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Abstract

We introduce a Nonnegative Matrix Factorization (NMF) model with a regularization
function that encourages a low-rank representation of data. We apply our method to hy-
perspectral unmixing, where we estimate a set of endmembers and their corresponding
abundances from a hyperspectral image. Furthermore, we explore two acceleration ap-
proaches to improve the convergence of our proposed model. Our numerical experiments
demonstrate the model’s ability to automatically determine the model order and produce
meaningful decompositions on real-world hyperspectral images. We provide the implemen-
tation in Python 1.
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Chapter 1

Introduction

1.1 Nonnegative Matrix Factorization

Figure 1.1: Nonnegative Matrix Factorization of a matrix.

Nonnegative Matrix Factorization[11][22][12][4][7] is a method of obtaining a low-rank
representation of the original matrix. Given a matrix, M ∈ Rm×n

+ the aim is to find factor
matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ whose product is an approximation of the original

matrix. The rank r is a parameter for the model specified by the user, and r ≤ min(m,n).
Figure 1.1 pictorially demonstrates NMF.

NMF can be rewritten as

mj ≈
r∑

i=1

Hijwi, (1.1)
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where mj and wj are the j-th column of M and i-th column of W respectively. Equation
1.1 shows that the columns in M are approximated by a nonnegative linear combination
of the columns of W multiplied by corresponding components of H[11].

NMF was introduced in 1994 by Paatero and Tapper[22] as Positive Matrix Factoriza-
tion. It gained popularity after Lee and Seung’s 1999 article[12] in which they compared
NMF to Principal Component Analysis (PCA) and Vector Quantization (VQ) on facial
images and text documents. Their work demonstrated NMF’s ability to generate more
meaningful parts-based representation of data as compared to PCA and VQ. They argue
that the ability to learn parts-based representations is due to the additive nature of the
model, as no negative values are possible. NMF has inherent clustering properties, and
with additional constraints, it is equivalent to k-means clustering, a popular unsupervised
clustering method[4]. For more information about NMF, the recommended reference is the
“Nonnegative Matrix Factorization” book by Nicolas Gillis[7].

NMF models have been shown to perform well for various applications with nonnegative
data. Xu, Liu, and Gong[32] demonstrate that NMF is an effective model for document
clustering. In this case, the input matrix M contains term frequencies per document, the
resulting matrix W represents term frequencies per topic (or cluster), and H represents
the composition of topics per document. NMF has also been used to predict movie rat-
ings[34], in which case M is an incomplete matrix where each element represents a user
rating for a movie. The columns of the resulting matrix W represent user communities’
ratings, and columns of H represent a user’s affinity for those communities. The product
WH is a reconstruction of the original matrix with missing values filled in. This means
that the reconstruction matrix has a user’s rating for a movie the user has not watched.
Modified versions of NMF have also been used for gene clustering[26] and facial expression
recognition[37].

NMF models generally require the rank r of the resulting representations to be specified
beforehand. Selecting the rank without prior knowledge about the data can be a challenging
problem. The main contribution of this work is introducing a regularized NMF model that
encourages a low-rank representation of the data. We demonstrate our model’s ability to
adaptively select the rank and create meaningful representations on an image processing
task known as Hyperspectral Unmixing.
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Figure 1.2: Example of hyperspectral unmixing[1].

1.2 Hyperspectral Unmixing

Hyperspectral sensors are built to function across many regions of the electromagnetic
spectrum. Our work focuses on the images captured by sensors that operate at the near-
infrared and shortwave infrared spectral bands[1]. In images captured by these cameras,
a pixel represents the mixture of light reflected by materials in the field of view. These
images are stored in a data cube, where each frontal slide of the data cube is an image
corresponding to a specific wavelength. A vector of a particular pixel through all the planes
represents the light reflected by the location for all spectral bands.

Hyperspectral unmixing is a technique to identify and separate the individual spectral
signatures of different materials in a mixed pixel. It involves analyzing the spectral re-
flectance of a scene at many different wavelengths and using algorithms to identify and
distinguish the unique signatures of different materials in the scene. This allows for identi-
fying and mapping the materials in an area, which can be helpful for various applications,
such as monitoring vegetation health or identifying mineral deposits. The complete process
of hyperspectral unmixing generally includes:

1. Collecting and preprocessing the hyperspectral data: This involves acquiring
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the data using hyperspectral cameras and preprocessing the data to remove noise.

2. Identifying endmembers and estimating their abundances: Endmembers are
the spectral signatures of the materials in the scene. This step involves identifying
and selecting a set of endmembers from the data that will be used in the unmixing
process and using algorithms to estimate the proportion of each endmember present
in each mixed pixel.

3. Separating the endmembers: Once the abundances of each endmember have been
estimated, they can be used to separate the endmembers and produce a map of the
materials present in the scene. Note that some hyperspectral unmixing methods,
including NMF, perform step 2 and 3 concurrently.

4. Postprocessing and interpretation: The separated endmembers can be post-
processed and interpreted to extract useful information about the materials in the
scene.

Models for hyperspectral unmixing are categorized as either linear mixing models or
non-linear mixing models[29]. Linear mixing models assume that the spectral signatures of
the materials in a mixed pixel can be linearly combined to produce the observed spectrum.
This is a relatively simple and computationally efficient approach, but it can be limited
in its ability to accurately model complex mixing scenarios. Non-linear mixing models, on
the other hand, can handle more complex mixing scenarios, but they are generally more
computationally intensive.

In the remaining report, the background information for and approach to algorithm
development is discussed, and numerical experiments are shared to demonstrate the effec-
tiveness of our algorithms.
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Chapter 2

Background

This chapter covers the preliminary information needed to formulate our model and develop
the algorithm for solving it. Section 2.1 explains the Sum-of-norms clustering algorithm
that can adaptively select the optimal number of clusters. Our model is inspired by this
clustering method and shares key components. Section 2.2 elaborates on Block Coordinate
Descent, a standard algorithm for solving Nonnegative Matrix Factorization. The last
section 2.3 explains an algorithm for solving optimization problems in a distributed manner.
It is used to solve a subproblem of our model.

2.1 Sum-of-norms clustering

Clustering is a fundamental area of unsupervised machine learning. It involves dividing
data points into clusters based on their properties. Lindsten, Ohlsson, and Ljung[14]
propose a clustering model called Sum-of-norms (SON) clustering with two advantages:
the problem is convex, and the number of clusters does not have to be specified beforehand.

Their proposed model is a minimization problem

min
µ1...µN

N∑
j=1

∥xj − µj∥22 + λ

N∑
j=2

∑
i<j

∥µi − µj∥p, (2.1)
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where {xj}Nj=1 is the set of observations in Rd, {µj}Nj=1 are the centriods of the clusters, λ
is the regularization parameter and p > 1. The solution to this optimization problem will
result in ∥µi − µj∥p = 0, and the xj near these centroids can be seen as belonging to the
same cluster. Hence, reducing the number of clusters to optimal.

2.2 Block Coordinate Descent

Block Coordinate Descent(BCD) solves non-linear optimization problems by dividing el-
ements into subgroups and iteratively minimizing the objective function for only the el-
ements in the selected subgroup while keeping other variables constant. It is a common
approach for solving NMF[10]. For a minimization problem of the form

min
W,H

f(W,H), (2.2)

with matrices W ∈ Rm×r and H ∈ Rr×n, that can be solved iteratively; there are several
choices for subgroups under the BCD framework:

• A single element of a matrix is updated independently

wk+1
ij ← argmin

wij

f(wk
ij,W−ij, H), (2.3)

where W−ij is the W matrix without the ij-th element.

• One of the matrices is updated independently

W k+1 ← argmin
W

f(W k, H). (2.4)

• A column or row of a matrix is updated in each step

wk+1
j ← argmin

wj

f(wk
j ,W−j, H), (2.5)

where j ∈ [n], W−j is the W matrix without the j-th column.

We use cyclic ordering for updating each column wj as in equation 2.5. For the remain-
der of the report, the notation wj is used to denote the j-th column of matrix W, wj is
used to denote the j-th row of matrix W, and k represents the iteration number.
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2.3 Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM)[3] is an algorithm that solves opti-
mization problems by separating them into smaller subproblems that are easier to handle.
The solutions to small local subproblems are used to calculate the solution to the global
problem.

Consider a problem in the form

min f(x) + g(z),

subject to Ax+Bz = c,
(2.6)

where x ∈ Rn, z ∈ Rm, A ∈ Rr×n, B ∈ Rr×m and c ∈ Rr, and the functions f and g are
separable and convex, can be solved using ADMM.

The augmented Lagrangian of the minimization problem 2.6 is

Lρ(x, y, z) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
∥Ax+Bz − c∥22, (2.7)

where y ∈ Rr is the Lagrangian variable and ρ > 0 is a penalty paramter. Using the
augmented Lagrangian, we can express the iterations of the ADMM algorithm as

xk+1 = argmin
x

Lρ(x, z
k, yk),

zk+1 = argmin
z

Lρ(x
k+1, z, yk),

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

(2.8)
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Chapter 3

Algorithm Development

This chapter focuses on formulating our model and the algorithm for solving it. Section
3.1 discusses existing approaches for hyperspectral unmixing, including NMF models. In
the remaining sections, our model is explained in detail, and three approaches for solving
it are discussed. This is followed by introducing two accelerated versions of our algorithm
to improve convergence.

3.1 Related works/Literature Review

There are several factors to consider when choosing a model for hyperspectral unmixing,
including:

• Noise: The data may contain noise due to atmospheric conditions and unexpected
material in the field of view. Noise can affect the accuracy and reliability of the
results.

• Computation time: Hyperspectral unmixing can be computationally intensive,
especially for large datasets. It is essential to consider the computation time required
by the model and choose one that is suitable for the available resources.

• Endmembers: The expected number of endmembers and their purity in the field
of view can affect the accuracy and interpretability of the results. Some models
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for unmixing assume that at least a single pure pixel exists in the data for each
endmember.

Generally, the choice of model for hyperspectral unmixing depends on the data’s specific
characteristics and the analysis’s goals. Many algorithms exist for this purpose, including
N-FINDR, PPI, NMF, and deep learning models.

N-FINDR[30] is a two-step process. First, the endmembers are identified, and then
their abundances are approximated. The model relies on the Linear Mixing Model

mij =
∑
k

wikhkj + ϵ, (3.1)

where mij is the i-th band of the j-th pixel, wik is the i-th band of the k-th endmember,
hkj is abundance of the k endmember for the j-th pixel and ϵ is Gaussian random error.
Equation 3.1 is equivalent to M = WH +E, where matrix E represents noise. The model
assumes at least one pure pixel in the image for each endmember. To find the endmembers,
the data is first reduced to K−1 dimensions, where K denotes the number of endmembers
we expect, through an orthogonal subspace projection. Then, the volume of the simplex
created using the endmember vectors is calculated repeatedly by replacing the endmember
vectors with pixel vectors until the maximum volume is reached. Now that the endmembers
have been identified, a least squares problem is solved with the physical constraint that no
values of H are negative to find the endmember abundances.

PPI[2] is similar to N-FINDR but uses an alternate way to identify the endmembers.
The pixels from the data are projected onto random unit vectors, and an extremity score
is calculated for each of them. The cumulative extremity records for the pixels are used to
identify the extreme pixels corresponding to pure endmembers.

Deep learning approaches have also been considered for unmixing. An early attempt by
Licciardi and Del Frate[13] proposed a neural network architecture with an auto-associative
neural network for dimensionality reduction and multilayer perceptron as a fuzzy classifier
to predict endmember abundances. More recently, a convolution neural network archi-
tecture was proposed for unmixing[35]. Both these models rely on labeled data and only
predict the endmember abundances, not the endmember spectra. Guo, Wang and Qi[9]
proposed an unsupervised model that uses two autoencoder models, first to denoise the
data and the second (with nonnegative and sparsity constraints) to learn the endmember’s
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spectra and predict abundances.

From equation 3.1, we can see that NMF is equivalent to the linear mixture model if we
disregard the noise, so it is an appropriate model for hyperspectral unmixing. NMF also
benefits from not needing labeled data and having an inherent nonnegativity constraint.
The general Nonnegative Matrix Factorization model can be expressed as an optimization
problem by employing an appropriate matrix norm. The Frobenius norm is widely used
for this purpose and leads to

min
W≥0,H≥0

1

2
∥M −WH∥2F . (3.2)

Modified versions of the NMF model 3.2 have been proposed to improve the basic
model’s performance for hyperspectral unmixing by adding additional constraints or chang-
ing the structure of the basic model[6]. Constrained versions of NMF can be expressed
as

min
W≥0,H≥0

1

2
∥M −WH∥2F + λ1g1(W ) + λ2g2(H), (3.3)

where g1 and g2 are regularization terms and λ1 and λ2 are their corresponding parameters.
The additional constraints improve upon the general model by addressing its limitations.
A minimum volume constraint g1(W ) = vol(W ) can improve endmember extraction[20].
Sparsity constraints, such as g2(H) = ∥H∥1/2[23], are also common as they better represent
real-world data where we do not expect to find endmembers everywhere in the field of view.
Our model 3.5 also falls under the constrained NMF category.

Structured NMF models change the structure of the problem 3.2 rather than incorpo-
rating additional constraints. Weighted NMF[16] falls in this category and can be expressed
as

min
W≥0,H≥0

1

2
∥(M −WH)B∥2F , (3.4)

where B is a diagonal matrix with weights calculated using k-means clustering analysis.
This model tends to perform well with imbalanced datasets.

Lastly, there are multilayer NMF and deep NMF models that can learn hierarchical
features in the data[6]. The survey[6] elaborates on many NMF models for Hyperspectral
Unmixing.
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As far as we know, no NMF models for Hyperspectral Unmixing focus on adaptively
determining the rank of the decompositions. There are, however, NMF algorithms for
other use cases that can automatically select the rank. Some of these methods rely on
supplementary techniques like clustering to determine the rank beforehand. For example,
Rank-Adaptive NMF algorithm[24] uses affinity propagation (AP) clustering to determine
the number of components before utilizing NMF. Alternatively, AFRS-NMF[33] (Adaptive
Factorization Rank Selection - Nonnegative Matrix Factorization) uses multiple sparsity
constraints on the composition matrix H to determine the rank. The model’s ability to
select the rank was demonstrated on a tumor detection task.

3.2 Problem Formulation

Similar to Sum-of-norms clustering[14], we introduce a regularization term to equation 3.2
to minimize the Euclidean distance between columns of the matrixW . The resulting model
is

min
W≥0,H≥0

1

2
∥M −WH∥2F + λ

∑
(i,j)∈E

∥wi − wj∥2, (3.5)

where r is the specified rank, λ is a regularization parameter, M ∈ Rm×n
+ , W ∈ Rm×r

+ ,
H ∈ Rr×n

+ , wj and wi are the i-th and j-th columns of W, respectively, and E is the
set of all pair-wise (i, j), i ̸= j combinations of columns of W . The key challenge in
formulating the solution for the minimization problem 3.5 is that the ∥wi − wj∥2 term is
not differentiable when wi = wj. Note that the second term in equation 3.5 is equivalent
to the l1 norm of the difference between the columns of W .

Consider the ground truth factorization is M = WtrueHtrue where W ∈ Rm×rtrue
+ , H ∈

Rrtrue×n
+ and rtrue is the ideal rank. Solving equation 3.5 with an appropriate λ and r ≥ rtrue

would lead to duplicate columns of W and effectively reduce the rank r to rtrue.
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3.3 Solution Approach

We use a Block Coordinate Descent algorithm called Hierarchical Alternating Least Squares
to define subproblems for a column of W and a row of H. The subproblems are then solved
independently in an iterative manner. Equation 3.2 can be restructured as

∥M −
r∑

i=1

wih
i∥2F = ∥M −

r∑
i=1,i ̸=j

wih
i − wjh

j∥2F , (3.6)

where wj is the j-th column of W and hj is the j-th row of H. We can further simplify it
to

∥Mj − wjh
j∥2F , (3.7)

where Mj = M −
∑r

i=1,i ̸=j wih
i.

3.3.1 Subproblem on hj

Equation 3.7 can be expressed as a quadratic equation on hj[18]:

∥Mj∥2F − 2⟨Mjh
j, wj⟩+ ∥hj∥22∥wj∥22 + c. (3.8)

With this formulation and taking into consideration that the regularization term in equa-
tion 3.5 is not dependent on hj, the subproblem for hj is a minimization problem of the
form

min
h

f(hj) = min
h

1

2
∥wj∥22∥hj∥22 − ⟨wT

j Mj, h
j⟩. (3.9)

The nonnegativity constraint on hj is ignored for the moment and is addressed later. To
solve equation 3.9, we use gradient descent with an update step

12



hj = hj − 1

L
▽hf(h

j), (3.10)

with gradient ▽hf(h
j) = ∥wj∥22hj−wT

j Mj which has a Lipschitz constant L = ∥wj∥22. This
leads to a closed-form solution

hj =
wT

j Mj

∥wj∥22
. (3.11)

Finally, the nonnegativity constraint is applied by taking the nonnegative projection
[.]+ = max{0, .} of the numerator in 3.11. The complete solution the row hj of matrix H
is

hj =

[
wT

j Mj

]
+

∥wj∥22
. (3.12)

Note that this is the gradient descent step, Newton’s method update, and the exact
solution to the hj subproblem.

3.3.2 Subproblem on wj

Similar to hj, the subproblem on wj can be expressed as a quadratic minimization problem

min
w

1

2
∥hj∥22∥w∥22 − ⟨Mjh

jT , w⟩+ λ
∑
i ̸=j

∥w − wi∥2 + c, (3.13)

where w = wj for simplicity. The key challenge in solving 3.13 stems from the regularization
term ∥w − wi∥2, which is not differentiable. We explore three algorithms for solving the
wj subproblem.
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Subgradient method

The sub-differential of the l2 norm is

∂∥x∥2 =

{
x

∥x∥2 x ̸= 0

τ, ∥τ∥2 ≤ 1 x = 0
, (3.14)

where τ is any vector that meets the ∥τ∥2 ≤ 1 condition. We use the sub-differential to
approximate the norm in 3.13 and solve the subproblem using gradient descent. This leads
to the following heuristic update step

wk+1 =

[
wk − α

(
∥hj∥22wk −Mjh

jT + λ
∑
i ̸=j

∂∥wk − wi∥2

)]
+

(3.15)

To find the step size α, we use line search as suggested by [31].

Nesterov Smoothing Approximation

Given any vector a ∈ Rm, and paramter µ > 0, the Nesterov smoothing approximation[21]
of the Euclidean norm ∥x− a∥2 is

∥x− a∥2 ≈
1

2µ
∥x− a∥22 −

µ

2

[
d(
x− a

µ
;B)
]2

, (3.16)

where d(.; .) is the Euclidean distance and B is the closed unit ball of Rm. Furthermore,

∂∥x− a∥2 = ProjB(
x− a

µ
), (3.17)

where ProjB(.) denotes the projection on unit l2 norm ball. The projection of z ∈ Rm on
unit l2 norm ball[17] is
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ProjB(z) =

{
z ∥z∥2 ≤ 1
z

∥z∥2 ∥z∥2 > 1
. (3.18)

Using this approximation of the Euclidean norm, the equation 3.13 can be expressed as

min
w

1

2
∥hj∥22∥w∥22 − ⟨Mjh

j, w⟩+ λ
∑
i ̸=j

1

2µ
∥w − wi∥22 −

µ

2

[
d(
w − wi

µ
;B)
]2

+ c. (3.19)

This leads to the gradient descent step

wk+1 =

[
wk − α

(
∥hj∥22wk −Mjh

jT + λ
∑
i ̸=j

ProjB(
w − wi

µ
)

)]
+

. (3.20)

Note that µ is the same for all i’s. Similar to the Subgradient approach, we find the
step size α using line search as suggested by [31].

ADMM

To use ADMM, we first introduce local variables wf , w0, wi and a central variable z to
represent wj, and express the equation 3.13 in a separable form

min
wf ,w0,{wi},z

f(wf ) + g0(w0) +
∑
i,i ̸=j

gi(wi), (3.21)

where

f(w) =
1

2
∥hj∥22∥w∥22 − ⟨Mjh

jT , w⟩, (3.22)

g0(w) = i+(w), (3.23)
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gi(w) = λ∥w − ci∥2 , ci = wi such that i ̸= j, (3.24)

and wf = z, w0 = z, wi = z ∀i. The indicator function

i+(x) =

{
+∞ x < 0

0 x ≥ 0
, (3.25)

which maps from Rm to R, is included in the ADMM formulation to impose the nonnega-
tivity constraint. The solution to the local problems (3.22, 3.23, 3.24) can now be used to
solve the global minimization problem. The augmented Lagrangian of equation 3.19 is

argmin
wf ,w0,wi,z

argmax
yf ,y0,yi

Lρ(wf , w0, wi, z, y) = f(wf ) + g0(w0) +
∑
i,i ̸=j

gi(wi) + ⟨yf , wf − z⟩

+⟨y0, w0 − z⟩+
∑
i,i ̸=j

⟨yi, wi − z⟩+ ρ

2
∥wf − z∥22 +

ρ

2
∥w0 − z∥22 +

∑
i,i ̸=j

ρ

2
∥wi − z∥22

(3.26)

where yf , y0, yi are Lagrangian variables and ρ > 0 is a penalty parameter. In a similar
manner to section 2.3, the augment Lagrangian 3.26 leads to the following iterations:

wk+1
f = argmin

wf

Lρ(wf ) =
Mj(h

j)T − ykf + ρzk

ρ+ ∥hj∥22
, (3.27)

wk+1
0 = argmin

w0

Lρ(w0) =

[
zk − yk0

ρ

]
+

, (3.28)

wk+1
i = argmin

wi

Lρ(wi) =

ζ − λ(
ζ
λ
−ci

∥ ζ
λ
−ci∥2

) ∥ ζ
λ
− ci∥2 > 1

ζ − λ( ζ
λ
− ci) ∥ ζ

λ
− ci∥2 ≤ 1

where ζ = zk − yki
ρ
, (3.29)

zk+1 =
ρ(wk+1

f + wk+1
0 ) + ρ

∑
i,i ̸=j w

k+1
i + ykf + yk0 +

∑
i,i ̸=j y

k
i

ρ(2 + |E|)
, (3.30)
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yk+1
f = ykf + ρ(wk+1

f − zk+1), (3.31)

yk+1
0 = yk0 + ρ(wk+1

0 − zk+1), (3.32)

yk+1
i = yki + ρ(wk+1

i − zk+1). (3.33)

The complete derivation of the ADMM iterations is shown in Appendix A.

3.3.3 Accelerated version

We consider two acceleration procedures to improve the convergence speed of our ADMM
solution for the subproblem of wj: Anderson Acceleration and Heuristic Extrapolation
with Restarts.

Anderson Acceleration

Anderson Acceleration[27] is a technique for improving the convergence of iterative algo-
rithms. It works by incorporating information from previous iterations of the algorithm
into the current iteration to improve the rate of convergence and reduce the number of
iterations required to reach the solution. This can make the algorithm more efficient. For
a fixed point (FPI) method of the form

xk+1 = f(xk), (3.34)

where f is an iterative function and x ∈ Rn. Anderson acceleration improves the conver-
gence by using the update formula

xk+1 = f(xk) +

mk−1∑
i=0

βk
i

(
f(xk−i)− f(xk−i−1)

)
, (3.35)

where m is the window size, k is the iteration number, and mk = min{m, k}. The βk
i

coefficients are computed by solving the minimization problem
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βk
i = argmin

βi

∥∥∥∥∥r(xk) +

mk−1∑
i=0

βi(r(x
k−i)− r(xk−i−1))

∥∥∥∥∥
2

2

, (3.36)

where r(xk) = xk − f(xk) is the residual of equation 3.32 for the k-th iteration. In our
implementation, the unconstrained linear least-squares problem 3.34 is solved using QR
decomposition. We explore two Anderson accelerated versions of our ADMM solution for
the suproblem of wj: applying it to equation 3.30 for zk+1, and applying it to equations
3.27, 3.28, 3.29 and 3.30 for wk+1

f , wk+1
0 , wk+1

i and zk+1 respectively.

Heuristic Extrapolation with Restarts

The Heuristic Extrapolation with Restarts (HER) paper[19] proposes a strategy for ac-
celerating the convergence of Block Coordinate Descent methods for Nonnegative Tensor
Factorization methods. It involves using a heuristic to make informed guesses about the
next steps in an algorithm and then restarting the algorithm from an intermediate step if
the convergence does not improve. We apply their procedure to our algorithm by modifying
the column-wise BCD to calculate matrices W separately and H.
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Algorithm 1: NMF-SON ADMM Approach with HER

Data: M,W0, H0, λ, β0 ∈ (0, 1), β̄0 = 1, η, γ̄, γ
Result: W,H
k = 1;

Ŵ , Ĥ = W0, H0;
while criteria not met do

Hk+1 = update H func(Ŵk, Hk);

Ĥk+1 = [Hk+1 + βk(Hk+1 −Hk)]+;

Wk+1 = update W func(Ĥk+1,Wk);

Ŵk+1 = [Wk+1 + βk(Wk+1 −Wk)]+;

ek+1 = F (Ŵ ,Hk+1) ;
if ek+1 > ek then

β̄k+1 = βk;
βk+1 = βk/η;

Ĥk+1, Ŵk+1 = Hk+1,Wk+1;

else
β̄k+1 = min{1, β̄kγ̄};
βk+1 = min{β̄k, βkγ};
Hk+1,Wk+1 = Ĥk, Ŵk;

end

end
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Chapter 4

Experiments

4.1 Dataset

The Urban hyperspectral dataset[25][1] shows a Walmart store in Copperas Cove, Texas.
The raw version of the dataset is a 210 × 307 × 307 cube, where each of the 210 planes
corresponds to wavelengths ranging from 400nm to 2500nm. A single pixel in an image
represents a 2 × 2m2 area. For our work, we use a preprocessed version of the dataset,
where some of the 210 channels are removed due to water vapor and atmospheric effects.
The preprocessed dataset is a 168× 307× 307 cube. For this dataset, we expect to detect
six materials (asphalt, grass, tree, roof, metal, and dirt).

Applying our NMF-SON method to the entire Urban dataset is a computationally
expensive task, so we create a smaller dataset by selecting subimages from the full images
and merging them. The subimages, each of size 10 × 10, are chosen purposefully to only
contain only two endmembers (trees and roof) and then concatenated to form a 168×20×10
hyperspectral cube. The areas for the subimages have been outlined in figure 4.1b.

Another dataset we use for our experiments is the Jasper Ridge hyperspectral cube[25].
The original dataset has the shape 224 × 512 × 614. The wavelength range is 380 nm
to 2500 nm. The large image size makes it challenging to work with this dataset. We
utilize a preprocessed subimage of 100× 100 pixels. Similar to the Urban dataset, several
images were removed from the dataset to reduce noise. The resulting dataset has the shape
198× 100× 100. We expect to detect four endmembers: road, soil, water, and tree.
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(a) Complete Urban dataset. (b) Urban image outlining
areas used to create the small

Urban dataset.

Figure 4.1: Two versions of the Urban dataset.

Figure 4.2: Jasper dataset.
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4.2 Algorithm Setup

For all experiments except Section 4.3, we use the ADMM approach described in section
3.3.2. The penalty parameter ρ = 1 for ADMM was fixed for all tests. The experiments
were run until the maximum number of iterations was reached or the stopping criteria 4.1
was met. The initial matrices W0 and H0 for the tests were randomly initialized to have
values between 0 and 1.

|F (W k, Hk)− F (W k−1, Hk−1)|
F (W k−1, Hk−1)

≤ 10−5, (4.1)

where

F (W,H) =
1

2
||M −WH||2F︸ ︷︷ ︸

f(W,H)

+λ
∑

(i,j)∈E

||Wi −Wj||2︸ ︷︷ ︸
g(W )

. (4.2)

The λ hyperparameter is scaled before each iteration k using the formula

λk = λ
f(Wk−1, Hk−1)

g(Wk−1)
. (4.3)

Due to this feature, F (W,H) is a homotopy. Scaling λ helps avoid circumstances when the
regularization term is too large or too small.

4.3 ADMM vs Subgradient vs Nesterov Smoothing

We compare the three approaches to solve the wj subproblem: the Subgradient approxi-
mation 3.3.2, Nesterov Smoothing 3.3.2 and ADMM 3.3.2. All three algorithms ran for a
maximum of 3000 iterations with λ = 2 and rank r = 6 on the small Urban dataset. The
tests were carried out on a laptop with an Intel Core i7-8550U CPU and 16GB RAM.
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Figure 4.3: Convergence comparison of multiple approaches used to solve the wj subprob-
lem. The Subgradient approximation fails to regularize, and the most effective algorithm
is ADMM.

Runtimes
Method Time Taken
ADMM 7min 38s

Subgradient 6min 9s
Nesterov Smoothing 2min 6s

Table 4.1: Runtimes of approaches to solve the wj subproblem. ADMM took the longest
time, followed by Subgradient Approximation and Nesterov Smoothing.
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From figure 4.3, it is evident that the subgradient method fails to reduce the regular-
ization term g(W ). This means the method is inappropriate for our model as it does not
promote duplicate vectors. The poor performance was expected as the algorithm is a very
naive approach. The Nesterov Smoothing method performs better than the subgradient
approach in terms of regularization but not as well as the ADMM approach. Due to this,
we choose to use the ADMM approach for our numerical experiments.

A drawback of the ADMM algorithm is that it is the most computationally expensive
approach, as shown in table 4.1. We could reduce the computation time by first running
the Nesterov Smoothing approach and using the results to initialize the ADMM algorithm.

4.4 Acceleration Methods

We tested two acceleration methods, Anderson Acceleration and Heuristic Extrapolation
with Restarts (HER), to improve our algorithm’s convergence. Both acceleration methods
are initialized with λ = 2 and rank r = 6 on the small Urban dataset. All tests ran for
a maximum of 1000 iterations. The tests were carried out on a laptop with an Intel Core
i7-8550U CPU and 16GB RAM.

Two versions of Anderson Acceleration were considered: one where only the z variable of
the ADMM approach is accelerated, and another where wf , w0, wi, z were accelerated. Both
versions used a window size of two, so only the values of the previous two iterations were
used for acceleration. Figure 4.4 shows that both versions of Andersen Acceleration fail to
improve convergence and exhibit odd oscillating behavior. This is unexpected as Anderson
Acceleration has shown to improve the convergence of multiple ADMM algorithms[28].
Another drawback is that the accelerated algorithms took longer than the base algorithm,
as shown in 4.2 with the same setting.

On the other hand, HER was able to improve the convergence of our algorithm when
compared to the baseline implementation. Furthermore, the HER version has a signifi-
cantly shorter runtime even though more matrix operations are involved in the implemen-
tation.
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Figure 4.4: Convergence comparison of acceleration methods. Both versions of Anderson
Acceleration failed to improve convergence speed and exhibited unexpected behavior. HER
was able to improve convergence speed.

Runtimes
Method Time Taken
Basline 7min 15s

Andersen acceleration on z 11min 28s
Andersen acceleration on wf , w0, wi, z 40min 32s

HER 2min 19s

Table 4.2: Runtimes of acceleration methods. Both versions of Anderson Acceleration took
longer to complete. Meanwhile, HER reduced the runtime.
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Figure 4.5: Process of creating abundance maps and endmember spectra from hyperspec-
tral images.

4.5 NMF-SON vs NMF

This section compares our model NMF-SON and basic NMF for hyperspectral unmixing
on the small Urban and Jasper datasets. Figure 4.5 illustrates the process of creating
the endmember spectra and abundance maps presented in this section. The Hyperspectral
dataset is resized into a matrixM , and NMF decomposesM into smaller representationsW
andH. Each column ofW is the endmember spectrum of a material, and the corresponding
row of H contains the abundance values for that endmember in the field of view. The rows
of H are normalized and reshaped into images called abundance maps. The normalization
leads to clearer images. In these images, lighter regions indicate a higher abundance of the
corresponding endmember.

For the small Urban dataset, we ran the basic NMF with rank r = 2 to show the
ideal decomposition, and with rank r = 6 to compare it with NMF-SON. NMF-SON was
initialized with rank r = 6 with λ = 3 and λ = 50. All tests ran for a maximum of 3000
iterations.

The endmember spectra and abundance maps in figures 4.6a and 4.6b, respectively,
show the decomposition we expect. The column w1 is the endmember spectra for the
roof of the building, and it corresponds to the abundance map on the left in figure 4.6b,
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(a) Endmember Spectra (b) Abundance maps

Figure 4.6: Results of basic NMF, with rank r = 2, on the small Urban dataset. Compo-
nents 1 and 2 represent the roof and trees, respectively.

(a) Endmember Spectra

(b) Abundance maps

Figure 4.7: Results of basic NMF, with rank r = 6, on the small Urban dataset. Compo-
nents 2 and 3 correspond to trees and the roof, respectively. All other components are not
useful results.

27



(a) Endmember Spectra

(b) Abundance maps

Figure 4.8: Results of NMF-SON, with rank r = 6 and λ = 3, on the small Urban dataset.
NMF-SON returns pairs of duplicate components: 3 and 4 represent trees, and 5 and 6
represent noise. Components 1 and 2 represent parts of the roof.

where the bottom half has higher abundance values. Similarly, w2 represents trees, and
the corresponding abundance map has higher values in the top half. The basic NMF with
a large rank r = 6 fails to generate meaningful results, as shown in figures 4.7a and 4.7b.
Only components 2 and 3, which correspond to trees and roof, respectively, are helpful in
this decomposition.

On the other hand, our NMF-SON model reduced the rank of the resulting matrices
and generated more meaningful representations than the basic NMF with rank r = 6.
Figures 4.8a and 4.8b shows that components 3 and 4, and 5 and 6 are pairs of duplicate
endmember spectra and abundance maps. w3 and w4 spectras match the signature of trees,
and w5 and w6 probably correspond to noise. Components 1 and 2 both highlight parts of
the roof. Considering the duplicate components, our method reduced the rank from r = 6
to r = 4 and provided better results than basic NMF with rank r = 6. Further λ tuning
could reduce the rank and improve the decomposition to represent the roof endmember
better.

To validate our model, we run the same experiment with a larger λ = 50. Figures 4.9a
and 4.9b show that all the endmember spectra and the abundance maps are identical. We
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(a) Endmember Spectra

(b) Abundance maps

Figure 4.9: Results of NMF-SON, with rank r = 6 and λ = 50, on the small Urban dataset.
All the components are identical.

expect the model to generate this, as a large enough λ should reduce the solution to rank
1.

Similar numerical experiments were performed with the Jasper dataset. We ran the
basic NMF with rank r = 4 (the expected number of endmembers) and rank r = 8 to
compare it with NMF-SON. NMF-SON was initialized with rank r = 8 and λ = 1. All
tests ran for a maximum of 3000 iterations.

The decomposition results of basic NMF with rank r = 4, in figure 4.10, are challenging
to interpret. Only three of the model’s expected endmembers (road, soil, water, and trees)
are shown, and one component is an unexpected endmember. The three correctly shown
endmembers are soil, trees, and road, represented by components 1, 3, and 4, respectively.
Component 2 returns an unexpected endmember with a high abundance near the water.
This could represent sand on the shoreline. None of the components can represent the
water endmember clearly. Water has a relatively higher abundance in component 4 but is
less significant than the road. This indicates that the endmember spectra for water and
road are too similar to separate using basic NMF.

The results for basic NMF with rank r = 8, shown in 4.11, are also difficult to un-
derstand. Components 1, 3, and 4 correspond to trees, roads, and soil. The endmember
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(a) Endmember Spectra (b) Abundance maps

Figure 4.10: Results of basic NMF, with rank r = 4, on the Jasper dataset. Components
1, 3, and 4 correspond to soil, trees and road. Component 2 is an unexpected result and
most likely represents sand.

signatures for these materials are similar to their signatures in the r = 4 decomposition,
even though the scale is different. Components 2 and 5 highlight the same areas (near the
water), but their signatures are not similar; this could indicate two unexpected endmem-
bers. Components 6, 7, and 8 most likely represent noise due to light reflecting off multiple
materials since they highlight the same area as other endmembers but do not have similar
endmember signatures, and the reflectance is low. Even with a larger rank, basic NMF
cannot separate water from other endmembers and is highlighted in the abundance map
for the road. This supports our previous claim that the endmember of water and road are
too similar to separate.

The results for NMF-SON are shown in figure 4.12. Our model is able to reduce the
rank from r = 8 to r = 7, but the representations are unclear. Based on the abundance
maps for this decomposition and the ones in figure 4.11, components 1, 3, and 5 represent
trees, roads, and soil, respectively. Components 6 and 7 are duplicates and highlight an
unexpected endmember close to water. Component 8 also has high abundances near the
shoreline but a different pattern than components 6 and 7; this is also an unexpected
endmember. Components 2 and 4 are probably noise.

All models used for Jasper struggle to identify the endmembers correctly. The end-
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member for water is not returned separately due to the similarity between the spectra of
water and road. The models also return unexpected endmembers near the shoreline that
have different endmember signatures; this means that there are multiple materials near
the water that are not reported in the data source[25].

4.6 Challenges

The minimization problem for NMF-SON is non-convex, which means there are multiple
local minima that the algorithm could converge to. The initial matrices W and H affect
the algorithm’s performance and the local minimum reached upon completion.

The hyperparameter λ can not be directly learned from the data and must be set
before running the algorithm. Finding the optimal values for the λ is challenging because
the search space for λ is all nonnegative real numbers, making the optimization process
computationally expensive and time-consuming. Furthermore, the optimal values can vary
depending on the specific data and selected rank r. There are heuristic approaches to
improve hyperparameter tuning, but no method exists to find the optimal value.

Lastly, the NMF model’s patterns may not always align with our expectations, making
it difficult to interpret and understand the results. We face this issue for the Jasper dataset,
for which all the decompositions return unexpected endmembers not mentioned in the data
source[25]. Even by simply examining the figure 4.2, we can see a different material near
the shoreline which is not explicitly listed in the data source. Better information about
the endmembers in a field of view could improve our understanding and help in accurately
determining the usefulness of the NMF decompositions. Another reason for the unexpected
endmembers could be that NMF models fit the Linear Mixing Model, which is a simple
approach. For real-world data, light may be reflected off multiple materials (endmembers)
before being recorded by the sensors.
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(a) Endmember Spectra

(b) Abundance maps

Figure 4.11: Results of basic NMF, with rank r = 8, on the Jasper dataset. Components
1, 3, and 4 represent trees, road, and soil. Other components are unclear.
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(a) Endmember Spectra

(b) Abundance maps

Figure 4.12: Results of NMF-SON, with rank r = 8 and λ = 1, on the Jasper dataset. The
rank is reduced to r = 7 since components 6 and 7 are the same. Components 1, 3, and 5
represent trees, roads, and soil. Other components are unclear.
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Chapter 5

Conclusion

5.1 Discussion

In this report, we introduced a new NMF model that can automatically determine the rank
of the smaller representation matrices. This was achieved by using a regularization term
inspired by Sum-of-norms clustering. The model encourages a low rank representation
of data, as long as the specified rank is larger than the true rank, r ≥ rtrue, and the
appropriate hyperparameter λ is used. The model’s ability to automatically detect the
appropriate rank and generate meaning decompositions was assessed on the hyperspectral
unmixing task. The numerical results comparing our model with the basic NMF model
show that for a rank r such that r ≥ rtrue, our model can reduce the number of components
and generate better representations than basic NMF.

Furthermore, we compared three alternatives for solving our model: Subgradient ap-
proximation of the norm, Nesterov Smoothing of the norm, and Alternating Direction
Method of Multipliers (ADMM). Our numerical results demonstrate that ADMM is the
most appropriate choice as it effectively minimizes the regularization function. The per-
formance comes at the cost of computational resources as it is also the most elaborate
algorithm. We explore two acceleration approaches to improve the convergence of our
algorithm: Anderson Acceleration and Heuristic Exploration with Restarts (HER). The
Anderson Acceleration approach fails to improve the convergence compared to the unac-
celerated version of our algorithm and exhibits an odd convergence pattern. On the other
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hand, HER can improve convergence and reduce our algorithm’s runtime.

There are, however, some challenges that affect the performance of our algorithm. These
include noise in the data, tuning λ, and initializing the model. Initializing NMF models is
a well-known challenge, and there are ways to make better guesses[5], but this is an open
problem. There is no way to initialize the matrices to guarantee convergence to the global
minimum for non-convex problems. Similarly, tuning λ or hyperparameters, in general, is
a challenging problem with no solution.

5.2 Further work

There are multiple directions for improving our model. A parallel implementation of our
algorithm could be developed. Our ADMM approach is well suited for this as all the
local variables and functions for wj can be calculated on separate machines and used to
calculate the resulting value. This would reduce the runtime of our algorithm and make it
more suitable for larger datasets.

Another possible direction is to explore Multigrid implementations of our model. Multi-
grid NMF algorithms speed up such models’ convergence by reducing the data’s dimension
to a coarser grid and solving the coarse grid problem. Then, the coarse grid solution is
translated to the original dimension using interpolation[8] and used as initialization for the
fine (original) algorithm. Initializing the original algorithm using such an approach can
reduce the number of iterations required.

A common restriction imposed on NMF models for Hyperspectral Unmixing is that the
columns of the abundance matrix sum to one[6]. This would include adding 1T

r H = 1T
n

where 1r and 1n are all-one vectors with of size r and n respectively. This restriction
could result in more understandable abundance maps, and that may eliminate the need to
normalize the rows of H after the NMF algorithm is complete. Further restrictions to the
model, such as sparsity constraints, may also improve endmember extraction.

So far, we have tested our model for hyperspectral unmixing only. However, it can
also be applied to other use cases since the model has no hyperspectral unmixing spe-
cific restriction. Numerical experiments for tasks including document clustering or facial
expression recognition could be conducted to assess the versatility of our model.
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Appendix A

Derivation of ADMM Iterations

The minimization problem for our model NMF-SON is

min
w

1

2
∥hj∥22∥w∥22 − ⟨Mjh

jT , w⟩+ λ
∑
i ̸=j

∥w − wi∥2 + c, (A.1)

For ADMM, we introduce local variables wf , w0, wi and a central variable z to represent
wj, and express the equation A.1 in a separable form

min
wf ,w0,{wi},z

f(wf ) + g0(w0) +
∑
i ̸=j

gi(wi), (A.2)

where

f(w) =
1

2
∥hj∥22∥w∥22 − ⟨Mjh

jT , w⟩, (A.3)

g0(w) = i+(w), (A.4)

gi(w) = λ∥w − ci∥2 , ci = wi such that i ̸= j, (A.5)

and wf = z, w0 = z, wi = z ∀i. The indicator function
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i+(x) =

{
+∞ x < 0

0 x ≥ 0
, (A.6)

maps from Rm to R. The augmented Lagrangian of equation A.3 is

argmin
wf ,w0,wi,z

argmax
yf ,y0,yi

Lρ(wf , w0, wi, z, y) = f(wf ) + g0(w0) +
∑
i ̸=j

gi(wi) + ⟨yf , wf − z⟩

+⟨y0, w0 − z⟩+
∑
i ̸=j

⟨yi, wi − z⟩+ ρ

2
∥wf − z∥22 +

ρ

2
∥w0 − z∥22 +

∑
i ̸=j

ρ

2
∥wi − z∥22

, (A.7)

where yf , y0, yi are langragian variables and ρ is a penalty paramter. Using the augment
Lagrangian A.7, we get the following iterations, where k is the iteration number:

wk+1
f = argmin

wf

Lρ(wf )

= argmin
wf

f(wf ) + ⟨yf , wf − z⟩+ ρ

2
∥wf − z∥22

= argmin
wf

1

2
∥hj∥22∥wf∥22 − ⟨Mjh

jT , wf⟩+ ⟨yf , wf − z⟩+ ρ

2
∥wf − z∥22

⇔ ∥hj∥22wf −Mjh
jT + yf + ρwf − ρz = 0

⇔ wk+1
f =

Mj(h
j)T − ykf + ρzk

ρ+ ∥hj∥22

(A.8)
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wk+1
0 = argmin

w0

Lρ(w0)

= argmin
w0

g0(w0) + ⟨y0, w0 − z⟩+ ρ

2
∥w0 − z∥22

= argmin
w0

i+(w0) + ⟨y0, w0 − z⟩+ ρ

2
∥w0 − z∥22

=

[
w0 −

1

ρ
(y0 + ρ(w0 − z))

]
+

=

[
zk − yk0

ρ

]
+

(A.9)

wk+1
i = argmin

wi

Lρ(wi)

= argmin
wi

gi(w0) + ⟨yi, wi − z⟩+ ρ

2
∥wi − z∥22

= argmin
wi

λ∥wi − ci∥22 + ⟨yi, wi − z⟩+ ρ

2
∥wi − z∥22

= Proxλ∥.−ci∥2(wi −
1

ρ
(yi + ρ(wi − z)))

= Proxλ∥.−ci∥2(ζ) where ζ = z − yi
ρ

= ζ − Proxλ∥.−ci∥2≤1(
ζ

λ
)

=

ζ − λ(
ζ
λ
−ci

∥ ζ
λ
−ci∥2

), ∥ ζ
λ
− ci∥2 > 1

ζ − λ( ζ
λ
− ci), ∥ ζ

λ
− ci∥2 ≤ 1

where ζ = zk − yki
ρ
,

(A.10)

where ci are columns wi such that i = j. Note that Proxλ∥.−ci∥2(ζ) = argminu
1
2
∥u −

ζ∥22 + λ∥u− ζ∥ which we solve using Moreau’s decomposition

Proxλg(v) = v − λProx 1
λ
g∗(

v

λ
), (A.11)

where g∗ is the conjugate of g, which is the unit norm ball of the dual of l2 norm. So,
Prox 1

λ
g∗ = Proxλ∥.−ci∥2≤1 and
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Proxλ∥.−ci∥2≤1 =

{
ζ−ci

∥ζ−ci∥2 , ∥ζ − ci∥2 > 1

ζ − ci ∥ζ − ci∥2,≤ 1
(A.12)

Now using the updated local variables wk+1
f , wk+1

0 and wk+1
i ’s, we can update the central

variable z.

zk+1 = argmin
z

Lρ(z)

= argmin
z
⟨yf , wf − z⟩+ ⟨y0, w0 − z⟩+

∑
i ̸=j

⟨yi, wi − z⟩+ ρ

2
∥wf − z∥22

+
ρ

2
∥w0 − z∥22 +

∑
i ̸=j

ρ

2
∥wi − z∥22

⇔ −yf − y0 −
∑
i

yi + ρ(z − wf ) + ρ(z − w0) +
∑
i

ρ(z − wi) = 0

⇔ ρ(2 + |E|)z = ρ(wf + w0) + ρ
∑
i

wi + yf + y0 +
∑
i ̸=j

yi

=
ρ(wk+1

f + wk+1
0 ) + ρ

∑
i w

k+1
i + ykf + yk0 +

∑
i ̸=j y

k
i

ρ(2 + |E|)

(A.13)

Finally, the Lagrangian variables are updated.

yk+1
f = ykf + ρ(wk+1

f − zk+1) (A.14)

yk+1
0 = yk0 + ρ(wk+1

0 − zk+1) (A.15)

yk+1
i = yki + ρ(wk+1

i − zk+1) (A.16)
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