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Abstract

In this essay, a CVaR robust portfolio optimization model with transaction costs is
introduced to manage equity portfolios in a real market. We review the traditional mean-
variance portfolio optimization model and the CVaR robust portfolio optimization
model without transaction cost first. A twice continuously differentiable smoothing
technique based on an exponential approximation is proposed to help solve the CVaR
optimization problem. Then transaction cost functions are introduced into the CVaR
portfolio optimization model. Because most of transaction cost functions are piecewise-
linear with several non-differentiable kink points, smoothing techniques can be applied
to transaction cost functions as well. Detailed smoothing approaches are illustrated by
two typical cost function examples. Finally, we conduct numerical experiments to show

the effect of the CVaR robust portfolio optimization model with transaction costs.
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Chapter 1

Introduction

The trade-off between return and risk is always considered as a major issue when
investors set up their portfolios. Optimal portfolios should have the highest expected
return with a given level of risk or the lowest risk with a given expected return. To
determine such optimal portfolios, the traditional mean-variance (MV) portfolio model

was proposed by Markowitz (1952).

Consider a portfolio optimization problem: invest wealth ' in n assets S,,...,S,,

n=>=2 in a given period. Let x=(x,,...,x,)€R" denote a portfolio with

e’ x =W . Let random return vector 7 denote the return at the end of this period for a

unit portfolio (1,...,1) and 7 denote the expected values of 7. Obviously, the

random return of this portfolio is r"x and the expected return is 7' x . Assume the

sample observation is a sample return matrix R =(7,...,r,) where m is the number
of observations of random return vector 7. Let H denote the covariance matrix of

R . There are several estimations of the expected return 7'x based on the observed
sample data R. The most straightforward method used in the original MV portfolio

optimization model is estimating 7 by taking the mean of the sample set of returns:

- (1.1)



Then the MV portfolio optimization problem can be expressed as a Quadratic

Programming (QP) problem:

min — 7 x +&x" Hx
; (12)
subjectto e’ x=W

where #>0 is a parameter presupposed by investors to represent their tolerance to
risk. Note that we allow the components of x to be negative, which means shorting
of assets (i.e. negative investments) is permitted. Moreover, there is another common
formulation, the mean-standard deviation (MSD) formulation, with standard deviation

type of risk as below:

min — 7" x+ ¢/ x” Hx
X

subjectto e’ x=W

(1.3)

We use the MSD formulation in the following because the standard deviation type of

risk has the same unit (dollar) with expected returns in the objective function.

However, the risk tolerance parameter ¢ is difficult to be determined in practice when
we do portfolio rebalancing rather than constructing the efficient frontier. We consider
another equivalent formulation of the MSD portfolio optimization model without
parameter . There are several alternative formulations of the optimization problem
(1.3). The most common choices are the risk minimization formulation and the
expected return maximization formulation. These formulations are equivalent because
the optimal solutions of these formulations are in the same efficient frontier. In this
essay, we use the risk minimization formulation which achieves a target expected return

T



min «/x" Hx
subjectto 7 'x=r1 (1.4)

e'x=w
The optimal portfolio with a target expected return and the minimum of risk can be
found by solving this optimization problem. Note that this optimization problem is
convex (See Appendix A) with a nonlinear differentiable objective function and linear

constraints.

Moreover, the estimation of expected returns (1.1) is highly sensitive to the observed
data. A popular method to protect against such sensitivity is the Conditional Value-at-
Risk (CVaR) robust portfolio optimization method proposed by Rockafellar et al.
(1999). The expected return of a portfolio is replaced by the average of several worst
return scenarios with a specified confidence level [ (e.g., 95%). This CVaR robust

portfolio optimization model is described in Chapter 2.

To solve the CVaR optimization problem, an approach is transforming the CVaR
function into a piecewise-linear function and then solving it by adding auxiliary
variables (auxiliary method). Unfortunately, this method tends to be inefficient when
the simulation number is large because the number of variables depends on the number
of simulated scenarios. There is another method, the smoothing method, proposed by
Alexander et al. (2006) to avoid large number of variables. It is suggested to smooth
the CVaR function with a quadratic approximation function. However, the second order
derivative of this quadratic approximation function is discontinuous, which leads to

discontinuous gradient of constraints in the risk minimized MSD portfolio optimization

3



model. To solve this problem, we propose an exponential smoothing method with
continuous second order derivatives. These two smoothing methods are described in

Chapter 3.

Moreover, transaction costs are always involved when buying and selling assets in a
real market. Generally, transaction cost functions are piecewise-linear and there are a
set of kink points where cost functions are non-differentiable. Therefore, quadratic and
exponential smoothing techniques can also be applied in the approximation of
transaction cost functions. Details are illustrated with V-shape and Butterfly-shape cost
function examples. Figure 1.1 and Figure 1.2 give examples of V-shape and Butterfly-
shape cost functions respectively. Then we formulate the CVaR robust portfolio
optimization problem with smoothed transaction cost functions in Chapter 4. In Chapter
5, we conduct numerical experiments to show the effect of the CVaR portfolio

optimization model with transaction costs and conclude this essay in Chapter 6.



V-shape Transaction Cost Function

FIGURE 1.1: V-shape transaction cost function example

Butterfly-shape Transaction Cost Function

081

0.4 oL

FIGURE 1.2: Butterfly-shape transaction cost function example



Chapter 2

CVaR Robust Portfolio Optimization

The estimation of expected returns using one sample set is highly sensitive to the
sample observations R . Inspired by sampling techniques, min-max robust portfolio
optimization was introduced by Goldfarb et al. (2003) to reduce the dependence on a
specific data set. They considered finite uncertainty sets of resampled returns (scenarios)
to achieve a better performance in the worst scenario. However, focusing on the worst
scenario makes the min-max robust optimization still sensitive to observations,

especially for some extreme points. To reduce such sensitivity, Rockafellar et al. (1999)

proposed a CVaR estimation of the expected return 7'x witha specified confidence
level B (e.g., 95%):
Cy(=r"x) =min, (ax +(1- ) E[-r x—a]’) (2.1)

where E is the expectation operator and [z]"=max(z,0).

Then the expected return 7 X in the original MSD model (1.3) can be replaced by

Cy (=r"x) , which produces the MSD type of CVaR robust portfolio optimization

problem:

min_, a+(1- )" E[-r'x—a] +tVx"Hx

subjectto e’ x=W

(2.2)

To estimate the expectation operator E in Cj (—r"x) , resampling a set of return

6



scenarios is required.

Assume the return vector 7 €R" has an underlying joint normal distribution. A7

resampled return matrices R, =(4%,....r,)), j=1:M can be generated with

corresponding mean vectors 7°, j=1:M . The following is a bootstrap resampling

b

Process:

1. Factor H=LL
2. For j=1:M
a. For i=1:m
choose ¢, € R" from a standard joint normal distribution N(0,1)

Set r° =7+ Le,

1 1

b. Rjz(;qS,...,r,f)

Note that E(r;°)=7 and (° 7)Y H'(* -7F)=¢&'¢, ~n.

Then E[-#"x—a]" can be estimated by:

E[-r x—a] =L (2.3)

(2.2) and (2.3) specify the CVaR robust mean-standard deviation portfolio optimization

problem as:



min_, o+ M ﬂ)Z[ 7 Sx—al +tdx" 2.4)

subjectto e’ x=W

The corresponding equivalent risk minimization formulation which achieves a target

expected return 7 is:

1 M
subjectto a+—— > [ x—a] =7 (2.5)
wp =
e'x=w
To deal with [—fjsx —a]", awell-known method is introducing auxiliary variables z,

to replace [-7"x—a]" with additional constraints z,>0 and z, >-7’x—«a .

Considering apply this auxiliary method in (2.4):

min, . a+ Z z, +tx"

M(l P
subject to zjz—;f].x—a, j=1...,.M (2.6)
z, 20, j=L...M
e'x=w

This optimization problem contains O(M +n) variables and O(M ) constraints
where AZ is the number of simulations and 7 is the number of assets. Usually the
simulation number Af is large to get a better estimation, which makes this auxiliary
method inefficient. The same issue arises when applying this method to the equivalent
risk minimization formulation (2.5). To avoid this inefficient issue, we introduce the

smoothing method in the next chapter.



Chapter 3

Smoothing Techniques

3.1 Quadratic Smoothing

Following the approach suggested by Alexander et al., the smoothing method can also

be used to approximate [-7°x—«]". It is introduced with a quadratic approximation

form:
z z2>2&
2z &
[Z]Jrgpg(Z): 4—+5+Z -c<z<L¢g (31)
&
0 otherwise

Note that p_(z) 1is continuously differentiable. Specifically,

1 z2&
p()=12+1 e<z<e (3.2)
¢ 2¢ 2
0 otherwise

However, the second order derivatives of p,(z) is discontinuous with jump points at

z=—¢ and z=+¢&:

. L -£<z<Lg¢g
0 otherwise

M
Denote pgS (a,x)= ﬁ_ﬁ) z o, (—(FiS ) x—a)). After quadratic smoothing, the CVaR
i=1

robust expected return becomes:



M
Cy(=r"x) = min (& + 0 Z 2,7 x—a))

=min, (a + p. (e, X)) (3.4)

=a. + p; (a., X)

where . is the optimal solution of min_(a+ p’(a,x)) . Therefore, after taking

derivative with respect to « , the optimal solution . satisfies:

1+ pf (e, x), =0 (3.5)
Then the risk minimization formulation (2.5) becomes:

: T
min, ~x Hx

subject to 1+pf (a,x), =0 (3.6)
a+p(a,x)=1

e'x=w
Compared with the auxiliary method, this smoothing method is much more efficient
with only O(n) variables and 3 constraints. However, the derivatives of the first
constraint in (3.6) with respect to « contains the discontinuous second order

derivatives of p,(z), which makes many optimization algorithms perform poorly.

3.2 Exponential Smoothing

To avoid the discontinuity problem above, we propose a new exponential smoothing
method which is twice continuously differentiable:

ayz

ae z<0
[z]' = p.(2) = (@l (3.7)
z+ae z>0
where o, >0, o, >0 are approximation parameters to control the accuracy of

approximation with 0<g, -, <1. Note that p,(z) is continuous with p,(0)=¢,.In

addition, p,(z) >0asz—>— and (p,(z)—z)—> 0asz—> +oo. This exponential
10



smooth function also has continuous first order derivative:
a,a,e”” z<0
pe(Z): (M)z (38)

1+ (a, —De “ z>0

with p'(0) =, .

Consider the second order derivative of p,(z):

a,a;e™ z<0
(2) = _yp et 3.9
PO @a -1 2 (.9
al
2 oo, -1
Define ¢(z) £ a,@;e™ and tz(z)éwe “ . Then ¢,(0)=a,; and

a,

(o, — 1)2

,(0)= are equal when a,a,=0.5, which yields a continuous second order

a,

derivative for p,(z).

Therefore, the exponential smoothing formulation of CVaR robust mean-standard

deviation portfolio model can be formulated by replacing p,(a,x) in (3.6) with
pe (a’ x) .

min xT Hx

subjectto 1+ 0’ (a ,x), =0 (3.10)
a+pl(a,x)=1

e'x=w
S 1 < —=S\T
where 0, (asx):mzpe(_(ri ) x—a)).
i=1
Then off-the-shelf optimization algorithms can be used to solve (3.10) because the

convex objective function and all equality constraint functions are continuously

differentiable.
11



Chapter 4

Optimization with Transaction Costs

Portfolio rebalancing requires buying and selling which incur transaction costs.
Involving transaction costs in portfolio optimization problems is necessary for investors.
Typically, transaction costs can be classified into two types: fixed costs and variable
costs. Fixed costs are unrelated to the trading volume and it can be modeled easily in
optimization problems. Hence, we only discuss variable costs in this essay. Usually
larger transaction costs are associated with larger amounts of trading (buying and
selling), which determines a general piecewise-linear characteristic of transaction cost

functions with several non-differentiable kink points.

However, when transaction cost functions are involved in portfolio optimization
problems, the non-differentiability problem hampers optimization algorithms. To solve
this problem, we apply both quadratic smoothing and exponential smoothing
techniques into transaction cost functions. The most common transaction cost function
is the V-shape function (shown as Figure 1.1) which means costs are proportional to the
absolute values of trading amounts with one kink point at zero. Apart from this,
transaction costs in real market can be more complicated than V-shape functions. For
instance, cost functions may have more kink points reflecting lower cost rates because

discounts can be awarded for high-volume trading. We consider a Butterfly-shape cost

12



function (shown as Figure 1.2) with two more kink points than the V-shape function in
this essay. Smoothing methods for cost functions are illustrated with these two typical
V-shape and Butterfly-shape transaction cost functions in the following. Moreover, this

method can be adapted to other types of transaction cost functions.

4.1 V-shape Transaction Cost Function
4.1.1 Quadratic smoothing of V-shape transaction cost function
Let #,(x) denote a V-shape cost function with the slope m;," to the right of zero and

the slope —m, to the left of zero where m, >0, m; >0. Consider the amount of

trading x where x > O corresponds to buying and x <O corresponds to selling.

—m, X x<0
t,(x)= . 4.1)
mx x>0

Because this function is non-differentiable at the kink point x=O0O , smoothing
techniques need to be applied here. The quadratic smoothing of this cost function on

the range of [—¢,&] with & > 0 around the kink point at x=0 is:

g,(x) 2 ()X ( i )x +(mi) & 4.2)

Then the V-shape transaction cost function after quadratic smoothing becomes:

—m, X x<-¢
£1(x)=1 ¢,(x) —¢<x <¢ 4.3)
m/' x x>¢€

Note that 7,(x) is continuously differentiable. Specifically,

-m, x<-¢
G =15 +("5) —e<x <o (44
m; x>g

Considering an example setting of m, =0.3, m =0.1, ¢=2 , we illustrate the

13



quadratic smoothed V-shape cost defined by (4.2) and (4.3) in Figure 4.1 and the

derivative function (4.4) of this approximation in Figure 4.2.

V-shape Transaction Cost Function

1.5

tr. cost fen
+  Approximation

cost

FIGURE 4.1: Quadratically smoothed V-shape cost

- Derivative of Approximation Functiom

0.25F

0.2}

0.1

derivative

0.05 +

-0.05

FIGURE 4.2: 1st derivative of quadratically smoothed V-shape cost

Note that the second order derivative of #,7(x) is discontinuous:

+ —
my +my

— —_ -e<x<
G =] = CErEe (4.5)
0 otherwise
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4.1.2 Exponential smoothing of V-shape transaction cost function
As an alternative approximation method, the exponential smoothing can be applied to

the V-shape transaction cost function:

—, () Em x+ae ™ x>0
Lo(x)=1"" 1 : . (4.6)
fo(x)E-m -x+ae” x<0
where «,>0. Note that 7,°(x)—¢,(x) > 0" as |x|—> .
Differentiating f,(x) and f,(x) we get:
fix)=m —mje ™ (4.7)
and
lm_)c
()= —m +mje” (4.8)

Clearly, #,°(x) isacontinuously differentiable function with f;(0)=¢, = f,(0) and

£(0)=0= £,(0) . After taking the derivative again, we have:

|
—my x

S =L m e 4.9)
and

1 _
—myx

Y ()= L ye (4.10)

with fl"(0)=ail(ml+ )’ and f (0)=ail(ml_ )*. Therefore, 7°(x) is twice continuously

differentiable if m, =m~ with t_r" (0)= “”01;) _ )

o

Consider an example with m =m, =0.25 and ¢, =0.5. Figures 4.3, 4.4 and 4.5

illustrate the exponential approximation, the corresponding first order derivative and

the second order derivative function.

15



e-Approximation to the V-shaped transaction cost

trans cost fcn
approximation

transaction cost

FIGURE 4.3: Exponentially smoothed V-shape cost (same slopes)

0.95 Derivative of the e-approximation function

02r

0.15

0.05 -

derivative value
o
T

FIGURE 4.4: 1st derivative of exponentially smoothed V-shape cost (same slopes)
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0.14 2nd derivative of the e-approximation

0.12

0.1

0.08

0.06

2nd derivative value

0.04

0.02

FIGURE 4.5: 2nd derivative of exponentially smoothed V-shape cost (same slopes)
Then we can take an example with different slopes. Figures 4.6, 4.7 and 4.8 illustrate
the exponential approximation and the corresponding derivative and 2nd-derivative
functions when m =0.2, m; =0.3, ¢, =0.5.

- e-Approximation to the V-shaped transaction cost

trans cost fcn
approximation

transaction cost

FIGURE 4.6: Exponentially smoothed V-shape cost (different slopes)
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02 Derivative of the e-approximation function

0.15 -

0.05 -

derivative value
S
o
(€]
T

FIGURE 4.7: 1st derivative of exponentially smoothed V-shape cost (different slopes)

018 2nd derivative of the e-approximation

0.1 4

0.08 |-

0.06 |

2nd derivative value

0.04 |

0.02

10 8 6 4 =2

FIGURE 4.8: 2nd derivative of exponentially smoothed V-shape cost (different slopes)

Notice that the 2nd derivative is discontinuous at x =0.
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4.2 Butterfly-shape Transaction Cost Function

In practice, transaction costs can be more complicated than simple V-shape costs.
Instead of constant transaction cost rates for buying and selling, piecewise constant
rates with more kink points is becoming more and more popular in real trading market.
No matter how many kink points they have, all of these piecewise-linear cost functions
can be approximated by adapting smoothing techniques. In this essay, we consider an

example with two more kink points than the V-shape cost function.

Assume there are two kinksat x" >0 and x~ <0.Let m >0 denote the cost rate
of the line segment in [0,x"],and m, >0 denote the cost rate of the line segment in
[x",). Similarly, m >0 and m, >0 represent the cost rates of the line segments
in [x,0] and (—oo,x"] respectively. Usually higher volumes of trading correspond
to lower cost rates, which indicates m, <m,, m, <m, like the shape of a butterfly
(shown in Figure 1.2). Without loss of generality, we can assume ‘x+‘ = ‘x_‘ =k,. Then

the formula of butterfly-shape transaction cost function is:

mk +m; (x—k)) x>k

tB(x)=<ml+x 0<x<k @10
—m, X -k <x<0
m, k, +m;, (—k, —x) x <—k,

Note that this cost function is not convex because m, <m, and m, <m, .

4.2.1 Quadratic smoothing of Butterfly-shape transaction cost function

Compared with V-shape cost functions, Butterfly-shape cost functions have more kink

points which introduce more non-differentiability. Therefore, if the quadratic

19



smoothing method is used, additional quadratic smoothing need to be added at these
kink points to construct a continuously differentiable approximation. Considering the

kink point x" =k, , we apply the quadratic approximation as:

t_B(x):u[(x—kl)z+(uj28(x—kl)+gz]+mfkl for xelk—&k+e] .
4e m, —m,
Similarly, the quadratic approximation can be applied at x~ =—k, with the same

pattern. Then, after incorporating the smoothing function in V-shape at x =0, the

quadratic approximation to the Butterfly-shape cost function becomes:

my k, +m, (—k, —x) x<—k —¢
o, — [(x+k1)2+(w]zg(x+kl)+gz]+m;kl, ki —e<x <—k+e
my —my,
—mx ~k+e<x<-¢
1, (x) = & 4J;ml )x2+(m' ;m‘ Jx+(m‘ Zm‘ )g e<x<g *12)
x e<x<k -¢
T [(X—k])z+(u)28(x—kl)+sz]+mfkl, k< x < k+e
e m, —m,
my'k, +my (x—k,) x> k+e

It is straightforward to show this quadratic approximation function 7,7(x) is

continuous. Differentiating (4.12) we get:

—m, x<—k —¢
m, —m, m, +m,
———[x+k+| —=|¢] —k—e<x <-k+¢
2¢ m; —m,
—m; —-k+e<x<-¢
+ - + -
— m +m m —m
(1,1 '(x) = (——=—)x +| —— —s<x<g&  (4.13)
B
2¢ 2
m/ e<x<k —¢
+ + + +
my, —m m, +m
——L[x—k +| /—= |¢] k—e<x < k+¢
2¢e m, —m,
m, x > k+e

20



Clearly, the derivatives are matched at all kink points with:

(&)@ =m
(") (k=€) =m;
(&) (k, +&) =m,

(5") (k= &) =—m,
(6") (=ky + &) =—m;

(5")'(=e)  =-m

(4.14)

It follows that #,%(x) is a continuously differentiable approximation to the Butterfly-

shape transaction cost function.

Figures 4.9 and 4.10 illustrate the quadratic approximation to the Butterfly transaction

cost function defined by (4.12) and the corresponding derivative function (4.13)

respectively.

n Cost Function

1.2 T

cost

Butterfly-shape Transactio

+

tr. cost fcn

Approximation

FIGURE 4.9: Quadratically smoothed B-shape cost
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035 derivative of smoothed approx to butterfly

03 r

0.25

0.2

0.15

derivative
o
T

0.05

-0.05

-0.1

-0.15 ' '

FIGURE 4.10: Ist derivative of quadratically smoothed B-shape cost
4.2.2 Exponential smoothing of Butterfly-shape transaction cost function

Moreover, we can also apply the exponential smoothing method to the Butterfly-shape
transaction cost function. Recall that the Butterfly-shape cost function defined in (4.11)
contains three kink points x =0, x" =k and x  =—k,. To use the exponential
smoothing technique at all three kink points, we consider to divide the Butterfly-shape
function into three V-shape functions based on intervals xe(—o0,—k +¢&] ,
xe€l[—k+te k —&] and x e[k —¢&,+0) with a small &> 0. Note that ¢ <k, is
required here. The central V-shape partin [—k,+&,k —¢&] with the kink point x =0
can be approximated by the exponential function (4.6). Then we propose an exponential

approximation to the right V-shape part as:

im{ (k)

) Emix+(m' —ml) -k —[(m —ml)e+ae” Je MR (4 1)

22



forany a' >0 where @, >0 is the smoothing parameter used in the central V-shape

part. Similarly, the left V-shape part can be approximated by:
Lml_ (e-ky)

()2 -mix+(m; —m;) -k, —[(m; —m])e+a,e” Je® "2 =D (4.16)
forany o >0.
Notice that 7,(x)— f"(x) > 0" as x—>o and 7,(x)—f (x) >0" as x—>—00.

Combining these three exponentially smoothed V-shape functions together, we propose

the Butterfly-shape cost function with exponential smoothing as:

1
—m] (e-ky) - .
@) =myx+(m' —my) -k —[(m —m,)e+ae” e et sk~
|-
— gt o <xr< —
Fe(r)= filx)=m'x+ae 0<x<k -¢ 4.17)
1 -
f,(x)=—m x+oe” l e—k <x<0
B B B Lrrzf(c—/(l) .
f(xX)==mx+(m —m))-k,—[(m, —m])e+ae” Je* )y < g~k
forany o, >0, o >0 and a >0.
Clearly, #,°(x) is continuous as:
10)=10)=
Lot (e=ky)
Stk —&)=f (k—&)=m (k —¢&)+ae (4.18)
) ) i (e-k)
LHe—k)=f(e—k)=m (k—&)+ae”
Differentiating 7,°(x) we get:
Loy ,
(f'x) =m; +a ' my[(m —m])e+a,e” Jem* ey s k—¢
-
) () = (/)'(x)=m —mj'e “ 0<x<k-¢ (4.19)
Lml_x
(f5)'(x) ==m +m e” e—k <x<0
L’”1_(‘5'_1‘1) _
() (x)=—m, —a m;[(m; —m;)e+ae” Je* ATy <ok,

To check the continuity of (7,°)'(x), we consider the values at demarcation points:
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(/)'(0)=0

(/2)'(0)=0
Lmr(é‘—kl)
(f) 'k —e)=m; +a ' m[(m —m;)e+ae”
Lt (k) (4.20)
(), —&)=m —m/e”
Lo ek

(/)& —k)=—m +m e

1
—my (¢—k;)

(f7)(e—hk)=—my —a"m,[(m —m;)e+ae”

It follows that (7,°)'(x) 1s continuous if we take:

Lmr (e=ky)

o= m; —m, —m, e” 1
+[( . +) ;mf(s—kl)]
my|(m, —m,)e+a,e”
. (4.21)
—mi (k)

-
m, —m, —me

Lot (e-ky)

;[ —m; ) + e

In conclusion, the exponentially smoothed Butterfly-shape function 7,°(x) defined in

(4.17) and (4.21) is a continuously differentiable approximation to the Butterfly-shape

transaction cost function 7,(x).

Figures 4.11 and 4.12 illustrate the exponential approximation and its corresponding
first order derivative of a sample Butterfly-shape transaction cost function with

m =02, m! =02 m =0.5 m;, =025, k=10, £=0.5.
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FIGURE 4.12: 1st derivative of exponentially smoothed B-shape cost
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4.3 CVaR Portfolio Optimization Model with Transaction Costs

In the CVaR portfolio optimization, the standard-deviation type of risk is minimized as
the potential loss while achieving the expected return. When transaction costs are
involved, however, the loss consists of not only the potential risk loss but also
transaction costs. Therefore, it is necessary to add transaction cost functions into

objective functions of portfolio optimization models.

After smoothing transaction cost functions to avoid discontinuous differentiability, the
CVaR robust mean-standard deviation portfolio optimization problem with transaction
costs can be modeled as follows:

n
min,, \/xTHx+Z t(x,—x")
i=1

subjectto 1+ p0°(a ,x), =0 (4.22)
a+pi(a,x)=t
e'x=w

where 7 is the number of assets , 7 is a smoothed transaction cost function and

. . . oth .
x,,x/ are the current and previous wealth allocations in i" asset respectively.

27

Note that the objective function in (4.22) is a convex nonlinear function when we use
the V-shape transaction cost function. However, it is no longer convex if the Butterfly-
shape transaction cost function is used. The first order derivatives of smoothed
Butterfly-shape cost functions (Figures 4.10 and 4.12) show the non-convexity.

Therefore, global optimization techniques are needed to find the global optimal solution.

1
Moreover, the Hessian matrix of the standard deviation risk term f(x) = (x" Hx)? is

positive definite in the linear subspace of interest. (See Appendix A)
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Chapter 5

Numerical Experiments

In this chapter, we present some illustrative examples with different combinations of
parameters to demonstrate the effect of CVaR portfolio optimization model with
transaction costs. To be specific, we consider a portfolio rebalancing problem with 15
optional assets and 60-month synthetic monthly return data (shown in appendix).
Monthly rebalancing portfolio optimizations are conducted in the last 24 months with
a zero-starting portfolio. At the beginning of each period, 36-month previous data are
used to get the corresponding expected returns and covariance matrices. The optimal
portfolio considering CVaR-type expected return with transaction costs for each month
can be solved by the optimization model (4.22) with MATLAB. The new wealth is
calculated by multiplying the current portfolio and the return vector in that month. In
the following experiments, transaction costs are subtracted at the end of each period.
Then the wealth paths can be formed by repeating this procedure in the last 24 months.
In order to illustrate the effect of this CVaR portfolio optimization model with
transaction costs clearly, the typical CVaR portfolio optimization model without
transaction cost is applied as well to make a comparison. Moreover, considering the
simplest uniform portfolio (i.e., average allocations at first and holding this portfolio

unchanged to the end) is necessary to show the general market trend.
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In order to solve CVaR optimization problems with transaction costs accurately, the
exponential approximation method with corresponding parameters o, =0.3, =1 for
CVaR terms and transaction cost functions are used in the following experiments. In
general, we test three portfolio strategies with an initial wealth 7 =1000. To calculate
the CVaR term, we use =095 and M =1000 in this essay. The first strategy
(denoted as ‘CVaR+TR portfolio’) is rebalancing portfolios by the CVaR portfolio
optimization model with transaction costs. The second strategy (denoted as ‘CVaR
portfolio’) is based on the typical CVaR portfolio optimization model without
transaction cost. Investing equally at the beginning and holding the portfolio

unchangeably (denoted as ‘holding portfolio’) is the last strategy.

Firstly, we consider the impact of our CVaR portfolio optimization model with V-shape
transaction cost function by using different combinations of expected return 7 and
transaction cost rates m,” >0, m, > 0. To highlight the effect, both high-level and low-
level expected returns and transaction cost rates are tested with the synthetic data. Set
7=1.05 as the high-level expected return and 7 =1.01 as the low-level expected
return. m, =m; =0.05 and m, =m, =0.01 represent high-level and low-level
transaction cost rates respectively. Figures 5.1-5.4 are the results of three portfolio

strategies under different settings of parameters.
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As we can see from the experimental results above, the fluctuations of curves for ‘CVaR
portfolio’ and ‘CVaR+TR portfolio’ are more intense in Figures 5.1 and 5.2 compared
with the fluctuations in Figures 5.3 and 5.4. It is reasonable because high-level expected
returns are always accompanied by high-level risks which lead to dramatic changes.
Comparing the performance of two CVaR optimization strategies, we can observe that
the CVaR with costs model performs much better than the CVaR model without cost,
especially when the expected return and cost rates are higher. That is because the
magnitude of transaction costs is determined by the product of trading amounts and cost
rates. As shorting is allowed in our models, a higher expected return requires more
buying and selling. Therefore, the higher expected return and cost rates are, the more
effective our CVaR portfolio optimization model with transaction costs is. It can be
verified by the larger gap between ‘CVaR portfolio’ and ‘CVaR+TR portfolio’ in Figure

5.1 compared with the gap in Figure 5.2.

Secondly, the effect of our CVaR portfolio optimization model with Butterfly-shape
transaction cost function are tested as follows. Same as the experiments of V-shape
transaction cost functions above, different levels of expected returns and transaction
cost rates are used with the same synthetic return data. High-level and low-level
expected returns are set as r=1.05 and 7 =1.01 respectively. m, =m, =0.05 and
m, =m, =0.005 represent high-level transaction cost rates while m,~ =m, =0.01
and m; =m, =0.005 represent low-level transaction cost rates. Assuming the kink

points are x* =100 and x =-100, the numerical results are shown in Figures 5.5-

5.8.
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Because the V-shape and B-shape transaction cost functions used in our experiments
are similar except for the cost rates when trading amounts are large, the general patterns
of Figures for B-shape cost and V-shape costs are similar as well. However, the impact
of the B-shape transaction cost function compared with V-shape cost function does exist,
especially when the expected returns 7 are high-level. To be specific, the difference
is significant in the comparison between Figure 5.1 and Figure 5.5. The large expected
return leads to more buying and selling which correspond to smaller transaction cost
rates. Therefore, the gap between ‘CVaR portfolio’ and ‘CVaR+TR portfolio’ for B-
shape cost function in Figure 5.5 is narrower than the gap for V-shape cost function in
Figure 5.1. Moreover, unlike the obvious difference between Figure 5.1 and Figure 5.2,
the difference between Figure 5.5 and Figure 5.6 is relatively small because large
amounts of trading caused by the high-level expected return drive cost rates to the

smaller part in B-shape cost functions.

In general, the CVaR portfolio optimization model with transaction costs is effective
when the transaction costs are large. Transaction costs are positively related to the
expected returns and cost rates in simple V-shape cost functions. However, the analysis
of the impact of the B-shape transaction cost function is more complicated because of
its varying transaction cost rates. Large expected returns lead to large trading amounts
which corresponds to smaller cost rates. In conclusion, it is necessary to consider
transaction costs in portfolio optimization problem, especially when the expected

returns or transaction cost rates are high-level.
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Chapter 6

Conclusions

In this essay, a CVaR robust portfolio optimization model with transaction costs and
some numerical techniques for solving it are introduced. To improve the CVaR robust
portfolio optimization model in terms of numerical convergence stability, we proposed
a new smoothing technique (exponential approximation) which is twice continuously

differentiable.

Then transaction cost are introduced into CVaR portfolio optimization. Smoothing
approaches for cost functions are illustrated by two typical kinds of cost function
examples, V-shape and Butterfly-shape functions. After numerical smoothing, the
CVaR robust portfolio optimization model with transaction costs has been formulated
to help investors find the optimal portfolios. Finally, the effect of the CVaR robust

portfolio optimization model with transaction costs is shown by numerical experiments.

Prospective research can include:

® (Considering the smoothing accuracy and robustness of the smoothing parameters.
® Using the CVaR type of covariance matrix based on sampled data.

® Investigating more advanced global optimization methods.

® Conducting a computational cost study of different smoothing approaches.

® Finding other possible techniques to get higher order continuous differentiability.
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Appendix A
Theorem

Theorem: If f(x)=+/x"Hx where H is symmetric positive definite of order n,

then for x#0 , the Hessian matrix V’f(x) has n—1 positive eigenvalues and a

single zero eigenvalue corresponding to eigenvector x.

Proof: Applying the chain rule, we have the gradient of f(x):
1
Vf(x)=(x"Hx) ?-Hx
Therefore, with an additional application of the chain rule, we get the corresponding

Hessian matrix:

V2 f(x)= —(xTHx)_% (Hx) (Hx)" + (xTHx)_%H
_ —(Hx)(Hx)" +(x"Hx)-H

(x" Hx)?
Note that the gradient and Hessian of f exist, under the assumption that A is SPD
aslongas x=0 (i.e., we don’t consider the empty portfolio).
But considering the numerator,
[—(Hx)(Hx)" + (x" Hx)- H]x

= [—(xT Hx)+ (xT Hx)|Hx
=0.
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If M isany SPD matrix of order 7, the matrix M —w' has atleast n—1 positive

1
eigenvalues (consider the null-space of v). So letting (x" Hx) 2H and Hx play the

roles of M and v respectively, the result follows. o

Corollary: If vector x satisfies the constraint e’x=W >0, the reduction of
V2f(x) onto null(e") (denoted by V’f(x)=Z"V?f(x)Z, where the columns of

Z form a basis for null(e"))is SPD.

Proof: Clearly x ¢ null(e’) since e’ x=W >0.It follows that V> f(x) is SPD. o
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Appendix B

Data

1.1613 1.1840 1.1490 1.4688 1.6717 1.4467 1.0987 1.2252 1.1832 1.1232 1.2492 1.1331 1.1717 1.1858 1.2082
0.9459 0.9414 0.9870 0.9590 0.9559 1.0934 1.1104 1.0557 1.1043 0.9707 0.8770 0.9819 1.0348 1.0248 1.0598
1.0291 1.0221 1.0544 1.0072 1.0741 0.8671 1.0102 1.0117 1.0275 1.0591 0.9683 1.0646 1.0029 0.9869 1.0382
1.1053 1.0094 1.0220 0.8758 0.9468 1.1423 0.9866 0.9888 0.9858 0.9729 0.8762 0.9538 0.9957 1.0272 1.0330
0.9360 1.0200 1.0000 1.1819 1.0649 1.1882 1.0495 1.0563 1.0728 1.1408 1.2133 1.0970 0.9816 1.0510 0.9840
1.1012 1.0596 1.1201 0.9703 1.1160 1.1017 1.0557 1.0282 1.0126 1.0076 1.0681 0.9972 1.0743 0.9815 1.0765
1.0005 0.9986 0.9990 1.0347 1.0178 1.1564 1.0376 1.0242 1.0232 1.0671 1.0370 1.1551 0.9981 1.0366 1.0816
1.0711 1.0285 1.0523 0.9369 0.8966 0.9279 1.0484 1.0265 1.0439 1.0642 0.9854 1.1071 1.0429 1.0026 1.1094
1.1084 1.0312 1.0459 1.0793 1.2031 0.9313 1.0565 1.0454 1.0625 1.0025 0.9457 1.0778 1.0592 1.0131 1.0433
1.0272 1.0898 1.0734 0.8428 0.7949 0.8640 0.9490 1.0319 0.9322 1.0026 0.8156 0.9323 1.0243 0.9532 0.9359
0.9276 0.9245 0.9700 0.9996 0.8457 0.8220 0.8792 0.8450 0.8548 0.9526 0.9435 0.9462 0.9020 0.9052 0.9353
0.8732 0.8301 0.9255 0.5659 0.4014 0.5478 0.7297 0.7254 0.6130 0.7924 0.5628 0.8243 0.9475 0.9413 0.9275
1.1613 1.1840 1.1490 1.4688 1.6717 1.4467 1.0987 1.2252 1.1832 1.1232 1.2492 1.1331 11717 1.1858 1.2082
1.0012 1.0320 1.0303 1.0372 1.1347 1.1395 1.0260 1.0320 0.9918 1.0034 0.9226 0.9568 1.0006 1.0025 0.9656
0.9824 1.1090 1.1005 1.0542 1.0046 0.9545 1.0756 1.0325 1.0423 1.0280 0.8538 1.0050 0.9847 1.0063 1.0644
1.0680 0.9529 0.9916 0.8970 0.9957 0.8294 0.9975 0.9867 0.9646 1.0095 1.0655 0.9825 0.9388 0.9866 0.9594
0.9333 0.9232 0.9625 1.1076 1.0066 1.0149 0.9522 0.9568 0.9050 0.9813 0.9007 0.9772 0.9900 0.9806 0.9679
0.9986 0.9910 1.0303 1.1266 1.0126 1.1431 0.9863 0.9453 0.9987 0.9386 1.2598 0.9636 0.9883 1.0045 1.0849
1.1297 1.0845 1.0651 1.0719 0.9440 1.1098 0.9990 0.9616 0.9890 1.0588 0.8729 1.1294 0.9530 1.0191 1.0284
1.0711 1.0285 1.0523 0.9369 0.8966 0.9279 1.0484 1.0265 1.0439 1.0642 0.9854 1.1071 1.0429 1.0026 1.1094
1.1084 1.0312 1.0459 1.0793 1.2031 0.9313 1.0565 1.0454 1.0625 1.0025 0.9457 1.0778 1.0592 1.0131 1.0433
1.0272 1.0898 1.0734 0.8428 0.7949 0.8640 0.9490 1.0319 0.9322 1.0026 0.8156 0.9323 1.0243 0.9532 0.9359
0.9276 0.9245 0.9700 0.9996 0.8457 0.8220 0.8792 0.8450 0.8548 0.9526 0.9435 0.9462 0.9020 0.9052 0.9353
0.8732 0.8301 0.9255 0.5659 0.4014 0.5478 0.7297 0.7254 0.6130 0.7924 0.5628 0.8243 0.9475 0.9413 0.9275
1.1613 1.1840 1.1490 1.4688 1.6717 1.4467 1.0987 1.2252 1.1832 1.1232 1.2492 1.1331 1.1717 1.1858 1.2082
0.9778 0.9997 0.9881 1.0857 1.0879 0.9599 0.9574 0.9621 0.9810 0.9687 1.0501 0.9833 1.0080 0.9928 1.0052
1.0833 1.1174 1.0808 0.9833 1.0046 1.0713 1.1160 1.0853 1.0950 1.0582 1.0045 1.0073 1.0911 1.1008 1.0453
1.1470 0.9807 1.0455 1.0411 0.9291 0.9763 0.9878 0.9969 0.9792 1.0853 1.0566 1.2554 1.0174 1.0467 1.0465
0.9980 0.9964 1.0352 1.0661 1.1089 1.0588 0.9915 0.9515 1.0176 1.0041 1.1105 0.8752 1.0265 1.0615 0.9972
0.9610 0.8966 0.9329 0.8055 0.8328 1.0597 0.9669 0.9980 0.9149 0.9812 0.7516 0.9254 1.0131 0.9811 0.9838
0.8421 1.0440 1.0556 0.9694 1.0091 0.8992 1.0252 0.8593 0.9992 1.0281 0.9523 0.8839 1.0393 1.0734 1.0764
1.0711 1.0285 1.0523 0.9369 0.8966 0.9279 1.0484 1.0265 1.0439 1.0642 0.9854 1.1071 1.0429 1.0026 1.1094
1.1084 1.0312 1.0459 1.0793 1.2031 0.9313 1.0565 1.0454 1.0625 1.0025 0.9457 1.0778 1.0592 1.0131 1.0433
1.0272 1.0898 1.0734 0.8428 0.7949 0.8640 0.9490 1.0319 0.9322 1.0026 0.8156 0.9323 1.0243 0.9532 0.9359
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0.9276 0.9245 0.9700 0.9996 0.8457 0.8220 0.8792 0.8450 0.8548 0.9526 0.9435 0.9462 0.9020 0.9052 0.9353
0.8732 0.8301 0.9255 0.5659 0.4014 0.5478 0.7297 0.7254 0.6130 0.7924 0.5628 0.8243 0.9475 0.9413 0.9275
1.1613 1.1840 1.1490 1.4688 1.6717 1.4467 1.0987 1.2252 1.1832 1.1232 1.2492 1.1331 1.1717 1.1858 1.2082
0.8397 0.9051 0.8810 0.6999 0.7963 0.8770 0.8538 0.8471 0.7674 0.8592 0.9984 1.0075 0.8802 0.9299 0.8657
1.0779 1.0943 1.0425 1.3897 1.1408 1.1934 1.0839 1.2049 1.2678 1.0638 1.1203 1.0298 1.0460 0.9942 1.0958
1.0438 10112 1.0878 1.0670 0.9982 0.9943 1.0106 1.0038 1.0082 1.0042 1.1098 1.0481 1.0239 1.0173 0.9072
1.0996 1.0526 1.0537 1.0484 0.9970 1.0371 0.9719 0.9761 0.9702 0.9707 0.9905 0.9566 1.0202 0.9764 1.0253
1.0952 1.0033 1.0974 1.0540 1.0271 1.0936 1.1328 1.0639 1.1246 1.0232 1.0706 1.0247 1.0069 0.9533 0.9334
0.8367 0.8968 0.9488 0.8745 0.9340 0.9355 0.9143 0.8803 0.8786 0.9575 0.8891 0.9235 0.9330 1.0256 1.0361
1.0711 1.0285 1.0523 0.9369 0.8966 0.9279 1.0484 1.0265 1.0439 1.0642 0.9854 1.1071 1.0429 1.0026 1.1094
1.1084 1.0312 1.0459 1.0793 1.2031 0.9313 1.0565 1.0454 1.0625 1.0025 0.9457 1.0778 1.0592 1.0131 1.0433
1.0272 1.0898 1.0734 0.8428 0.7949 0.8640 0.9490 1.0319 0.9322 1.0026 0.8156 0.9323 1.0243 0.9532 0.9359
0.9276 0.9245 0.9700 0.9996 0.8457 0.8220 0.8792 0.8450 0.8548 0.9526 0.9435 0.9462 0.9020 0.9052 0.9353
0.8732 0.8301 0.9255 0.5659 0.4014 0.5478 0.7297 0.7254 0.6130 0.7924 0.5628 0.8243 0.9475 0.9413 0.9275
1.1613 1.1840 1.1490 1.4688 1.6717 1.4467 1.0987 1.2252 1.1832 1.1232 1.2492 1.1331 11717 1.1858 1.2082
1.1570 1.0305 1.1032 1.1604 1.1250 1.1841 1.0702 1.1447 1.1411 1.0521 0.9438 0.9940 1.0662 1.0452 1.0185
1.0528 1.1057 1.0027 0.9682 0.8978 1.0446 1.0185 1.0546 0.9973 1.0388 1.0702 0.9863 0.9291 0.8805 1.0132
0.9651 0.9695 0.9972 0.9700 0.9558 0.7440 0.9449 0.9168 0.9056 0.9039 0.9490 0.9444 0.9826 0.9295 0.9300
1.0903 1.0357 1.0223 0.9971 0.9335 1.1313 1.0864 1.0294 1.0870 1.0617 1.0572 0.9624 1.0159 1.0090 0.9458
1.1087 1.0377 1.0329 1.0914 0.9729 1.0563 1.0659 1.0399 1.0385 0.9974 0.9941 1.0214 1.0156 1.0768 1.1588
1.0711 1.0285 1.0523 0.9369 0.8966 0.9279 1.0484 1.0265 1.0439 1.0642 0.9854 1.1071 1.0429 1.0026 1.1094
1.1084 1.0312 1.0459 1.0793 1.2031 0.9313 1.0565 1.0454 1.0625 1.0025 0.9457 1.0778 1.0592 1.0131 1.0433
1.0272 1.0898 1.0734 0.8428 0.7949 0.8640 0.9490 1.0319 0.9322 1.0026 0.8156 0.9323 1.0243 0.9532 0.9359
0.9276 0.9245 0.9700 0.9996 0.8457 0.8220 0.8792 0.8450 0.8548 0.9526 0.9435 0.9462 0.9020 0.9052 0.9353
0.8732 0.8301 0.9255 0.5659 0.4014 0.5478 0.7297 0.7254 0.6130 0.7924 0.5628 0.8243 0.9475 0.9413 0.9275
1.1613 1.1840 1.1490 1.4688 1.6717 1.4467 1.0987 1.2252 1.1832 1.1232 1.2492 1.1331 11717 1.1858 1.2082
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