]. After all convolutions are performed
on an input xi ∈ Rn, the encodings are concatenated together into single sequence X i ∈
Rnz×n.

The result of incorporating convolutional layers and an LSTM into a single network
is the CNN-LSTM architecture. In particular, each input sequence or time series Xi is
convolved with multiple kernels to yield X i, a sequence of many high-order features. Then
X i is passed through an LSTM, which represents the dynamics of X i into a hidden state

17

ht, which is then passed through a classification layer. This ensures that ht represents the
dynamics of higher-order features of the input Xi and high-performing classifiers.

2.2 The Four-Box Model

In order to train the networks needed to address our research questions, we need to generate
a large data-set consisting of AMOC time series associated with low-order box models. We
focus on these models because they are explicitly described by parameterized dynamical
systems, represent AMOC speeds as stable equilibrium values, and describe AMOC collapse
as local bifurcations. Hence these systems should exhibit EWS. In particular, we believe
that the extension of Stommel’s model presented in [34] best fits our criteria. In addition to
the features common to most box models, we will see in §2.2.3 that this low-order model is
simple to force stochastically via the Euler-Maruyama method, and allows us to determine
if the system reaches a tipping point before running any simulations. In this way the model
not only captures AMOC dynamics, but allows us to label training data very efficiently.

2.2.1 Overview & Dynamics

Zickfeld et al.’s four-box model3, denoted FBM and shown schematically in figure 2.3,
represents the Atlantic ocean as four well-mixed boxes with uniform temperatures and
salinities. The boxes themselves represent the southern, northern, tropical and deep At-
lantic oceans. For convenience’s sake, these boxes are labeled 1-4, respectively. Boxes 1
and 2 are connected to boxes 3 and 4 via capillaries, which allows for the closed circulation
of water and salt. The density of each box is then specified as a linear function of its
temperature Ti(t) and salinity Si(t):

ρi = ρ0 (1− αTi(t) + βSi(t))

where ρ0 is a reference density for saltwater, α is a thermal expansion coefficient, β is a
haline contraction coefficient. Exact values for these parameters can be found in table 2.1.
The model then assumes that the volume circulation rate m of THC is, in turn, specified
by the density gradient between boxes 1 and 2:

m(t) =
k

ρ0
[ρ2(t)− ρ1(t)] = k (α[T2(t)− T1(t)]− β[S2(t)− S1(t)]) (2.5)

3Note that the ensuing discussion is based on [34].

18

where k is a constant linking transport volumes rates to density gradients. Notice that
m(t) is positive if and only if the density of box 2 is greater than box 1. Thus we may take
m > 0 to denote a northward flow of surface waters. It is also clear from this observation
that salinity and temperature drive the circulation in opposite directions, confirming that
circulation is thermally driven whenever m > 0.

Figure 2.3: Schematic representation of the four-box model. Note that box i is defined by
its fixed volume Vi, and its variable temperature and salinity given by Ti, Si respectively.
Meanwhile, the circulation speed of the ocean is specified by m, which in turn depends on
T1, T2, S1, S2. Finally, notice that the surface boxes are each forced towards a relaxation
temperature T ∗

i , 1 ≤ i ≤ 3 in the absence of internal circulation, and box salinities are
forced by freshwater fluxed F1 and F2.

In order to fully specify m, we must account for the dynamics of box temperatures and
salinities. These variables broadly depend on a circulation term and a forcing term. The
circulation term describes how the temperature and salinity of box i changes due to some
of the box water leaving and being replaced by water from its downstream neighbor d(i).
Because the amount of water leaving a box depends on m(t), this term should depend on
m(t) and one of Ti(t)− Td(i)(t), Si(t)− Sd(i)(t). Meanwhile the forcing term captures how
quickly the surface boxes are forced by the atmosphere and freshwater fluxes. In particular,
surface box temperatures Ti are forced towards a relaxation temperature T ∗

i . The surface
box salinities are forced by two time-varying freshwater fluxes F1, F2 representing the
freshwater leaving box 1 to box 3, and the freshwater leaving box 3 into box 2, respectively.

19

These considerations give rise to the following eight-dimensional dynamical system

Ṫ1 =
m

V1

(T4 − T1) + λ1(T
∗
1 − T1) (2.6)

Ṫ2 =
m

V2

(T3 − T2) + λ2(T
∗
2 − T2) (2.7)

Ṫ3 =
m

V3

(T1 − T3) + λ3(T
∗
3 − T3) (2.8)

Ṫ4 =
m

V4

(T2 − T4) (2.9)

Ṡ1 =
m

V1

(S4 − S1) +
S0F1

V1

(2.10)

Ṡ2 =
m

V2

(S3 − S2)−
S0F2

V2

(2.11)

Ṡ3 =
m

V3

(S1 − S3)−
S0(F1 − F2)

V3

(2.12)

Ṡ4 =
m

V4

(S2 − S4) (2.13)

We briefly note that equations 2.6-2.13 are only sensible for present day AMOC circulations.
Indeed, if AMOC transport were reversed, then the downstream neighbor of each box
would change, as shown in §2 of [33]. We also note that the forcing terms are themselves
combinations of model parameters. In particular λi := Γ/(cρ0zi), where each of these
parameters are further described in table 2.1.

Finally, we must specify the values of the model parameters to determine m. All model
parameters except the forcing parameters F1, F2, T

∗
1 , T

∗
2 , and T ∗

3 do not change with respect
to CO2 forcings, and are therefore constant. Furthermore, most parameter values can either
be empirically measured or are given by the CLIMBER-2 model of intermediate complexity
(see [23] for an overview of CLIMER-2). Hence, these parameters are latent, as their values
must be inferred. In order to infer the latent constant parameters, the authors optimize
them so that the FBM response to F1 forcings match those of CLIMBER-2 [29, 34]. The
resulting parameter values are shown in table 2.1.

2.2.2 Stability, Bifurcations & EWS in the FBM

Much like other box models, the FBM represents the current thermally-driven circulation
rate m as a function of the model’s equilibrium state. To this end, we consider equilibrium
solutions to the FBM and their stability. We then see that this system exhibits something

20

Parameter Description Equilibrium Value Constant? Latent?

c Specific heat capacity of
seawater

4000J kg−1 ◦C−1 ✓ ✗

ρ0 Reference density of
seawater

1025 kg m−3 ✓ ✗

α Thermal expansion
coefficient

1.7×10−4 ◦C−1 ✓ ✗

β Haline expansion coefficient 8× 10−4 psu−1 ✓ ✗

S0 Reference salinity for
seawater

35 psu ✓ ✗

V1 Volume of southern box 1.1× 1017m3 ✓ ✗

V2 Volume of northern box 0.4× 1017m3 ✓ ✗

V3 Volume of tropical box 0.68× 1017m3 ✓ ✗

V4 Volume of deep box 0.05× 1017m3 ✓ ✗

z1 Depth of southern box 3000 m ✓ ✗

z2 Depth of northern box 3000 m ✓ ✗

z3 Depth of tropical box 1000 m ✓ ✗

F1 Freshwater transport
between southern and

tropical boxes

0.014 Sv ✗ ✗

F2 Freshwater transport
between tropical and

northern boxes

0.065 Sv ✗ ✗

T ∗
1 Relaxation temperature of

the southern box
6.6◦C ✗ ✓

T ∗
2 Relaxation temperature of

the northern box
2.7◦C ✗ ✓

T ∗
3 Relaxation temperature of

the tropical box
11.7◦C ✗ ✓

Γ Thermal coupling constant 7.3×108

3.154×107
Js−1m−2 ◦C−1 ✓ ✓

k Empirical flow constant 25.4×1017

3.154×107
m3s−1 ✓ ✓

Table 2.1: Parameter names and descriptions for the FBM. As noted by [29, 34], the
model is calibrated so that F1 matches the equilibrium value produced by Petoukhov et
al.’s CLIMBER-2 model (see [23] for a summary of CLIMBER-2).

21

like the saddle-node bifurcation described in figure 1.2. In particular, variations of the
model’s parameters cause two equilibrium circulation values of opposite stability to coalesce
and eventually disappear. However, our treatment of this topic is not rigorous. We choose
this informal exposition based on the rigorous work of [25] and [29], as a full treatment
would be both lengthy, and is already sketched in these two papers.

Consider the equilibrium solutions of the four-box model. By definition, Ṫi = Ṡi =
0, 1 ≤ i ≤ 4, so it immediately follows from equations 2.9 and 2.13 that T eq

4 = T eq
2 ; Seq

4 =
Seq
2 . Since equation 2.10 is zero, and Seq

2 = Seq
4 , we may substitute meq(S

eq
2 − Seq

1) = S0F1

into equation 2.5 to get the following quadratic equation.

0 = m2
eq − kα(T eq

2 − T eq
1)meq + βS0F1 (2.14)

We further note that equations 2.7 and 2.8 can be expressed as a function of ∆T := T eq
2 −T

eq
1

and meq by re-arranging equations 2.6-2.13. Using these transformed equations, ∆T can
then be expressed as a function ∆T (m;T ∗

1 , T
∗
2 , T

∗
3Pc). Here, Pc is a vector of the model’s

fixed parameters. Assuming further that ∆T is fixed — even if this is unrealistic —
illuminates why m exhibits a saddle-node bifurcation. In this simplified scenario, equation
2.14 becomes

0 = m2
eq − kα∆Tmeq + βS0F1 (2.15)

⇒ meq =
kα∆T

2
±
√

1

4
k2α2∆T 2 − βS0F1 (2.16)

from which it is clear that F crit
1 = (kα∆T)2/4βS0. Indeed, if F1 > F crit

1 , then there are no
real solutions for meq. Meanwhile F1 = F crit

1 yields a single stable solution, and F1 < F crit
1

yields two solutions, as expected. Further algebra reveals that one value of meq makes the
derivative of equation 2.14 negative, while the other makes it positive. As a result, the two
equilibria have opposite stability, as expected.

We also note that that forcing T ∗
1 and T ∗

2 can induce this saddle-node response. Indeed,
now assume F1 is fixed in time and 1

4
k2α2∆T 2 > βS0F1 so there are two equilibrium

solutions for m, but T ∗
1 and T ∗

2 can vary. Slawig & Zickfeld show that ∆T (m;T ∗
1 , T

∗
2 , T

∗
3Pc)

is an increasing function of T ∗
1 and a decreasing function of T ∗

2 [29]. Changing these
parameters, in turn, can lower ∆T , and allows one to set 1

4
k2α2∆T 2 < βS0F1. This

general fact is reflected in figure 2.4, where we show how linear forcings of F1, T
∗
1 , T

∗
2 lead

to negative values of m when simulating the FBM with additive noise.

The upshot is that m can undergo something like a saddle-node bifurcation under forc-
ings of F1, T

∗
1 , T

∗
2 , and T ∗

3 . The only reason we take care to specify that m undergoes

22

Figure 2.4: Examples of the FBM passing through a saddle-node bifurcation under indi-
vidual forcings of F1, T

∗
1 , T

∗
2 as shown in the upper left, upper right and lower left subplots,

respectively. The passage of each system through a tipping point is confirmed by the fact
that these subplots all result in a negative overturning circulation. Also notice that even
when there is an extreme forcing of T ∗

3 , as shown in the lower right subplot, the overturning
circulation m is always positive. Hence this extreme forcing does not result in the system
undergoing a critical transition.

something “like” a bifurcation, is because m is not itself a dynamic variable of the system.
However, it can be shown that the eight-dimensional system exhibits a saddle-node bifur-
cation only when equation 2.16 has no real solutions [25]. Since saddle-node bifurcations
also necessitate that at least one eigenvalue of the FBM Jacobian approaches zero (see
[11]), it follows that EWS should appear in stochastically forced time series of the system
variables.

What is unclear however, is whether these EWS will appear in time series of m. Again,
m is not itself a variable of the FBM, but a linear combination of the model’s variables. This
observation is crucially important given that the Jacobian of the FBM always has a zero

23

eigenvector, regardless of the variable parameter values, whose corresponding eigenspace
is not spanned by any temperature variables (see appendix A.1 for more details). As a
result, any perturbation along this eigenspace will always result in a nonlinear response. So
if these nonlinear responses are incorporated into m, they may “mask” other early warning
signals.

2.2.3 Generating Four-Box Model Training Samples

We provide a broad overview of our FBM data set generator. We pay particular attention
to the ways our generator leverages analytic features of the FBM to streamline the data
labelling process. Notably, our procedure utilizes the fact that local bifurcations in the
FBM can be detected analytically from the time series of T ∗

1 , T
∗
2 , T

∗
3 , F1. In particular,

Slawig and Zickfeld show that equilibrium values of m are given by the real roots of a
quartic polynomial G(m), whose coefficients only depend on parameters. As a result,
specifying the vector P = (F1, T

∗
1 , T

∗
2 T

∗
3)

T ∈ R4, is sufficient to determine the number of
equilibrium solutions χ(P) directly, since all other parameters are constant. Thus, it follows
that a variation of P induces a saddle-node bifurcation just when varying P changes χ(P).
This observation eliminates the need to use AUTO-OP7 or similar numerical bifurcation
analysis software, greatly simplifying our generator’s implementation.

The procedure used to generate one sample for our data set is summarized in algorithm
1. The generation procedure, which is based on a similar procedure in [5], is repeated
500,000 times to make a data set of the same size. For any given simulated time series, we
first specify how many years should be simulated, what the time step ∆t should be, whether
a bifurcation occurs, and how many samples each training set time series should contain.
We set each simulation to last a thousand years, as this is the time scale used by Zickfeld
et al. when investigating the FBM response under F1 forcings (see §5 of [34]). The time
step ∆t is set to 1/f, f ∼ U{1, 10} so that a wider range of lag-1 autocorrelation values
are found in the training set. We ensure there are an equal number of time series that do
and do not pass through a tipping point. Finally, our networks will take in 500-length time
series as inputs. So, there should be 500 total timesteps in each series.

More specifically, let k = 0, 1 denote whether or not we wish to generate a time se-
ries where the FBM passes through a tipping point. Given k, we wish to generate the
initial parameter values P init

F and final parameter values Pfinal
F so that χ(P init

F) = 2, but
χ(Pfinal

F) = 0. In order to guarantee that this is the case, we create a sampler by fitting a
linear support vector machine (henceforth LSVM) over a set of possible parameter values.
This sampler, described more technically in appendix B.1., a LSVM yields a vector w ∈ R4

24

Algorithm 1 Four-Box Model Training Set Sample Generator.

Require: niters, ninp, t0, tf , bif
P0, Pf ← LSVMS(bif) ▷ Sample From Support Vector Machine
τ ← {i · 1000/niters | 0 ≤ i ≤ niters}
if bif = 1 then

i← argmin
{
ti ∈ τ | χ(Pti) = 0 & χ(Pti−1

) = 2
}

else
i← niters

end if
j ← i− 600
t′0, t

′
f ← tj, ti

σ ← getNoise(P (t′0)) ▷ Find noise following [5].
m,T, S ← solveEM(600, t′0, t

′
f , P (t′0), P (t′f), σ) ▷ Euler-Maruyama

m← detrendLOWESS(m) ▷ Pre-Processing
if CPD(m)− j < 600 then ▷ Run Changepoint Detector

BREAK
else

j, i← CPD(m)− 600, CPD(m)
m,T, S ← mj:i, Ti:j, Sj:i

end if

which infers the label χ(P) of P ∈ R4 based whether wTP ≥ 0 or wTP < 0. Suppose
without loss of generality that the LSVM infers χ(y) = 2 whenever wTy ≥ 0. In this case,
we may generate a sample P with χ(P) = 2 by randomly sampling three component of
P , and setting the final component so that wTP ≥ 0. Of course, this sampler does not
guarantee χ(P) = 2 due to misclassifications of the LSVM. However, in this circumstance,
the sampler simply generates a new point P until χ(P) = 2.

Next, we define the values of the model parameters PF := (F1, T
∗
1 , T

∗
2 , T

∗
3)

T for each
time ti =

i
f
, i ∈ [0, 1000f]. If k = 1, then parameters are linearly interpolated between

P init
F and Pfinal

F over the course of the simulated millenium. Following Bury et al., the
model parameters remain constant [5]. As a result of these considerations,PFi := PF (ti) is
given by

PFi =

{
P inital

F k = 0
ti

1000
P final
F +

(
1− ti

1000

)
P inital

F k = 1

If k = 1 then we compute {χ(PFj)}1000·fj=1 . It follows that a saddle-node bifurcation occurs
at the first time tb when χ(PFb) = 0, but χ(PFj) = 2 for 1 ≤ j < b. We then check that

25

b > 600. If this is the case, we retain the set {PFj}bj′=b−600.

Next, a stochastic simulation of the four-box model is run. In particular, m,Ti, Si 1 ≤
i ≤ 4 are simulated over 600 time steps, starting at tj′ = tj − 600∆t. Hence the model
dynamics are simulated just until a bifurcation induced tipping point. More technically,
the dynamics of the subsequent 600 time steps are simulated using the Euler-Maruyama
(EM) method. This method solves for a sample path Xt := X(t) ∈ Rn, t ∈ [0, T] whose
dynamics are given the stochastic differential equation dXt = a(Xt, t)dt + b(Xt, t)dWt.
Here Wt := W (t) denotes an Rn Wiener process. Given the discretization of the interval
[0, T] to {tj}nj=1 where tj := T j

n
, j ∈ {0, ..., n}, the EM method determines each value

X(tj), j ∈ {1, ..., n} recursively:

X(tj) = X(tj−1) + a(X(tj), tj)∆t+ b(X(tj), tj)∆Wj, ∆Wj ∼ N (0,∆t)

where ∆t := T/n (see chapter 9 of [10]). So, the value of the random variable Xt can be
found recursively.

In their paper, Bury et al. assume that the stochastic component of each dynamical
variable is Gaussian noise [5]. That is, b(X(ti), ti) = σ. This assumption allows the authors
to determine an appropriate value of σ so that noise is present in each sample path, but
does not dominate model dynamics. Our approach to determining the appropriate noise
level σ for the FBM is nearly identical to this methodology. The crucial difference is that
Bury et al.’s procedure sets σ according to the dominant eigenvalue of a system’s stable
equilibrium. However, we know that the dominant eigenvalue of the four-box model’s stable
equilibrium always has real component zero. This complication slightly changes how we
compute the appropriate noise level σ — a topic we discuss in appendix B.2.

Once we find an appropriate value for σ, we solve for Ti(tj), Si(tj) 1 ≤ i ≤ 4 at each
time step tj using the EM method with a stochastic component σ∆Wj. We also note that
the model’s non-constant parameters are set to PFj at each time-step, so that parameter
forcings are incorporated in each simulated time series. Finally, m(tj) is found using
equation 2.5 alongside the box temperatures and salinities at tj.

The EM method yields a 600 length time series of m,Ti, Si, 1 ≤ i ≤ 4. In principle,
these time series could be used as inputs to models, without any sort of preprocessing.
However,we again follow Bury et al.’s procedure in [5], and perform a locally weighted
scatter-plot smoothing regression (henceforth “LOWESS”) on all time series. Intuitively,
detrending removes the linear components of the original series, leaving behind a new series
of residuals, as is shown in figure 2.5. So, performing LOWESS on FBM time series data
should only leave behind a record of noise induced perturbations, and nonlinear responses
to the noise — features which better represent the EWS in a system.

26

Figure 2.5: A time series resulting from performing LOWESS on a time series of m where
χ(P init

F) = 2 and χ(Pfinal
F) = 0. The top plot represents the unprocessed time series of m

in blue, and the linear dynamics inferred by LOWESS are shown in orange. The bottom
plot represents the preprocessed time series of m.

Each time series is normalized after LOWESS detrending. This is accomplished by
dividing all time series entries by the sum of each entry’s absolute value. Finally, we run
a change point detector (henceforth CPD) on the detrended time series outputs. This
detector ensures that the system has not been pushed through a tipping point by noise
before the parameters reach their local bifurcation value. Consequently, if a change point
is detected at index icp, the generator returns a length 500 time series from indices icp−500
to icp. If icp < 500, the time series is discarded and the process is repeated. Finally, if no
change point is detected, the output time series is just the final 500 value of the length 600
series. This series is then labelled by k and added to the data set.

In terms of implementation, we wrote an EM solver for the four-box model in python
3, making extensive use of both the numpy and scipy libraries. The LSVM fit on Ω was
implemented with the scikit-learn library, while LOWESS detrended and CPD were

27

implemented with functions found in the statsmodels and ruptures libraries, respectively.
The LOWESS window size was 120, while the CPD window size was 10. All relevant scripts
were run on the speciality research CPU cluster provided by MFCF.

28

Chapter 3

Results

Given the methodology and resulting data set described in §2, we now turn to the task
of evaluating CNN-LSTM networks trained on detrended FBM time series data. In or-
der to address the questions raised in §1.3W we are not only interested in the perfor-
mance of FBM-specific classifiers, but the performance of one of Bury et al.’s original
models found in this GitHub repository. To this end, we consider the performance of
the best model 1 1 len500 network — henceforth the Bury network — on a test set of
5,000 labelled FBM time series samples. Meanwhile, we also create and train our own
transfer learning classifier, a circulation only classifier, an all variable classifier, and proxy
classifier. For the transfer learning classifier, we leave the convolutional layers and LSTM
components from the best model 1 1 len500 model (henceforth, the Bury model) intact,
but train the weights and biases of a new classification layer ℓ : Rp → R on FBM data. The
other classifiers are specified what they accept as features. The circulation model takes
in m as a time series feature, the proxy network takes in T1, T2, S1 an S2 as time series
features, while the all variables model takes in m alongside the temperatures and salinities
of every box as features.

We summarize the training procedure, specific architecture, and hyperparameter values
of all of our models in §3.1. Next, we compare the performance of all of our networks and
the Bury model. The metrics used to evaluate these networks are the accuracy, average
loss, precision, recall and the receiving operating characteristic of these models. Given the
similarities of our own methods and networks to the work of Bury et al., we briefly compare
their methodology and data to our own in §3.3. Finally, §3.4 discusses some limitations
and possible extensions of our work.

29

3.1 Model Architectures & Training

Although we have clarified that CNN-LSTMs are well-suited to predicting AMOC tipping
points, we have not yet specify how our models are trained, nor how their hyperparam-
eters are chosen. The precise architecture of our models, including their hyperparameter
values, are again based on Bury et al. The general architecture of this model is given in
figure 3.1. Meanwhile its hyperparameters are given in table 3.1, which also contains the
hyperparameters of our four models as well.

Figure 3.1: Architectures of Bury et al.’s network (top), the transfer and circulation net-
works (middle), and the all variable and proxy networks (bottom). The kernel (light blue)
of multiple convolutions slides over the input sequence (orange), yielding a new sequence
of encodings (red). For the all variable and proxy networks, these encodings are over the
kernels of the convolutional layers. These encodings pass through a max-pooling layer,
and then through a first LSTM f1 which outputs all of its hidden states (green). This
hidden state sequence is passed into another LSTM f2 and outputs the final hidden state
h
(2)
250. Finally, the components of h

(2)
250 pass through into a softmax layer to R4 for the Bury

network, and a sigmoid layer for all other networks.

Given a length 500 univariate time series, Bury et al.’s networks convolve the padded

30

input with 50 kernels of size 12, followed by a max pooling layer of size 2. The resulting
250× 50 series is fed into a first LSTM. This LSTM outputs its hidden state h

(1)
t ∈ R50 for

each index between 1 and 250 to make a new 250 × 50 sequence. The resulting sequence
is then fed into a second LSTM with hidden states h

(2)
t ∈ R10, and only outputs its last

hidden state h250. Then h250 ∈ R10 is passed into a sofmax classification layer with four
outputs corresponding to the four possible labels available in their model.

Due to time constraints, and the fact that Bury et al. performed a grid search to find
optimal hyperparameters (see [5]), all of our networks have a very similar architecture to
Bury et al.’s networks. Indeed, these similarities are clear when comparing the architectures
in figure 3.1. In fact, there are only two substantial differences between Bury et al.’s
architecture and our own. First, because we are only interested in whether or not the
input time series is approaching a tipping point, the classification layers in our models are
sigmoid layers rather than softmax layers. Second, our all variable classifier takes in time
series whose nine-dimensional feature vector xt at index 1 ≤ t ≤ 500 encodes the values
of m,Ti, Si, 1 ≤ i ≤ 4. Similarly, the feature vector xt ∈ R4 at index 1 ≤ t ≤ 500 of
our proxy network encodes the values of T1, T2, S1, S2. As a result, applying 50 kernels
and max pooling to each of the feature series, then concatenating the results yields an
output sequence with shape 250 × 450 or 250 × 200, respectively. We, therefore, further
reduce these outputs by summing over all encoded features given by a particular kernel.
This averaging results in a 250 × 50 sequence. Hence, the output of the convolution
layer in these models is the same shape as the output of the Bury model, allowing us to
leave the LSTM architecture intact. For the transfer learning and circulation models, the
architecture of the convolutional layers are identical to the Bury model.

Despite the near identical network architectures, our training procedure differs signifi-
cantly from Bury et al.’s in several important regards. First, we do not replace any feature
vectors in our time series by zeros. So, unlike the networks trained by Bury and colleagues,
our networks only take length 500 time series as inputs. Second, we train most of our mod-
els for only 150 epochs rather than 1500 epochs. Although this was not our intention, each
epoch for the circulation, all variables and proxy models took approximately 5 minutes to
run. Furthermore, there were negligible changes to training and validation accuracy for
each model after around 100 epochs. As a result, we terminated training early. However,
the total training time for the transfer learning network was little over six minutes. So, we
saw little reason to end training early. Third, we set the learning rate of the all variables
and proxy models to 0.005 rather than 0.0005 for quicker parameter convergence. Finally,
the loss function of our models was just the binary cross-entropy function. Obviously, Bury
et al.’s networks use a different loss function (a generalization of the binary cross-entropy
function called the sparse categorical cross-entropy; see this Keras document), as the bi-

31

Models Bury Model
Transfer
Learning

Circulation
All

Variables
Proxy

M
o
d
e
l
S
p
e
ci
fi
ca

ti
o
n
s Input shape (1, 500) (1, 500) (1, 500) (9, 500) (4, 500)

Kernel Size 12 12 12 12 12
Number of
Kernels

50 50 50 50 50

LSTM 1
Hidden Space
Dimension

50 50 50 50 50

LSTM 2
Hidden Space
Dimension

10 10 10 10 10

Non Output
Activation

ReLU ReLU ReLU ReLU ReLU

Output Layer
Activation
Function

Softmax Sigmoid Sigmoid Sigmoid Sigmoid

Epochs 1500 1500 1500 150 150
Learning Rate 0.0005 0.0005 0.0005 0.005 0.005

Cost Function
Categorical

Sparse
Entropy

Binary
Cross-
Entropy

Binary
Cross-
Entropy

Binary
Cross-
Entropy

Binary
Cross-
Entropy

Optimizer Adam AdamW AdamW AdamW AdamW

Table 3.1: Hyperparameter and other constants associated with network architec-
ture/learning for all models relevant to our analysis.

nary cross-entropy is only applicable to binary classification problems. As a last remark,
our time series data set was split into training, validation and test sets each containing
95%, 5% and 1% of our data set respectively. In this regard, our training process is similar
to Bury et al.’s process.

Given these architectures and hyperparameters, all models were trained using the keras
interface of the TensorFlow library in anaconda3. We further note that all of our mod-
els were optimized using the AdamW optimizer, with all parameters initialized with the
lecunNormal initializer. All networks were trained on the gpu-pr1-02 cluster provided by
MFCF. The resulting training and validation accuracy and losses are shown in figure 3.2.

32

Figure 3.2: Accuracy and loss plots of the training and validation sets for the transfer
learning, proxy, circulation, and all data models.

33

3.2 Network Performance

The network accuracy and losses given in figure 3.2 suggest that our classifiers perform
very well on our FBM data set. However, to better understand how our networks perform
in general, we must investigate their performance on our test set. To this end, we are
interested in the accuracy, recall and precision our networks over these sets. The recall of
a classifier with respect to a data set is just the ratio of true negatives compared to number
of true and false negatives [18]. Meanwhile, the precision of this classifier is the ratio of
true positives to the number of true and false positives. Intuitively, a classifier has high
recall just when it does not underestimate the number of true positives in a data set, while
it has a high precision when it avoids false positives. The accuracy, recall and precision of
all our networks can be found in table 3.2.

One way of further visualizing the recall and precision of classifiers is to use a receiver
operating characteristic curve (or ROC curve). For a binary classification network with a
sigmoid output layer, we define the discrimination threshold τ to be the value between 0
and 1 such that the inferred label ŷ of an input X is 1 iff FΘ(X) > τ . In practice, τ = 0.5.
The ROC curve is just the curve created by plotting the true positive vs the false positives
of a classifier as an implicit function of τ . The area under the ROC curve, oftentimes called
the area under the curve or AUC, determines how well a classifier performs with respect
to recall and sensitivity. The AUC of a classifier is 1 if it is a perfect classifier, and less
that 0.5 if it is no better than randomly guessing a label. The ROC of our classifiers are
shown in figure 3.4. We also plot some examples of time series which are misclassified by
all of our networks in figure 3.5, to better visualize which time series “trick” our networks.

To evaluate the Bury model on our test data, we plot the confusion matrix of the
inferred test labels in figure 3.3. The confusion matrix C of a K-label classifier is a K×K
matrix such that Ci,j entry is the ratio of how many inputs with label i had the inferred
label j compared to the total number of inputs with label i [18]. We chose the confusion
matrix as the Bury classifier has more labels than our own. So, a direct comparison of test
set losses, accuracy, or ROC may be misleading. However, in figure 3.6 we provide plots
of some (detrended) FBM time series which are correctly classified by our own networks,
but not the Bury network. We also include the averaged recall and precision for the Bury
model in table 3.2.

Given these results, we address our motivating questions in reverse order. First, figure
3.2 and table 3.2, it is abundantly clear that a proxy network can, in fact, determine if
m will pass through a tipping point. In one sense, this result is not surprising, as it is
the variables which determine whether m passes through a tipping point. Furthermore,

34

Figure 3.3: Heat map of Bury Model confusion matrix when evaluated on our FBM test
set.

Metric Accuracy Precision Recall

N
e
tw

o
rk Bury Model ∼16.19% ∼ 32.25% ∼ 19.66%

Transfer Learning ∼ 85.90% ∼ 87.04% ∼ 80.14%
Circulation ∼98.22% ∼ 98.25% ∼ 97.75%
All Variables ∼98.86% ∼ 98.46% ∼ 98.97%

Proxy ∼97.72% ∼ 97.62% ∼ 97.72%

Table 3.2: Accuracy, precision and recall of our four models.

the relationship between the proxy variables and m are linear. However, the eigenspaces
associated with the stable equilibrium’s linearization do not directly correspond to the
FBM’s dynamic variables, and the proxy model does not “see” the entire FBM state. So,
the result is still promising, if expected.

As for our third question, the results suggest that training a classifier on all simulated

35

Figure 3.4: ROC curves for the transfer, circulation, all variables, and proxy networks.
These networks have an AUC of Note that the left subplot is a restriction of the

FBM data provides a clear, but marginal, increase on model performance. However, this
interpretation of the results misses that the circulation classifier all on its own performs
tremendously well. That the all variables classifier outperforms the circulation classifier is
significant, just because there are scant performance increases that could be made in the
first place.

The performance of the transfer network indicates that even though the Bury model
itself performs poorly on our FBM test set, minimal changes to its architecture result in
a well-performing classifier. This, in turn, suggests that the EWS and nonlinearities in
stochastically forced FBM time series are not unfamiliar to the Bury model, but instead
appear to represent a transcritical bifurcation induced tipping point. We also note that even
though the transfer network is notably less accurate than the other networks we trained,
it is computationally much cheaper than training a network from scratch. As a result,
we suspect there are multiple practical instances where simply replacing the classification
layer of the models already trained by Bury et al. will yield a cheap and relatively accurate
classifier.

Finally, we investigate the performance of the original Bury model in some detail.

36

Figure 3.5: Examples of time series incorrectly classified by our own classifiers. In each
case, the time series precede AMOC collapse.

37

Figure 3.6: Examples of time series correctly classified by our own classifiers, but not
the Bury network. Notice that the time series of m with higher variance correspond to
collapse scenarios. We can also see that box temperatures have larger variance for the
samples approaching a tipping point, while the variance of salinity time series are not
obviously related to the sample labels.

38

Although it was expected that our models outperform the Bury model, the latter classifier
performs worse than random. Fundamentally, we believe that much of the classifier’s poor
performance is explained by the identically zero eigenvalue of the FBM Jacobian. Our belief
is based on the results of a small experiment we ran on the Bury model. In particular,
consider the following dynamical system:

ẋ = −x3 (3.1)

ẏ = y2 − µ (3.2)

It is clear that, like the FBM, this system exhibits a saddle-node bifurcation and that
its Jacobian at the fixed points (0,±

√
−µ) always has an identically zero eigenvalue. As

a result, this system has no linear restorative component in the Jacobian’s nullspace (i.e.
the x-axis).

Given this system, we define z(t) = y(t)− 5x(t), where the coefficient −5 was selected
as the FBM parameters β/α ≃ −5. We then simulated two hundred length-500 time series
of z(t) = −5x(t) + y(t). Here µ is randomly initialized between -20 and -1, and was either
linearly forced to 0 over the 500 timesteps, or remained constant. We then forced each
sample stochastically and detrended it, following the general procedure outlined in §3.1.1.

The results of this experiment, shown in table 3.2, clearly demonstrate that the model
successfully infers the correct type of tipping point (or lack thereof) when given time series
of y. However, the model is clearly biased towards the transcritical label when given z. So,
simply taking linear combinations of system variables leads to poor model performance.
We explicitly constructed system 3.2 to have similar properties to the FBM. So, these
results, alongside the comparatively high performance of the transfer model, suggests that
the Bury model performs poorly on the FBM data because the EWS in m is more similar
to a transcritical induced tipping point, than it is a saddle-node tipping point.

Saddle-node Hopf Transcritical Null
y forced 98 0 2 0
z forced 3 0 96 1
y null 1 0 25 74
z null 1 0 95 4

Table 3.3: Counts for each type of bifurcation inferred by the Bury model. Note that the
underlying system exhibits a saddle-node bifurcation

39

3.3 Comparing our Methods to Bury et al.

Given that our work is ultimately an extension of Bury et al.’s work, we summarize the key
differences between our methods and data to their own. These differences — summarized in
table 3.4 — ultimately underline that Bury et al.’s methodology considers simple parameter
forcings for a very large number of simple dynamical systems. Meanwhile, our method-
ology considers comparatively robust parameter forcings over a single, higher-dimensional
system.

We first compare the data generation procedures given by the different methodologies.
Bury et al. generate their data set by simulate a large number of two-dimensional dynami-
cal systems. In particular, the systems are third-order polynomials with randomly sampled
coefficients. Given such a system, the authors first determine if the relevant system ex-
hibits a bifurcation under variations of a single model parameter between -5 and 5. This
bifurcation, should it exist, is inferred using the numerical software AUTO-OP7 (see [21].

If the system exhibits a bifurcation, the authors simulate the relevant system with
additive white noise twice: once with no changes to its parameters, and once with its
relevant parameter forced between -5 and 5. As described in appendix B.2, the amplitude
of the additive white noise is based on the dominant eigenvalue of the relevant dynamical
system about its equilibrium, with the assumption that this eigenvalue is strictly negative.
For each simulation, one of resulting time series given by the two-dimensional system is
detrended using LOWESS and shortened to length 500 time series. The time series is then
labelled according to the type of bifurcation detected by AUTO-OP7. In this way, Bury
et al.’s data generation procedure involves a very large number of very low-dimensional
dynamical systems, whose dynamics under a variation of a single parameter are inferred
numerically, and results in a univariate time series with many possible labels.

In contrast, our data generation procedure only involves a single, comparatively higher-
dimensional dynamical system, with many set coefficients. This specificity in the dynamical
model, however, leads to a wide variety of different parameter forcings, and the ability to
deduce the (non-)existence of a bifurcation directly from these parameter forcings. In
particular, our data set generation method involves forcing multiple parameters simulta-
neously, with a wide range of initial and final conditions. Like Bury et al., we run one
simulation of the FBM with additive noise where the model parameters remain equal to
their initial values, and one where the parameters are forced towards a local bifurcation.
However, unlike Bury et al., we do not require the use of AUTO-OP7 or similar software to
label our time series, as the appropriate labels can be directly deduced from the FBM. Fur-
thermore, our white noise amplitude is not given by the dominant eigenvalue of the FBM’s

40

stable equilibrium, as this is always 0 (see appendices B.2 and A.1, respectively). Finally,
the resulting, length 500, detrended time series are multivariate rather than univariate.
In this way, our our data generation procedure involves a single, higher-dimensional dy-
namical systems, whose dynamics under many different parameter variations are deduced
analytically, and results in a multivariate time series with only two possible labels.

In terms of network training, our methodology is much more similar to Bury et al.’s
own methodology. In particular, networks are CNN-LSTMs networks with one set of
convolutions layers, two LSTMs, and a final, dense layer for classification. However, Bury
et al.’s training procedure is more complicate and robust than our own. First, Bury et
al. develop variants of their classifiers where each length 500 time series is padded by
somewhere between 0 and 450 zeros. This was done so that their networks can infer
whether or not time series as short as 50 timesteps precede a tipping point. Our training
procedure on the other hand does not pad any inputs prior to training. Bury et al.’s
procedure also trains each model for 1500 epochs, and finds optimal hyperparameters for
their architecture using a grid search. Meanwhile, all of our models trained from scratch
are only trained for 150 epochs, and simply use the optimal hyperparameters found by
Bury et al.

3.4 Limitations & Extensions

While our results are a promising proof-of-concept about using machine learning to detect
AMOC collapse, they ultimately suffer from a lack of generalizability. In a more concrete
sense, our networks are trained, validated and tested entirely on four box model data.
However, this provides little reason a priori to expect that our classifiers will perform well
on test sets of data generated from models of intermediate complexity, or empirical data.
Consequently, an important extension of our work would be to test our networks on more
varied data sets. This, however, proves to be a formidable task as, in our experience,
it is difficult to find data from models of intermediate complexity, or the computational
resources to generate such data. Furthermore, it is unclear how the data from these models
could be associated with the variables of the FBM. This limits the applicability of the proxy
and all variables models, which require variable data to infer labels.

There is also a more specific sense in our results may not generalize to other AMOC
data. First, the FBM has a persistent, identically zero dominant eigenvalue assuming that
equilibria states exist. However, this feature is not shared by Stommel’s box model, let
alone all box models. Indeed, we show in appendix A.2 that Stommel’s original two-box
model (see [31]) does not have an identically zero eigenvalue. As a result, even if the

41

Bury et al.
Methodology

Our Methodology

Number of Systems
Represented in Data Set

Thousands One

Number of Parameters
Forced in Data
Generation

One Four

Parameter Forcing Between -5 and 5 Given by thousands of
sampled initial and final

conditions
Bifurcation Location Inferred Numerically Deduced analytically

White Noise Amplitude Based on dominant
eigenvalue

Appendix B.2

Length of Time Series
Inputs

Between 50 and 500 500

Number of Time Series
Features

One Up to Nine

Number of Possible
Time Series Labels

Four Two

Number of Training
Epochs

1500 150 (except transfer
network)

Hyperparameter Values Found with grid search Set in advance

Table 3.4: Differences between our methodology, and the methodology of Bury et al.

identically zero eigenvalue of the FBM Jacobian is what “tricks” the Bury model, this
property may simply reflect an idiosyncrasy of the FBM, rather than an important feature
of AMOC models. As a result, future networks based on our own would benefit from being
trained on a wide array of box model data. It would also be interesting to see how the
Bury model would perform on two-box model data, given that the two-box model may
have negative dominant eigenvalues.

42

Chapter 4

Conclusions

In this report, we have demonstrated that CNN-LSTM neural networks can be used to
detect impending tipping points given time series of the four-box model. We have also
described and implemented a four-box model time series generator, which was used to
train our models. Our results show that early warning signals are contained in the time
series of the circulation volume transportm alone, as well as the temperatures and salinities
of the box alone. As a result, classifiers which are not directly given time series data of
m can nevertheless infer whether AMOC collapse will occur with high accuracy. We also
demonstrated that the Bury model performs poorly on the data set generated by the four-
box model, and argued that this poor performance is ultimately related to an identically
zero eigenvalue of the four-box model’s Jacobian matrix.

While our result provide a good proof-of-concept for an AMOC tipping point classifier,
we caution that our networks will not necessarily perform well on other simulated AMOC
data. In particular, the idiosyncrasies of the four-box model may result in particular early
warning signals which are not present in other box models. Future extensions of our work
should therefore incorporate data from other box models when training classifiers. Fur-
thermore, we believe that our networks should be tested on AMOC data given by models of
intermediate complexity, or on nonlinear parameter forcings before making general state-
ments about their performance. Finally, further investigations into the performance of the
Bury model on other box networks may clarify why the model performed poorly on our
own data set.

43

References

[1] David Armstrong McKay, Arie Staal, Jesse F Abrams, Ricarda Winkelmann, Boris
Sakschewski, Sina Loriani, Ingo Fetzer, Sarah E Cornell, Johan Rockström, and Tim-
othy M Lenton. Updated assessment suggests 1.5◦c global warming could trigger
multiple climate tipping points. Earth and Space Science Open Archive, page 80,
2021.

[2] Niklas Boers. Observation-based early-warning signals for a collapse of the Atlantic
meridional overturning circulation, 8 2021.

[3] Chris A. Boulton, Lesley C. Allison, and Timothy M. Lenton. Early warning signals of
atlantic meridional overturning circulation collapse in a fully coupled climate model.
Nature Communications, 5(1):5752, Dec 2014.

[4] T. M. Bury, C. T. Bauch, and M. Anand. Detecting and distinguishing tipping
points using spectral early warning signals. Journal of The Royal Society Interface,
17(170):20200482, 2020.

[5] Thomas M. Bury, R. I. Sujith, Induja Pavithran, Marten Scheffer, Timothy M. Lenton,
Madhur Anand, and Chris T. Bauch. Deep learning for early warning signals of tipping
points. Proceedings of the National Academy of Sciences, 118(39):e2106140118, 2021.

[6] Wei Cheng, John C. H. Chiang, and Dongxiao Zhang. Atlantic meridional overturning
circulation (AMOC) in CMIP5 models: RCP and historical simulations. Journal of
Climate, 26(18):7187 – 7197, 2013.

[7] Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Ser-
gio Guadarrama, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional
networks for visual recognition and description. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(4):677–691, 2017.

44

[8] E. Hawkins, R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann,
and B. de Cuevas. Bistability of the Atlantic overturning circulation in a global
climate model and links to ocean freshwater transport. Geophysical Research Letters,
38(10):L10605, 2011.

[9] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep learning for time series classification: a review - data mining
and knowledge discovery, 3 2019.

[10] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential
Equations. Springer, 2010.

[11] Yuri A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, 3 edition, 2011.

[12] Yann LeCun, Bernhard E. Boser, John S. Denker, D. Henderson, Richard Howard,
W. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Computation, 1(4):541–551, 1989.

[13] Timothy M. Lenton, Hermann Held, Elmar Kriegler, Jim W. Hall, Wolfgang Lucht,
Stefan Rahmstorf, and Hans Joachim Schellnhuber. Tipping elements in the Earth’s
climate system. Proceedings of the National Academy of Sciences, 105(6):1786–1793,
2008.

[14] Timothy M. Lenton, Johan Rockström, Owen Gaffney, Stefan Rahmstorf, Katherine
Richardson, Will Steffen, and Hans Joachim Schellnhuber. Climate tipping points -
too risky to bet against. Nature, 575(7784):592–595, 2019.

[15] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a sur-
vey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 379(2194):20200209, 2021.

[16] Wei Liu, Zhengyu Liu, and Esther C. Brady. Why is the AMOC monostable in coupled
general circulation models? Journal of Climate, 27(6):2427 – 2443, 2014.

[17] Valerio Lucarini and Peter H. Stone. Thermohaline circulation stability: a box model
study. part I: Uncoupled model. Journal of Climate, 18(4):501 – 513, 2005.

[18] Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. MIT Press, 2022.

[19] Ronald Mutegeki and Dong Seog Han. A CNN-LSTM approach to human activity
recognition. In 2020 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pages 362–366, 2020.

45

[20] Michael A. Nielsen. Neural networks and deep learning, 2018.

[21] Livia Owen and Eric Harjanto. A basic manual for AUTO-07P in computing bifur-
cation diagrams of a predator-prey model. In Mohd Hafiz Mohd, Norazrizal Aswad
Abdul Rahman, Nur Nadiah Abd Hamid, and Yazariah Mohd Yatim, editors, Dy-
namical Systems, Bifurcation Analysis and Applications, pages 205–224, Singapore,
2019. Springer Singapore.

[22] Lawrence Perko. Differential Equations and Dynamical Systems: With 241 Illustra-
tions. Springer, 2014.

[23] V. Petoukhov, A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and
S. Rahmstorf. CLIMBER-2: a climate system model of intermediate complexity, 1
2000.

[24] S. Rahmstorf. Thermohaline circulation. In Scott A. Elias, editor, Encyclopedia of
Quaternary Science, pages 739–750. Elsevier, Oxford, 2007.

[25] Stefan Rahmstorf. On the freshwater forcing and transport of the Atlantic thermoha-
line circulation. Climate Dynamics, 12(12):799–811, May 1996.

[26] Stefan Rahmstorf, Michel Crucifix, Andrey Ganopolski, Hugues Goosse, Igor Ka-
menkovich, Reto Knutti, Gerrit Lohmann, Robert Marsh, Lawrence A. Mysak,
Zhaomin Wang, and Andrew J. Weaver. Thermohaline circulation hysteresis: A model
intercomparison. Geophysical Research Letters, 32(23):L23605, 2005.

[27] Marten Scheffer, Jordi Bascompte, William A. Brock, Victor Brovkin, Stephen R. Car-
penter, Vasilis Dakos, Hermann Held, Egbert H. van Nes, Max Rietkerk, George Sugi-
hara, and et al. Early-warning signals for critical transitions. Nature, 461(7260):53–59,
2009.

[28] Marten Scheffer, Stephen R. Carpenter, Timothy M. Lenton, Jordi Bascompte,
William Brock, Vasilis Dakos, Johan van de Koppel, Ingrid A. van de Leemput, Si-
mon A. Levin, Egbert H. van Nes, and et al. Anticipating critical transitions, 10
2012.

[29] Thomas Slawig and Kirsten Zickfeld. Parameter optimization using algorithmic differ-
entiation in a reduced-form model of the Atlantic thermohaline circulation. Nonlinear
Analysis: Real World Applications, 5(3):501–518, 2004.

46

[30] D. A. Smeed, G. D. McCarthy, S. A. Cunningham, E. Frajka-Williams, D. Rayner,
W. E. Johns, C. S. Meinen, M. O. Baringer, B. I. Moat, A. Duchez, and H. L. Bryden.
Observed decline of the Atlantic meridional overturning circulation 2004-2012. Ocean
Science, 10(1):29–38, 2014.

[31] Henry Stommel. Thermohaline convection with two stable regimes of flow. Tellus,
13(2):224–230, 1961.

[32] Steven Henry Strogatz. Nonlinear Dynamics and Chaos : with Applications to Physics,
Biology, Chemistry, and Engineering. CRC Press, second edition edition, 2018.

[33] Sven Titz, Till Kuhlbrodt, Stefan Rahmstorf, and Ulrike Feudel. On freshwater-
dependent bifurcations in box models of the interhemispheric thermohaline circulation.
Tellus A: Dynamic Meteorology and Oceanography, 54(1):89–98, 2002.

[34] Kirsten Zickfeld, Thomas Slawig, and Stefan Rahmstorf. A low-order model for the
response of the Atlantic thermohaline circulation to climate change.

47

APPENDICES

48

Appendix A

Box Model Jacobians

A.1 Four-Box Model

Using MATLAB’s symbolic Math Toolbox, we find the Jacobian Df(x) of the FBM is:

σ8 − m
V1
− λ1 −σ8 0 m

V1
−σ4 σ4 0 0

σ6 −λ2 − m
V2
− σ6

m
V2

0 −σ2 σ2 0 0
m
V3
− σ7 σ7 −λ2 − m

V3
0 σ3 −σ3 0 0

−σ5
m
V4

+ σ5 0 −m
V4

σ1 −σ1 0 0

σ16 −σ16 0 0 −m
V1
− σ12 σ12 0 m

V1

σ14 −σ14 0 0 −σ10 σ10 − m
V2

m
V2

0

−σ15 σ15 0 0 m
V3

+ σ11 −σ11 −m
V3

0

−σ13 σ13 0 0 σ9
m
V4
− σ9 0 −m

V4

where

σ1 =
β k (T2−T4)

V4
σ2 =

β k (T2−T3)
V2

σ3 =
β k (T1−T3)

V3
σ4 =

β k (T1−T4)
V1

σ5 =
αk (T2−T4)

V4
σ6 =

αk (T2−T3)
V2

σ7 =
αk (T1−T3)

V3
σ8 =

αk (T1−T4)
V1

σ9 =
β k (S2−S4)

V4
σ10 =

β k (S2−S3)
V2

σ11 =
β k (S1−S3)

V3
σ12 =

β k (S1−S4)
V1

σ13 =
αk (S2−S4)

V4
σ14 =

αk (S2−S3)
V2

σ15 =
αk (S1−S3)

V3
σ16 =

αk (S1−S4)
V1

49

where we assume that the state vector of the FBM is specified by Ti, 1 ≤ i ≤ 4, then
Si, 1 ≤ i ≤ 4, respectively. Notice immediately that the vector (0, 0, 0, 0, 1, 1, 1, 1)T is in
the nullspace of the Jacobian, and therefore an eigenvector with eigenvalue zero. It follows
that the FBM Jacobian always has an identically zero eigenvalue.

A.2 Two-Box Model

Stommel’s original box model is defined as follows (see [31]):

Ṫ1 =c(T ∗
1 − T1) + |q| (T2 − T1)

Ṫ2 =c(T ∗
2 − T2) + |q| (T1 − T2)

Ṡ1 =d(S∗
1 − S1) + |q| (S2 − S1)

Ṡ2 =d(S∗
2 − S2) + |q| (S1 − S2)

Where q = k0(α(T2−T1)−β(S1−S2)) is the overturning rate between the two boxes, d, S∗
1

and S∗
2 are salinity forcing parameters, and all other variables and parameters are defined

analogously to the FBM. Assuming thermally-driven AMOC (i.e q > 0) the Jacobian of
this system is

σ3 σ5 −σ1 σ1

σ5 σ3 σ1 −σ1

σ2 −σ2 σ4 σ6

−σ2 σ2 σ6 σ4

where

σ1 = β k0 (T1 − T2) σ2 = α k0 (S1 − S2) σ3 = α k0 (T1 − T2)− q − c

σ4 = −d− q − β k0 (S1 − S2) σ5 = q − α k0 (T1 − T2) σ6 = q + β k0 (S1 − S2)

which MATLAB confirms is rank 4 in general. It immediately follows that the Jacobian
does not therefore have a zero eigenvalue in general.

50

Appendix B

Supplementary Notes on Data
Generation

B.1 The Linear Support Vector Machine Sampler

Given a data set D with features x ∈ Rn and binary labels, linear support vector machines
(LSVMs) describe classifiers of the form

h(x;w) := sign(wTx+ w0) (B.1)

where w0 ∈ R. The classifier is optimized to minimize the hinge-loss:

L(D;w) := 1

n

∑
(x,y)∈D

(1− y · h(x;w))

We do not describe how optimal values are found — interested readers can consult §17.5 of
[18]. However, we do note that given a trained LSVM, it is easy to transform the classifier
into a sampler. Given a label l, randomly sample the first n − 1 components of a sample
s. It follows that sign(wT s+ w0) = −1 iff:

w0 +
n∑

i=1

wixi < 0

⇒ sn < −w0 +
∑n−1

i=1 wixi

wn

:= sn

51

where we assume without loss of generality that wn ̸= 0. As a result, if we would like to
sample a point with (inferred) label ±1, we can simply set sn to a random value greater
than or less than sn, respectively.

We use this insight to construct our sampler for parameter values. In particular, our
data generating procedure requires a method for sampling P init

F and Pfinal
F which guarantees

that a critical transition will occur or not occur, given our desired outcome. This first
requires that we specify the possible range of all components of an arbitrary vector P =
(T ∗

1 , T
∗
2 , T

∗
3 , F1)

T ∈ R4.

To this end, we set the range of all components to be between one fifth and five times
their equilibrium values given in [34]. This choice of boundary values is not principled, but
proves to to be sufficient for our purposes. We then define the grid Ω ∈ R4 so that it has
504 equally spaced grid points between our parameter boundaries. After fitting a LSVM
to Ω, we save the optimal w, w0. We can then generate points by uniformly sampling F1,
T ∗
1 , T

∗
2 between their specified ranges. Then, we sample T ∗

3 uniformly between the decision
boundary given by w, and its upper or lower bound, depending on the label passed to the
sampler.

B.2 DeterminingWhite Noise Amplitude for EMMethod

In the appendix of [5], Bury et al. compute white noise level for a given stochastic simu-
lation as a function of its dominant eigenvalue. More concretely, consider the dynamical
system ẋ = f(x;µ) with stable equilibrium x∗. The authors take the white noise amplitude
σ to be used in the EM method as follows:

σ =

√
2|Re(λD(x∗))|

100
· T (B.2)

where T ∼ T (0.75, 1, 1.25) and T denotes the triangular distribution. The reason the
authors choose amplitudes with equation B.2 is that the variance of simulated time series
with white noise amplitude σ is approximately 0.01 · T .

Notice that equation B.2 is non-zero iff |λD(x
∗)| ≠ 0. However, we know from appendix

A.1 that the FBM always has λD(x
∗) = 0, so we must modify equation B.2. To this end,

suppose that L(x∗) is the set of eigenvalues of Df(x∗). We then define

λ−
D(x

∗) := argmax{Re(λ) | λ ∈ L(x∗), Re(λ) ̸= 0} (B.3)

52

and set

σ =

√
2|Re(λ−

D(x
∗))|

1000
· T (B.4)

where, again, T ∼ T (0.75, 1, 1.25). We note that the denominator of equation B.4 is 1000,
as this was the first power of 10 in which fewer than 25% of FBM simulations forced
towards a local bifurcation did not pass through a tipping point before timestep 500.

53

