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Abstract

This essay explores the sensitivity of a financial portfolio to the number of active instru-
ments in it while maintaining risk protection. The transaction costs of the options should
not outweigh the expected risk of the underlying security. Therefore, it is important to
identify the instruments that can cost-e↵ectively insure the associated risk. However, the
transaction cost function is discontinuous resulting in a non-convex optimization prob-
lem making it NP-hard. We investigate solution methods using the following framework.
Firstly, the counting function in the objective is approximated by an alternative smoothed
function. Then the resulting formulation is optimized using an interior-point algorithm
which runs a local solver from multiple starting points.
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Chapter 1

Introduction

Hedging is a risk-management strategy to combat adverse price movements. The securities
that comprise the hedge are picked such that they move in a di↵erent direction than the
rest of the portfolio, appreciating when the other instruments decline and vice-versa.

Occasionally the market experiences volatility and this has a bearing on portfolio val-
ues due to stock price movements, interest rate fluctuation and currency exchange swings.
To match these wide variety of risks that a market poses, there exists a large assortment
of instruments such as options and futures to hedge these risks. Options make for very at-
tractive hedges because they can be easily leveraged. In this essay, we construct a hedging
portfolio that is comprised of simple European call and put options.

Hedging provides a solid floor in the event of a catastrophe. It compares closely to in-
surance i.e., it provides protection but comes at a cost including transaction costs.

There exist several ways to model transaction costs, namely as a percentage of the un-
derlying asset, a fixed cost for each share or a flat fee for each trade. In this essay, we focus
on modelling a suitable transaction cost function where we associate a cost proportional
to the number of nonzero instruments in a portfolio.

When transaction costs are ignored the result is a convex quadratic programming problem
and hence easy to solve; however the resulting solution may be una↵ordable in practice.
Including transaction costs provides a more accurate description of the practical invest-
ment conditions.
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The primary challenges posed by this transaction cost function in an optimization setting
are non-convexity, existence of multiple minima and NP-hardness. Therefore, heuristic pro-
cedures have been developed to approximately solve the portfolio hedging problem with
transaction costs. In this essay we propose an e�cient and e↵ective approach by means of
a graduated minimization technique using a smoothed transaction cost function.

The organization of the rest of this essay is as follows. Chapter 2 provides some pre-
liminaries and discusses two optimization strategies. Chapter 3 discusses our main result,
which is a smoothed approach for transaction costs. In Chapter 4, we illustrate our method
with computational results.
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Chapter 2

Preliminaries and Problem
Description

Definition 1 (European Call Option) A European call option C gives the holder the
right but not the obligation to buy an underlying asset S

T

at a particular time period T for
a certain strike price K.

Definition 2 (European Put Option) A European put option P gives the holder the
right but not the obligation to sell an underlying asset S

T

at a particular time period T for
a certain strike price K.

Their payo↵s are described as follows:

C(S, T ) = max(S
T

�K, 0)

P (S, T ) = max(K � S
T

, 0)

where T is the time to maturity.

The value of the contract is given by V (S, t).

The Black-Scholes-Merton formulas [3] for pricing European call and put options are as
follows:

C(S, t) = S
t

�(d
1

)�Ke�r⌧�(d
2

)

P (S, t) = Ke�r⌧�(�d
2

)� S
t

�(�d
1

)
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where

d
1

=
ln(St

K

) + (r + �2/2)⌧

�
p
⌧

d
2

=
ln(St

K

) + (r � �2/2)⌧

�
p
⌧

= d
1

� �
p
⌧

⌧ = T � t

The function �(x) is the cumulative probability distribution function for a standardized
normal distribution.

Let us construct a portfolio comprising d risk factors (e.g. stocks) S = (s
1

, s
2

, . . . , s
d

)
and n simple options V = (V

1

(S, t), ..., V
n

(S, t))T for hedging purposes. A simple option
is one that depends exactly on a single underlying asset s

j

. The vector V contains simple
options V

i

that are either call (Definition 1) or put (Definition 2) options.

The hedging portfolio is given by:

⇧(x,S, t) =
nX

i=1

x
i

V
i

(S, t) (2.1)

where x = (x
1

, ..., x
n

)T and x
i

is the investment on option V
i

.

Let ⇧
0

(S, t) be the portfolio to be hedged at time t = 0. The gradient g 2 Rd+1 of
⇧

0

is denoted as:

g =

2

664

@⇧
0

@t

r
S

⇧
0

3

775 . (2.2)

The Jacobian J
V

2 Rn⇥(d+1) of the vector of hedging instruments V is denoted as:

J
V

=

2

66664

@V1
@t

@V1
@s1

. . . @V1
@sd

@V2
@t

@V2
@s1

. . . @V2
@sd

...
...

...
...

@Vn
@t

@Vn
@s1

. . . @Vn
@sd

3

77775
. (2.3)

4



2.1 Exploiting the Structure of the Jacobian

Since our hedging portfolio uses only simple European options, each hedging instrument V
i

is a function of exactly one element of S, so each row of J
V

has exactly two non-zero values.

The first non-zero value is
@V

i

@t
and the other non-zero value

@V
i

@s
j

for a unique j lies in

a column between 2 : d+1. The Jacobian is e�ciently evaluated by exploiting its sparsity
structure [9].

We compute the Jacobian by applying forward mode Automatic Di↵erentiation (Section
A.1) to the vector function V(t,S). In fact, we only need two passes of the Automatic
Di↵erentiation (AD) tool. By the first pass, we can compute J

V

e
1

, where e
1

is the first
column of a (d+1)⇥ (d+1) identity matrix, this determines the first column of the Jaco-
bian matrix J

V

. Using the second pass, we can compute J
V

e
1

, where e
1

= (0, 1, 1, . . . , 1)T ,
which then yields all the non-zeros of columns 2 : d+ 1 of J

V

.

2.2 Optimization Strategies by Hedging Greeks

By expressing the change in portfolio value ⇧(S, t) in terms of a Taylor series we know
that the value ⇧(S, t) of a portfolio satisfies the following di↵erential equation [10]:

@⇧

@t
+ rS

@⇧

@S
+

1

2
�2S2

@2⇧

@S2

= r⇧. (2.4)

Define the following Greeks (Appendix A.2),

⇥ =
@⇧

@t
, � =

@⇧

@S
, � =

@2⇧

@S2

. (2.5)

Note: In practice � is often defined as �(S, t) so one obtains a simple extension of (2.4).
When � is not constant and instead a surface that varies with S and t, the analytical
formulas for Greeks are not readily available. This situation demands for Automatic Dif-
ferentiation to be used in order to compute the values in (2.5).

It follows that

⇥+ rS�+
1

2
�2S2� = r⇧.
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For a delta-neutral portfolio we have � = 0 therefore,

⇥+
1

2
�2S2� = r⇧. (2.6)

Equation (2.6) provides a closed form expression for theta in terms of gamma. This ex-
plains why theta may be regarded as a proxy for gamma in a delta-neutral portfolio.

The risk protection approach involves minimizing a quadratic objective function subject
to linear constraints. We construct the problem formulation in sections 2.2.1 and 2.2.2
keeping the following details in mind:

The first strategy neutralizes delta and theta. A delta hedge captures the sensitivity
of a portfolio to the underlying via a linear approximation. The theta measure is included
since it is a substitute for gamma in a delta-neutral portfolio. In practice, we observe that
the principal method of dynamic hedging is Delta hedging because the first order measures,
delta and theta represent the primary component of change in option value.

In the second strategy we employ the Greek, gamma. It improves hedging e↵ectiveness by
allowing for larger interval trading.

2.2.1 First Optimization Strategy: Delta-Theta Approach

Consider the hedged portfolio from (2.1),

⇧
0

(S, t)� ⇧(x,S, t) = ⇧
0

(S, t)�
nX

i=1

x
i

V
i

(S, t). (2.7)

A delta-theta approach to hedging at time t = 0 is to choose a hedge strategy x such that
the first-order change in (2.7), wrt [t;S] is zero, i.e.,

g � JT

V

x = 0. (2.8)

But (2.8) is underdetermined and admits many solutions, some of which may be unrea-
sonable due to practical limitations. In that light, we will now account for the cost of the
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hedge in (2.8). Assuming it costs c
i

to acquire 1 unit of V
i

while allowing no shorting of
the hedge instruments, we now have the following hedging approach:

min
x

���g � JT

V

x
���
2

+ cTx

subject to 0  x  u
(2.9)

where c = (c
1

, c
2

, . . . , c
n

)T is cost and u = (u
1

, u
2

, . . . , u
n

)T is a positive vector of upper
bounds i.e., investing in the corresponding hedging instruments costs c and is bounded
above by u. In order to set this up as a constrained convex problem, we assume a total
hedging budget W . We now have the following formulation:

min
x

���g � JT

V

x
���
2

2

subject to cTx  W

0  x  u.

(2.10)

We solve (2.10) for a range of wealth constraints cTx  W . By varying the values of W ,
we obtain a frontier of hedges ranging from no hedge (W = 0) to a complete hedge (say
some value W

max

).

Notice that Problem (2.10) is a convex quadratic program (QP) and hence is easy to
solve. In the objective, we have g 2 R(d+1) and JT

V

2 R(d+1)⇥n. For the unknown x 2 Rn,
we have (2n+1) inequality constraints. For a linearly constrained convex QP, the number
of iterations of a good interior point method is approximately O(

p
(2n+ 1) log(1

"

)) with
each iteration O(n2(2n + 1)) where " is the error in computed value compared to actual
value, (2n + 1) is the number of polyhedral constraints and n is the number of variables
[16]. In our case, the matrix J

V

is sparse and this further reduces the running time of each
iteration of the QP.

2.2.2 Second Optimization Strategy: Gamma Approach

In order to increase the accuracy of the hedge we add second derivatives (gamma hedging).
Since we are considering only simple options in the hedging portfolio, we know that each
hedge instrument depends exactly on one risk factor. Therefore,

@2V
i

@S
k

@S
j

= 0 8 i, k 6= j.
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Define

�
i

=


@2V

i

@S2

1

, . . . ,
@2V

i

@S2

d

�
T

.

Note that exactly one component of �
i

is nonzero. AD is once again tailored to get each
�
i

e�ciently by exploiting its sparsity structure. We now extend (2.8) to match second
derivatives as well. Specifically, define

� =

2

6664

�T

1

�T

2

...
�T

n

3

7775
2 Rn⇥d (2.11)

and so � has exactly 1 nonzero in each row. Equation (2.8) now becomes,

"
g

�
⇧0

#
�
"
JT

V

�T

#
x = 0. (2.12)

The problem formulation now becomes:

min
x

������

"
g

�
⇧0

#
�

"
JT

V

�T

#
x

������

2

2

subject to cTx  W

0  x  u

(2.13)

Similar to Delta-Theta approach, we solve (2.13) for a range of wealth constraints cTx  W .
Once again, by varying the values of W , we obtain a frontier of hedges ranging from no
hedge (W = 0) to a complete hedge (say some value W

max

).

Problem (2.13) is also a convex quadratic program (QP) and hence is easy to solve (see our
discussions below Problem (2.10)). Note that this problem is of larger size than Problem

(2.10) due to the inclusion of second-order terms. In the objective, we have

"
g

�
⇧0

#
2 R(2d+1)

and

"
JT

V

�T

#
2 R(2d+1)⇥n.
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Chapter 3

Third Optimization Strategy:
Smoothed Approach for Transaction
Costs

The solution to (2.10) or (2.13) could have many active hedging functions i.e., many non-
zero components in the original hedge strategy x. Transaction costs are assumed to be
proportional to the number of active instruments |x|

NNZ

.

3.1 A Revised Portfolio Problem with Transaction
Costs

The portfolio investment problem described in (2.13) has the following objective after
including transaction costs:

f(x) =

������

"
g

�
⇧0

#
�
"
J
V

T

�T

#
x

������

2

2

+ !.|x|
NNZ

9



where |x|
NNZ

is the number of active instruments in the portfolio and ! is the associated
penalty cost. The new optimization problem is:

min
x

������

"
g

�
⇧0

#
�

"
J
V

T

�T

#
x

������

2

2

+ !.|x|
NNZ

subject to cTx  W

0  x  u.

(3.1)

If ! = 0, then there is no penalty imposed and this is the same as Problem (2.13).

3.2 A Smooth Approximation to the Counting Func-
tion

The term for transaction cost in the objective function of Problem (3.1) is neither contin-
uous nor di↵erentiable and solving the problem is NP-hard [2]. We perform the following
approximation strategy to solve the problem.

Consider a piecewise constant function I : R ! R to count the number of nonzeros of
a vector x. For a scalar input, this function is 1 when the argument is nonzero and 0
otherwise.

I(x) =

(
1 x 6= 0

0 x = 0

Figure 3.1 is a plot of I(x). For a vector x 2 Rn, we can define I(x) =
P

n

i=1

I(x
i

). Thus
I(x) is the counting function and Problem (3.1) becomes

min
x

������

"
g

�
⇧0

#
�

"
J
V

T

�T

#
x

������

2

2

+ !I(x)

subject to cTx  W

0  x  u

(3.2)
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x

I(x)

1

Figure 3.1: I(x) : Counting nonzeros.

In order to smooth this non-continuous function, we produce approximations to I(x) as
follows. We modify I(x) in two stages via quadratic splines, in order to obtain a contin-
uous and di↵erentiable approximation. This is similar to the method in Coleman, Li and
Henniger [8]. We call this smoothed approximation function TC

�

: R ! R, where � is a
parameter controlling how close to zero the smoothing occurs.

At the first stage, we smooth the function at the origin and create a continuous but
non-di↵erentiable function. For � > 0, let

Q
�

(x) =

(
1 |x| � �
x

2

�

2 otherwise.
(3.3)

Figure 3.2 is a plot of Q
�

(x). The function is still not di↵erentiable everywhere (see
x = ±�). Notice that as �! 0, Q

�

(x)! I(x).

11



x

Q
�

(x)

���

1

Figure 3.2: Q
�

(x) : Smoothing I(x) at the origin.

Next, we smooth the points where the function Q
�

was not di↵erentiable.
For � 6= 0,

TC
�

(x) = TC
�

(x) =

8
>>>>>>><

>>>>>>>:

1 x  ��� "

1� m

4"

(x+�+ ")2 ��� " < x  ��+ "
1�m"

(��")

2x2 ��+ " < x  �� "

1� m

4"

(x��� ")2 �� " < x  �+ "

1 x > �+ "

(3.4)

where " controls the length of quadratic spline approximation (we use " = �

10

andm = 20

19�

).
Section A.3 shows that TC

�

is continuously di↵erentiable.

For a vector x 2 Rn, we define TC
�

(x) =
P

n

i=1

TC
�

(x
i

). Figure 3.3 is a plot of the
approximation function TC

�

(x).

12



x

TC
�

(x)

�+ "�� "��� " ��+ "

1

1�m"

Figure 3.3: TC
�

(x) : A smoothed approximation function

3.3 Iterative Minimization with Smoothed Counting
Function

On introducing the counting function to replace the second term in the objective of Prob-
lem (3.1), we are solving the minimization problem Problem (3.2) with I(x) approximated
by TC

�

(x). If we replace the transaction cost term in Problem (3.2) with TC
�

(x), the
objective is a continuous, di↵erentiable and nonconvex function that is piecewise quadratic.

13



As � ! 0, TC
�

(x) becomes a better approximation to I(x). By reducing � sequen-
tially, we use the following iterative algorithm to solve Problem (3.2).

Algorithm 1 Graduated minimization with smoothing technique

1: Input: The known quantities in Problem (3.2).
2: Output: Minimizer to Problem (3.2).
3: Find the global minimizer z of Problem (2.13) which is a convex QP.

I This is the optimizer of Problem (3.2) ignoring the term with I(x) in the
objective.

4: Set initial value of �, say � = 1.
5: Set �, say � = 10. I Positive factor found experimentally.
6: while � 6= 0 do I �! 0 gives better approximation to I(x).
7: Solve the following problem with z as the starting point.

x
min

= argmin
x

������

"
g

�
⇧0

#
�

"
J
V

T

�T

#
x

������

2

2

+ !TC
�

(x)

subject to cTx  W

0  x  u

(3.5)

I Solving an approximation to Problem (3.2).
8: Set z x

min

. I Optimizer of current iteration is initial point of the next.
9: Set � �

�

. I Decrease � for the next iteration.
10: end while
11: Return x

min

.

From Algorithm 1, it seems like we solve a lot of approximation problems (3.5). But for
many consecutive iterations, the starting point z (which was the minimizer of the previous
iteration) also happens to be the minimizer of the current iteration [8]. Even if this is not
the case, the minimizer x

min

of the previous iteration is nevertheless a good starting point
for the current iteration. Thus the number of iterations in Algorithm 1 is not excessive.

Therefore, we need to solve the approximation problems (3.5) in the iterations of Al-
gorithm 1. The objective of the optimization problem (3.5) is a continuous di↵erentiable
nonconvex function which need not have an unique minimum. Section A.4 provides details
of the techniques to find the global optimizer of the approximation problem.
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Chapter 4

Computational Results And
Conclusion

4.1 Computational Results

For the numerical results, we implemented the Algorithm 1 using a global optimization
method global search(A.4) and the routine fmincon from the Matlab 2016b[13] Op-
timization Toolbox [12]. Through aMatlab implementation of the optimization strategies
described in Chapter 2.2 and Chapter 3 we have the following results:

A hedging portfolio of 100 European options consisting of 50 calls and 50 puts was con-
sidered. We obtained the following plots while testing 100 portfolios with varying budgets
W 2 [1, 50].

• Delta-Theta Hedging Strategy 2.2.1

15



Figure 4.1: Number of active instruments in the portfolio for various total budgets.

Observations from Figure 4.1:

– Up to 70 out of 100 instruments became active while performing delta-theta
hedging.

– The increasing trend in the graph supports the intuition that the number of
the active instruments in an optimal portfolio increases with higher budget
allocation. Thereby illustrating that a higher capital permits a more diversified
portfolio.

– However, we also note that any increase beyond $15 in the budget makes no
di↵erence to the number of active instruments in the portfolio.

16



• Gamma Hedging Strategy 2.2.2

Figure 4.2: Number of active instruments in the portfolio for various total budgets.

Observations from Figure 4.2:

– Up to 80 out of 100 instruments became active while performing gamma hedging.

– We notice a steady increase in the number of active instruments with growing
budget. Secondly, for the same budget we notice that the number of active
instruments are higher here than the delta-theta trading strategy. Therefore,

17



in addition to higher capital we now know that second order hedging allows for
greater diversification.

– Similar to the delta-theta hedging, we note that any increase beyond $22 in the
budget makes no di↵erence to the number of active instruments in the portfolio.

• Third Optimization Strategy: Smoothed approach for transaction costs, Chapter 3

We fix a budget W = 10 and obtain the following plots.

Figure 4.3: Number of active instruments in the portfolio for various penalty weights in
the range [0, 0.3]

18



Figure 4.4: Number of active instruments in the portfolio for various penalty weights, for
very small weights [0, 1.8⇥ 10�3]

Observations from Figure 4.3 and Figure 4.4:

– The portfolio had 50 active instruments when there was no transaction cost
term (! = 0). On increasing the penalty imposed on transaction cost, 50 active
instruments gradually declined to 5.

19



Figure 4.5: Value of norm term in the objective for the optimal portfolios for various
penalty weights.

Observations from Figure 4.5:

• Even for a large problem involving 100 assets, numerical experiments suggest that
the gap from the norm value of the convex problem (dashed line) is small.

• We observe that the norm term increases with increasing weight. This is expected
since the optimizer for a higher weight is a candidate as an optimizer for a lower
weight.

20



4.2 Conclusion

We developed a portfolio hedging technique that is sensitive to the number of active in-
struments. For hedging purposes, we assume a portfolio comprising of simple European
options. We use Automatic Di↵erentiation (ADMAT 2.0) to exploit the structural sparsity
of Jacobians and Hessians to achieve more e�cient computing time in computing deriva-
tives for hedging purposes.

A practical hedging strategy takes transaction costs into account. Therefore, we formulate
an optimization problem incorporating transaction costs. However this makes the objective
function discontinuous and the problem was NP-hard. We model the counting function
using a smoothed approximation which recovers the di↵erentiability of the objective func-
tion, however leaving it nonconvex. We use a graduated minimization algorithm which
iteratively solves the reformulated problem. Numerical results which implement the above
technique illustrate that the number of active instruments can be reduced while maintain-
ing the risk protection. It is noteworthy that instead of solving an NP-hard problem, we
provide an approximate solution by solving a sequence of tractable optimization problems,
which involve the smoothed approximation function.
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Appendix A

Background details

A.1 Using Automatic Di↵erentiation to Obtain Deriva-
tives

There exist various techniques for obtaining gradients and Hessians, some of which are finite
di↵erences and symbolic di↵erentiation. Each of the above techniques exhibit ine�ciencies
that prove expensive with respect time or space. However, Automatic Di↵erentation(AD)
attempts to produce accurate results while costing less. It breaks down each function val-
uation into a sequence of elementary arithmetic operations and then applies the chain rule
of calculus to each of the individual operations.

Considering the compiler executes complex functions by breaking them into a partially
ordered sequence of elementary functions, AD harnesses a similar technique to compute
derivatives. The elementary functions typically have known derivative functions. While
performing di↵erentiation on forward-mode, it di↵erentiates the function while evaluat-
ing it by applying the chain rule. Alternatively, it saves the entire computational tape
and computes derivatives in reverse order for reverse-mode AD. In theory, one requires a
well-structured file that computes the value of the objective function and an AD package
computes first or second order derivatives as required. For the purpose of this project
ADMAT 2.0[11] was used for computing gradients, Jacobians and Hessians.

The gradient: Consider a di↵erentiable function f(x) : Rn ! R. It turns out that
reverse-mode AD computes the gradient in time proportional to the time taken to evalu-
ate the function itself i.e, proportional to !(f). This is remarkable compared to the time
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clocked by finite di↵erencing n.!(f). The absence of size n factor from the computational
time brings about a considerable di↵erence, however in order to access the variables in
reverse order all the intermediary variables demand to be saved. This space utilization is
not a major downside as it can be mitigated by adopting a structured approach.

The Jacobian: Consider a vector-valued function F (x) =

2

6664

f
1

(x)
f
2

(x)
...

f
m

(x)

3

7775
where for each i,

f
i

: Rn ! Ri and f
i

is di↵erentiable. AD can be used to evaluate the Jacobian J in time
proportional to min(m,n).!(F ). The running time can further be reduced to �(J).!(F )
where �(J) is a measure of the sparsity in J. It exploits the sparsity structure of the Jaco-
bian matrix by employing a graph coloring technique.

The Hessian: The usual and more accurate technique to compute the Hessian is to
simply compute second-order derivatives by supplying the code that evaluates the func-
tion. There exists an alternative technique that is quicker which involves computing the
gradient term and then applying finite di↵erences to compute the second-order derivatives.
This alternative approach is particularly useful when one anticipates a sparse Hessian, re-
ducing the running time to �(H).!(f) from n.!(f), where �(H) is the chromatic number
of the adjacency graph of H [7].

A.2 Computing Greeks

In mathematical finance, the Greeks are quantities representing the sensitivity of derivative-
prices to change in underlying parameters on which the value of an instrument or portfolio
of financial instruments is dependent. The name is used because the most common of these
sensitivities are denoted by Greek letters (as are some other finance measures). Financial
instruments such as �,�, ⇢,⇥ and ⌫ are used to model the behavior of options.

Each Greek measures a di↵erent dimension to the risk in an option position. Namely,
the underlying risky asset S ,the time to maturity ⌧ = T � t or r,the interest rate or � the
volatility.

Mathematically, this is quantified as the rate at which the value of the instrument V
changes with respect these parameters.
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The Black-Scholes-Merton formulas [3] for pricing European call and put options are as
follows:
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)
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)� S
0
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)
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=
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K
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�
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T
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=
ln(S0

K

) + (r � �2/2)T

�
p
T

= d
1

� �
p
T

The function �(x) is the cumulative probability distribution function for a standardized
normal distribution.

We use the approximation to �(x) given by Abramowitz and Stegun [1]

erf(x) ⇡ 1� (a
1

t+ a
2

t2 + · · ·+ a
5

t5)e�x

2
, t =

1

1 + px

(maximum error: 1.5107) where x � 0

p 0.3275911
a
1

0.254829592
a
2

0.284496736
a
3

1.421413741
a
4

1.453152027
a
5

1.061405429

Though there exist closed form expression for the Greeks, we use the ‘feval’ function in
ADMAT 2.0 to compute derivatives. This helps in improved accuracy for the required
Jacobian, gradient and Hessian.
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A.3 A Note on the Smoothed Counting Function

In Section 3.2, we defined the smoothed approximation to the counting function:
For � 6= 0,

TC
�

(x) =

8
>>>>>>><

>>>>>>>:

1 x  ��� "

1� m

4"

(x+�+ ")2 ��� " < x  ��+ "
1�m"

(��")

2x2 ��+ " < x  �� "

1� m

4"

(x��� ")2 �� " < x  �+ "

1 x > �+ "

(A.1)

where " = �

10

and m = 20

19�

. This function is symmetric with respect to x and has the
following properties:
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where TC
0
�

refers to the first derivative of TC
�

. From the definition of nonconvexity,
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Thus we can see that TC
�

is a continuously di↵erentiable piecewise quadratic and non-
convex function.
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A.4 Global Optimization Strategy

Finding an arbitrary local optimum is relatively straightforward by using classical local
optimization methods. However, finding the global minimum (or maximum) of a function
is far more challenging.

All the global optimization solvers in MATLAB [12] have a trade o↵ between proba-
bility of finding the optimizer versus running time. GlobalSearch is befitting to the
requirements of Problem (3.5). The problem can be written generally as:

min
x2Rn

f(x)

subject to h(x) = 0

g(x)  0

lb  x  ub

(A.2)

where f is the objective function, g is the set of inequality constraints, h is the set of
equality constraints, lb is the lower bound on the variable and ub is the upper bound on
the variable. The bound constraints can also be incorporated into g. One can write out
the first order optimality conditions and the Karush-Kuhn-Tucker conditions [4] for the
problem.

The global solver requires an algorithm to find the local minimum of a constrained nonlinear
problem. A gradient-based interior point method [5, 6, 14] called fmincon in MATLAB

is employed for this purpose. To solve a constrained nonlinear problem of the following
form,

min
x

f(x)

subject to h(x) = 0

g(x)  0

(A.3)

The algorithm works by solving a series of approximate local minimization problems. These
are created by adding a barrier term to the objective. For any µ > 0,

min
x,s

f
µ

(x, s) = f(x)� µ
X

i

ln(s
i

)

| {z }
barrier term

subject to h(x) = 0

g(x) + s = 0.

(A.4)
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The dimension of the slack variable vector s is the same as number of inequality constraints
in g. The slack variables are positive, to ensure ln(s

i

) is finite. It is trivial to see that for
µ! 0, the minimizers of Problem A.3 and Problem A.4 coincide.

Notice that Problem A.4 is an equality constrained nonlinear problem and is thus eas-
ier to solve.

Algorithm 2 Fmincon- Finding a local minimizer of a constrained nonlinear problem

1: Input: Starting point x
0

in Rn and the known quantities in Problem A.3.
2: Output: A local minimizer x⇤ to Problem A.3.
3: while Exit condition satisfied do
4: At each iteration, solve the approximate minimization problem A.4 by taking one

of the two steps described below.
5: Direct/Newton Step- Solve the KKT equations for Problem A.4 via linear approxi-

mations. If this step fails, move to the next step.
6: Conjugate Gradient Step- If the direct step fails, then a trust region based approach

is used in the CG step.
7: Evaluate the merit function f

µ

(x, s) + ⌫
��(h(x), g(x) + s)

��. The parameter ⌫ in-
creases in higher iterations.

8: If an attempted step does not decrease the merit function by a certain threshold,
the current step is marked as failed. The step also fails if either the objective function
or a nonlinear constraint becomes Inf or NaN.

9: If the attempted step succeeds, update the iterate. Else, try a shorter step.
10: end while

The exit conditions are usually certain tolerances or thresholds which can be user-selected.
The algorithm also produces certain exitflags which describe whether the solution is opti-
mal or now. If the problem were infeasible, the output is the minimum of the maximum
constraint value. Note that this method requires the objective function and the constraints
to be continuous.

The algorithm for global solver uses the local solver Algorithm 2 at multiple starting
points which are generated using a scatter search technique.
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Algorithm 3 GlobalSearch-Finding the global minimizer given the starting point

1: Input: Starting point x
0

in Rn and the known quantities of Problem A.2.
2: Output: The global optimizer x⇤ of Problem A.2.
3: Run the local solver Algorithm 2 from x

0

and obtain the output x⇤.
4: If there is a feasible solution, find the radius of basin of attraction. Basin of attraction is

the set of initial values which outputs the same local minimum upon applying steepest
descent. In GlobalSearch algorithm, these are spherical.

5: At the initial point, calculate the score function, which is the weighted sum of objective
function and its constraint violations. The initial weight for constraint violations is
1000 and this is updated through the algorithm.

6: Generate trial points, which are a set of potential starting points. Use a scatter search
algorithm and find a number of trial points (say 1000) which respect the bound con-
straints in Problem A.2.

7: Select a subset of trial points and choose the point t with the highest score function.
Delete the subset from the list of trial points. Run Algorithm 2 for t and obtain the
output t⇤.

8: Initialize Basins, Counters, Threshold as follows:

• Threshold: Set localSolverThreshold to be the lower of objective func-
tion values at x⇤

0

and t⇤. If these point do not exist or are infeasible, set
localSolverThreshold to be the penalty function at t.

• Basins: Set the basin for initial point Basin_x0 to be B(x⇤
0

,kx
0

� x⇤
0

k). Set the
basin for trial point Basin_t to be B(t⇤,kt� t⇤k). The basins may overlap.

• Counters: There are two counters. Each counter is the number of consecutive
trial points that lie within the corresponding basin and have score function greater
than localSolverThreshold. Initialize the counters to 0.

9: Main loop: Iteratively examine trial points to see if Algorithm 2 runs. This happens
if the trial point under consideration p does not lie in any basin and score function at
p is less than localSolverThreshold.

10: When Algorithm 2 runs for p, let the solution be p⇤. Update the basin radius to
dist(p,p⇤) and the threshold to score function value at p.

11: When Algorithm 2 does not run for p, increment the counter of every basin containing
p and set the rest to zero. Multiply the radii of the basins and penalize the threshold.

12: Exit condition: GlobalSearch terminates if we run out of trial points or if maxi-
mum time limit is reached.

13: Create GlobalOptimSolution using the successful runs of Algorithm 2 and order from
best to worst objective values. GlobalOptimSolution contains all the good solution
points and their objective values. The best output is set to x⇤ and algorithm terminates.
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All the global solvers used in the Global Optimization [12] framework take advantage
of multicore processors by activating parallelization to speed up the computation. Though
Globalsearch does not have the ability to distribute and solve starting points using
multiple cores, the estimation of gradients for fmincon are executed in parallel.
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