Predicting Results of a Biological
Experiment Using Matrix
Completion Algorithms

by

Trevor Sabourin

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Ali Ghodsi

Waterloo, Ontario, Canada, 2011

© Trevor Sabourin 2011



I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

[ understand that my report may be made clectronically available to the public.

i



Abstract

Biologists from McMaster’s Brown Lab are interested in the mechanism of action of
uncharacterized inhibitors of the growth of bacteria. To achieve their goal, they system-
atically combined 186 small molecules of unknown action with 14 known antibiotics of
diverse mechanisms. The result of all these experiments is a 186 x 14 matrix of “synergy
values” between 186 small molecules and 14 known antibiotics. The entries of the data
matrix represent normalized bacteria growth rates in the presence of an antibiotic and a
small molecule. The goal of this project is to create an algorithm that can predict all
results of this biological experiment given only a subset of the results in question. This
project is motivated by: the time and money it could save for experimental biologists, the
opportunities for collaboration with people in other disciplines and the fascinating applica-
tion of algorithms to a problem they were not designed to solve. We quickly realized that
predicting all results of a biological experiment given a subset of the results boils down
to completing a matrix given a subset of its entries. The methods that we tried fall into
the broad categories of Collaborative Filtering (CF) and Nystrém methods. In total we
tried 4 methods: a Memory-Based CF method, a Model-Based CF method, the original
Nystrom method and Landmark Multidimensional Scaling. All of these methods present
different ways to complete a matrix given only a subset of the entries. Both the Nystrom
and Landmark Multidimensional Scaling methods were unable to predict the results of our
biological experiment with any accuracy. Possible reasons why these two methods failed
are discussed. The Memory-Based CF method performed well enough to seem a viable
choice for our application. Finally, of all the methods, the Model-Based CF method based
on matrix factorization was the most successful.
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Chapter 1

Introduction

Biologists from McMaster’s Brown Lab are interested in the mechanism of action of unchar-
acterized inhibitors of the growth of bacteria. To achieve their goal, they systematically
combined 186 small molecules of unknown action with 14 known antibiotics of diverse
mechanisms. They were interested in the small molecules’ effects on the growth of bacteria
in the presence of the known antibiotics. If the combination, of the small molecule and the
antibiotic together, suppressed the growth of bacteria significantly more than the antibiotic
alone — at least 3 times more — the combination was considered to be synergistic.

n the Dr. Eric Brown paper [3], they were able to draw meaningful conclusions about
biological molecules by using their expert knowledge to study a heat-map (an image) of
their experimental results

The result of all these experiments is a 186 x 14 matrix of “synergy values” between
186 small molecules and 14 known antibiotics. The data can be found in: [3]. The
entries of the data matrix represent normalized bacteria growth rates in the presence of an
antibiotic and a small molecule. This matrix of synergy values provides a fingerprint of the
biological activity of these unknown small molecules. Biologists can use these fingerprints
to hypothesize the mechanisms of action of the small molecules [3]. Visualizing the matrix
as an image (called a heat-map) is useful when analyzing these fingerprints. Knowing
the chemical activity of these small molecules could lead to new drugs to help combat
drug resistant bacteria. The synergy values should be bounded by zero and one, where one
represents a growth rate equal to that of the control and zero represents no bacteria growth
at all. The bacteria growth in the presence of only the antibiotic was used as the control.
It is important to note that synergy values equal to zero are not possible, since there will



always be some bacteria growth. The Eric Brown lab further binned the data into two
categories: synergy observed and no synergy observed. Synergy values less than or equal
to 0.25 correspond to cases where synergy was observed while synergy values greater than
0.25 correspond to cases where no synergy was observed.

The goal of this project is to create an algorithm that can predict all the results of
this biological experiment given only a subset of the results in question. The motivation
for this project comes from three sources. First, this algorithm would be a powerful tool
that could save time and money for experimental biologists; the biologists could run only a
subset of the experiments and still obtain all the results. Second, biologists present a great
opportunity for collaboration because they are not likely to be familiar with the power of
computational mathematics. Finally, this project presents an interesting application for
algorithms that were not designed for this purpose.

Predicting all the results of this biological experiment given only a subset of the results
is equivalent to completing a matrix given a subset of its entries. There are many methods
for completing a matrix given a subset of its entries. These methods are based on the
assumption that the complete matrix is low rank. Therefore, each entry of the full matrix
can be approximated as a weighted linear sum of a small number of basis vectors. In
the case of our synergy values, we must assume that there exists only a small number
of chemical fingerprints that are unique and that all other chemical fingerprints are just
a weighted sum of these unique fingerprints. This is a reasonable assumption for most
real-life data matrices that must be made for our problem to be solvable.

There are two types of incomplete matrices: one type has all the known values in
one block and the other has the known values scattered randomly. Each of these types
of incomplete matrices lead to different matrix completion algorithms. For incomplete
matrices with a known block, we tried both the Nystrom algorithm and the Landmark
Multi-Dimensional Scaling (LMDS) algorithm. For incomplete matrices with scattered
known entries, we tried Collaborative Filtering methods. Under Collaborative Filtering,
we tried both a Memory-Based and a Model-Based algorithm.



Chapter 2

Methodology and Method Evaluation

To achieve our goal, the algorithms must only look at a subset of the data. Therefore, we
start all of our simulations by creating 2 matrices: the original (full) data matrix and a
second matrix that is mostly empty. We choose the locations of missing values differently
for different methods. For the Nystrom and LMDS methods we kept the first £ columns
and made empty the last k£ columns, while for the Collaborative Filtering methods in each
row an equal number of randomly located empty entries were chosen. The algorithms
only used the incomplete second matrix as input data. Finally, to determine the accuracy
of the methods, we compared the guessed values for the entries that were missing with
the true values from the original matrix. We used Root Mean Squared Error (RMSE) as
our measure of accuracy because it is quite sensitive to the occasional large error and is
generally accepted as a good measure of precision. RMSE measures the square root of the
average of the squares of the errors. Where the error is the amount by which the predicted
values differs from the true value.

In our case RMSE was calculated as follows:

A - dz i Cij )2
RMSE(D, D) = \/ZWER( ) (2.1)

n

where D is the true complete data matriz, D is the predicted data matriz and R is the set
of all data points (a,b) excluded from our input data (i.e. the set of all points that need to
be predicted). '

Note: For the LMDS method the true complete data matrix was put into the kernel space so that the



The Eric Brown lab focused on classifying the data into two groups. To follow suit,
we introduced another error measure that we called Binning Error. The Binning Error
represents the number of predicted values that were miss-classified with respect to the
0.25 cut-off. Binning Error comes in two forms: false positives and false negatives. A false
positive is recorded when the true value is non-synergistic (greater than 0.25) but the value
was predicted to be synergistic (less than 0.25). A false negative is the opposite of a false
positive and is recorded when the true value is synergistic (less than 0.25) but the value
was predicted to be non-synergistic (greater than 0.25). We kept all three errors separate
because a biologist, doing real experiments, may be interested in one error more than the
others. In that case, the biologist may want to bias the algorithm used to minimize the
error that interests him, while keeping track of the other errors to ensure his results remain
meaningful.

Binning With a Probability Function

Recall that we observed two different types of error for our simulations. We observed both
numerical error (RMSE) and Binning Error. Numerical error is the most intuitive and was
easy to handle. Binning Error on the other hand was difficult to deal with because the
cut-off line (0.25) is artificially chosen and the amount of numerical error allowed before
binning error occurs is dependent on the true values. For predicted values far from the
cut-off line, it is easy to be confident that the predicted values fall into the correct bin;
whereas for predicted values close to the cut-off line, it is unclear if these values are in the
correct bin or if the error from our method has pushed them over the cut-off line and into
the wrong bin. Therefore, we suggest a probability function to give a probability of being
in each bin. We used a sigmoid as our probability function.

B 1
1 4+ e(sx(z—p))

P(x) (2.2)
where x is the predicted synergy value, P is the probability of x belonging to the non-
synergistic bin, s is a parameter that affects the steepness of the sigmoid and p is a param-
eter that affects the centre of the sigmoid (the point where the probability of being in each

bin is equal).

We centered our sigmoid on the cut-off line between synergistic and non-synergistic behav-
ior and chose the steepness see in the image above. In other words, parameter p was set to

error on the predicted values could be calculated.
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Figure 2.1: Sigmoid With p = 0.25 and s = 25

0.25 and parameter s was set to 25. We chose this steepness because the results matched
well with our intuitive confidence levels.

We ran our most successful method, with and without the sigmoid binning to see if this
probability function improved the results. Details are discussed in section 4.4.3.



Chapter 3

Nystrom and LMDS Methods

3.1 A Brief Introduction to the Nystrom and LMDS
Methods

Landmark Multi-Dimensional Scaling [10] and the Nystrom method [I13] are two other
techniques for completing matrices given a limited number of entries that we tried. It
has been shown LMDS is equivalent to a modification on the Nystrom method [3]. These
methods require the user to start with the known values organized in a block [2][13]:

e Given a symmetric positive semi-definite (PSD) n x n kernel matrix K = < ;T g)

e Where k X k sub-matrix A and k X (n — k) sub-matrix B are known but the (n —

k) x (n — k) sub-matrix C' is unknown.

e The Nystrom and LMDS methods approximate the unknown sub-matrix C'.

C is approximated exactly if the rank of K is at most k. This fact is based on the
following property of PSD matrices:

For every PSD matrixz K, there exists points in a Euclidean space such that their cor-
responding kernel matriz is K [12]

Suppose, the K matrix can be fully represented on an m-dimensional manifold (Where
m < k). Knowing the relative distances between all k points in A and the distances from
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these k points to every other k£ + 1 to n points in B, eliminates all degrees of freedom from
every point in A and B. Therefore, the exact locations of all points on the manifold can
be determined. If the locations of all points were known, solving for C' is a trivial matter
of measuring the distances between points and transforming these distances back to the
kernel space.

If the rank of K is greater than k the entries of the K matrix can only be partially
represented on a k-dimensional manifold and the Nystrom method yields an approximation
to C.

3.1.1 The Landmark Multi-Dimensional Scaling Modification

LMDS is equivalent to the Nystrom method but we are assumed to start with a symmetric

E
FT
assumed to be the distance between points ¢ and j. The method works by first mapping
the distance matrix to a PSD kernel matrix, then using the Nystrom method on this kernel
matrix. The mapping is done using the Landmark MDS algorithm, which is a modification
of the original MDS algorithm. These algorithms work by double centering our distance
matrix D to convert it to the needed kernel matrix K [3].

distance matrix D = ( g) instead of a PSD kernel matrix. Therefore, entry D ; is

3.1.2 Why Try the Nystrom and LMDS Methods

We decided to try these methods to predict the results of our biological experiment for two
reasons. First, although these methods assume certain properties about our data, which
may or may not be consistent, these methods can be viewed simply as algorithms that
guess the entries of incomplete matrices. The second reason is that, from a practical point
of view, data collection that results in an incomplete matrix where the known data is in
a block is simpler than data collection resulting in a matrix with scattered known values.
Columns of data need to be collected for the block matrix — where one column represents
experiments done all with one of the two chemicals remaining constant. The column based
data collection method is simpler and surely more desirable than the scattered approach.
We decided to try both the original Nystrom method as well as LMDS because both
methods assume different properties regarding the initial data; assumptions that may or
may not be true.



3.2 Special Methodology

Both the Nystrom and LMDS methods require special methodology on top of the basic
methodology explained in section 2.

3.2.1 Satisfying the Conditions

As mentioned previously, both the Nystrom and LMDS methods require the full data
matrix to be symmetric. The LMDS method also requires the entries to represent distances
between points, while the Nystrom method requires the matrix to be a kernel matrix. These
conditions presented small challenges that were resolved using data preprocessing and some
intuition.

The Symmetry Condition

First, to satisfy the symmetry condition, prior to both methods we added a 14 x 14 symmet-
ric matrix containing all combinations of synergy values between the 14 known antibiotics
to our data. Adding that 14 x 14 matrix made our data a 200 x 14 rectangular piece of
a 200 x 200 symmetric matrix (this will be sufficient to satisfy the symmetry condition as
we will see in the next section).

It is important to note that an antibiotic cannot synergize with itself. In fact, adding
an antibiotic to itself is equivalent to the control used in these biological experiments.
Therefore, the diagonal of the 14 x 14 matrix added to our data should be all ones.

The Kernel Condition

A kernel matrix is a matrix where the entries represent similarities between objects. The
domain, in which these similarities exist, does not need to be known. If we make the
reasonable assumption that small molecules that have similar synergy values are similar to
each other in some domain — where this domain can be anything from molecular structure
to biological action — then we can consider the matrix of synergy values to be a kernel
matrix.



14—

Our data

Data we do not possess

f 200 !

200x14 rectangular piece of a 200x200 symetric matrix

Figure 3.1: Our Data as a 200 x 14 Rectangular Piece of a 200 x 200 Symmetric Matrix.
Note: The image is not to scale to highlight the symmetric top left hand corner.

The Distance Condition

Finally, given that we has already interpreted the synergy values as a measure of similarity
between the molecules, we can further interpret these entries as distances between the
molecules. This extension amounts to forcing the domain in which the similarities exist to
be spacial locations. Some data processing is required before this extension is reasonable.

Prior to the LMDS method we took a 200 x 14 matrix full of ones and subtracted our
data from it. Subtracting these two matrices still left us with a data matrix full of values
between zero and one but it reversed the meaning of the values. Values greater than 0.75
now corresponded to synergistic combinations, values less than 0.75 corresponded to non-
synergistic combinations and a value of 0 corresponded to the control. It was important
to reverse the meaning of the values because a distance matrix, by definition, must have
zeros all along the diagonal; the distance between a point and itself must be zero under
any valid metric. Note that: reversing the meaning of the values does not effect our kernel
assumption. Therefore we can still consider this modified matrix of synergy values as a
distance matrix.



3.2.2 Using the Nystrom and LMDS Methods on a Rectangular
Matrix

The Nystrom and LMDS methods only work on symmetric matrices and only square ma-
trices can be symmetric. This fact implies that we need our complete data matrix to be a
square matrix to use a Nystrom method. Fortunately, a Nystrom method can also be used
on a rectangular matrix, as long as this matrix represents a rectangular portion of a larger
symmetric matrix.

— k — _
Our data
k A B
T Data we do not possess
B Data we want to predict
200
200k| B' C

! 200 !

Figure 3.2: How We Used the Nystrom and LMDS Methods on Our Rectangular Matrix.
Note: k must be < 14.

Using a Nystrom method, given the A and B? sub-matrices from the above image,
we should be able to solve for the C' sub-matrix. Note that, due to the preprocessing
discussed above, the information for both the A and BT sub-matrices are contained in
the section corresponding to our data. Therefore, we have all the information needed to
use a Nystrom method on our rectangular data matrix. We also point out that most of
the C' matrix corresponds to data results we do not possess. The entries of the C' matrix
corresponding to this data were dropped because there was no way to verify the correctness
of these results.
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3.3 Algorithms

In this section we explore the exact algorithms that we employed. The algorithms are first
presented in their original form. Following cach presentation, a modified variation of the
algorithm is proposed in order to handle the specific application.

3.3.1 Nystrom

For the Nystrom method we used the following algorithm (from [2][13]):

Given positive semi-definite n x n kernel matrix K = < ;T g)

Where kX k sub-matrix A and kX (n—k) sub-matrix B are known and (n—k)x (n—k)
sub-matrix C' is unknown.

e Approximate C' as:
C=BTA"'B (3.1)

N A B
K:(BT é)

The algorithm was used exactly as described above. As mentioned in section 3.2.2, the
predicted synergy values in the final K matrix that correspond to experimental results that
we do not possess were ignored.

Approximate K as:

11



3.3.2 Landmark Multi-Dimensional Scaling

For the LMDS method we used the following algorithm (from [3][10]):

Given symmetric n X n distance matrix D = <FT G)

Where kx k sub-matrix £ and kx (n—k) sub-matrix F’ are known and (n—k)x (n—k)
sub-matrix G is unknown.

Find A and B of PSD kernel matrix K = (;T CB') using:

1 1 1
2 § : 2 § : 2 § 2
i J BJ

1 1
_ 2 2 2
Bij=1Fi;—— E L~ o E by (3.3)
i j

e Use A and B to approximate C' using equation 3.1

. A B
K_<BT O)

The algorithm was used exactly as described above. Once again, as mentioned in section
3.2.2, the predicted synergy values in the final K matrix that correspond to experimental
results that we do not possess were ignored.

e Approximate K as:

12



3.4 Results

3.4.1 Nystrom

# of Known Columns | RMSE
2 0.2923
3 0.3651
4 1.8844
5 1.9260
6 1.9698
7 1.9983
8 7.3072
9 16.0220
10 11.1367
11 1.2676
12 1.6868
13 0.9215

Table 3.1: Nystrom Method: RMSE

To put the scale of the errors in context: With 7 unknown columns: the true values we are
trying to predict have: min = -0.0031, max = 0.9969 and mean = 0.6018. A RMSE greater
than or approximately equal to the mean value we are trying to predict is unacceptable.

13



3.4.2 Landmark Multi-Dimensional Scaling

# of Known Columns | RMSE
2 3.1851
3 302.3723
4 499.8042
5 556.3088
6 937.8035
7 455.6081
8 355.8806
9 274.1246
10 345.2073
11 642.4776
12 292.3814
13 413.1089

Table 3.2: LMDS Method: RMSE

To put the scale of the errors in context: With 7 unknown columns: the true kernel values
we are trying to predict have: min = -0.5776, max = 10.0000 and mean = 3.9755. A
RMSE greater than the mean value we are trying to predict is unacceptable.

3.5 Discussion

From our results (Tables 3.1 and 3.2), we can see that both the Nystrom and LMDS
methods were unable to predict synergy values with enough accuracy. Although the errors
with 2 and 3 known columns in Table 3.1 are relatively low, the values predicted by the
method with so few columns were not desirable. With so few known columns, the predicted
values in each row barely varied from the mean of the known values for that row. Predicting
the mean of the know values does not provide the user with any new information and is
therefore not desirable. Due to the failure of the methods, there must be a fundamental
problem that arises when these methods are used in our particular application. Three
issues with these methods, with respect to our data, need to be addressed.

The first issue relates to the Nystrom method. This method requires the complete data
matrix to be a positive semi-definite matrix. In our case, the complete data matrix is a

14



200 x 200 matrix of which a 200 x 186 subset corresponds to data that have not been
observed (as seen in Figure 3.1). Though we are missing most of the data, we can be
certain that the matrix is, unfortunately, not a PSD matrix. To verify this claim we use a
property of PSD matrices that states:

Any block from the diagonal of a PSD matrixz must itself be a PSD matriz. [0]

Unfortunately, the 14 x 14 block that we added to our data to make it symmetric is not
PSD. Despite many efforts to modify our data to be PSD we were unable to do so.

The second issue relates to LMDS. This method requires the complete data matrix to
be a distance matrix. Unfortunately, the triangle inequality does not hold for our data.
Given that all metrics (even non-linear ones) must satisfy the triangle inequality, our data
cannot follow any underlying metric. Therefore, our data cannot be any sort of distance
matrix.

The final issue is that the 14 x 14 symmetric matrix (containing all combinations of
synergy values between the 14 known antibiotics) added to our data may not be consistent
with the rest of the data (a 186 x 14 matrix containing the synergy values between 186
small molecules and the 14 known antibiotics). These results may not be consistent because
the antibiotics used are all much larger than the small molecules and one of the factors
that influences biological results is the relative size of the molecules involved. If two big
antibiotics can not be seen as using the same distance measure as one big antibiotic and
one small molecule, then this “apples and oranges comparison” would explain the failure
of the methods. This issue alone suggests that the Nystrom and LMDS methods may not
be appropriate for use on our particular set of data.

15



Chapter 4

Collaborative Filtering

4.1 A Brief Introduction to Collaborative Filtering

Collaborative Filtering (CF) methods were invented to complete very sparse matrices filled
with randomly located known entries. CF methods are typically used to predict a user’s
preferences for unseen items — typically movies or books — based on a database of many
users’ ratings or preferences for the items they have seen [11]. These methods became a
popular research topic towards the end of the last decade due to the Netflix Prize com-
petition [5]. A competition, put on by Netflix in 2007, offering a USD 1M award to the
first research group that could beat the Netflix prediction algorithm (Cinematch) by at
least 10 percent. The competition had 51051 contestants on 41305 teams from 186 differ-
ent countries [5]. The interest this competition generated sparked many advances in the
field of Collaborative Filtering. Two categories of CF techniques are: Memory-Based and
Model-Based [11].

4.1.1 Memory-Based Collaborative Filtering

The first CF algorithms are Memory-Based algorithms because they are more intuitive.
Memory-Based CF algorithms are based on the idea that users who agree on content, that
they have both already seen, are likely to agree on content that only one of them has
seen. In simpler terms, Memory-Based CF is a large-scale version of asking your friend,
who has similar interests as you, to recommend you a book or a movie. The algorithms

16



work by prescribing weights to every other user that depend on the similarity between
the preferences of the items you have both already seen. Then these weights are used
to perform a weighted average to predict one’s preference for unseen items based on the
preferences of one’s peers for those items.
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Figure 4.1: Visualizing Memory-Based CF

4.1.2 Model-Based Collaborative Filtering

More recently, thanks to the Netflix prize, Model-Based algorithms have become popular.
Model-Based techniques are usually based on machine learning algorithms and are often
not intuitive [11]. The goal for Model-Based methods is to first create a model then, using
the known preferences of users, solve for the unknowns parameters in this model. Finally
the model is then used to predict users’ preferences for unseen items. In particular, the
Model-Based algorithm we use in this paper is a Matrix Factorization method. These
aptly named methods are based on creating two or more matrices whose product gives an
approximation to the full matrix of users’ preferences. For example:

e [f the users’ preference matrix U is m X n, where m is the number of items and n is
the number of users.

17



e Then the factors V and W, solved for such that V' x W ~ U, are chosen to have
dimensions m x k and k x n respectively, where k < 0.5m and k < 0.5n.

e Therefore, instead of using a limited amount of data to try and solve for m x n
entries, we use a limited amount to try and solve for k x m + k X n entries.

Where: Exm+Exn<€0bnxm-+0.0mxn=m Xn.

Figure 4.2: Visualizing Matrix Factorization

The entries of the smaller matrices, V and W, no longer represent users’ preferences,
they represent features related to the users’ preferences. The (m x k) V matrix represents
how much each item has of each feature and the (k x n) W matrix represents how much
each user likes each feature. Choosing these features is easily done using a gradient descent
method [7].

4.1.3 Relevant Notes on Collaborative Filtering

There are two main differences between most Memory-Based and Model-Based methods
that are worth highlighting. First, Memory-Based methods predict the unknown values
directly, while Model-Based methods solve for the parameters of the model and then use
these parameters to predict the values. The second difference is that Memory-Based meth-
ods only make predictions for the unknown values, while Model-Based methods use the
model to predict all values and compare the known values with their predictions to train
the model.

Factors that affect the results of CF methods are: the number of items one has seen,
the number of items one’s peers have seen and the number of common seen items between
one and one’s peers. For all CF methods, the more items one has seen and the more items
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one’s peers have seen, the better the method works. Less intuitively, for Memory-Based
CF methods, the results are also dependent on the number of common seen items between
one and one’s peers [11].

4.1.4 Why Try Collaborative Filtering

We thought that CF techniques could predict the results of our biological experiment, given
a subset of the results, because although biological experiments are not movie ratings, they
arc not random numbers either; there are underlying reasons behind the results of an exper-
iment just as there are behind the ratings of a movie. Whether for a movie or a biological
experiment, these underlying reasons form the basis of our results. CF methods assume
that these basis vectors are few in number and try to predict the results as a weighted sum
of a set of basis vectors. We were confident that the chosen CF methods would be able to
access these basis vectors and accurately predict the results of our experiment — as they
have shown to do for movie ratings.

4.2 Algorithms

In this section we explore the exact algorithms that we employed. The algorithms are first
presented in their original form. Following each presentation, a modified variation of the
algorithm is proposed in order to handle the specific application.

4.2.1 Memory-Based Collaborative Filtering

For Memory-Based CF we used the following method (from [1]):

Suppose an incomplete matrix U is given, where each row represents a user and each column
represents an item. The goal is to predict all unknown values of U using a weighted sum
of the known values of U.

e U, ; = preference of user ¢ on item j.
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I; = the set of all items which user 7 has seen.

Mean preference for user i is

- 1
Ui = A > Uiy (4.1)

JeL
e The predicted preference for user a on item j is a weighted sum
Pa,j = [ja + K Z U)(CL, ’L)(U,J - UJ (42)
i=1

Where k is a normalizing factor.

The weights w(a, ) are determined from
Ua,j UfL’]
Sier, Ui\ e, U

(4.3)

w(a, 1) :Z
mY

All predicted preferences were solved for using equation 4.2 for each user on each
unseen item.

The method was used as described above, except for the meaning of the variables which
were changed to give predictions of biological results:

e U, ; = synergy value of small molecule ¢ with antibiotic j.

e [; = known results involving small molecule 7.

e U, = mean synergy value for small molecule 1.

e P, ; = predicted synergy result for small molecule a with antibiotic j.
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4.2.2 Model-Based Collaborative Filtering

For Model-Based CF we used the following algorithm (presented by Funk in [1]):

Suppose an incomplete matrix U is given, where each row represents a user and each
column represents an item. The goal is to find matrices V' and W such that V' x W =U
where U ~ the complete U matrix.

e V= a (m x k) matrix relating each item to each feature.

e W = a (n x k) matrix relating each user to each feature.

v is the learning rate and X is a penalizing factor to avoid over-fitting.

The V and W matrices are initially full of zeros.

Pseudo Code of the Algorithm:

1: for each feature f =1 — k do
2:  we set the columns corresponding to that feature in the V' and W matrices to
some initial value @

3:  while the following procedure has looped fewer than n times do
4: Find the current predicted values P =V x W71
5: Find the current errors £ = U — P for all the known user preferences.
6: for all known entries (u,4) in the U matrix do
7: Solve V;,f:\/;,ij’yx(Eu7i><Wu,f—)\><Vi7f)
and Wy =Wy r+7 X (Eui X Vig—=AXWy,r)
The above equations come from the gradient descent technique.
8: end for
9: end while
10: end for
11: The final predictions are found by repeating step 4 with the final V' and W

matrices.
The algorithm was used as described above with the following details:

e U was the matrix of known synergy values.
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V = a (m x k) matrix relating each antibiotic to each feature.

W = a (n x k) matrix relating each small molecule to each feature.

v =0.001 and A = 0.02*

We chose to use f = 4 features.

The initial value @ used was a vector with every entry equal to 0.1

We iterated the main part of the procedure n = 800 times for each feature f.

The results from this method improve as the number of features increase. This rela-
tionship follows a curve similar to a logarithmic function of the features. We chose f = 4
features because at this point there was a major drop-off in the improvement of the method
for each subsequent feature added and the run-time of the method depends on the number
of features. For our application, it is useful to think of these features as the vectors of our
basis.

'We chose these v, A, @ and n values because they were recommended by Funk [4] and they worked
well on our data.
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4.3 Results

The results from Tables 4.1- 4.3 are the average of 50 runs where the known entries in each
row were randomly chosen cach time:

RMSE
Unknown Entries / Row | Memory-Based | Model-Based
1 0.1524 0.1440
2 0.1499 0.1440
3 0.1536 0.1466
4 0.1586 0.1463
5 0.1603 0.1478
6 0.1625 0.1493
7 0.1662 0.1494
8 0.1732 0.1512
9 0.1830 0.1532
10 0.1939 0.1579
11 0.2148 0.1665
12 N/A 0.1941
13 N/A 0.3141

Table 4.1: Collaborative Filtering Methods: RMSE

To put the scale of the errors in context: The true values we are trying to predict have:
min = 0.0017, max = 1.1406 and mean = 0.6659. These RMSEs are much better than
those associated with the Nystrom and LMDS methods.
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False Negatives

Prob. a Prediction is a False Neg.

Unknown Entries / Row

Memory-Based

Model-Based

Memory-Based

Model-Based

1

CO ~J O U = W N

11
12
13

12.3000
24.0667
38.3000
51.3000
63.1333
77.8333
89.9333
108.4000
124.7000
139.6667
160.3667
N/A
N/A

8.9200
19.0400
27.4000
36.1800
46.3600
55.6200
65.9400
78.4200
89.1400

105.0000
123.8800
155.5200

111.5400

0.0661
0.0647
0.0686
0.0690
0.0679
0.0697
0.0691
0.0728
0.0745
0.0751
0.0784
N/A
N/A

0.0480
0.0512
0.0491
0.0486
0.0498
0.0498
0.0506
0.0527
0.0532
0.0565
0.0605
0.0697
0.0461

Table 4.2: Collaborative Filtering Methods: False Negatives

False Positives

Prob. a Prediction is a False Pos.

Unknown Entries / Row

Memory-Based

Model-Based

Memory-Based

Model-Based

1

0 ~J O Ul = W N

11
12
13

4.2333
7.0000
10.1333
15.0667
19.1667
23.0333
27.8667
31.9000
35.6667
44.9333
55.0667
N/A
N/A

4.8800
9.0000
14.2800
17.8800
24.1800
28.8400
32.1000
37.9600
40.3600
43.7000
50.1600
61.8600
261.5000

0.0228
0.0188
0.0182
0.0203
0.0206
0.0206
0.0214
0.0214
0.0213
0.0242
0.0269
N/A
N/A

0.0262
0.0256
0.0256
0.0240
0.0260
0.0258
0.0247
0.0255
0.0241
0.0235
0.0245
0.0277
0.1081

Table 4.3: Collaborative Filtering Methods: False Positives
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For Tables 4.2 & 4.3: Note that on average the number of missing values that should be
labeled synergistic is 20.7143 x # of missing values per row.

Unknown Entries / Row | Standard Deviation
1 0.1432
2 0.1433
3 0.1437
4 0.1442
5) 0.1446
6 0.1459
7 0.1468
8 0.1472
9 0.1494
10 0.1536
11 0.1588
12 0.1715
13 0.1480

Table 4.4: Model-Based CF: Standard Deviation of Predicted Values

Note: The true standard deviation of the complete data matrix is 0.2092.
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Figure 4.3: Model-Based CF': A Visual Representation of our Results Using 3 Known Values
in Each Row. These results have a RMSE = 0.1577 and there are 183 falsely binned values.
The colours range from blue to red where: blue rectangles represent small entries and red
rectangles represent large entries.
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Figure 4.4: Model-Based CF: A Visual Representation of our Results Using 7 Known
Values in Each Row. These results have a RMSE = 0.1496 and there are 100 falsely
binned values. The colours range from blue to red where: blue rectangles represent small
entries and red rectangles represent large entries.
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Without Sigmoid | With Sigmoid
False Pos. 31.6000 19.4000
False Neg. 69.5500 53.1500
# Unsure Values N/A 56.6500
RMSE 0.1492! 0.1492

Table 4.5: Model-Based CF: Sigmoid Binning Results — 3 Known Values per Row

Note: “Unsure Values” are predicted values that were deemed synergistic with a probability
between 0.3 and 0.7, as determined by our sigmoidal probability function .

4.4 Discussion

Both our Collaborative Filtering methods performed much better than the Nystrom and
LMDS methods. This is a reasonable result because, beyond the low rank assumption
made by all matrix completion methods, our CF methods make no assumptions about the
data — assumptions that are likely to be incorrect given our unique application of these
methods.

4.4.1 Memory-Based Collaborative Filtering

From our results (Table 4.1), we can see that the Memory-Based CF method predicted
synergy values with a RMSE of 0.1939 when there were 10 missing values in each row.
Although this method performed very well when there were many known entries in each
row, the errors were still quite high when there were few entries in each row. These large
errors arc likely due to over-fitting. Although there are many way to regularize Memory-
Based CF methods to avoid over-fitting, none of the modifications we tried improved our
errors. This over-fitting problem is mostly due to our small data sample. The larger the
data sample, the easier it is to regularize the methods and avoid over-fitting.

4.4.2 Model-Based Collaborative Filtering

Our Matrix Factorization CF method performed the best out of all the methods (as seen
in Table 4.1). With only 3 known entries in each row we found a RMSE of 0.1665. Our

IThe RMSE is not influenced by the probability function
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Model-Based method likely outperformed the Memory-Based method because we were able
to limit the complexity of our model by using only four latent features. Limiting the model
to a low number of features regularizes the model to help avoid over-fitting. Our results
suggest that this method was able to access underlying features that are representative of
the biological action that takes place in the experiments. If these features are biologically
relevant, they imply that there are only four main “basis reactions” and all reactions are
a linear combination of these four. It would be a very interesting biological result if sets
of reactions could be broken down into their “basis reactions”. Unfortunately, there is no
known way to find out what are the features that the Matrix Factorization method has
found.

4.4.3 Binning Results and Alternatives

Both of our CF methods had difficulty binning the data (as seen in Tables 4.2 and 4.3).
With only 3 known entries in each row, despite the excellent RMSE, our Model-Based
CF method miss-classified 174.0400 values (8.5% of the predicted values). One likely
reason why our methods had difficulty with binning is that the results from CF method
are known to often be slightly compressed compared to the true data. This phenomenon
can be observed from Table 4.4, where the standard deviation of our predicted results
were always less than the true standard deviation (0.2092) of the complete data matrix.
Compressing the data is not desirable when we have a cut-off near one of the extremes of
the data. As mentioned earlier, we tried using a sigmoid probability function as the cut-off
to solve our binning issues . The probability function reflected our uncertainty towards,
which bin values near the cut-off should fall into. Using the probability function, over the
hard cut-off, gave us many fewer miss-bins among the values we could confidently place
but, in exchange, it gave us many values that we could not confidently place (as seen in
Table 4.5). This binning problem is hard to deal with because it is too reliant on absolute
values and arbitrary cut-offs.

On the other hand, the images generated from our results are a visualization of the
relative differences between the predicted values. These differences do not depend on hard
cutoffs and are not prone to error from slightly compressed results. In the Dr. Eric Brown
paper [3], they were able to draw meaningful conclusions about biological molecules by
using their expert knowledge to study a heat-map (an image) of their experimental results.
These factors imply that one way to use of our methods, from a biologist’s standpoint, is
to study an image of the results for desirable patterns. In this application the relative, not
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the absolute, values are of interest and therefore binning is not necessary.
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Chapter 5

Conclusions

The goal of this project was to create an algorithm that could predict all results of a
biological experiment given only a subset of the results in question. In an effort to achieve
our goal, we tried using algorithms made to complete matrices given only a subset of the
entries. We tried 4 different methods: two Collaborative Filtering methods, the Nystrom
method and LMDS. Both the Nystrom and LMDS methods failed to give meaningful
results. These methods failed most likely because the data used for this project violated
assumptions critical to the functioning of the methods. Fortunately, the CF methods fared
better. The Memory-Based CF method performed well enough to be viable choice for
our application but it seemed to struggle with over-fitting our data. Of all the methods,
the Matrix Factorization CF method was the most successful. Despite the success of the
CF methods, they still struggled to make sure the results fell on the proper side of the
0.25 cut-off. To mitigate this problem a sigmoid probability function was used as the cut-
off, instead of the original binary one. Future work for this project includes: trying our
methods on other sets of biological results, and exploring the idea of experiment design
(intelligently choosing which experiments to perform and which to predict so that we may
improve the results from our prediction method).
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