Massively Parallel Jacobian
Computation

by

Wangqi Li

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Thomas F. Coleman
Waterloo, Ontario, Canada, 2013

(© Wangi Li 2013

I hereby declare that I am the sole author of this report. This is a true copy of
the report, including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

i

Abstract

The Jacobian evaluation problem is ubiquitous throughout scientific computing.
In this article, the possibility of massively parallel computing of Jacobian matrix
is discussed. It is shown that the computation of the Jacobian matrix shares the
same parallelism with the computation being differentiated, which suggests that
once we know how to parallelize a computation, its Jacobian computation can
be parallelized in a similar manner. A simple problem is used to demonstrate
the potential of massively parallel Jacobian computation with GPU. Significant
speedup is observed.

il

Acknowledgements

I would like to thank all the people who made this possible.

iv

Contents

1 Introduction

2 Commutativity and Parallelism
2.1 Data Dependency Graph
2.2 Commutativity and Parallelism
2.3 Data Parallelism,

3 Jacobian Computation with Automatic Differentiation
3.1 Jacobian Computation
3.2 Parallelismin AD
3.3 Data Parallelismin AD

Massively Parallel Automatic Differentiation with GPU

4.1 Exploit Data Parallelism with GPU
4.2 Heat Conductivity Inverse Problem
4.2.1 Numerical Methods
4.2.2 Data Parallelism
4.3 Experimental Results
4.4 Conclusion

Summary

Schur Complement Form of AD

A.1 AD as Forward Propagation
A.2 AD in the Language of Linear Algebra

15
15
16
18
18
19
20

21

Chapter 1

Introduction

The Jacobian evaluation problem is ubiquitous throughout scientific computing.
This article discusses the topic of accelerating the evaluation of Jacobian matrix by
exploiting parallelism. Specifically, we are interested in a special type of parallelism
called data parallelism.
Consider a computation with n input variables, p intermediate variables and

m output variables:

v =1 (vi)vi<vl

neh .(Ui)“””z . (1.1)

Vptm = Fpim (Ui)vi<vp+m

Each line in (1.1) will be referred to as an operation, which consists of the eval-
uation of function Fj (v;),, <; and the assignment of the result to variable v;.
The tuple of variables required for evaluating Fj is written as (v;),, Dy where

the symbol < denotes a binary relation R C V x V on the set of variables
V={v;:i=1—n,...,p+m}. In this article, it is always assumed that

v < v =1 < J, (1.2)

i.e., the value of variable v; only depends on values obtained prior to it. The binary
relation R is called data dependency [1].
Most of today’s computer programs can be viewed as a sequence of operations

like (1.1).
Denote the input variables as z; = v;_,, © = 1,...n, the intermediate variables
as y; = v;, © = 1,...,p and the output variables as z;, = vpy, ¢ = 1,...,m.

Computation (1.1) can be equivalently written as an extended system:

Solve for 1, Fi(z)—y1 =0)
Solve for 1o Fy(z,51) —y2 =0
: (1.3)
Solve for y, F, (z,41,- - Yp-1) —yp =0
Solve for z F(x,y1,...,yp) —2=0)

In this article, it is always assumed that each function in (1.3) is continuously
differentiable. According to the Implicit Function Theorem, in a neighborhood
of any point (z,y,z) yielded by computation (1.1), the extended system (1.3)
uniquely determines a continuously differentiable function z = F (z).

The Jacobian of the extended system (1.3) w.r.t. (z,y) is as follows:

| -
J2 2 -1

ool el s
AR A
A Ty

where A € RP*", B € R™*" [€ RP*? and M € R™*?. The matrices in J¥ are
usually very sparse. The Jacobian of function F' satisfies the Schur complement
form:

J=B—-ML'A. (1.5)

Forward mode AD (Automatic Differentiation) evaluates Jacobian by computing
(1.5) as J = B— M (L' A) while reverse mode AD computes J = B — (ML™!) A.
Which one is more efficient depends on the size of input n and the size of output
m.

For readers unfamiliar with the Schur complement form of AD, a simple deriva-
tion of (1.5) is given in Appendix A.

In any computation with significant complexity, the number of intermediate
variables p is many orders of magnitude larger than m and n. For example, in
a computation with complexity © (n®) where n is the input size, the number of
intermediate variables will be p = © (n?). Computation of (1.5) is almost always
dominated by solving the sparse triangular system L~! which is the focus of this
article.

Different strategies have been proposed to evaluate (1.1). In [2][3][4], the struc-
ture of the underlying computation is exploited to enable the application of sparse
matrix techniques even when the Jacobian itself is dense. If the Jacobian is sparse,
then it is possible to compute by AD the product of J with a relatively slim and

3

dense rectangular matrix and then recover the full sparse Jacobian without too
much effort [5][6].

The major topic of this article is to locate structure conductive to parallelism
in AD. More specifically, a special type of parallelism called Data Parallelism or
SIMD (Single Instruction - Multiple Data) type parallelism [7] is our top interest.
An example problem is used to demonstrate the potential of massively parallel
Jacobian computation.

The speed of serial computing is dictated by the performance of the single
processor in use. Constrained by the laws of physics, improving the speed of single
processor is increasingly more expensive and challenging [8]. Meanwhile, our desire
for solving ever increasingly large problems continues. Instead of asking for faster
single processor, multiple processors are combined together to solve problems in
parallel. Today, parallel computing seems to be our only practical way to over-
come the performance limit of single processor. Quantum computer and quantum
algorithms [9] might affect the way we compute things in the future, but it will
not be the concern of this article.

Extra effort is required to enable parallel computing. The first challenge is to lo-
cate the parallelizable parts of the computation, either manually or automatically.
Once that is achieved, appropriate parallel processor and parallel programming
model can be used to exploit the located parallelism accordingly. Specifically, in
this article, we will locate data parallelism in AD and apply the massively parallel
processor GPU and NVIDIA’s CUDA programming model [10] to demonstrate its
potential.

Chapter 2 gives the definitions of the basic concepts required to discuss parallel
computing. Chapter 3 is a brief review of AD, where parallelism in Jacobian
computation is also discussed. The observations made in the first two chapters are
applied to a simple example problem in chapter 4 to demonstrate the potential of
massively parallel Jacobian computation. Finally, a summary is given in chapter
5.

Chapter 2

Commutativity and Parallelism

2.1 Data Dependency Graph

First we introduce a very helpful and widely used concept for discussing the struc-
ture of computation [1].

Definition 1 Define the data dependency graph of computation (1.1) as the
ordered pair G = (V, R), where V is the set of nodes and every ordered pair (u,v) €
R corresponds to an arc from u to v.

The data dependency graph is a DAG (Directed Acyclic Graph), because by
assumption (1.2) the transitive closure of R forms a strict partial order. Each
operation in (1.1) corresponds to a node in G. Operations in (1.1) can be sequen-
tially executed following any topological ordering on GG, because it guarantees that
operation only refers to values that are obtained prior to it.

It is well known that topological ordering always exists for any DAG. Further-
more, the topological ordering is unique if and only if the DAG is Hamiltonian'.

Fig. 2.1(a) illustrates the data dependency graph of a 2D rotation with angle

€T
21| cosr; sinx To (2.1)
29 | | —sinzy cosay x3 | ’
Its operations are listed in Fig. 2.1(b). The number assigned to each operation
follows a topological ordering on the DAG.

A DAG is Hamiltonian if it posscsses a Hamiltonian path. A Hamiltonian path is a path
that visits each node exactly once.

Level 0 Level 1 Level 2 Level 3

1:y; = sinx;
2:y2 = COSX|

3:y3 = X3 %)
4:y4 = X3 % V2
S:ys = X2 %)
6: y6 = X2 x)2
T:z1 =y3—Ys
&: Zy = Y4 +Ys
Fig. 2.1(a) DAG of 2D rotation. (b) Operations.

2.2 Commutativity and Parallelism

If operations in (1.1) can be carried out following different execution orders, then
at least some operations are commutative in the sense it does not matter which
one gets performed first. In that case, it is possible to perform these commutative
operations in parallel. On the other hand, if there is only one unique execution
order in which these operations can be performed, then there is no commutativ-
ity among these operations, hence no parallelism. We can locate parallelism via
commutativity.

In [11], a partitioning method is proposed to find parallelizable parts of a
computation that involves only linear operators by locating commutativity among
these linear operators. In the following, the exactly same method is used to find
parallelizable part but for general operations.

Let G = (V, R) be the data dependency graph of computation (1.1). Define
Level (v;) as follows:

1. If indegree of v; is 0, then Level (v;) = 0.

2. Otherwise, Level (v;) = 14 Level (v}), where v} is the node corresponding to
v; in the subgraph of G obtained by deleting all nodes at level 0 and their
outgoing arcs.

Fig. 2.1(a) illustrates the concept of level. Note the one-on-one correspondence

between non-input nodes and operations. Operations at the same level can be
executed in parallel.

This method computes the levels of each variable/operation in linear time,
given the condition that G is sparse. The resulting level sets P; = {v € V' : Level (v)
yield a partitioning on V.

Different topological orderings can be generated by switching the indexes of
nodes within the same partition P;. Hence operations at the same level are com-
mutative. Also since v; < v; = Level (v;) < Level (vj), operations at the same
level are independent with each other. Therefore, operations in the same partition
can be executed in parallel. Partition P;, ¢ > 0 will be called a parallelizable
part of the computation.

Note that the above argument is only based on the data dependency graph.
If two computations share the same data dependency graph, then they also share
the same partitioning, same parallelism.

Lewvel (v;) is the length of the longest path that ends at v;. G is Hamiltonian
if and only if max Level (v) = |V| — 1, where |V] is the number of variables. If

(G is non-Hamiltonian, then some part of the computation might be parallelizable.
Next we try to quantify the portion of parallelism.

Let T be the execution time of the most time consuming operation in (1.1).
Assume that there are enough processors to allow the simultaneous execution of
operations in every parallelizable part P;. Then the parallel execution time for P;

is upper bounded by T". The total parallel execution time is upper bounded by max
ve

Level (v) x T. In the spirit of Amdahl’s law [12], define the ratio of parallelism
as
max Level (v) * T |p+ m|— max Level (v)

rel- p+m|*T |p—?;n| ' (22)

The ratio of parallelism is a rough estimation of the potential benefit of parallel
computing. If F'is a pure iteration upon a scalar value, which trivially indicates
a Hamiltonian data dependency graph, then r = 0. If F is an iteration on a 2D
vector, and each component is a variable, then » = 0.5. The operations for the two
components can be performed in parallel and parallel computing has the potential
to half the execution time.

2.3 Data Parallelism

Now we review a special type of parallelism called data parallelism. Computing
that exploits data parallelism is called massively parallel computing. Let F;,
i > 0 be a parallelizable part of computation (1.1). A subset P,L»f C P, is called
a massively parallelizable part if all its corresponding operations are defined

with the same function f,ie. P/ = {v; € V: Fj = f, Level (v;) =1i}. Operations
in a massively parallelizable part apply the same function to different data.
Again, consider the data dependency graph in Fig. 2.1(a). Operations at Level
1 does not form a parallelizable part because they use different functions (one is
sine and the other is cosine). In contrast, operations at level 2 are all the product
of two variables. So P, is a massively parallelizable part.
Using Flynn’s classification [7] of computer architectures, there are three types

of parallelism:

1. SIMD (Single Instruction - Multiple Data Streams or Data Paral-
lelism) Computation applying the same function to different inputs.

2. MISD (Multiple Instructions - Single Data Stream) Computation
applying a set of different functions to the same input.

3. MIMD (Multiple Instructions - Multiple Data Streams) Computa-
tion conducting different operations that are independent with each other.
MIMD is the most general type of parallelism. Both MISD and SIMD are
special cases of MIMD.

Processors of different architectures are designed to exploit different types of
parallelism. Most notably, multi-core CPU is designed to exploit MIMD type
parallelism (parallelizable parts), while GPU is designed to exploit data parallelism
(massively parallelizable parts). Since data parallelism is a subset of MIMD type
parallelism, parallelism exploitable to GPU is also exploitable to CPU. Though
in practice CPU can hardly beat GPU in exploiting data parallelism because of
GPU’s more specialized design [13]. In real world problems, computations are
usually a mixture of serial part, data parallelism and MIMD type parallelism.
CPU and GPU can be simultaneously applied to different parts of a computation.
This strategy is being studied under the field called heterogeneous computing [14].
But it is not going to be the concern of this article.

The good thing about data parallelism is that we can create a large number
of threads sharing the same program code (source code and machine code) for a
massively parallelizable part, so that many light-weight cores, like GPU cores [13],
can run these threads almost synchronously with minimum amount of inter-thread
communication. While for MIMD type parallelism, threads run different program
code asynchronously. Much less cores can fit into one processor and each core has
much more sophisticated control unit.

Chapter 3

Jacobian Computation with
Automatic Differentiation

AD (Automatic Differentiation or Algorithmic Differentiation) is the study of com-
puting derivatives using only the source code of the mathematical function, which
is essentially a list of operations in the form of (1.1). AD is built upon the assump-
tion that all the operations are defined with a finite set of differentiable "elementary
functions", whose Jacobian can be easily obtained. Computation that meets this
assumption can be viewed as a composite function of these elementary functions.
The Jacobian matrix of this composite function can be obtained by applying the
chain rule. The choice of the set of elementary functions is subjective. It could be
as low level as the set of mathematical instruction set of CPU/GPU, or it could
be as complicated as functions from mathematical libraries.

Since AD computes derivatives using the chain rule, there is no truncation error
for the result. Also, because AD can flexibly exploit the structure and sparsity
in a computation [15][2][3][5][6][4], it tends to be the most accurate and efficient
scheme of computing derivatives [16][17][18]. AD has been widely deployed in
different applications, especially those requiring nonlinear optimization [19][20].

3.1 Jacobian Computation

The Jacobian matrix J € R™*™ as in (1.5) is defined by the chain rule:

dz; 0z; 0z; dyk .
J’i . = = == 17 ey 31
! dr; Ox; y; Y dxj m (3.1)
dy; _ 0y i dyy 1 , (3.2)
dr; Ox; = dyy dzx;’ Y

for j = 1,...,n. The Schur complement form (1.5) is simply the linear algebra
description of the chain rule (3.1) (3.2). For readers unfamiliar with the Schur
complement form of AD, a simple derivation of (1.5) from the chain rule is given
in Appendix A.

The assumption of AD made at the beginning of this chapter basically says
%, %, % and % on the right hand side of
Ox;” Oy~ Ox; oYy,
the chain rule (3.1) (3.2) can be easily obtained. From now on, we will assume
these partial derivatives as known constants, since the cost of evaluating these
partial derivatives is usually negligible. Detailed discussion about this assumption
can be found in standard textbooks of AD [16][17]. In this article, we focus on
obtaining the left hand side of (3.1) (3.2).

Formulae (3.1) (3.2) can be equivalently written in total differential form:

that all the partial derivatives,

dz; 0z; dxy, 0z; dyy,
= — + — (3.3)
dx; :r;:zl Oxy, dz; y;i Oy, dx;
dy; Oy; dxy, Oy; dyy,
_ 27k —7r 3.4
dz; Z dxy, dx; * Z Oyy dx;’ (3:4)
TE=Yi Yk =Yi

d d
where S8 — 1 if | = j and Sk _ 0 if k # j. The computation defined by
dl’j dﬂfj

(3.3) (3.4) will hereafter be referred to as Jacobian computation.

dz;
Lemma 2 Let V be the set of variables of computation (1.1). Let W = {dw } U
Tj

dy; dz; : : : .
{ dy, } U { dz, } be the set of variables of the corresponding Jacobian computation.
L L

W is isomorphic to V under their data dependencies.

Proof. The isomorphism is trivially implied by the indices in (3.3) (3.4):

dxy, - dz; o 1 < dyx, - dz; o <
—— Tp < Ziy, Z;
dﬂ?]’ dLIZ’j k de dscj Yk

dxy, dy; dy, dy;

— =< ST <Y, —— < —— Sy < Y-
dl’j dllfj k Y dlL‘j dfbj Yk 4

10

Level 0 Level 1 Level 2 Level 3

Fig. 3.1 DAG of the Jacobian
computation.

Fig. 3.1 shows the data dependency graph of the Jacobian computation for
the 2D rotation (2.1). It is isomorphic to the DAG in Fig. 2.1. These two figures
share exactly the same parallelizable parts, because parallelism is nothing but a
property of their shared topological structure.

The fact that V' and W are isomorphic to each other indicates that computa-
tion (1.1) and its Jacobian computation can be executed following the same set
of topological orderings. Therefore they share the same parallelizable parts. The
major implication of this is that Jacobian computation of (1.1) is equally par-
allelizable with computation (1.1). Formulating AD in matrix form as in (1.5)
does not provide us any extra parallelism. If computation (1.1) is not paralleliz-
able, then the linear algebra computation in (1.5) will not be parallelizable either.
Specifically, solving the sparse triangular system L~! will contain no parallelizable
steps. As we will explain further in the following section.

3.2 Parallelism in AD

In any computation with significant complexity, the number of intermediate vari-
ables p is many orders of magnitude larger than m and n. For example, in a
computation with complexity © (n®) where n is the input size, the number of in-
termediate variables will be p = © (n®). Thus computation of (1.5) is usually
dominated by solving the sparse lower triangular system L~!A for forward mode

11

AD or the sparse upper triangular system M L~! for reverse mode AD. The other
part of Jacobian computation is almost negligible in terms of time elapse. Since
upper triangular system can be treated as lower triangular system after being
transposed, in this article we will only consider solving L~ !A.

L; denotes the matrix obtained by setting all the entries of L to 0 except the
off-diagonal entries in the j-th column. Since L is a lower-triangular matrix with
negative unit diagonal, we have

(-L)" = [(I—=L))(I— L) (I —Ly1)]
= (I—Ly) (I =Ly (I =Ly~
(I+ L) (I+L)(I+Ly). (3.5)

Factor (I + L;) in (3.5) is the linear operator performing the j-th step of column-
oriented forward substitution for solving L™'A. Some of these factors (forward
substitution steps) are commutative. The partitioning method described in section
2.2 also applies here. The following result is from [11].

Let 7 = I{nax , Level (y;) — 1. If variables in V are indexed by a topological
ie{l,....p
ordering satisfying

Level (y;) < Level (y;) = j <1,

then the partitioning method in section 2.2 gives a partitioning on the factors of
(3.5)
p—1=¢<q¢g1<--<qp=0 (36)

such that
(—L)' =P Py Py (3.7)

where each factor P, = (I + Ly +Lg—1+ -+ qufl) is a summation of the lin-
ear operators in the k-th parallelizable part and the identity matrix. Each linear
operator defines one forward substitution step in solving L=*A. The linear opera-
tors (forward substitution steps) in the same parallelizable part are commutative
and thus can be combined together as P, and performed in parallel. Note:

1. The partitioning (3.6) is from the analysis of the data dependency graph of
(1.1) which is already available before the Jacobian computation if compu-
tation (1.1) is carried out in parallel. So the partitioning is there for free.

2. Nonzero entries in the partitioned factor Py are the same with their corre-
sponding entries in L. So factor Py is available for free.

12

Again using 2D rotation as an example. Consider the L matrix for the Jacobian
computation shown in Fig. 3.1:

1

_Oys 1

14]
(—L) = Y _om 1

Oy

_9ys 1

14]

Y1 _% 1

L Oy2 |

For this very special case 7 = I{nax} Level (y;) — 1 = 1. There is only one
1€{1,....p
partition

(-0 = Pi=(I+Li+-+ L) (3.8)
4 4

1

ys
oY1 1
= Oya 1

, 9y2

s 1

Oy1

Oye 1

L oy2 _

Standard forward substitution requires 4 sequential steps to solve L™'A. With the
partition P, only one parallel step is required to solve L' A, because P, combines
commutative forward substitution steps together so that they can be performed
in parallel.

In general, solving system L' A using (3.5) requires © (p — 1) sequential steps,

while using (3.7) only requires 7 = %ax} Level (y;) — 1 parallel steps. The
1€11,...,p

potential benefit of parallel computing for Jacobian computation is quantified by
the ratio of parallelism (2.2).

The partition (3.7) suggests that matrix L is accessed block-wise column by
column from left to right. This pattern can be taken advantage of to reduce
memory usage without affecting any parallelism, as proposed by Coleman et al. in
[21][22]:

1. Do not store all the non-zero elements in L. Instead, evaluate P, with AD
only when it is needed.

2. Do not form P, explicitly. Instead, compute the matrix-vector product Pv
directly with AD.

13

In practice, the storage of L is often the bottleneck of performance. As p
increases, matrix L can easily exhaust the main memory and force the system to
use paging files, which is tremendously slower. Using the strategy proposed in
[21][22], the memory usage can be significantly reduced to avoid paging files, or
even further, to keep all the variables in high-speed cache and avoid the slower
main memory access.

3.3 Data Parallelism in AD

Consider the general matrix multiplication C' = AB, where each entry of C' is
given by ¢;; = Zazkbk] All ¢;;’s are independent from each other, and thus are

parallelizable. Blit for them to be massively parallelizable, as defined in section
2.3, it is required that all ¢;;’s are defined with the same function.

If A is dense, then all ¢;;’s are the inner product of one row of A and one column
of B. In that case, ¢;;’s are massively parallelizable. However, if A is sparse, the
different sparsity patterns of rows of A will make ¢;;’s computationally different
from each, in which case, only c;;’s correspond to rows sharing the same sparsity
pattern are massively parallelizable.

After obtaining factors { P} as in the last section, computation (1.5) is mainly
a sequence of sparse matrix-matrix multiplications, each of which consists of many
parallelizable sparse row-column products. Two sparse row-column products are
massively parallelizable only when their rows contain the same number of nonzeros.
This requires that their corresponding operations in (1.1) depend on the same
number of variables.

Again, consider the 2D rotation example. In Fig. 2.1, P, = {y1,y2} is not a
massively parallelizable part because the operations for y; and 1y, are defined with

sine and cosine functions respectively. Meanwhile, in Fig. 3.1, P, = {%, %} is a

dy1 dy2

massively parallelizable part, because 7 and
inner product with two nonzero entries in the row

Jacobian computation is equally parallelizable with its underlying computation
as a consequence of Lemma 2. Jacobian computation is at least as massively par-
allelizable as its underlying computation. This is because Jacobian computation
only involves sparse linear operators. Operations at the same level are considered
the same if their corresponding operations in (1.1) depend on the same number of
variables.

both correspond to row-column

14

Chapter 4

Massively Parallel Automatic
Differentiation with GPU

GPUs are one of the most widely installed devices designed to exploit data par-
allelism. Acceleration has been observed from many computations using GPU
[23][13][24]. In this chapter, GPUs are applied to exploit the data parallelism in
the Jacobian computation of an example problem in order to demonstrate the
potential of massively parallel Jacobian computation. Significant speedup is ob-
served.

4.1 Exploit Data Parallelism with GPU

Detailed introduction to general-purpose computing with a GPU can be found
in textbook [13] and NVIDIA manual [10]. In this section, only the CUDA [10]
programming model will be briefly reviewed.

Operations in a massively parallelizable part share the same function. In CUDA
C, this homogeneity is abstracted by a CUDA kernel function, which is basically
a function in the C language. The kernel function defines the common behavior
of the massively parallelizable part.

After launching the kernel, a set of threads will be created and assigned
with unique thread indices. These threads will apply the same kernel function
to different data accessed through their unique thread indices. Depending on the
data accessing pattern of the computation, the thread index could be up to 3-
dimensional.

Threads are organized into independent blocks with unique block indices.
Each block is assigned to a SM (Streaming Multiprocessor), from which each thread
gets computing resources. All the blocks have the same number of thread and are
assigned with the same proportion of resources. Depending on the data access-

15

ing pattern of the computation, the block index could be up to 3-dimensional. 32
threads® of the same block form a warp. Warp is the basic scheduling unit of GPU.
An active warp executes one instruction at a time. Parallel execution is achieved
by letting the 32 threads in a warp execute the same instruction synchronously.

Threads of the same block run on the same SM. They share the high speed
local cache allocated to the block and synchronize with other threads in the same
block. Meanwhile, threads of different blocks might be running on different SMs.
Local cache sharing among blocks are not allowed. Threads from different blocks
can not synchronize with each other. A kernel is finished once all its blocks are
done.

Streaming Multiprocessor is the basic processing unit on a GPU. Every SM
has its own registers, cache, controller and an array of ALUs (Arithmetic Logic
Unit). Multiple ALUs allow SM to apply the same instruction to different data
streams in parallel, which is the basic idea behind massively parallel computing.
In [10], three principles are suggested to optimize GPU-accelerated computation:

1. Make sure there are enough number of blocks and threads to saturate all the

SMs and all their ALUs.
2. Maximize memory throughput by using the appropriate type of memory.

3. Avoid branching of the control flow. Minimizing instructions with low through-
put. Minimize the number of instructions.

4.2 Heat Conductivity Inverse Problem

To demonstrate the potential of massively parallel Jacobian computation, we con-
sider a very simple inverse problem which is also used in [15].
1-D heat conduction is mathematically modeled by the following partial differ-
ential equation:
Mzg (S(SL’)M , x€(0,1),te (0,7
Ox (4.1)
O(x), z€(0,1) '
w(0,t) = f(t), u(l,t)=9g(t), te(0,T]

Function wu (z,t) represents the temperature of a rod at position x and time ¢.
Function s (z) is the unknown conductivity of the rod. Our goal is to determine
s (z) given the rod’s initial temperature u° (z) at time ¢ = 0, boundary temperature
f(t) and g (t), and temperature u (x,T) measured at time t = T

"Warp size is implementation specific. 32 is the warp size of current CUDA implementation
[10].

16

To obtain the numerical result, discretization of spatial and time domains is
required to employ a finite difference method:

. 1
T, = ij, Ax:M—i—l
T
tn, = nAt, At=—
" N
=), s =),

where M is the number of interior nodes in the discretized grid and N is the
number of time steps. Denote A = At/Az? The finite difference operators that
will be used to approximate equation (4.1) are

Ty

F d Ti Dfu? = 2—2

orward Time p . A7 .

Forward Space ~ Dju} = S

T B

Backward Space D, u} = BN
x

ult g — 20t +ul
Centered Space DjDyu} = Dy Dfu} = j+1 Ax]2 i1
The heat equation (4.1) is approximated as
1
Diul! = = (D7 (s;Dyu}) + Dy (s;Djul)) . (4.2)

T2
Expanding (4.2) to obtain

u;““l = ¢jau; g+ cul + cipaugy
(-
= [Ci—1 ¢ Cjp] U;L (43)
(G
where for j € {2,...,M — 1}
A A A
Cj1 =5 (s5-1 4 85), ¢ = 1= 5 (5jm1 4285 + 5541) s Gaa = 5 (554 5501) 5 (44)
for j =1
A A
Co = 5 (381 — 82) , C1 = 1-— 2)\51, Co = E (51 + 82), (45)

17

and for j = M

Cyi—1 = (SM—I + SM) , CM = 1— 2)\9M, Cp+1 = (SM — SM—I) . (46)

Do >
N >

Denote the solution of equation (4.2) at time ¢ = T as UY | and the given tem-
perature measurement at time ¢t = T as u”. Both U" and «" are M-dimensional
vectors. UY can be viewed as a function of the conductivity s. s is also an M-
dimensional vector after discretization. The inverse problem is to find conductivity
s that matches the measured data «”. That is, we want to solve the M -dimensional
nonlinear system

F(s)=u¥ -U" =0. (4.7)

4.2.1 Numerical Methods

Many methods for solving (4.7) involve computation of the Newton step [2]

Wxewton = —J (8) " F (s) . (4.8)

Equations (4.3)-(4.6) defines all the operations required to compute UY. It is
easy to see that these operations are defined with only 5 elementary functions.
The operation defined by (4.3) is an inner product of two 3-dimensional vectors.
Operations defined by (4.4)-(4.6) contains 4 different forms of weighted summa-
tions. Computation using only these 5 elementary functions evidently satisfies the
assumption of AD as stated in the beginning of chapter 3. The Jacobians of these
5 elementary functions can be obtained in a straight forward manner. Therefore
AD is applicable for obtaining the Jacobian J (s) of F (s) in (4.8).

Though methods have been proposed to obtain the Newton step wyewton With-
out forming the full Jacobian matrix .J (s) [2], they are beyond the scope of this
article. In this article, we will use AD to form full Jacobian matrix J (s), in order
to demonstrate the potential of massively parallel Jacobian computation.

4.2.2 Data Parallelism

Apply the partitioning method in section 2.2 to computation F' defined by opera-
tions (4.3)-(4.6). The levels of the non-input variables are as follows

Level (¢;) =1 Jj=
J

Level (UJ") =n-+1 (4.9)

Starting from level 2, every operation is an inner product as defined in (4.3). Hence
each level starting from level 2 is massively parallelizable. Another convenient

18

o , _ =#=CPUAD =—Speedup
Running Time of Jacobian Computation __co, xp Speedup vs. Warps per SM Wi S
120 4 70
4?”'&%
100 / e e =T e |

/ 3 _ﬁ”} 50
80 /

25 s
MM kL
60 2 ~
"'5\
/ 30

/
15 Ve
40 /K N

r g
20 § o P 10

"
0 o i 0 — od 0

32 64 % 128 160 192 224 256 288 320 32 64 9% 128 160 192 224 2% 288 320

Figure 4.1: Fig. 4.1 Performance comparison between CPU-based AD vs. GPU-
based AD.

property of F' is that its ratio of parallelism,

(N4 DEMEo(N+1) 1
"= (N + 1) « M2 =1=3p (4.10)

increases as the size of the problem increases. This property will provide us enough
data parallelism to observe GPU acceleration.

As a consequence of Lemma 2, (4.9) and (4.10) also apply to the Jacobian
computation of F.

4.3 Experimental Results

For our experiments, a simple AD C/C++ library was implemented for illustra-
tive purposes. This library is called SAD (Simple Automatic Differentiation).
The source code is openly available at [25]. SAD only supports the 5 elementary
functions required for the heat conductivity inverse problem stated earlier. The
derivatives of these 5 elementary functions are computed while solving equation
(4.2). After that, the Jacobian matrix .J (s) is formed via forward mode AD. Two
versions of forward mode AD is implemented. One uses CPU to carry out the
Jacobian computation serially. The other version uses GPU to exploit the data
parallelism in the Jacobian computation. In this experiment, Intel Core i7 is the
CPU and NVIDIA GeForce GT 650m is the GPU. Because of the large memory
usage of this experiment, the program is compiled for Windows 8 operating system
using 64-bit compiler. Detailed information about this experiment can be found
at [25].

19

The running time for forming full Jacobian is shown on the left of Fig. 4.1.
The horizontal axis is the size of the problem, i.e. the grid size M. The vertical
axis is running time in seconds. Thanks to the high ratio of parallelism of Jacobian
computation, as shown in (4.10), GPU-based AD is significantly faster than CPU-
based AD, starting from M = 32.

In the right plot of Fig. 4.1, the number of warps per SM increases as the size
of the problem increases. This is consistent with the ratio of parallelism (4.10) of
the heat equation - it increases with M.

However, the speedup stops increasing at 3.5 when M is larger than 128, and
warps per SM is larger than 11. This is because every SM only has a finite number
of cores, or ALUs (Arithmetic Logic Unit). There is a limit for the extent to
which SM can exploit parallelism. After warps per SM exceeding 11, extra even
parallelism will not bring further speedup because the computing power of SMs has
been saturated. The point of saturation is a determined by the resources available
on the GPU.

4.4 Conclusion

If a computation is parallelizable, then its Jacobian computation with forward
mode AD is equally parallelizable. GPU can significantly accelerate Jacobian
computation if its underlying computation possesses a high ratio of parallelism.
The speedup increases as the available parallelism increases, till the computing
capability of GPU becomes saturated. After saturation, additional parallelism
will not bring further speedup.

20

Chapter 5

Summary

In chapter 2, the observation is made that as long as the data dependency graph
is non-Hamiltonian, some part of the computation is parallelizable. During the
procedure of checking the existence of Hamiltonian path, the level of each variable
is computed (section 2.2). Operations at the same level are parallelizable (com-
mutative) and are called a parallelizable part of the computation. The ratio of
parallelism (2.2) is used to quantify the parallelism in a computation. Paralleliz-
able operations defined with the same function are called a massively parallelizable
part. Massively parallelizable part can be easily determined once the parallelizable
parts are located. Parallelism is a property of the data dependency graph, while
data parallelism is related to the content of the operations.

Jacobian computation is defined as the computation of obtaining a Jacobian
matrix by applying the chain rule as in (3.1)(3.2). Jacobian computation can be
compactly written in Schur complement form (1.5). The dominant part of Jaco-
bian computation is solving the sparse lower triangular system (L~ A) for forward
mode AD or the sparse upper triangular system (ML™!) for reverse mode AD.
It is shown (Lemma 2) that Jacobian computation defined this way is isomorphic
to its underlying computation, i.e. the computation being differentiated. This
means, the parallelism observed in computation (1.1) also applies to its Jacobian
computation. A partitioning method proposed in [26] is used to combine forward
substitution steps in solving L' A into parallelizable factors (section 3.3). Chapter
3 is ended with the remark: Jacobian computation and its underlying computation
are equally parallelizable; Jacobian computation is at least as massively paralleliz-
able as its underlying computation.

Chapter 4 uses GPU to exploit the data parallelism of a simple example problem
- the heat conductivity inverse problem. This problem possesses the property that
the ratio of parallelism increases as the size of the problem increases (4.10). A
Simple AD C/C++ library called SAD is implemented for illustrative purpose
[25]. SAD supports both CPU-based and GPU-based AD. Significant speedup is

21

observed for GPU-based AD. Speedup increases along with the increase of available
parallelism at start. The increase stops once the computing capability of the GPU
is saturated. After that, even additional parallelism will not promote the speedup.

Automatic Differentiation is a rich field with different types of techniques to
obtain derivatives efficiently. Special structures (in addition to parallelism) of
the computation can significantly accelerate Jacobian computation with proper
exploitation [15][2][3][5][6][4]. In many applications, Jacobian-related results can
be obtained even without forming the full Jacobian matrix [2]. Therefore, the
example problem in chapter 4 is rather simple and naive. But we do believe in this
article we have validated some fundamental observations and provided a general
guide line for massively parallel Jacobian computation.

22

Appendix A

Schur Complement Form of AD

AD (Automatic Differentiation or Algorithmic Differentiation) is the study of com-
puting derivatives using only the source code of the mathematical function, which
is essentially a list of operations in the form of (1.1). AD is built upon the assump-
tion that all the operations are defined with a finite set of differentiable "elementary
functions", whose Jacobian can be easily obtained. Computation that meets this
assumption can be viewed as a composite function of these elementary functions.
The Jacobian matrix of this composite function can be obtained by applying the
chain rule. The choice of the set of elementary functions is subjective. It could be
as low level as the set of mathematical instruction set of CPU/GPU, or it could be
as complicated as functions from mathematical libraries. Since the chain rule is an
exact formula, AD has no truncation error. AD is reported to be superior in com-
puting Jacobian matrix both in terms of operation count and accuracy [16][17]. It
has been widely applied in different areas [19][20] throughout scientific computing.

A.1 AD as Forward Propagation

The Jacobian computation defined by the chain rule in section 3.1 can be carried
out by the following forward propagation procedure:

1. Loop through j =1,2,...,n.

dx; dz; o . dy; .
(a) Set 5 1 and 2 = 0 for i = j. Set variables i i = 1,...p and
dl’j X dﬂfj
Vi=1,...,m to zero.
dﬁL’j

dx; dz; | . : 02
(b) (B) Propagate values from { ‘ } to {—Z} via arcs weighted by © ,
dx; dx; oxx,

23

dz;
i.e. update dz by

Lj
dz; 0z; dxy, .
= E ———i=1,...,m. Al
dx; Oxy, dx;’ TR (A1)
dz; d
(c) (A) Propagate values from {d—i} to { dij } via arcs weighted by aa g
dy;
i.e. update Y by
dl’j
dyi 3% dxk .
: =1,...p. A2
dr; Ikzy Oxy, dxj P (A-2)

dy;
(d) (L) Propagate values within {_y} following some topological order-

€j
; d
ing, via arcs weighted by a—yl, i dyz
Yk Z;
L Yi Ok (A.3)
dz; dx; Oy, dx;

dy; d 0z
(e) (M) Propagate values from { dy } to { & } via arcs weighted by

x; dx; oy,
i.e. updat :
Ly
d i dZi aZ,' d
A =Ly (A.4)
dx; drj =z Oyr du;
2. Form Jacobian matrix by assigning J;; := e
Ly

It is straight forward to check that the above procedure indeed carries out the
Jacobian computation (3.3) (3.4). Combining (A.1) and (A.4) reproduces (3.3).
Combining (A.2) and (A.3) reproduces (3.4).

dy;
At step (L), when propagate values within { d—y } , we must make sure the value
Lj

of variable % is used only after it is ready. Therefore (L) must be performed
:U .

following some topological ordering of the data dependency graph.

24

Steps (B), (A) and (M) can be viewed as forward propagation on bipartite
subgraphs, because variables in these partitions are independent with each other.
Thanks to this independence, propagations on these nodes can be performed in
parallel.

The forward propagation described above is called forward mode AD in the
literature [16][17].

A.2 AD in the Language of Linear Algebra

Forward propagation on graphs can be easily translated into the language of linear
algebra [27]. Forward propagation described in section A.1 is not an exception.

Forward propagation on a bipartite graph can be written as a matrix-vector
multiplication. The matrix here is often sparse. Entry in the i-th row j-th column
of the matrix is the weight of the arc from the j-th node of the starting side to the
1-th node of the terminal side. The j-th component of the vector is the initial value
of the j-th node of the starting side. The matrix-vector product yields another
vector, whose i-th component is the value of the i-th node of the terminal side.
Steps (B), (A) and (M) are all forward propagations on bipartite subgraphs. We
will denote their matrices as B, A and M respectively.

Step (L) is a forward propagation on a general DAG, i.e. the subgraph of

dy; : . :
{ dy } Let L; be the same matrix defined in (3.5). Then the forward propagation

T
step on node j can be written as v := (I + L;) v, where each component of v is

the value of its corresponding node in {d—y} Assume that nodes in { dy } are
Lk Tk

indexed following some topological ordering, then forward propagation of step (L)
can be written as

(I+Lpq)---(I+Lj)---(I+Ly)v (A.5)
= [T+ T+ L) (T 4+ L) Y] o
= [(I - Ll) (I =Lj) - (I = Lpya)] to
= (-L)"
where L is the same matrix as in (1.5) and (3.5). Solving L~'v with column-
oriented forward substitution is computationally equivalent with forward propa-

v o=

Finally, put all these four matrices together, the forward propagation described

in section A.1 can be written as

J=B—-M(LA). (A.6)

dy;
gation on the subgraph of { dy

25

By the commutativity of matrix multiplication, (A.6) can also be computed in
reverse order:

J=B— (ML) A, (A7)

which corresponds to a reverse propagation on the DAG. In the literature of AD,
(A.7) is called reverse mode AD. In practice, the size of matrices M and A could
be quite different, in which case, we might prefer forward or reverse mode AD over
the other.

All four matrices B, M,L and A are very likely to be sparse. And usually
p > n and p > m. Thus the most expensive part of AD is usually solving the
sparse lower triangular system L'A for forward mode AD (A.6) or the sparse
upper triangular system M L™! for reverse mode AD (A.7). Solving a sparse lower
triangular system is computationally equivalent with forward propagation. Two
standard strategies of forward propagation are depth-first search and breadth-
first search. In the literature of solving sparse triangular systems, the depth-first
search approach is called Sparse Vector Method [28] and the breadth-first search
approach is called Sparse Partitioned A~! Method [11][11]. Both of these two
methods are equivalent with the forward propagation described in section A.1 in
terms of number of operations. However, in terms of massively parallel computing,
the latter is preferred.

26

Bibliography

1]

2]

3]

[4]

(6]

[7]

8]

[9]

[10]

F. Balmas, “Displaying dependence graphs: a hierarchical approach,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 16, no. 3,
pp. 151-185, 2004.

T. F. Coleman and W. Xu, “Fast (structured) newton computations,” SIAM
Journal on Scientific Computing, vol. 31, no. 2, pp. 1175-1191, 2008.

T. F. Coleman and A. Verma, “Structure and efficient hessian calculation,”
Cornell University, Tech. Rep., 1996.

T. F. Coleman, X. Xiong, and W. Xu, “Using directed edge separators to
increase efficiency in the determination of jacobian matrices via automatic
differentiation,” in Recent Advances in Algorithmic Differentiation. Springer,
2012, pp. 209-219.

T. F. Coleman and J. J. Moré, “Estimation of sparse jacobian matrices and
graph coloring blems,” SIAM journal on Numerical Analysis, vol. 20, no. 1,
pp. 187209, 1983.

——, “Estimation of sparse hessian matrices and graph coloring problems,”
Mathematical Programming, vol. 28, no. 3, pp. 243-270, 1984.

M. J. Flynn, “Some computer organizations and their effectiveness,” Com-
puters, IEEE Transactions on, vol. 100, no. 9, pp. 948-960, 1972.

H. Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. DobbSs Journal, vol. 30, no. 3, pp. 202-210, 2005.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum infor-
mation. Cambridge university press, 2010.

Nvidia, “Nvidia cuda programming guide,” 2011.

27

[11] F. L. Alvarado and R. Schreiber, “Optimal parallel solution of sparse trian-
gular systems,” SIAM Journal on Scientific Computing, vol. 14, no. 2, pp.
446-460, 1993.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring
joint computer conference. ACM, 1967, pp. 483-485.

[13] D. B. Kirk and W. H. Wen-mei, Programming massively parallel processors:
a hands-on approach. Morgan Kaufmann, 2010.

[14] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C.-L. Wang, “Hetero-
geneous computing: Challenges and opportunities,” Computer, vol. 26, no. 6,
pp- 18-27, 1993.

[15] T. F. Coleman, F. Santosa, and A. Verma, “Semi-automatic differentiation,”
in Computational Methods for Optimal Design and Control. Springer, 1998,
pp. 113-126.

[16] A. Griewank and A. Walther, Fvaluating derivatives: principles and tech-
niques of algorithmic differentiation. Society for Industrial and Applied
Mathematics, 2008, vol. 105.

[17] U. Naumann, The Art of Differentiating Computer Programs. Society for
Industrial and Applied Mathematics, 2012, vol. 24.

[18] T. F. Coleman and W. Xu, “Admat-2.0,” 2009.

[19] D. Fournier, H. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. Maunder,
A. Nielsen, and J. Sibert, “In press. ad model builder: using automatic differ-
entiation for statistical inference of highly parameterized complex nonlinear
models,” Optimization Methods and Software.

[20] P. J. Werbos, “Backwards differentiation in ad and neural nets: Past links
and new opportunities,” in Automatic Differentiation: Applications, Theory,
and Implementations. Springer, 2006, pp. 15-34.

[21] T. F. Coleman, “The efficient evaluation of structured hessians by automatic
differentiation,” (to appear).

[22] T. F. Coleman and W. Xu, “The efficient evaluation of structured gradients
(and underdetermined jacobian matrices) by automatic differentiation,” (to

appear).

28

[23] J. Nickolls and W. J. Dally, “The gpu computing era,” Micro, IEEE, vol. 30,
no. 2, pp. 5669, 2010.

[24] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big,
simple neural nets for handwritten digit recognition,” Neural computation,
vol. 22, no. 12, pp. 3207-3220, 2010.

[25] “Simple automatic differentiation,” 2013. [Online]. Available:
https://github.com/vanci/SAD.git

[26] A.P. E. Coffman Jr and R. L. Graham, “Optimal scheduling for two-processor
systems,” Acta Informatica, vol. 1, no. 3, pp. 200213, 1972.

[27] J. Kepner and J. Gilbert, Graph algorithms in the language of linear algebra.
Society for Industrial and Applied Mathematics, 2011, vol. 22.

[28] W. Tinney, V. Brandwajn, and S. Chan, “Sparse vector methods,” Power
Apparatus and Systems, IEEE Transactions on, no. 2, pp. 295-301, 1985.

29

