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Abstract

This paper discusses a method to extract a 2D curve representing a bandeau from a 3D
mesh of a skull. The bandeau is a strip of bone on the forehead of a skull, and is a critical
component of craniosynostosis surgery. We use this bandeau representation for a measure of
deformity for patients of craniosynostosis by comparing a patient’s 2D bandeau curve with
an ideal skull’s bandeau curve. There is no current automatic detection of the bandeau,
and it is not easily identifiable for those unfamiliar with craniosynostosis. Our method
relies on identifying specific landmarks on the skull. We start with getting initial positions
for the landmarks using point set registration techniques with a separate reference skull,
then use the anatomical properties of each landmark to improve on these initial guesses.
Typically, the method is effective if given a decent initial guess with the registration. Thus,
initial transformations of the reference skull help improve the performance, even if they are
simple. We test this method on infant skulls, both those diagnosed with craniosynostosis
and those that are not. We find that the algorithm performs well when including several
manual steps.
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Chapter 1

Introduction

Craniosynostosis is a birth defect that causes an infant’s skull to shape abnormally. If
left unattended, there will not be enough space for the brain to grow in the skull. During
craniosynostosis surgery, parts of the skull are removed and reshaped, and one of the key
parts of the skull that is reshaped is the bandeau [5][9]. The bandeau, or more specifically,
the fronto-orbital bandeau, is a strip of bone that reaches slightly above the orbit, and has
a height of about 2cm [3].

Currently, there are no known methods for automatically detecting the bandeau. In-
stead, the current methods to locate the bandeau are to manually find the bandeau by
manually locating specific landmarks on the skull and hand-picking the location of the
bandeau based on the landmarks. Thus, a lot of expertise is required to properly locate
the bandeau.

In this paper, we propose a method to find a 2D slice of the bandeau. This 2D slice
is in the middle of the bandeau strip. We find this 2D slice because it is a simplified
version of the whole bandeau. Since the bandeau is not a full strip of bone due to the
holes on the eye sockets, it can be difficult to compare the bottom portions of two different
bandeaus (Figure 2.2). Instead, we compare the 2D slices of the bandeaus that can be
plotted on a plane, and use metrics such as arca between the curves to compare deformity.
By comparing a 2D slice of the bandeau of a deformed skull and one of a normal skull, our
comparisons can be used as a measure of deformity. Furthermore, there is work being done
to optimally reconstruct the bandeau in the 2D and 3D setting. A method for finding a 2D
slice of the bandeau will be used as a complementary aid for the bandeau reconstruction
research.



The method proposed is centered around finding key landmarks on the skull. With a
reference skull with known landmark locations, we use point set registration techniques
to match the reference skull to an unknown target skull. These registration techniques
transform a source point set to resemble the shape of a target point set. This gives initial
guesses to the landmarks, which are then iteratively improved using techniques based on
the properties of the location of each landmark. We use the landmarks to find the Frankfurt
Plane [11], then move the Frankfurt plane to intersect another landmark. We then find a
2D slice of the bandeau by using the shifted Frankfurt plane.

From testing, a good registration is key, but can also be tricky due to the differences in
shape between two different skulls. It is even more difficult because we are working with
skulls with craniosynostosis. The registration results may be heavily affected by what skull
is used as reference. Thus, a lot of work can still be done with improving general skull
registration.

The paper is organized by the following. Chapter 2 covers preliminaries and background
work. Chapter 3 explains the algorithm for identifying the 2D bandeau and each of its
parts. Chapter 4 goes over tests results done on various skull meshes. Chapter 5 covers
possible future work to improve the algorithm.



Chapter 2

Preliminaries and the Problem
Description

Before we formally define parts of the skull, we first define the directions used to describe
the skull. Anterior describes the direction from one’s heels to one’s toes — the front-facing
direction. The opposite direction is posterior. Superior describes the direction from one’s
feet to one’s head. The opposite direction is inferior. And finally, left-lateral describes the
left, and right-lateral follows suit.

Notation: Throughout this paper, we will denote the unit vector in the right-lateral
direction, the superior direction, and the anterior direction to be u,,u,, u. respectively.

2.1 Skull Landmarks and the Bandeau

Before we define the bandeau, we must first define the landmarks on the skull that are
incorporated in its definition.

We define the lower orbits of a skull to be the most inferior point on the rim of each eye
socket. The left lower orbit is the most inferior point on the rim of the left eye socket, and
the right lower orbit is the same for the right eye socket. Similarly to the lower orbits, the
left and right upper orbit are the most superior point on the rim of the left and right eye
socket respectively. Figure 2.1¢ shows examples of the upper and lower orbits of a skull.
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The left porion of a skull is the point in the most left-lateral direction that is on the roof
of the left bony earhole. Similarly, the right porion is the point in the most right-lateral
direction that is on the roof of right bony earhole. The definitions of the 6 landmarks are
medical definitions, and are not well-defined mathematically. See figure 2.1b and 2.1a for
examples of the porion locations of a skull.

| Left Upper Orbit

(a) Patient-right view of a skull. (b) Patient-left view of a skull.

Upper Orbits
\

\

! Left Lower ¥

(c) Front view of a skull

Figure 2.1: The orbits and porions of a skull mesh from TurboSquid. [!2]



Definition 2.1.1 (Frankfurt Plane) The Frankfurt plane of a skull is defined to be the
plane that passes through the lower orbits and the porions.

Although we define the plane with four points, due to the symmetry of skulls, we expect
the plane defined by the porions and one lower orbit to also intersect the second lower
orbit.

Definition 2.1.2 (Fronto-Orbital Bandeau) First, we define the nasion as the most
anterior point on the nasal bone. The fronto-orbital bandeau is defined to be the strip of
bone that starts at 5mm above the nasion, and stretches upward until 15mm above the upper
orbits. The bandeau is parallel to the Frankfurt plane, and stretches toward the back of the
head until it reaches above the left/right porion.

See figure 2.2 for an example of the location of the bandeau of a skull.

Figure 2.2: The fronto-orbital bandeau of a skull in blue. [12]



2.2 Goal of the Algorithm

We look to identify the bandeau curve of a skull, a 2D representation of the 3D bandeau.
To get this 2D curve, our algorithm will look to find the curve on the exterior of the skull
that is bmm above the upper orbits, is parallel to the Frankfurt plane, and stretches toward
the back of the head until it reaches above the left /right porion in the superior direction.

Definition 2.2.1 (Bandeau Plane) The bandeau plane of a skull is the plane on which
the bandeau curve lies. The bandeau plane is parallel to the Frankfurt plane and intersects
the points bdmm above the upper orbits.

Definition 2.2.2 (Bandeau Curve) The bandeau curve of a skull is the intersection of
the exterior skull with the bandeau plane. It stretches to the back of the skull until it reaches
above the left /right porion.

See figure 2.3 for an example of the location of the bandeau curve of a skull.

(a) Patient-right view of a skull. (b) Patient-left view of a skull.

Figure 2.3: The bandeau curve of a skull in cyan. [12]



Thus, the goal of the algorithm will be to first locate the upper/lower orbits and the
porions. This is an important part of the algorithm where we try to locate landmarks that
are not well-defined mathematically. Then, once we find those landmarks, we will find the
Frankfurt plane, the bandeau plane, and then the bandeau curve.

2.3 Background Work

2.3.1 Point Set Registration

Registration is the process of matching two point sets together by transforming one
point set to resemble the second point set as closely as possible. We will call the point set
being transformed as the source point set, and the target point set is the point set we want
to match. During this process, each point on the source is paired with a different point on
the target. Next, the source point set is transformed (with linear transformations and non-
linear transformations) to minimize the summed Euclidean distances between each pair of
points. Different registration algorithms change the possible transformation types and how
points are matched between the two point sets. The same transformation is applied to all
source points, so that you do not end up transforming each source point individually to
trivially match its paired target point.

Let S, T C R3T = {t1,tg,....,tn},S = {s1,89,...,5,}. And let d : R?* x R — R be the
Euclidean distance of two points. Then a registration technique looks like the following:

Algorithm 1 A cookie-cutter registration technique
Input: S, T, two sets of points, threshold € Z, max iterations € Z
Output: ', a transformed set of points created by transforming S

1: iterations = 0

2: while iterations < max iterations and ) d(s;,t;) < threshold do
3: Re-index the points in S to create a new matching

4: Transform S in some way (ie. rotation, translation).

5: iterations = iterations + 1

6: end while

7.5 ==8

We will be using registration algorithms to match a reference skull with known land-
marks to a target skull with unknown landmarks. On the transformed registered reference
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skull, we will use the transformed landmark positions on the registered skull as the initial
guess for the landmark positions on the target skull.

Example Registration Algorithms

Two registration algorithms that will be mentioned are Fractional Iterative Closest
Point (FICP) [6] and Coherent Point Drift (CPD) [{]. FICP is variant of ICP [1] that
matches only a subset of the points in each of the target and source point sets. The points
in the source point set are matched to their closest neighbour in the target point set, and
only rigid transformations (translation, reflection, rotation) are used in ICP. ICP is more
well known classical algorithm for point set registration.

CPD is a registration algorithm that allows for non-rigid transformations on the source
point set. CPD can also match point sets of different cardinality. We will not go into much
detail due the complexity of CPD, but it treats aligning the two point sets as a proba-
bility density estimation problem. Omne point set represents the centroids of a Gaussian
Mixture model, while the other represents the data points. In our bandeau identification
algorithm, we will use CPD for registration because the non-rigid transformations better
register the wide variety of shapes in deformed skulls. Different skull meshes typically
contain a different number a points, and CPD can accommodate two skull meshes without
taking a sample of the points. However, due to the computational complexity of CPD, our
implementation of the bandeau curve algorithm will take a sample of skull meshes.

2.3.2 Frankfurt Plane Detection

To find the landmarks that define the Frankfurt plane, we use a slightly modified version
of the algorithm by Cheung, Leow, and Lim [I]. In [I1], the algorithm’s input is two skull
meshes — a reference skull with known landmark locations and a target skull with unknown
landmark locations. The landmarks of interest are the lower orbits (referred to as orbitales
in [11]), and the porions. We will give a basic overview of the algorithm in [14] below, and
explain each step in more detailed afterwards.

1. Register the reference skull to match the target skull. On the registered reference
skull, the transformed landmarks will be the initial guesses for the landmarks on the
target skull.



2. For each landmark, repeat until convergence:

(a) Select a region around the landmark as the set of next possible guesses

(b) Select a new guess for the landmark based on the anatomical properties of the
landmark

3. Use Principal Component Analysis (PCA) [13] to find the plane of best fit between
the four landmark points. The plane of best fit is the plane that minimizes the
distance from each point to the plane.

In step 1, the algorithm uses the registration algorithm Fractional Iterative Closest
Point (FICP) [7] with a reference skull with known landmark locations to find initial
guesses for the landmarks on a particular target skull.

In step 2(a), this algorithm considers an elliptical region around the landmark and its
intersection with the skull. We call this intersection the landmark region. Then in step

2(b), we pick a specific point in the landmark region, depending on landmark we are trying
to find.

Let p, be the initial guess for the right porion, and let R, represent the landmark
region corresponding to the right porion. Then, we take S, , a subset of the points in
R, where the surface normals are close to the inferior direction —u, to find the points on
the roof of the bony earhole. Since the right porion is the point in the most right-lateral
direction, the next landmark becomes the following:

pl. = argmaxp - U,
pESpr

We assume we know the orientation of the skulls, and so u,, u,, u, arc known.
Similarly, let p; be the initial guess for the left porion, and let R, denote the landmark
region corresponding to the left porion, and define S, as a subset of the points in R,

where the surface normals are close to —u,. Then the point selected as the next guess for
the left porion is the following:

p; = argmaxp - —uy,
pGSpl

Let [;, . be the initial guess for the left lower orbit and the right lower orbit. The lower
orbits are defined as the lowest point on the rim of each eye socket. Let R;, be a landmark
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region corresponding to the left lower orbit. We slice Rj, in its sagittal sections, that is, we
take slices of the landmark region in the vertical/superior direction. Formally, we define a
sagittal section Sj, (x) as the points in R;, with value  in the u, direction. Then, let ¢, (z)
denote the highest point in the sagittal section Sy, ().

Sll(m) = {p S Rlnp'ufc = l’}

q,(x) = argmaxp - u,
peSy, (2)

Then, the next guess for the left lower orbit is the point in the most inferior direction
—u,. We can describe this point as the point that minimizes the following objective
function Fj,(x):

El (ZU) = QZl (JJ) : uy
I = q,(p), st. F,(p) = min F}, ()

In practice, since the number of points on a skull is finite, there are a finite number values
of x for which S}, is non-empty. Moreover, 5;, will be a finite set. Thus, arg max,, 8, () P Uy

and min Fj,(x) are both solved by searching through all feasible points.

Due to the similar definition of the right orbit, the same is done for the right orbit and
its landmark region R;, .

Si.(x) ={p € Ry, p-us =}

@, (z) = argmaxp - u,
pESlT(CC)

F,(z) = q,(2) - uy
L, = ¢:(p), st. F,(p) = min Fj, (2)

In step 3, we define the Frankfurt plane by applying PCA to the four landmarks. The
first two principal components define the direction vectors of the plane, and the centroid
of the four landmarks define the point through which the plane passes.
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2.3.3 VTK’s Deformed Point Set

To create landmark regions in our algorithm, we will be utilizing the Python library
The Visualization Toolkit’s (VTK) [10] Deformed Point Set algorithm. These landmark
regions are sets of candidate points to improve a landmark [. As input for Deformed Point
Set, we will use a skull mesh S, a transformed version of S, and the points of a sphere C'.
The output of Deformed Point Set will be a point set C’ that is a transformed version of
C. We translate C’ to centre around [ to create the landmark region corresponding to .
Sece section 3.3.1 for the full landmark region creation process.

Deformed Point Set alters a point set P based on a transformation done on a mesh
M = (P, Fpr). Deformed Point Set creates a set of interpolation weights W € R™ for each
point in P. A weight w; € W is used as the constant for m; € Py, for a linear combination
of the points in M. Then these weights are applied to the transformed version of the mesh
to obtain a transformed version of the point set. These interpolation weights are computed
using the mean value coordinates on a triangular mesh algorithm (MVC) by Ju et. al in
[2]. For a single point in P, MVC computes a set of scalars that are used as the constants
in a linear combination of the points on M. This can be illustrated by the following:

Let M be a mesh, and {my, ma, ..., m,} C R3 be the set of points of M. Suppose p € R3
is a point.

MVC(M,p)=v € R”,Zvimi =p

i=1

Now we can formally describe Deformed Point Set.

Algorithm 2 VTK’s DeformedPointSet
Input: M, M’, P, a mesh, a transformed mesh, and a point set
Let {m;} , be the points of M, and {m}}?_, be points the M’
Output: P’ a point set

1: for each point p; in P do
3 Pi =iy v

4: end for

5. P = {p;}

11



Chapter 3

Finding the Bandeau Curve

Let S = (Ps, Fs), T = (Pr, Frr), be two skull meshes, where Ps, Pr C R? are point sets
in 3D space, and Fs C P, Fr C P} are the faces of each mesh. We assume we know the
points Lg C Ps that are the locations of the 6 important landmarks (Section 2.1) on the
skull S. S will be often referred to as the reference or source skull, whereas 1" will often be
referred to as the target skull. We assume we do not know the landmark locations of T'.

Throughout this paper, we will denote the unit vector in the right-lateral direction, the
superior direction, and the anterior direction to be u,,u,, u, respectively. (See Section 2
for definition of theses directions)

Finding the 2D bandeau curve consists of three main parts: finding initial guesses of
landmarks with registration, improving the the initial guess, and then using the landmarks
to find the 2D bandeau curve. We will go over each part separately and discuss the intuition
and reason behind it.

3.1 Bandeau Curve Identification Algorithm Overview

We design an algorithm for finding the bandeau curve of a skull with unknown landmark
locations. We start by locating the landmarks of the unknown skull with the help of a skull
with known landmark locations. We then compute the bandeau curve once all landmarks
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have been found. Below is an overview of the algorithm, in its basic steps. For a more
formal description of the algorithm, check section 3.5.

Input:  Reference skull S with known landmark locations and direction vectors,
unknown target skull T’

1. (Optional) Re-orient the target skull so that it matches the orientation of a reference
skull (Section 3.2.1)

2. Register a reference skull to the target skull (Section 3.2)

3. Use transformed landmarks on registered reference skull to get initial landmark
guesses on the target skull 3.1

4. Create lattice of deformed spheres used to find landmark regions (Section 3.3.1)
5. Repeat until convergence:

(a) Find the landmark region for each landmark (Section 3.3.1)
(b) Improve each landmark by selecting a point in the landmark region (Section
3.3.2)
6. Use landmarks to find the bandeau curve and its midpoint (Section 3.4)

Output: Bandeau curve and its midpoint of the target skull
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Figure 3.1: A registered skull (blue) [12], registered to a target skull (pink) [11]. Initial
landmark locations for the target skull in white. Initial lower orbit locations not visible
because it is located inside the pink mesh.

Our algorithm follows a similar structure to the Frankfurt plane identification algorithm
in [11] (See Section 2.3.2). In both algorithms, initial landmark positions are found via
registration, and the landmark positions are improved by searching through a landmark
region. In our algorithm, we use a different registration algorithm that performs better on
deformed skulls (Section 3.2). Furthermore, in our algorithm, the landmark regions are
created differently. Instead of using a fixed elliptical region as the landmark region like in
[11], our algorithm modifies the shape of the landmark region based on the location of the
landmark (Section 3.3.1).

3.2 Registration

Our bandeau curve algorithm finds the points of the bandeau curve of a given input
target skull. The algorithm also requires a reference skull with known landmark locations
as input. We create a new skull mesh by registering (See Section 2.3.1 for point set
registration) the points on the reference skull to the points on a target skull. This new skull
mesh is created by transforming the points on the reference skull. We call this new mesh
the registered reference skull. On our registered reference skull, we take the transformed
points of the known landmarks to be the initial guess for the landmark locations on the
target skull.
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In [14], FICP is used for registration. Due to the nature of human skulls, one person’s
skull may vary in shape and in size to the next person’s. This is especially true in our
context, where we are dealing with infant skull with craniosynostosis — skulls which are
deformed. We choose to use CPD as our registration algorithm because of its ability to
allow non-rigid transformations, hoping to better fit skulls of various shapes.

Moreover, we employ one more technique to obtain a better registered reference skull.
We register multiple source skulls to our target skull. Each source skull is a reference skull
with known landmark locations. Due to the varying types of craniosynostosis and skull
shapes, we collect several skulls hoping at least one will match any given target skull well
during registration. We pick a set of reference skulls that attempts to fill the different
categories of skull shapes. We define the registration error of a registered reference skull
and a target skull as the sum of all FEuclidean distances between a point in the registered
reference skull and its paired point in the target skull. The “best” registration is the
registration where the registration error is the least. We define this distance between the
registered reference skull and the target skull to be the registration error. We choose
the reference skull with the least registration error and use the transformed landmarks
after registration to get our initial guesses for the landmark locations on the target skull.
Alternatively, another method could be to have a list of reference skulls and to go down
this list until your registration error meets a certain threshold value.

3.2.1 Initial Transformation

Prior to registration, there is an optional step that can improve the matching between
registered skull and the target skull. This optional step is making initial transformations
to the target skull so that its orientation matches the reference skull. We reflect the points
on the target skull on certain axes so that the orientation of target skull is the same as
the reference skull. In our test cases, we obtained skulls where the anterior direction on
the target skull would be flipped from the anterior direction on the reference skull. To get
a better result in the registration algorithm, we reflected the points on the target skulls
along different axes so that the values of w,,u,, u, with respect to the target skull are the
same values of u,,u,, u, with respect to the reference skull. We replace the target skull
with this reflected version for our input to our registration algorithm.

Of course, this is not ideal, as this requires manual work to know how the target skull is
oriented. Also, registration algorithms are designed to match orientation. However, at its
core, CPD is an optimization problem that finds a local optimal solution with no guarantee
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of global optimality. By giving CPD a better starting position, we tend to get a better
solution to the optimization problem.

3.3 Landmark Improvements

After obtaining the initial guess for each landmark from registration, we refine the
position of each landmark iteratively, like in [11]. (Section 2.3.2) Each landmark is improved
separately, in an iterative fashion.

1. Select a set of points in a region around the landmark as candidate points. We call
this set of candidate points the landmark region (Section 3.3.1)

2. Pick a point in the landmark region as the next guess for the landmark (Section
3.3.2)

3. Repeat 1-2 with new guess until convergence

In each iteration of improving a landmark [, we create a landmark region by taking the
intersection of points in a neighbourhood around [ and the target skull, and select a point
within the landmark region as the next guess for [.

3.3.1 Landmark Region Creation

Let | € Pr be a landmark or a landmark guess on the skull mesh 7" = (P, Fr). We
define a landmark region R; C Pr of a landmark [ to be a set of points on the skull 7" where
each point in R; is a candidate point for the next guess of [. We obtain R, by taking points
in Pr that are close to [. In our early tests, we obtained the landmark region by taking the
intersection of Pr and a sphere of fixed radius r centered around the /. Like in the Frankfurt
plane identification algorithm in [11] (See Section 2.3.2), we obtained the landmark region
by taking the intersection of Pr and a neighbourhood of fixed size centered around [ . In
[14], an elliptical region of fixed size centered around ! was used as this neighbourhood.
In our early tests, we used a spherical region of fixed size centered around [. However,
because the target skull landmark locations are unknown, the size of the neighbourhood
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around [ will be chosen based on the reference skull. The methods of picking a point in the
landmark region will not accurately find the landmark if the landmark region contains too
many or too little of the points on the skull (methods shown in section 3.3.2). Thus, we
transform the points on a sphere around the landmark based on the transformation used
to transform the reference skull to the registered reference skull. To do this, we use VI'K’s
Deformed Point Set (See section 2.3.3).

We want to select a neighbourhood around a landmark based on how the transformation
created during registration affected the neighbourhood around the landmark. We do not
directly deform a sphere around [ because that may move the centre of the sphere away
from [, and may no longer include [. Instead we will create a grid of spheres in 3D space,
and deform each of them using Deformed Point Set. We will choose the shape of the
deformed sphere closest to [ as the shape for the neighbourhood around [. Let S’ be the
registered reference skull mesh obtained by registering S to 1. For each sphere C, we
take the deformed sphere C’ to be the output of DeformedPointSet(S,S’,C'). The result
of these deformations is many deformed spheres in 3D space. For a given landmark [, the
shape of R; will be the shape of the closest deformed sphere C]. By shifting the points in
(] so that its centre is at [, we get a region around the landmark. We intersect this region
with the skull to get the landmark region.

To obtain our deformed spheres, we first create a lattice of points of a bounding box
for the original reference skull. Each point will be the centre of a sphere of fixed radius.
For each sphere C in the lattice, the deformed sphere C’ is the output of Deforemd-
PointSet(S,S’,C).

Again, let S be the reference skull, S’ be the transformed reference skull after registra-
tion, 1" be the target skull, and [ be a guess for a landmark. The landmark region R; is
found by the following:

Input: S = (Ps, Fs), S, T,

1. Create a lattice of points L of a bounding box for Py
2. For each point o € L, create a sphere C'(0) with o as the centre

3. For each pair (C(0),0), compute the pair (C'(0),0’), where
C'(0) = DeformedPointSet(S,S’,C(0)) and o’ = DeformedPointSet(S,S’, 0)

4. Let L' = {0’ : o’ = DeformedPointSet(S, S’,0),0 € L}.
Select pair (C'(o;), 0;) by computing o] = arg min, ., d(l,0')
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5. Compute C'(0;) + (I — o}) by shifting all points in C’(0;)

6. Compute the landmark region R, = Pr N (C'(0)) + (I — 0}))

Output: R;, the landmark region for [

Implementation note: We deform spheres with a radius of 5mm to find the landmark
region for porions, and we deform spheres of radius 8mm to find the landmark regions for
the orbits, with a lattice of 8000 points (divide each axis into 20 parts linearly). These
numbers were found empirically to match the reference skull’s size.

In the bandeau finding algorithm, the deformed spheres and their deformed centres
(C'(0),0") are computed and stored only once during the algorithm and not computed
cach time a landmark region is needed.

Algorithm 3 Finding the landmark region
Input: T target skull, [ landmark point, all pairs (C’(0),0’), the pairs of deformed
spheres and their centre
Output: R, the landmark region for [
1: Select C’(0;) such that o] = argmin,, .y, d(l,0)
2: Compute C'(0)) + (I — o)) ={c+(l—0)) :ce C'(a)}
3: Compute R = PrN (C'(0)) + (I — 0})), the landmark region

3.3.2 Picking from the Landmark Region

Once we have the landmark region for a landmark [, we pick a point in the landmark
region the be the next value for . How we pick the point in the landmark region depends
on what type of landmark [ is. Depending on if [ is a porion, a lower orbit, or an upper
orbit, a different method will be used to pick the next value of [. We use the methods from
[7] to select the next value of [ for the lower orbits and the porions. (See Section 2.3.2)

For the upper orbits, we follow a similar idea to the lower orbits, but we reverse the
directions. Let u; be the current guess for the left upper orbit. Let R,, be the landmark
region for the left upper orbit. We define S,,(z) to be a sagittal section of R,,, and we

18



take the lowest point in each sagittal section, denoted ¢, (z). Then we pick highest point
out of all values of ¢, (z) to be the next guess for the left upper orbit.

Suz<x) = {p S RUl7p'ua: = l‘}

qu,(z) = argminp - u,
PESy; (z)

Fu(2) = qu(z) - uy
U; = Qu (p>7 s.t. Ful (p) = Inax Ful(m)

The exact same procedure is done with the right upper orbit, except with its own
landmark region. S, , q,., F,, are defined similarly to the left upper orbit.

u,. = qu,(p), s.t. F,.(p) = max F,, (x)

Similar to lower orbits, we solve these optimization problems by searching through all
feasible points, since in practice, a skull mesh has a finite number of points.

With the initial transformation step of section 3.2.1, we know u, u,, u, by using the
same directions of the known reference skull. Otherwise, we obtain u,, u,, u, by deforming
the directional unit vectors with respect to the reference skull by using Deformed Point
Set with the reference skull and the registered reference skull. The deformed unit vectors
are then the directions for the target skull.

We improve each landmark until it converges to a single point or when we reach a
maximum number of iterations. Since the landmarks are picked by solving an optimization
problem, as long as the landmark region is not too large, a landmark region centered around
a true landmark location will not change the landmark guess.

3.4 Using the Landmarks

Once all landmarks have converged, we use the landmark to locate the Frankfurt plane,
the bandeau plane, and then the bandeau curve of the target skull. We find the Frankfurt
plane, denoted Pr, using the lower orbits and the porions. Since there are four landmarks
total, we use PCA to find the plane of best fit for the four points. Let np, be the normal
of the Frankfurt plane.
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The bandeau plane lies 5mm above the upper orbits (Definition 2.2.1). We take the
average of the upper orbits and move it up bmm to find the point that intersects the
bandeau curve. We define this point as the midpoint of the bandeau, denoted mpg. The
bandeau plane is then defined by the point mp and the normal vector np,. Next, we
take the intersection of Pg and the target skull, and this intersection will be denoted
I =PgnN Pr.

(ur + )

mB:T+5uy

However, the bandeau curve itself only reaches until above the porions (Definition
2.2.2). We start by defining Ap = p, — p; be the direction from the left porion to the right
porion. Then we define the anterior plane P, with direction vectors u, and Ap. We remove
any points in [ that are behind P, in the anterior direction. Consider a point p; € I. Let
P,(pr) be the point on P, that is closest to p;. Now take the direction vector from P,(I)
to pr, df = pr — P,(pr). For points behind P,, d; - u, is positive. Then the bandeau curve
is defined to be the following:

dI:pI_Pa(pI)
B:{pIEI:d[-uz<0}

The algorithm returns both the points on the bandeau curve B, and the midpoint
mp. The midpoint is especially helpful for aligning different bandeau curves together for
comparison.

3.5 Bandeau Curve Identification Algorithm

In this section, we give a formal description of the bandeau curve algorithm.

Let S, ..., 5, be a set of reference skulls. And let Lg, be the landmark points in S;.
Let T" be the target skull. We assume S; to be oriented the same way in 3D space.
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Algorithm 4 Finding the 2D Bandeau Curve

Input: Sy,...S,, Ls,,...Lg,, T, ug, uy, u., skull meshes and the landmark locations, and
direction vectors of the reference skulls, and constants e, max_iter

Output: B, mp, points on the bandeau curve, and the midpoint

Find the orientation of T’
Transform 7" to match orientation of S
for i< 1:ndo
Compute S; = CPD(S;,T)
end for
Select S = S s.t. §; has the best registration V.5;
Compute lattice L of a bounding box for Pg
for point 0 € L do
Compute C(0)
Compute C’(0) = DeformedPointSet(R, R', C(0))
Compute o' = DeformedPointSet(R, R', 0)
: end for
. Let Lg be the set of points in Pg after transforming the points Lg
: for landmark /' in Ly do
for i < 1 : max_iter do
Find the landmark region Ry
Select I}, € Ry based on type of landmark
if d(I',I'new) < € then
l/ = l;zew
break
else
l/ = l:zew
end if
end for
: end for
: Compute Frankfurt plane Pp
: Compute bandeau plane Pp
: Compute midpoint, bandeau curve mp, B

B Al S S e

DD N RN RN RN NN K = e s e
PN DGR B2 9 0Ty eQ
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Chapter 4

Results

In our tests, we use two different skull meshes as reference skulls with 39 different
target skull meshes. One reference skull is a metopic skull (a type of deformed skull),
and the other reference skull is a normal skull model generated using 103 normal skulls
[8]. Of the 39 target skulls, 34 are metopic, 4 are normal, and 1 is sagittal (another type
of deformed skull). Tt is important to note the mesh of all metopic skulls (and 1 normal
skull) contained the entire skull with a small portion of the neck, while the mesh of 3 out
of 4 normal skulls and the mesh sagittal skull only contained the top of the skull to the
top of the mouth. Everything from the mouth down was not part of these meshes. These
differences in the skull mesh affect how well the registered skull mesh matches the target
skull, and ultimately the accuracy of finding the landmarks.

In our tests, during the registration step, for each skull mesh, we take a subset of the
points in the mesh as our input for CPD. The size of the subset is 1200, and the points are
chosen to maximize the average distance between each point. We do this for two reasons
— one, to ensure that that the cardinality of the point sets used as input for CPD are
the same, and two, to decrease the computation time for CPD. Other parameters for our
tests are the following. Our max number of iterations for improving the landmarks is 10,
and we use € = 107%. The lattice of the bounding box of the target skull has 8000 points,
where each axis is divided into 20 parts linearly. To find the landmark regions for porions,
we deformed spheres of radius 5mm, and we deformed spheres of radius 8mm to find the
landmark regions of the upper and lower orbits.

Due to the reliance on landmarks in the algorithm to find the bandeau curve, we look
at how well the landmarks are matched in the algorithm to the true landmark position.
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The true landmark positions were all hand-picked, and so may contain some human error.
To account for this, we will consider a good landmark guess to be one that is less than lcm
away from the hand-picked landmark location.

In our tests, in 25 of the 39 target skulls, at least 4 of the 6 landmarks were well
identified. We notice that with the metopic target skulls, the landmarks were much better
identified with the metopic reference skull than the normal reference skull. Likewise, the
landmarks on the normal target skull were better identified with a normal reference skull
than a metopic reference skull (See Tables 4.1, 4.2). We believe the algorithm performs
better when the shape of the reference skull is similar to the shape of the target skull.
This includes differences in shape due to skull deformities, but differences in shape due to
the mesh representation of the skull. Since the normal reference skull was cut off before
the mouth, we believe it becomes a better reference for target skull meshes which also are
cut off before the mouth. You can see this with how well the algorithm performs with the
sagittal target skull and the normal reference versus using the metopic reference skull with
the sagittal target skull.

When the algorithm did not accurately find the landmarks, we noticed that the initial
guesses for the landmark were too far away from the true landmark positions. This typically
occurred because the registered reference skull did not match the shape of the target skull.
Furthermore, the registration error — the average distance between matched points in the
registered reference skull and the target skull was recorded in our tests. Of the 39 target
skulls, 18 target skulls performed better with the reference skull with the lower registration
Cerror.

Results with > 4 Good Landmarks Guesses
Metopic Reference Normal Reference
Metopic Target (of 34) || 22 5
Normal Target (of 4) | 0 2
Sagittal Target (of 1) || 0 1

Table 4.1: Algorithm results based on # good landmarks
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Average Distance from True Landmark

Metopic Reference

Normal Reference

Metopic Target
Normal Target
Sagittal Target

1.6cm
2.2cm
1.8cm

3.1lcm
1.6cm
0.4cm

Table 4.2: Algorithm results based on distance

The results of these tests were not perfect — in fact, only 1 target skull had all of its 6
landmarks guessed within 1lcm with the algorithm. However, we believe that given at least
4 good landmark guesses, that the algorithm still performs well enough. By well enough,
we mean that all 6 landmarks are guessed very close to the true landmark position. We can
see this in table 4.3, where given at least 4 good landmark guesses, the average distance
between the true landmarks and the landmarks produced in the algorithm is about lem.
Our algorithm does not need to output the exact bandeau curve — it only needs to output

a curve that well represents the bandeau in 2D.

Avg. Distance when > 4 Good Landmarks

Metopic Reference

Normal Reference

Metopic Target
Normal Target
Sagittal Target

1.3cm
N/A*
N/A*

0.8cm
0.9cm
0.4cm

*Values are N/A when there are no skulls with > 4 Good Landmarks

Table 4.3: Algorithm results based on distance and # good landmarks

A full look at the results of the algorithm can be seen in Appendix A. The tables
include the distance of all landmark guesses from their true landmark position for each

skull tested.
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Chapter 5

Conclusion and Further Work

Testing shows that the algorithm accurately outputs the bandeau curve for 25 of 39 of
the target skulls when using the best performing reference skull. This shows the importance
of finding a good reference skull when using the algorithm. Unfortunately, the results show
that a reference skull with lower registration error does not always correlate to having more
accurate results. Further work in finding the best reference skull for a target skull would
improve the accuracy of the algorithm greatly. A simple idea is to manually classify each
target skull and pick a reference skull based on the classification. Ideally, however, the
ultimate goal is to have an automatic method of picking a reference skull.

The algorithm does not accurately find the bandeau curve for all skulls. Due to the
importance of the initial registration of the reference skull to the target skull, it is worth
exploring different registration algorithms. A good registration algorithm would also elim-
inate the optional manual step of re-orienting the target skulls before registration. This
would lead to a more automatic process. Medical image registration is a difficult task, and
bottlenecks the performance in the bandeau curve identification algorithm.
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Appendix A

Full Algorithm Results

A.1 Algorithm Results with the Normal Reference

Skull
Distance (cm) From True Landmark Locations
Target Skull Right Left Right Left Upper | Right Left
Lower Lower Upper Orbit Porion Porion
Orbit Orbit Orbit
Metopic Skull 1 0.135 0.586 11.09 4.649 1.597 2.297
Metopic Skull 2 3.799 3.620 5.287 2.456 3.144 2.119
Metopic Skull 3 3.929 4.051 4.709 0.151 1.515 1.741
Metopic Skull 4 0.347 1.757 0.275 0.130 0.397 1.225
Metopic Skull 5 0.506 1.376 0.138 0.209 0.640 2.017
Metopic Skull 6 2.193 0.158 0.068 0.123 1.660 1.714
Metopic Skull 7 2.778 1.982 1.726 7.903 1.849 4.929
Metopic Skull 8 0.116 0.584 0.108 0.495 1.586 1.843
Metopic Skull 9 7.043 8.450 8.945 6.575 5.003 5.344
Metopic Skull 10 7.071 7.471 6.926 6.905 4.016 4.544
Metopic Skull 11 0.144 0.044 3.220 0.214 0.866 2.103

Table A.1: Algorithm results using the normal reference skull
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Distance (cm) From True Landmark Locations

Target Skull Right Left Right Left Upper | Right Left
Lower Lower Upper Orbit Porion | Porion
Orbit Orbit Orbit

Metopic Skull 12 7.144 8.029 7.081 5.093 4.100 5.020
Metopic Skull 13 0.152 0.024 0.4880 0.328 0.580 1.955
Metopic Skull 14 8.305 8.005 12.50 7.698 3.977 4.981
Metopic Skull 15 0.493 2.743 0.121 5.776 0.644 2.613
Metopic Skull 16 15.66 15.70 15.48 4.384 13.75 2.716
Metopic Skull 17 0.647 0.410 4.333 3.814 0.709 1.769
Metopic Skull 18 2.327 2.331 1.090 0.132 0.701 2.220
Metopic Skull 19 0.328 1.790 5.165 5.395 0.690 2.961
Metopic Skull 20 0.095 3.165 2.181 3.889 1.885 4.244
Metopic Skull 21 0.156 2.207 5.779 0.616 1.904 1.347
Metopic Skull 22 2.510 4.309 7.991 0.243 3.002 4.430
Metopic Skull 23 0.074 2.834 0.093 4.743 0.346 2.108
Metopic Skull 24 9.183 6.930 8.377 7.592 7.637 5.866
Metopic Skull 25 0.074 3.478 0.150 4.257 1.041 3.344
Metopic Skull 26 2.935 2.689 2.800 5.930 1.673 2.491
Metopic Skull 27 0.121 2.731 0.170 8.049 1.306 2.438
Metopic Skull 28 2.678 3.714 7.531 0.070 1.777 4.510
Metopic Skull 29 7.090 5.233 0.011 0.129 1.248 2.552
Metopic Skull 30 0.149 2.844 7.200 6.287 1.936 3.672
Metopic Skull 31 0.084 0.115 0.093 1.056 0.759 1.244
Metopic Skull 32 6.840 6.068 9.743 5.724 4.689 4.114
Metopic Skull 33 0.167 2.152 0.022 0.057 1.058 1.595
Metopic Skull 34 0.134 2.484 2.064 0.234 1.336 0.842
Normal Skull 1 1.380 2.649 0.391 7.551 0.788 3.002
Normal Skull 2 0.082 0.060 3.592 0.066 0.428 1.472
Normal Skull 3 0.166 0.156 5.646 7.034 2.171 1.853
Normal Skull 4 0.765 0.172 0.417 0.304 2.567 1.428
Sagittal Skull 1 0.041 0.511 0.659 0.046 0.411 0.624

Table A.2: Algorithm results using the normal reference skull pt. 2
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A.2 Algorithm Results with the Metopic Reference

Skull
Distance (cm) From True Landmark Locations
Target Skull Right Left Right Left Up- | Right Left Po-
Lower Lower Upper per Or- | Porion | rion
Orbit Orbit Orbit bit
Metopic Skull 1 2.027 0.651 3.351 1.193 0.493 0.881
Metopic Skull 2 1.817 0.127 0.033 0.628 0.233 2.119
Metopic Skull 3 2.628 10.35 0.328 0.151 1.229 1.965
Metopic Skull 4 1.408 0.120 0.327 0.130 0.397 7.391
Metopic Skull 5 1.580 1.101 0.141 0.209 0.410 0.554
Metopic Skull 6 1.286 0.072 0.068 5.798 2.170 0.387
Metopic Skull 7 1.804 0.034 1.726 0.316 0.822 0.945
Metopic Skull 8 1.949 0.584 0.108 0.495 0.107 0.590
Metopic Skull 9 1.568 0.114 0.135 0.079 1.372 1.240
Metopic Skull 10 4.381 2.418 6.456 3.468 3.564 2.813
Metopic Skull 11 1.843 0.044 3.220 0.214 0.375 0.592

Table A.3: Algorithm results using the metopic reference skull
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Distance (cm) From True Landmark Locations

Target Skull Right Left Right Left Up- | Right Left Po-
Lower Lower Upper per Or- | Porion | rion
Orbit Orbit Orbit bit
Metopic Skull 12 1.698 0.101 0.641 0.874 1.583 0.703
Metopic Skull 13 2.006 0.036 0.490 0.589 0.580 0.819
Metopic Skull 14 1.387 0.063 0.208 0.033 1.175 0.157
Metopic Skull 15 2.263 0.191 0.121 0.998 0.407 0.455
Metopic Skull 16 2.280 0.141 15.49 0.260 0.285 0.323
Metopic Skull 17 1.755 0.233 3.201 0.092 0.397 1.116
Metopic Skull 18 1.510 0.201 1.090 0.131 0.701 0.775
Metopic Skull 19 1.828 0.302 5.949 13.72 0.279 1.109
Metopic Skull 20 1.557 0.084 1.631 0.246 0.513 0.428
Metopic Skull 21 1.977 0.150 5.659 0.841 0.450 13.81
Metopic Skull 22 1.710 3.380 0.225 0.243 0.421 1.441
Metopic Skull 23 1.959 0.129 0.219 10.68 0.346 0.199
Metopic Skull 24 1.157 0.125 8.197 0.435 0.951 1.207
Metopic Skull 25 1.830 0.046 0.146 1.877 0.631 0.894
Metopic Skull 26 1.999 0.527 10.74 0.469 8.296 1.875
Metopic Skull 27 2.098 0.144 0.136 8.598 0.307 0.136
Metopic Skull 28 1.534 0.454 0.158 14.41 0.343 0.388
Metopic Skull 29 5.704 6.052 0.220 0.129 0.676 0.376
Metopic Skull 30 2.000 0.075 12.99 1.871 0.479 1.015
Metopic Skull 31 1.985 0.163 0.054 7.415 0.636 0.928
Metopic Skull 32 1.985 0.038 0.110 9.217 0.337 0.225
Metopic Skull 33 2.025 2.152 0.022 0.186 0.977 0.555
Metopic Skull 34 1.882 0.072 0.119 0.094 0.278 0.300
Normal Skull 1 2.242 1.191 0.391 4.406 3.799 1.102
Normal Skull 2 1.895 0.182 3.592 0.307 0.428 12.03
Normal Skull 3 2.013 0.070 5.749 7.634 0.821 0.766
Normal Skull 4 2.227 0.531 0.554 0.304 1.033 1.054
Sagittal Skull 1 3.123 2.800 0.659 2.264 0.829 1.846

Table A.4: Algorithm results using the metopic reference skull pt. 2
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