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Abstract

Planning the extraction of ore from a mine is not an easy problem. In today’s high
competition for capital, a high level of gurantee would be required with regard to profit
maximization and cost minimization. In this paper, we model the underground mine
planning problem by the K-cardinality Prize-Collecting Steiner Tree (KPCST) problem,
which is a special case of the standard Prize-Collecting Steiner Tree (PCST) problem on
graphs. The problem is N P-hard and a polynomial-time algorithm does not exist unless
P = NP. KPCST permits a positive cost on the edges and a positive prize on the vertices.
The vertices with non-zero prize are called profitable vertices. KPCST asks for a subtree
with exactly K profitable vertices maximizing the sum of the total prizes of all vertices
minus the sum of the total costs of all edges in the subtree. The main application considered
in this paper is the planning of ore extraction in an underground mine.

We first transform the original undirected graphs to directed graphs, concentrating on
the formulation on directed graphs, which is based on the one in Ljubié¢ et al. [31] and
propose an exact algorithm, which models the KPCST problem as an IP problem and uses
the branch-and-cut algorithm. The algorithm relaxes an exponential set of connectivity
constraints and retains only the violated constraints found by a maximum flow algorithm.
We also present a heuristic algorithm in order to try to reduce the computational time
of the branch-and-cut method. We then implement the proposed algorithm and test its
performance on simulated mining problems. A practical mining grid graph was tested
under different cases of the edge costs. Finally, up to 81 vertex instances have been solved
to optimality in several seconds.
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Chapter 1

Introduction

1.1 Problem Description

Planning and designing the extraction of ore from a mine is not an easy problem. In
today’s high competition for capital, a high level of guarantee would be required with
regard to profit maximization and cost minimization. In a designing scenario of the mining
problem, the input network is a set of interconnected tunnels which provides access to ore
zone and haulage of ore from the designated ore zone to the mill. The goal is to design
underground mine layouts minimizing associated costs. Thomas et al. [39] described a
mathematical network model and used two software tools for designing in two industry
case studies. One of the softwares called Underground Network Optimization tool (UNO)
was applied to design an extension to an Australian gold mine. The other one called
Decline Optimization Tool (DOT) was used to find an efficient decline for accessing a large
orebody. In the designing phase, the working structure of an underground mine which is
a set of interconnected tunnels is mainly considered, whereas the ore to mine, which has
been decided by the planning phase, is not considered.

For planning, the orebody is first broken down into mineable blocks of ore called stopes.
In a typical planning scenario of the mining problem, the input is a set of stopes to be
extracted and a potential network for extracting the ore. The net profit can be estimated
for each stope, and costs of the network are dominated by the labor and other charges for
reaching the stopes underground. Because of the geographical situation, the costs on the
path to each stope are different. In this paper, we will focus on the planning phase of the
mining problem.

The determination process to plan the extraction of the ore faced by a profit oriented
company consists of two parts:



1. A subset of stopes with high profit has to be selected, and the size of the subset
is limited to a certain number K. In practice, different scenarios can be planned
according to different K values. Morcover, the number A is constrained by various
other considerations, such as bottlenecks in traffic if too many stopes are mined in
one area. So for simplicity, we are assuming that the number of stopes to be selected
is exactly K.

2. The mining network may connect to the existing network or the surface and the
network has to be designed to connect all selected stopes in a cost-efficient way, i.e.,
there must be tunnels to the selected stopes and the cost of tunnels forms a negative
component of the total profit function to be maximized.

The problem above has a natural formulation on graph theory, where the graph cor-
responds to the mining map, with vertices of the graph representing the stopes of the ore
and the intersection of the tunnels, and the edges representing the tunnels. The prize p
associated with a vertex is an estimation of the net return by extracting that stope. The
vertices corresponding to tunnel intersections have no prize. The cost ¢ associated with an
edge is the cost of opening up the tunnels. The aim is to maximize the sum of the prize p
of the vertices minus the sum of the cost ¢ of the edges.

The definition of the problem to be addressed in this essay is given as follows:

K-cardinality Prize-Collecting Steiner Tree (KPCST) problem on a graph with
edge costs and vertex prizes (as mentioned before, prize is a number associated with a
vertex and the number is estimated by the profit of extracting the corresponding stope in
the mining problem) asks for a subtree with K vertices maximizing the sum of the total
prize of all vertices in the subtree minus the sum of the total cost of all edges in the subtree.

The classical Prize-Collecting Steiner Tree (PCST) problem does not require the num-
ber of profitable vertices in the solution while KPCST problem takes into account the
cardinality of the set of profitable vertices in the solution. Therefore, the KPCST problem
constitutes a generalization of the PCST problem. Of course, one may solve PCST by
repeatedly solving the K-cardinality problems for K = 1,....|V|, where |V| is the number
of vertices in the graph.

Given an undirected graph G = (V| E), let ¢, which is a non-negative number be the
cost on the edge e, and let p, which is a non-negative number be the prize on the vertex v.
The K-cardinality Prize-Collecting Steiner Tree (KPCST) Problem is to find a connected
subgraph 7" = (Vp, E7) of G, containing exactly K profitable vertices, that maximizes the

objective function
NWUT) = p— ) c (1.1)
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or equivalently, that minimizes the objective function

NW2AT) =Y cc— > po (1.2)

eGET ’UGVT

In other words, the goal is to find a connected subgraph T' = (V, Er) of G, containing
exactly K profitable vertices, that minimizes the objective function

GW(T)=> p+ Y ce (1.3)

U%VT ecEbr

When the objective function (1.1) or (1.2) is used, the problem in the literature (e.g.,
Johnson, Minkoff and Phillips [27]) is known as the Net-Worth maximization (NW) prob-
lem. On the other hand, when the objective function (1.3) is used, the problem is some-
times referred as the Goemans-Williamson minimization (GW) problem (Goemans and
Williamson [23]). From the optimization point of view, the two problems are equivalent.
However, as far as the computation of the worst case performance ratio of approximation
algorithms is concerned, they are not equivalent. Feigenbaum, Papadimitriou and Shenker
[20] have shown that it is N P-hard to derive an approximation within any constant fac-
tor for the NW problem, while for the GW problem there exists several approximation
algorithms which we will present later in this section. In this essay, we concentrate on
(1.3) as the objective function which is also considered in Ljubi¢ et al. [31], Goemans and
Williamson [24], Lucena and Resende [33] and Canuto, Resende and Tibeiro [6].

It is obvious that the optimal solution 7T is a tree. An intuitive explanation is that if the
solution is not a tree, since it is connected, it must have a cycle. Then we can remove an
edge from the cycle to decrease the objective function without violating the connectivity
requirement. We have two kinds of vertices throughout this paper: profitable vertices as
mentioned before, defined as R = {i € V' | p; > 0}; and non-profitable vertices with p; = 0.
Throughout this essay, we assume that R # ().

The goal of this paper is to present an exact algorithm to solve the planning of the
mining problem to optimality within a reasonable time, rather than finding a lower bound
or providing heuristic methods. As a matter of fact, Philpott and Wormald [35] introduced
a heuristic method for determining the optimal extraction of ore and waste from an open-
cast mine. The heuristic method may be useful for a given application, especially for the
large size instances. But it is also important to test exact algorithms.

1.2 Investigation and Adaptation

In order to find an exact algorithm to solve the mining problem to optimality, we investigate
much related previous work which will be discussed in Chapter 2. We follow the work by



Ljubié et al. [31] which is to design networks for planning and expansion of heating service
and make some necessary adaptations for the planning of the mining problem.

In Ljubi¢ et al. [31], they modeled the heating problem by the PCST problem. They
gave an integer linear program (ILP) formulation on a transformed directed graph using
connectivity inequalities and applied the branch-and-cut method to solve LP-relaxation
of the ILP problem. The separation of sets of violated inequalities was generated by
a maximum flow algorithm. A preprocessing method which reduced the size of many
instances significantly was introduced. They have solved instances of up to 2500 vertices
and 62,500 edges, most of which to optimality with a decrease of two orders of magnitude
in the computational time comparing with Lucena and Resende [33].

In our paper, we used the similar formulation and main algorithms: a branch-and-
cut algorithm to solve the IP problem and a separation algorithm to find the violated
constraints. Considering this particular mining problem in practice, however, we need to
do some adaptation of the formulation and algorithms to our problem.

First, we modeled the mining problem by the KPCST problem which requires exactly
K profitable vertices to be selected. With this extra restriction, most of the preprocessing
methods introduced in Ljubi¢ et al. [31] are not suitable since the vertices or the edges
cannot be simply discarded if K profitable vertices are required in the solution.

Second, we discuss a heuristic method based on that in Philpott and Wormald [35] to
reduce the computational time.

The third, as mentioned in Section 1.1, the mining network must connect to the existing
network or the surface, that is, a point of access is chosen from the existing network or the
surface, and the network joining the stopes will be connected to the access point. At this
point, the rooted version where the root represents the access point must be considered.
These problems are discussed in Section 3.4.

Finally, we implemented the main algorithms with CPLEX. We tested about 200 in-
stances under our test environment: a desktop PC with 64-bit AMD Phenom(tm) 9950
Quad-Core Processor 2.20GHz and 6.00 GB RAM. All the instances of up to 81 vertices
are solved to optimality in several seconds. We analyzed the main barriers to solve large
size problems and provided some possible improvements.

1.3 Remainder of Paper

The paper is organized as follows. In the next chapter, we give a literature survey on
the related problems and various variants of the problems, and illustrate their real-world
applications. The integer linear programming formulations for a directed graph of the



problem is presented in Chapter 3. We introduce some variants of the mining problem:
the rooted problem and the essential vertex problem in Chapter 3. A brief description of
the algorithm and the details of the algorithm are explained in Chapter 4. Computational
results are discussed in Chapter 5 and finally the conclusions are identified in Chapter 6.



Chapter 2

Literature Survey and Applications

2.1 Classification of Related Problems and Previous
Work

The Steiner Tree (ST) problem (see, e.g., S. Chopra et al. [11] and A. Lucena [32]) on
a graph with edge costs is expected to find the minimum edge cost tree for a given set
of terminal vertices. The terminal vertices here means the vertices which are required to
be included in the solution. The ST problem has been shown to be N P-hard by Garey,
Graham and Johnson [22] and hard even to approximate. There is a 1.55-approximate
algorithm due to Robins and Zelikovski [37]. Recently, Byrka et al. [5] proposed an
improved approximation algorithm for the Steiner tree problem but approximation within
95/94 is known to be N P-hard (Chlebik and Chlebikova [10]). Charikar et al. [7] gave an
algorithm that achieves an approximation ratio of O(k% log% k), where k is the number of
pairs of vertices that are to be connected for the directed Steiner problem.

Two related problems, both of which are generalizations of the Steiner Tree (ST) prob-
lem, are discussed in the literature: Prize-Collecting Steiner Tree (PCST) problem and
Node Weighted Steiner Tree (NWST) problem.

The Prize-Collecting Steiner Tree (PCST) problem has been introduced by Bienstock
et al. [4] and Goemans et al. [23]. The terminology “prize-collecting” was introduced in
Balas [3] for the Travelling Salesman Problem. Then this term became widely used in the
description of various combinatorial optimization problems. Prize-collecting is commonly
applied when there is a cost to be paid if including a vertex in the solution or a penalty to be
incurred if excluding the vertex. There are often other constraints included, which create
variants of PCST. For example, the problem in this paper adds a K-cardinality constraint
to obtain the K-cardinality Prize-Collecting Steiner Tree problem (KPCST). People have



considered other aspects of prize-collecting Steiner trees, like the Prize-Collecting Steiner
Forest (PCSF) problem discussed in Hajiaghayi and Jain [26]. PCSF problem takes into
account the edge costs, the terminal pairs and the penalties for the terminal pairs. The
objective is to find a forest F' and a subset () minimizing the sum of the costs and the
penalties. The terminal pairs are either connected by F or contained in Q).

As mentioned earlier, PCST is a generalization of ST problem. ST problem instances
with nonnegative edge costs may be remodeled as PCST instances by assigning a sufficiently
large positive prize to each terminal and zero prize to each nonterminal. Hence, the optimal
PCST solution is guaranteed to contain all the terminals which are required in the ST
solution. Therefore, PCST must also be N P-hard since ST with nonnegative edge costs is
a special case of PCST.

The Node Weighted Steiner Tree (NWST) problem which permits weights on the ver-
tices and costs on the edges is the same as ST problem but with weights on the vertices.
Given a graph with edge costs and vertex weights, the NWST problem finds a subtree
containing all terminals and minimizing the sum of the total cost of all edges in the sub-
tree and the total profit of all vertices not contained in the subtree. This is equivalent to
PCST, except that, in PCST, there are no mandatory vertices in the tree, i.e., the set of
terminal vertices is empty.

Segev [38] first introduced the NWST problem and Duin and Volgenant [18] further
analyzed it. Segev considered a special case of NWST, called the single point weighted
Steiner tree problem, where a vertex has to be included in the solution in addition to the
terminal vertices. In Cornone and Trubian [15], they associated a size parameter with

each vertex and add a knapsack constraint, which creates a problem called Knapsack Node
Weighted Steiner Tree (KNWST) problem.

Table 2.1 is a summary of these related problems which reports the functions and
constraints they take into account.

Table 2.1: Summary of the related problems

[Problem ledge cost|vertex prize|vertex size[root|[terminals|solution cardinality]

Steiner Tree (ST)

Node Weighted Steiner Tree (NWST)
Single point Weighted Steiner Tree
Knapsack Node Weighted Steiner Tree
Prize-Collecting Steiner Tree (PCST)
K-cardinality Prize-Collecting Steiner Tree
(KPCST)

<\
ANENENEN

ANENENENENEN
NENENENEN
\

The previous work on PCST and NWST focused on three aspects: (1) the generalization
of approximation algorithms to approximate the optimum value of the problems within
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certain constant factor; (2) the development of fast and reasonable heuristic methods to be
used for real world problems; and (3) the obtaining of lower bounds and exact algorithms.

Segev [38], who first proposed the NWST problem, developed two Lagrangian relaxation
bounding procedures for single point weighted Steiner tree problem. Two mathematics
formulations, one of which is called tree-type formulation and the other one is called flow
formulation, were provided. In addition, three heuristic procedures for feasible solutions
were developed, two based on greedy approaches and the other based on a subgradient
method. These procedures were tested in complete graphs of 40 vertices at most. Finally,
single point weighted Steiner tree problem was shown to be an N P-complete problem.

Bienstock et al. [4], who first introduced PCST, proposed a factor 3 approximation algo-
rithm. This algorithm was first developed as a heuristic procedure based on Christofides’s
heuristic method for the Travelling Salesman Problem (Christofides, [13]). Goemans and
Williamson [24] modified a primal-dual method to give an approximation algorithm which
runs in O(|V]?1og |V]) time and the worst-case performance ratio is 2 — Iv\%l They de-
veloped an edge pruning method which can be viewed as a greedy algorithm in the last
part of the algorithm to obtain the final solution. Goemans and Williamson algorithm
was improved by Cole et al. [14] by reducing the running time from O(|V|?log|V]) to
O(k(|V| + |E|)log®|V|). Johnson, Minkoff and Phillips [27] also improved Goemans and
Williamson algorithm by giving a new strategy for the pruning phase. The new strategy
has been shown to have a better performance based on the results on graphs of up to
25,600 vertices. A 2-approximation algorithm for finding the best subtree over all choices
of root was also given without an increase in running time. Feofiloff et al. [21] presented a

new algorithm which achieves a ratio of 2 — ﬁ—| within the same time. Then Bateni et al.
[2] gave an improved (2 — €)-approximation algorithm.

There are some other approximation algorithms for NWST, e.g., Klein and Ravi [29]
obtained a greedy algorithm whose performance ratio is 21n|T|, where |T’| is the number
of terminals. The ratio was then improved by Guha and Khuller [25] to 1.6031n|7"| with
another simple greedy algorithm.

Some metaheuristic approaches for PCST have been proposed (Metaheuristics make few
or no assumptions about the problem being optimized and can search very large spaces
of candidate solutions). For example, Canuto et al. [6] provided a local search method
with perturbations on graphs with up to 1000 vertices and 25,000 edges, most of which
were solved to optimality. Klau et al. [28] developed a memetic algorithm which includes
an exact subroutine for the problem on trees and a steady-state evolutionary algorithm to
create candidate solutions with less computational time. The memetic algorithm is used to
reduce the instance by eliminating edges which are probably not contained in the solution.
Then an exact method is applied on the resulting graph.

Besides approximation algorithms and heuristic methods, a wealth of exact algorithms



and lower bounds have been presented. Engevall et al. [19] proposed a new formulation
of NWST and derived a Lagrangian bound. A Lagrangian heuristic procedure based on
Lagrangian relaxation for generating near-optimal solutions was also used. In this new
formulation, the authors introduced an artificial root vertex 0 and the edges between
vertex 0 and ¢ € V\{1} and restricted that the degree of the root vertex 0 should be 1.
An optimal solution is obtained by removing vertex 0 and the edge connected to vertex
0 from the solution tree of the transformed graph. The lower bounds were stronger than
those in Segev’s algorithm [38].

Lucena and Resende [33] have also proposed a method for obtaining lower bounds. They
presented a cutting plane algorithm for the PCST which cuts are generated from subtour
elimination constraints. They also used reduction tests given by Duin and Volgenant [18]
and 114 instances with up to 1000 vertices and 25,000 edges. Most of the bounds are
proved to be optimal. Ljubi¢ et al. [31] later improved Lucena and Resende’s results with
a branch-and-cut algorithm.

2.2 Applications

In addition to the mining problem, several network design problems can be modeled as
PCST. One well-known application is the design of telecommunication access networks
(Cunha, Lucena, Maculan and Resende [16]). The problem is to decide whether to create
or expand a network offering services to new customers. Every customer could give some
profit to the company but there is also a connection cost and labor cost when offering the
services to each customer. There exists a natural trade-off between the profit that the
new customer could provide and the cost when offering the services to the new customer.
Such a problem can be modeled in graph by representing the customers as the vertices and
physical links as edges. Laying down the optical fiber and servicing a customer imply a
cost, while the profit can be gained from the customers. Sometimes the service provider
can be represented as a root which must be included in the solution. In Cordone and
Trubian [15], considering the budget limitation or government laws preventing monoplies,
capacity constraints are added to the problem. Another similar application is the design
of cable television network.

Ljubié¢ et al. [31] have reported a similar application in the planning and expansion of
district heating networks. The goal is to find the most profitable subset of customers and
cost-efficient way to connect them to the heating plant. One more example, as described
in Cordone and Trubian [15], is building connected platforms in an offshore area for an oil
company. The edges represent the pipelines, whereas the vertices represent the sites where
platforms are installed. The sites generate profits and the costs consist of the installation
and the maintenance costs.



PCST can also be used as a subproblem in more general problems. Chawla et al. [§]
considered the PCST as part of a mechanism which selects a set of clients to gain services
and determine multicasting networks to offer services. Both nodes and edges are considered
to be selfish agents. The mechanism provides guarantees to obtain some fraction of the
obtainable profit, or demonstrates that no profitable solution exists if market is sufficiently
unprofitable. In Duin and Vlogenant [18], the uncapacitied facility location problem is
reduced to PCST by assigning positive prizes to customers and assigning negative prizes
to the facilities, representing the cost of these facilities.

10



Chapter 3

Integer Linear Programming
Formulations of the KPCST Problem

Here are some notations we use in the remainder of this paper:

e [(S) denotes the edges in the subgraph induced by S.

e For a directed graph with vertex set V, consider a set of vertices S C V' and its
complement S = V\S. Then cut sets are defined as:

0~ (S) ={(i,4)lie S,jeS}
and
5T(S) = {(i,j)li € S,5 € S}.

e Given a variable x;; for an edge (i, j), ©(S) = >_; jcs %i; denotes the sum of the x
variables of the internal edges in S, |S| > 2.

3.1 Transformation To the Rooted Directed Graph

We transform the original undirected graph for the KPCST problem to a directed graph
in order to achieve a tighter Linear Programming relaxation (LP-relaxation). The fact
that LP-relaxation for the directed graph is tighter than that for the undirected graph was
proven by Chopra and Rao [12]. Moreover, Chopra, Gorres and Rao [11] demonstrated
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this fact through some experiments comparing the lower bounds for directed graph and
undirected graph.

The transformation to the rooted directed graph is as follows:

1. Expand the unrooted graph to a rooted graph by introducing an artificial root 7.

2. Change a profitable vertex 7 to two vertices, say a and b: a is a profitable vertex and
b is a non-profitable vertex. The new profitable vertex is assigned the same prize as
1, i.e., p, = p;- The prize of the non-profitable vertex is 0, i.e., p, = 0. Connect a
and b with an edge both ways, one of which called edge ba goes to a and the other
one called edge ab goes to b. Replace the original profitable vertex ¢ by the new
non-profitable vertex b. Repeat this procedure until all the profitable vertices have
been changed. Let the resulting graph to be G’ = (V' E’) and let the newly added
arc set to be A.

3. Let Gy = (Vy, E4) be the transformed directed graph. The vertex set V; = V' U {r}
contains the vertices of the graph G’ and an artificial root vertex r. The arc set Ey
contains two directed arcs (i,7) and (j,4) for each edge (i,7) € E together with the
arcs from the root r to the profitable vertices i € R', R' = {i € V; | p; > 0} and the
arc set A.

4. Let ¢;; be the original cost on the edge (i,j) € E, and let p; be the prize on the
vertex i € V. The arc cost vector ¢ of Gy is defined as

C/ . Cij — Py V(Z,])EEd,jE‘/&,Z#T
Y — Py Y(r,j) € Eq,j € R

That is, the arcs from the root to the profitable vertices (r,j) are assigned a cost
—p; while all other arcs (7, j) with ¢ # r are assigned a cost ¢;; — p;. For the arcs in
the set A, for example, ab € A, which goes to the non-profitable vertex, is assigned
a cost 0; while ba € A, which goes to the profitable vertex, is assigned a cost —p,.

5. Remove all prizes from vertices. This is because they have been encoded in the edge
cost according to the definition of the new arc cost vector.

Figure 3.1 is an example to illustrate this transformation.
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(a) Original undirected graph

(b) Transformed directed graph

Figure 3.1: An example of the transformation to the rooted directed graph. The numbers
on the edges are the costs of these edges. The letters on the vertices are the names of the
vertices. The hollow circles are profitable vertices with prize 100, while the solid circles
are non-profitable vertices with prize 0. An artificial root r is added in figure (b). Three
original profitable vertices, {b,g,i}, are moved to {j,k,m}, and {b, g,i} are changed to
non-profitable vertices. They are connected by the extra arcs {bj, jb, gk, kg,im, mi}. As
can be seen in figure (b), the root is adjacent to the three new profitable vertices {7, k, m}.
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3.2 Integer Programming Formulation For the Steiner
Arborescence Problem On the Directed Graph

Once transformed, the problem is to find a min-cost subtree T, rooted at r that containing
exactly K profitable vertices with minimum sum of edge costs; we call this the Steiner
arborescence problem. This directed tree T); that all paths in the tree have to be oriented
away from the root is called a Steiner arborescence (Rao et al. [36]). The optimal solution
to the KPCST is identified by removing the artificial root r» and all the arcs that are
connected to the root. A feasible arborescence is a subgraph which corresponds to a
solution of the KPCST with the additional restriction that » must have degree 1 in Gy,
to be precise, the root can only be adjacent to one profitable vertex. This ensures that
the solution of the original graph is connected after removing the artificial root r and the
edges connected with r. Since if the degree of r is more than 1, i.e., r is adjacent to more
than one profitable vertex, then the extra profitable vertices adjacent to the root may be
isolated in the optimal solution for the original undirected graph, although it is connected
in the transformed directed graph. An optimal KPCST can be achieved by a feasible
arborescence with minimum total arc cost since it is obvious that minimizing the new arc
cost function in the transformed directed graph is equivalent to minimizing the objective
function (1.3) in the original undirected graph.

In order to model the Steiner arborescence problem of finding a minimum Steiner
arborescence by an integer program, we introduce two variable vectors associated with
arcs and vertices: (1) = € {0, 1}/Fal where 2,5, (4,7) € E, is 1 if and only if (4, 7) is included
in the solution of the Steiner arborescence problem and 0 otherwise, and (2) y € {0, 1}/Val=!
where y;,i € Vz\{r} is 1 if and only if 7 included in the solution, that is:

1 (i,5) €Ty . 1 ieTy .
= Y(i,j) € E, - VieV,
i { 0 otherwise (% 7) d Y 0 otherwise ! d

The Integer Programming (IP) formulation for the Steiner arborescence problem on
the transformed directed graph is similar with the one used in I. Ljubié¢ et al. [31], with
the difference that they did not consider the cardinality of the set of profitable vertices in
the solution. Thus, one more constraint for the cardinality limit is added for this specific
problem. This IP formulation is as follows:

(IP1)
min Z CiiTi (3.1)

ijeEEy
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subject to

j’iEEd
> w=1 (3.3)
rely
z(67(S)) >y 1€ S,VS CVy such that r ¢ S, (3.4)
> y=K 3.5
pi>0
yr =1 (36)
xij,y; € {0,1} V(i,j) € Eq, Vi € Vo\{r} (3.7)

We name this IP formulation as “IP1”. In order to ensure that the objective function
(3.1) and (1.3) have the same value, the constant term ), .. p; is added above.

Constraint (3.2), which is called in-degree constraint, guarantees that each vertex se-
lected in the solution must have exactly one predecessor on its path from the root. The
so-called root-degree constraint (3.3) makes sure that the artificial root r has out-degree 1,
thus it is only adjacent to a single profitable vertex, which is crucial for the connectedness
of the solution to KPCST according to our analysis above.

Constraints (3.4) are called connectivity inequalities for this problem. They guarantee
that each selected vertex ¢ must be connected in the solution, i.e., there must be a directed
path from the root r to 7. The justification for this is as follows: Let D be the digraph
induced by the edges with non-zero x values. let set S" = {all vertices in D to which there
is no path from the root}. If D is disconnected, then S” is nonempty. However, this would
contradict the constraints (3.4). Therefore, in the solution, D contains a path from the
root r to i,Vi € Ty.

Constraint (3.5) requires the cardinality of the set of profitable vertices in the solution
of IP1 problem to be K. Constraint (3.6) guarantees that the root is in the solution.

From constraint (3.2) and (3.4), it is easy to see that the feasible solution of IP1 problem
can be viewed as a set of paths from the root vertex to the other vertices and there is
exactly one directed path from the root to each vertices. Thus the feasible solution of the
IP1 problem is a rooted directed tree called Steiner arborescence as mentioned before. The
optimal solution of IP1 problem is a feasible arborescence with minimum total arc cost.

3.3 Strengthening the Formulation

As mentioned before, the feasible solution of IP1 problem is already a Steiner arborescence.
But in order to reduce the computational time, we add extra constraints. These constraints
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are also used in Ljubi¢ et al. [31].

3.3.1 Out-degree Constraint

The feasible solution of the Steiner arborescence problem is a set of paths from the root
to the selected vertices. In view of the structure of this solution, we notice that a non-
profitable vertex could be a leaf of the solution tree only if it is connected through a zero
cost edge (a leaf in a tree means a vertex with the out-degree to be 0). But this case is not
necessary for our solution, thus we use the following constraint to prevent a non-profitable
vertex from being a leaf.

yi <Y @y, (Vi Ryi#r) (3.8)
ijeEy
Moreover, from the constraint (3.2), Y., Tji = yi, constraint (3.8) can be written as:

ji€Eq ij€Eq
Constraint (3.9) expresses a trivial fact that the in-degree is always smaller than or
equal to the out-degree for a non-profitable vertex whose out-degree is at least 1, because
the in-degrees of the vertices except the root in the solution tree of the Steiner arborescence
problem are always 1.

Constraint (3.9) is referred as the flow-balance constraint in some literature. It was
introduced by Koch and Martin in [30] for the Steiner Tree problem.

Figure 3.2 is an example to show that constraint (3.9) indeed strengthens the LP-
relaxation of (3.2)—(3.7) .

3.3.2 One-way Constraint

The structure of the solution of the Steiner arborescence problem, in which the paths
are from the root to the selected profitable vertices, implies that every edge can be only
oriented in one way. The constraint (3.10) expresses this fact.

vij + x5 < yi, Vi € Va\{r}, (i, 7) € Eq (3.10)

Ljubi¢ et al. [31] compared the computational results with and without constraint
(3.10) and found that this constraint was crucial for their test instances to reduce the
time. Some of their test instances could not be solved without this constraint. We do not
have enough time to do this test but we may do this test in the future.

16



100

2 2

100 100

(c) Solution of the LP-relaxation of (3.2)- (d

(3.7) without out-degree constraint (3.8) (3
(3
s

) Solution of the LP-relaxation of (3.2)-
J7) with out-degree constraint (3.8) or
.9). The total cost of the arcs in the
quare matrix is 8.

or (3.9). The total cost of the arcs in the
square matrix is 7.5.

Figure 3.2: An example showing a strengthening of the LP-relaxation of (3.2)-(3.7) by
adding out-degree constraint. The hollow circles are profitable vertices with prize 100,
while the solid circles are non-profitable vertices with prize 0. The numbers on the edges
are the solution values of y variables and the numbers on the vertices are the solution
values of x variables.
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(a) (b)

Figure 3.3: An example of two feasible solution of Steiner arborescence problem represent-
ing the same KPCST solution. K = 3.

3.3.3 Asymmetry Constraints

Considering the solution of the Steiner arborescence problem and the KPCST problem,
there exists some cases that the different feasible solutions of Steiner arborescence problem
represent the same KPCST solution. Figure 3.3 illustrates an example.

In order to exclude these unnecessary solutions of the Steiner arborescence problem to
reduce the computational time, we add constraints called asymmetry constraints.

2y <l—y; Vi<ji€R (3.11)

These constraints require that, for every feasible solution of the Steiner arborescence
problem, the root is adjacent to the profitable vertex with the smallest index.

3.4 Variants of the Mining Problem

The planning of the mining problem is a very complex and large problem and the KPCST
problem is a vast simplification of it. More cases under different conditions need to be
considered in practice. As discussed in Chapter 1, the rooted version of the KPCST
problem which contains a root representing the access point to which the network joining
the stopes is worthy being considered.
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We first transform the rooted version of the KPCST problem to the Steiner arborescence
problem on a directed graph. The transformation is the same as it we discussed in Section
3.1. Then we adapt the IP1 formulation discussed in Section 3.2 to the rooted version.

In order to satisfy the requirement that the root » must be contained and connected in
the solution, we simply add a so-called essential-vertex constraint:

An alternate method is to assign the root a large enough prize to ensure the root to be
selected in the solution.

There are some other cases of the planning of the mining problem which we need
to consider. For example, we may plan to augment a network by a set of new stopes.
The existing network can be shrunken into a single stope which must be included in the
solution of the mining problem. Thus we model the problem by essential vertex KPCST:
these shrunken vertices must be contained and connected in the solution. Apparently, this
problem is almost the same as the rooted version of the KPCST problem. The formulation
can be modified by adding essential-vertex constraints. Let D = {i € V| 1i1is an essential
vertex}

y, =1, 1€D (3.13)
Then, notice that the selected profitable vertices should not be in the set of D, so that
the constraint (3.5) is modified to:
Y yi=KieRR={icVyp>0}i¢D, (3.14)
i€Vy

Of course, an alternate method is to assign these essential vertices large enough prizes
to ensure these essential vertices to be selected in the solution.
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Chapter 4

Our Algorithms

4.1 Overview of Our Algorithms

In this chapter we give a general overview of the algorithm to solve IP1 problem. The next
section will give the details of some steps.

In general, our algorithm contains 4 steps: heuristic method, initialization, branch-and-
cut and separation. This algorithm is mainly based on the one in Ljubié et al. [31] and
some necessary adaptations are made for IP1 problem. For example, we do not use any
preprocessing steps in our algorithm while Ljubié et al. [31] applied such steps to reduce
the computational time. Instead, we describe a heuristic method to try to reduce the
computational time. Moreover, Ljubié¢ et al. [31] used the branch-and-cut algorithm once
and applied the separation algorithm at each node of the branch-and-cut tree; while we run
the separation algorithm after every branch-and-cut step finishes and may resolve the IP
problem using the branch-and-cut method again, i.e., we use the branch-and-cut algorithm
several times in order to implement our algorithm more efficiently (we did not find the way
to incorporate new constraints during the branch-and-cut procedure due to limited time).
The flowchart of the general algorithm is given in figure 4.1.

Step 1. Heuristic method

We describe a heuristic method for the Steiner arborescence problem. It is adapted
from the method in Philpott and Wormald [35] with some modifications according to the
problem we are concerned with here. The heuristic method in Philpott and Wormald [35]
solved the problem in graph theory arising from a model for the planning of the extraction
of ore from an open cast mine. They modeled the mining network as a mining graph which
is a directed graph having a root, together with a weight function associated with vertices
of the graph. They used growtree and findtree to find a heaviest subtree which contains
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Figure 4.1: Flowchart of the algorithm used
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a certain number of vertices and the root in the mining graph. Therefore, the problem
considered by Philpott and Wormald [35] just has the vertex weight function, while the
Steiner arborescence problem considered here has both the edge cost function and the
vertex weight function. In addition, We took into account both the profitable vertices and
the non-profitable vertices, while Philpott and Wormald [35] only considered the profitable
vertices. Thus we modified the two main algorithms, growtree and findtree, to solve our
problem. The details will be discussed in the next section. After we obtain the solution,
set h to be equal to the value of 37 oy, py + >~ cp, ce found.

Step 2. Initialization of IP problem

We initialize the IP problem which is called “IP2” problem in a directed graph to be
as follows:

(IP2)

min Z CijTij + Zpi

ijeE, i€Vy

subject to

Z Tji = Y; Vi € Vd\{r}

ji€Ey
> =
m’EEd
> ui=K
p;>0
ZL’TJS]_—yq VZ<j,ZER
Yr =

x5,y € {0,1} V(i,j) € Eq,Vi € Vo\{r}

The connectivity constraints (3.4): z(0~(S)) > yx are not inserted at the beginning
since there are exponentially many of them. Without this connectivity constraint, the
solution of IP2 problem may be unconnected. Thus we need to add enough constraints
to ensure the solution to the final IP problem is valid, which in this case means that it is
connected. These can be done in the separation step which will be discussed later. We do
not have to add all of the connectivity constraints because once the solution of the final
IP problem is connected, those added constraints have done their job.

When initializing, we also added the asymmetry constraint (3.11). In fact, we could
have added more strengthening constraints as described before, see (3.8) and (3.10), in
this initial IP problem. Adding and testing these constraints could possible be included in
future work on this problem.
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For the rooted or the essential vertex version of the KPCST problem, we can solve
them by adding the essential-vertex constraint for the root or the essential vertices in the
initial [P problem and then proceeding as with the unrooted version.

Step 3. Branch-and-cut

We use a branch-and-cut algorithm to solve IP2 problem in order to get an optimal
integral solution. Branch-and-cut is a method of combinatorial optimization for solving [P
problems, which is a hybrid of branch-and-bound and cutting plane methods.

Branch-and-cut method first solves the linear program which is called the LP-relaxation
of IP problem without the integer constraints using the regular simplex algorithm to get an
optimal solution. If this solution is not integral, that is, any of the variables in the solution
is not integer, the cutting plane algorithm is applied to find further linear constraints which
are violated by the current fractional solution but satisfied by all feasible integer points. If
such a constraint exists, it is added to the linear program. Then the new LP problem with
the added constraint is resolved and a different solution which is hopefully ”less fractional”
is obtained. This process is repeated until no more cutting planes can be found or until
an integer solution is found. This integer solution then can be viewed as optimal solution.
In our algorithm, the cutting plane part is automatically implemented by CPLEX which
is discussed in Chapter 5.

Then the branch-and-bound part of the algorithm is started. The problem is split into
two subproblems, one with the additional constraint that the variable is larger than or
equal to the next integer greater than the current fractional value, and one where this
variable is less than or equal to the next lesser integer. The new lincar subprograms are
then solved using the simplex method and the process repeats until an optimal solution
is found or the problem is proved to be infeasible. During the branch and bound process,
further cutting planes can be applied. These processes will be described in detail in Section
4.2.

Step 4. Separation and Termination

After we obtain an integral solution of IP2 problem in Step 3 using the branch-and-
cut algorithm, we need to check the connectivity of this solution. If the solution is not
connected, then the solution must violate some of the connectivity constraints (3.4). The
corresponding constraints are called wviolated constraints. On the other hand, if there exists
violated constraints, the solution is not connected. Therefore, during the separation phase,
we first check the connectivity of the integral solution with the connectivity constraints
(3.4). If there exists a violated constraint of type (3.4), some such violated constraints are
added dynamically into IP2 problem. Then go to step 3; otherwise, we find the integral
connected solution, i.e., the optimal feasible solution, and stop.

Figure 4.2 and 4.3 give an example of an application of the algorithm. First the original
undirected graph is transformed to a directed graph. Then the branch-and-cut method is
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applied to solve the initial IP2 problem. After that, the separation method is used to check
the connectivity of the solution and the violated constraints are added to IP2 problem. This
process is repeated until the optimal feasible solution is found. In the example, three times
of separation method are used and the problem is resolved by branch-and-cut method four
times.
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(c¢) Integral solution of the IP2 problem
with branch-and-cut. Values of x and y
variables are shown. Apparently, the solu-
tion is not connected, so the violated con-
straints added to IP2 problem.

(b) transformed directed graph after trans-
formation to Steiner arborescence prob-
lem.
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(d) Integral solution of the IP2 problem
with branch-and-cut after the first connec-
tivity check in the separation phase. The
solution is not connected. The violated
constraints added to IP2 proble.

Figure 4.2: An example of the application of the general algorithm. The hollow circles are
profitable vertices with prize 100, while the solid circles are non-profitable vertices with
prize 0.

25



0 1 @0 @0
1 0 1 1
1 1 1 1
1 1 1 1
(a) Integral solution of the IP2 problem (b) Integral solution of the IP2 problem
with branch-and-cut after the second con- with branch-and-cut after the third con-
nectivity check in the separation phase. nectivity check in the separation phase.
The solution is not connected. The vio- The solution which is integral and con-
lated constraints added to IP2 proble. nected is the optimal feasible solution.
[ 1 @0
1
@0 1 @0
1

1O—1 1 1 (O1

(¢) The corresponding optimal solution in
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Figure 4.3: An example of the application of the general algorithm. The hollow circles are
profitable vertices with prize 100, while the solid circles are non-profitable vertices with
prize 0.

4.2 Algorithm Details and Explanations

4.2.1 Our Heuristic Method

In this section, we present a modified heuristic method based on the one discussed in
Philpott and Wormald [35]. Two main algorithms: growtree and findtree, are used in this
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method to find a rooted directed subtree which contains exactly K profitable vertices min-
imizing the sum of the edge costs for the Steiner arborescence problem on the transformed
directed graph by the transformation described in Section 3.1. Recall that there is no prize
associated with the vertices in this transformed directed graph for the Steiner arbores-
cence problem and the edge costs have both positive and negative number, (see, Figure
3.1b in Chapter 3). For convenience, we change the negative edge costs of the transformed
directed graph to be 0 and assign the profitable vertices their original prizes (see, Figure
4.4a). Hence, the problem is changed to find a rooted directed subtree which contains
exactly K profitable vertices minimizing the sum of the edge costs minus the sum of the
profitable vertex prizes on this modified directed graph using the heuristic method.

Growtree algorithm

As we discussed above, the input graph for the heuristic method is the modified directed
graph G, = (Vy, E4). Then we restrict the out-degree of the root to be 1 by connecting the
root to the profitable vertex with the largest prize. Growtree is used to construct a feasible
arborescence T' = (Vp, Er) where R C Vi, that is, a rooted directed subtree containing all
the profitable vertices in which the out-degree of the root is 1. In our searching process of
the growtree algorithm, two kinds of vertices, profitable vertices and non-profitable vertices,
are considered; while only one kind of vertices in the findtree algorithm is described in
Philpott and Wormald [35]. Another difference is that both the edge costs and the vertex
prizes are considered here, while only the vertex weights are considered in Philpott and
Wormald [35]. The description of the growtree algorithm is as follows.
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Algorithm 1 Growtree algorithm

Require: A directed graph G!, = (Vj, E4) with the costs associated with the edges and
the prizes associated with the profitable vertices.
Ensure: A directed subtree 7' = (Vr, Er) which contains all the profitable vertices and

the root.

Restrict the out-degree of the root to be 1 by connecting the root to the profitable vertex

with the largest prize, say j.

set T'= {r} U{j} U{rj}

repeat
Find a profitable vertex i* such that the prize p;» = maz{p;|i € R and ¢ ¢ T}. If there
are more than one profitable vertices which have the same largest prize, we choose one
of them randomly.
Find the least cost path from 7" to ¢*, i.e., consider all paths from any node in T" to *
and choose the one with the least cost of them and call the path P. Similarly, if there
are more than one paths to ¢ which have the same least cost, we choose one of them
randomly.
{Comment: Since the edge costs are nonnegative, we use Dijkstra’s algorithm, which
solves the single-source shortest path problem for a graph with nonnegative edge
path costs. Here, Dijkstra’s algorithm is stopped once the shortest path has been
determined. }
T=TuU{P}

until all the profitable vertices are in T'

Findtree algorithm

Findtree is a recursive algorithm based on dynamic programming, which can be applied to
find exactly K profitable vertices together with the root r in T to satisfy the minimization
requirement. Roughly speaking, growtree set up the skeleton framework for mining all the
profitable stopes, while findtree chooses the best K stopes to extract.

The arcs of the directed tree obtained from growtree are oriented from the root r. Before
we give the description of this algorithm, it is necessary to introduce some definitions which
follow Philpott and Wormald [35] that we will need in findtree:

1. son of a vertex u: u is a vertex of T', a son of u is a vertex adjacent from u. If u is a
leaf then v is null.

2. B(u) = {the branch of G which consists of u together with all its descendants}.

3. Order the sons of a vertex u. S(u,v) = {the set of sons of w which come after v based
on the order of the sons of u }. If u is a leaf then B(u) is just u and S(u,v) is 0.
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4. B(u,v) = {the subtree with minimal sum of edge cost containing no vertices in

S(u,v) }.

The main function of the findtree algorithm is findtree(u, v, f) where u is a vertex of
T, v is a son of u, (If u is a leaf then v is null.) and j is a positive integer at most K.
The output of this function is a subgtree of B(u,v) which contains f profitable vertices
and the vertex u if u is a profitable vertex minimizing the sum of the total edge cost in
the subtree. If we set u to be the root r, v to be the last son of r and j to equal to K,
then findtree(r, v, k) will find the subtree of T" with the minimum sum of the total edge
cost, which contains K profitable vertices and the root r. The differences between the
findtree algorithm here and that presented in Philpott and Wormald [35] are the same as
the differences of the growtree algorithm we described in Section 4.2.1.

The description of the recursive algorithm findtree is as follows. An example of the
heuristic method including growtree and findtree algorithm is given in figure 4.4 and 4.5.
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Algorithm 2 Findtree algorithm

Require: findtree(u, v, f), u is a vertex of T, v is a son of u, (If u is a leaf then v is null.)
and j is a positive integer at most K
Ensure: subtree of B(u,v) which contains f profitable vertices with the minimum sum of
the total edge cost
if u is null or j=0 then
return ()
else if u is a leaf and j > 0 then
if j=1 && u is a profitable vertex then
return {u}
else
return null
end if
else
Thest = T7
w=the last son of v;
if v is the first son of u based on the order of the sons of u then
if u is a profitable vertex then
T = findtree(v,w,j — 1) U {u}
else
T = findtree(v,w,j) U {u}
end if
if T is not null and the sum of the total edge cost minus the sum of the total prize
of T is less than this value of Ty then
Thest = T7
end if
else
v'=the son of u immediately before v based on the order of the sons of u
for all i=1 to j do
T = findtree(u,v',i) U findtree(v,w,j — i)
if either of the two trees in the above union is null then
T = null;
else
if the sum of the total edge cost minus the sum of the total prize of T is less
than this value of Tj., then
Thest = Ta
end if
end if
end for
end if
end if
return Tpeq; 30




(a) The input graph
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(c) Growtree algorithm. Add the least cost
path P1 from T to the current most prof-
itable vertex ¢t. T'=T U P1 is shown.

(b) Restrict the out-degree of the root to be
1 by connecting the root to the profitable
vertex n which has the largest prize. T =

{r}u{n}uU{rn}.
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(d) Growtree algorithm. Add the least cost
path P2 from T to the current most prof-
itable vertex ¢ which is chosen randomly
between p and s since p; = p,. T'=TUP2
is shown.

Figure 4.4: An example of the heuristic algorithm. The hollow circles are profitable ver-
tices, while the solid circles are non-profitable vertices with prize 0. The numbers on the
profitable vertices are the prizes and the numbers on the edges are the costs. The letters
on the vertices are the names of the vertices.
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(a) Growtree algorithm. Add the least cost (b) Findtree algorithm. Select K prof-
path P3 from 1" to the current most prof- itable vertices minimizing the sum of the
itable vertex s. The output of growtree total edge costs minus the sum of the total
algorithm 7' =T U P3 is shown. vertex prizes. K = 3.

Figure 4.5: An example of the heuristic algorithm. The hollow circles are profitable ver-
tices, while the solid circles are non-profitable vertices with prize 0. The numbers on the
profitable vertices are the prizes and The numbers on the edges are the costs. The letters
on the vertices are the names of the vertices.

4.2.2 Branch-and-cut Algorithm

A branch-and-cut algorithm is used to solve the problem IP2. Denote the optimal inte-
gral solution by x* and y* with an minimum cost value z. The classical branch-and-cut
algorithm (see, Mitchell [34]) for an IP minimization problem is as follows:

Step 1. Initialization

Denote the initial IP2 problem by I P° which is at the root node of the branch-and-cut
tree where each node is an IP problem. Define the set of active nodes to be L = {IP%}
(Here active node means that the problem at the node is not processed or pruned). Set the
upper bound z = h (h is the objective function value obtained from the heuristic method)
and the lower bound z, = —oo. The upper bound Z is the best value of the objective

function found so far. The incumbent objective value z will be replaced by a better value
if found.

Step 2. Termination

If L = (), then the integral solution z* and y* that yield the incumbent objective value z
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are optimal. If Z = h, this means after we process all the IP problems in the branch-and-cut
tree, we cannot find a better integral solution than the heuristic method.

Step 3. Node selection

Select a node IP',l € L in the branch-and-cut tree and delete this current node from
the active node set. This node will now be processed.

Step 4. Relaxation

Solve the LP-relaxation of I P!l € L, obtained by replacing the integrality requirements
zi; € {0,1},V(i,7) € Egand y; € {0,1},Vi € Vu\{r} by 0 < z;; < 1,V(4,5) € E4 and
0 <y <1,Vie Vy\{r}. If the optimal objective value of the relaxation is finite, we set
2 to be this objective value and the solution, #' and 4!, to be the optimal solution for the
LP-relaxation of problem IP'; if the relaxation is infeasible, we set z; = +oo and go to
Step 5; otherwise, if the optimal solution is negative infinite, we set z; to be —oo.

Step 5. Fathoming and pruning

After obtaining the lower bound z; for the LP-relaxation of /P!, we fathom and prune
the current node in the branch-and-cut tree by one of the following criteria.

(a) If z; > Zz, prune this node, that is, remove this node from the branch-and-cut tree
and go to Step 2.

(b) If 2, < z, and the solution vectors 2! and 3 are integral, update z = z;, set this node
to be new incumbent node, and delete all problems [’ from L with z; > Z, remove
the corresponding nodes in the branch-and-cut tree, and go to Step 2.

(c) If z; < Z and the solution vectors are not all integral, go to Step 6 to branch at this
node.

Step 6. Partitioning

Split the node problem IP' into two smaller subproblems, typically by branching on
a variable that violates its integrality constraint, and then go to Step 2. For example,
we branch the problem by fixing a fractional variable z;; or y; to be 0 and 1. These
subproblems are added to the branch-and-cut tree as active nodes.

Our strategy of the branching process for IP2 problem is to branch using the vertex
variables y first, and then branch using the edge variables x after no more fractional y
variables can be found. There are some other strategies such as to branch using the edge
variables first and then the vertex variables. In our implementation, we only use the first
strategy because we do not have time to test other strategies. This is a possible item for
future work.
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Here are the details of our first strategy. Given the set of fractional vertex variables S; =

{yi | yi is fractional } and the set of fractional edge variables Sy = {z;; | x;; is fractional},
let

— Yy, € S

Yi { 11—y,  otherwise Y !

We select the vertex variable yf € Sy where y/* = maz{y,} to branch. This selection
method is discussed in the handbook of CPLEX and used in some sample codes. Denote
the subproblems by {IP"} where y; is fixed to be 1, and {IP%} where y! is fixed to be
0. Add the two subproblems to L. If S is ), i.e., no more vertex variables are fractional,
then select the edge variable z;; € S to branch through the same way with the vertex
variables. Set the lower bound for the subproblems to be z which is the same as the one
for the parent problem I P!. Go to Step 2.

4.2.3 Separation Algorithm

As described in Section 4.1, the separation algorithm is to check the connectivity of the
solution of the IP2 problem obtained by the branch-and-cut algorithm, find some violated
constraints and add them into the formulation of IP2 problem. We keep adding these
violated constraints till a connected solution is found. This algorithm was also used in
Ljubi¢ et al. [31].

Recall that the connectivity constraint (3.4) is x(6(5)) > yi,i € S,r ¢ S,VS C V;
which requires that the sum of the values of the variables of the edges in the cut set of
S is larger than or equal to the value of the variable y;. As proved in Section 3.2, this
constraint guarantees the connectivity of r and 7. Since S is arbitrary, this constraint
must be satisfied by the sum of the values of the variables of the edges in any cut set
between r and ¢ if » and ¢ are connected. Define the support network to be the rooted
directed graph we obtained by the transformation presented in Section 3.1. Set the arc
capacities of this network to be the solution obtained with the branch-and-cut algorithm.
The connectivity constraint then requires that the sum of the capacity of each edge in any
cut set between r and 7 should be greater than or equal to the value of ;. Denote the
capacity of a cut to be the sum of the capacity of each edge in the cut set. Therefore,
the capacity of the minimum cut between r and ¢ which has the minimum capacity must
satisfy this constraint. Moreover, if r and i are not connected, the capacity of the minimum
cut between them must violate this constraint. Thus we need to find the minimum cut
between r and ¢ to check the connectivity of r and ¢. Once we find a minimum cut whose
capacity does not satisfy the connectivity constraint (3.4), we call this cut a violated cut
and add the corresponding violated constraint into IP2.
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We use the maximum flow algorithm on the support network to find the minimum cut
according to the Max-flow min-cut theorem which states that the maximum flow value is
equal to the minimum capacity of the cuts between the sink and the source. In particular,
the push-relabel algorithm (Cherkassky and Goldberg [9]) is applied. Only the minimum
cut for all pairs of vertices (r,7), with i € R, y; > 0 are concerned, since we only care about
the connectivity between the profitable vertices and the root. In every search, the root r
is the source and the profitable vertex 7 is the sink.

Denote the maximum flow algorithm to be (f, S,,S;) = MaxFlow(Gy, x,r, i) where Gy
is the input directed graph and z is the edge-variable solution vector which is viewed as a
capacity vector. This function returns the maximum flow value f and two sets of vertices:

e a subset S, C Vj; containing root vertex r and the vertices on the source side with

z(07(5,) = I.

e asubset S; C V; containing vertex i and the vertices on the sink side with z(67(5;)) =

I

If f < y;, we insert the violated constraint (67 (S,)) > y; into the IP2 problem. We
repeat this procedure for every profitable vertices i to find the violated constraints and
then re-solve IP2 problem with branch-and-cut algorithm.

In order to speed up the process of detecting more violated cuts within the same sep-
aration phase (separation phase means checking the connectivity and finding the violated
constraints for one pair (r,7),7 € R), we implement the back cuts and nested cuts methods
which are also used in Ljubié et al. [31].

Back Cuts

As mentioned before, we use the maximum flow algorithm to find the minimum cut for
every pair of (r,4). If the capacity of the minimum cut does not satisfy the connectivity
constraint xz(6(5)) > y;, then this minimum cut is viewed as a violated cut and the
corresponding violated constraint is added into IP2. Considering the fact that the minimum
cuts in a directed graph are not always unique, more minimum cuts between r and ¢ are
expected to be found within one separation phase. In order to find another minimum cut
which is closest to the profitable vertex i, say S; (i € S;), aside from the one already found
which is closest to the root, say S, (r € S,), within the same separation phase, we applied
the back cuts method.

First, we obtain the dual graph Gy by reversing the direction of the arcs in G4 while
keeping the arc capacities the same, i.e., arc (7, ) is in G, if and only if (7,1) is an arc of
G4, and the capacities of arc (i, ) in G, and (7,1) in G4 are the same. Then we perform
the maximum flow algorithm on G4. The vertex 1,7 € R,y; > 0 is viewed as the source
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0.2

(a) Original graph and its minimum cut (b) Dual graph and its minimum cut

Figure 4.6: An example of the back cuts. Here, r is the root and i is the profitable vertex
while all other vertices are non-profitable. The numbers on the edges are the capacities
and y; for the profitable vertex 7 is 0.5. The curved lines indicate the minimum cut set.

node and the root vertex r is viewed as the sink. By doing this, We change the maximum
flow algorithm from (f, S, S;) = MaxFlow(Gy, x,r, i) to (f,S;, S,) = MaxFlow(Gg, x,i,r).
Finally, the output is obviously changed to the minimum cut closest to the profitable vertex
i, S;, i € 5;.

For example, Figure 4.7a shows a network containing the root r and a profitable vertex
i, together with non-profitable vertices 1-6. According to the maximum flow algorithm,
(f, Sy, Si) = MaxFlow(Gy, x,r,i), the minimum cut set 67(S,) = {12,r4}, which is ”clos-
est” to r, is found first. It is obvious that the capacity of the minimum cut between r and
iis f = 0.2. Since f < y;(y; = 0.5), the corresponding constraint, x(d*(S,)) > v, is a
violated constraint. Then we apply the back cuts within this separation phase: reverse the
direction of the arcs while keeping the arc capacities the same. The dual graph is shown in
Figure 4.6b. In the dual graph, the source is changed to ¢ while the sink is changed to r.
Using maximum flow algorithm (f,S;, S,.) = MaxFlow(Gy, z,i,7) we obtain the minimum
cut set 07(.S;) = {i3,i6} whose corresponding constraint, x(d~(.5;)) > v;, is also a violated
constraint in this separation phase.

Nested Cuts

If r and 7 are not connected, as mentioned before, there may exist a bunch of violated
cuts (recall that these are cuts whose capacities do not satisfy the connectivity constraint
of r and i, (07 (S)) > y;). Using the back cuts method can find two minimum cuts which
may be the violated cuts, one of which is closest to the root r, the other one is closest
to 7. However, there may exist more violated cuts which we expect to find in the same
separation phase. The nested cuts method is used to find further violated cuts with the
maximum flow algorithm, by “removing” the current minimum cuts. It is described as
follows.

After finding the minimum cut S, between r and i, we temporarily set the capacities
of all the arcs (u,v) € §7(S,) to 1. Since 0 < y; < 1, the capacity of the current minimum
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cut must satisfy the connectivity constraint so that we “remove” this current minimum cut
from the network. In fact, we can temporarily set the capacities of the current minimum
cut to be any number as long as it ensures that the capacity of this minimum cut satisfies
the connectivity constraint. We then apply the maximum flow algorithm for » and ¢ on
this resulting network again to find the minimum cut for the new network. Finally, if this
new minimum cut is a violated cut, we add the corresponding violated constraint into IP2.
We repeat this procedure until the maximum flow value is larger than or equal to ;.

For example, as in Figure 4.7, after we get the minimum cuts 67(S,) = {12,r4} and
add the corresponding violated constraint x(d7(S,)) > ; into IP2, set the capacities on
the edges in the minimum cuts to be 1. Figure 4.8e shows the graph after temporarily
fixing the capacities on the edges in the minimum cuts to be 1. By applying the maximum
flow algorithm in the modified graph, we find the minimum cut 67(S.) = {23,45} with
flow value f = 0.25 which is smaller than y;. Thus we obtain the further violated cut and
the corresponding violated constraint z(67(S.)) > y; in the same iteration. We repeat this
procedure, until there is no such thing as a violated cut can be found.

In all, the separation algorithm is as follows:
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0.15

0.2

(a) Step 1 of nested cuts. The mini-
mum cut {12, 74} which is a violated cut is
found. The capacities of the edges on this
minimum cut is temporarily set to be 1.

0.15

0.1 @ 0.2

(c) Step 3 of nested cuts. The minimum
cut {23,45} which is a violated cut is
found. The capacities of the edges on this
minimum cut are temporarily set to be 1.

0.15

0.1 0.2

(b) Step 2 of nested cuts. The minimum
cut {3, 6i} which is a violated cut is found.
The capacities of the edges on this mini-
mum cut are temporarily set to be 1.

(d) Step 4 of nested cuts. The mini-
mum cut {r1,56} which is a violated cut is
found. The capacities of the edges on this
minimum cut are temporarily set to be 1.

(e) Step 5 of nested cuts. The capacity of
the minimum cut is larger than y;, stop.

Figure 4.7: An example of nested cuts. r is the root and 7 is the profitable vertex while all
other vertices are non-profitable vertices. The numbers on the edges are the capacities of
these edges and y; for the profitable vertex ¢ is 0.5. The curved lines indicate the minimum

cut set.
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Algorithm 3 Separation algorithm

Require: A graph Gy = (Vy, Eg4, ). The input z is the capacity vector.
Ensure: A set of violated inequalities included into IP2.
for allv e R,y; > 0 do
¥=x
{Comment: introduce =’ = x, then change z’ later but keep x unchanged}
repeat
f = MaxFlow(G, 2 i)
if f <y; then
Detect the cut §%(S,) s.t. 2/(67(S,)) = f,r € S,
Insert (0% (S,)) > v; into the IP
x; = 1,Y(i,5) € 07(S,)
{Comment: This is to find nested cuts.}
if BACKCUTS then
f'= MaxFlow(G,a'i,r)
Detect the cut 6= (5;) s.t. 2/(67(S;)) = f',i € S;
{Comment: If BACKCUTS= 1, back cuts method is used; otherwise, back cuts
method is not used. }
if f' < y; then

Insert z(67(S;)) > y; into the IP
2, = 1,%(0, ) € 6 (S)
end if
end if
end if
until f > y;
end for

The back cuts and nested cuts can be combined together in the implementation. Figure
4.8 is an example of the combination of back cuts and nested cuts. Through the two
methods, a set of violated constraints can be found within one separation iteration.
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(a) Step 1: nested cuts. The minimum cut
{12, r4} which is a violated cut is found.
The capacities of the edges on this mini-
mum cut is temporarily set to be 1.

(c) Step 3: nested cuts. The minimum cut
{rl,45} which is a violated cut is found.
The capacities of the edges on this mini-
mum cut is temporarily set to be 1.

(b) Step 2: back cuts and nested cuts. The
minimum cut {i3,i6} which is a violated
cut is found. The capacities of the edges
on this minimum cut is temporarily set to
be 1.

(d) Step 4: back cuts and nested cuts. The
minimum cut {23,56} which is a violated
cut is found. The capacities of the edges
on this minimum cut is temporarily set to

be 1.

(e) Step 5. There is no such thing as a
violated cut can be found. Stop.

Figure 4.8: An example of the combination of back cuts and nested cuts. r is the root and
1 is the profitable vertex while all other vertices are non-profitable vertices. The numbers
on the edges are the capacities of these edges and y; for the profitable vertex ¢ is 0.5. The
curved lines indicates the minimum cut set.
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Chapter 5

Computational Results

5.1 Implementation Method and Environment

The algorithm explained in Chapter 4 was implemented in C++ in conjunction with IBM
ILOG CPLEX version 12.1 and ILOG Concert Technology version 2.9. We mainly imple-
mented the branch-and-cut algorithm and the separation algorithm without the heuristic
method. The implementation of the heuristic method could be a a possible item for the
future work. The test environment was a desktop PC with 64-bit AMD Phenom(tm) 9950
Quad-Core Processor 2.20GHz and 6.00GB RAM.

5.2 Experimental Results and Discussions

In order to test our algorithm on more realistic instances, we apply it to a set of grid graphs,
which have a similar structure to that of a simplified real-word mine input. Figure 4.2a is
a typical example of our test instance: a square matrix with profitable and non-profitable
vertices. As the results we will show, we can solve all the testing instances to optimality in
short time. For these instances, up to 81 vertices scem to be the largest size we can solve
under our test environment.

In fact, some mining graphs may be larger, which might have more than thousands
of vertices. Moreover, comparing our results with those in Ljubi¢ et al. [31] which we
follows at most, the size of the problems we can solve is much smaller. According to our
observation and analysis, the possible reasons are as follows:

1. Our problem has an extra constraint which requires the exactly K profitable vertices
in the solution. This constraint increases the difficulty of a standard PCST which is
considered in Ljubié et al. [31] because there may be much more choices to be tried.
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2. There is presumably a way around this problem because Ljubié¢ et al. [31] applied the
separation algorithm at each node of the branch-and-cut tree and used the branch-
and-cut method once, but that due to limited time we were not able to find it. So
in our algorithm, as described in Chapter 4, not only one branch-and-cut procedure
is needed. In some cases, even a wealth of branch-and-cut procedures is required
to solve the problem. Branch-and-cut consumes the most memory and it is easy to
cause the memory problem in CPLEX, which will be discussed in details in Section
5.3 of this Chapter. In addition, this could affect the run time of the algorithms.

3. There is no preprocessing method in our algorithm. As described before, the pre-
processing method provided in Ljubié et al. [31] is not suitable for KPCST which
has an extra cardinality constraint. While the preprocessing method plays a crucial
role in the problem of Ljubié et al. [31], which can significantly reduce the size of the
problem.

Table 5.1 shows the experimental results for the grid graph instances. All of them
are based on grid graphs built by generating the vertices in an n x n (n < 9) square
matrix. The prizes of the profitable vertices are set uniformly to be 100 while the edge
costs are random integral numbers ranging from 1 to 10. We chose the profitable vertices
in the square matrix randomly. We tested the instances with different numbers of vertices,
numbers of profitable vertices and the values of K (number of profitable vertices specified
for the solution). These combinations lead to thousands of instances. We tested about
200 instances and all these instances are solved to optimality. As a matter of fact, in a
realistic problem, the prizes may vary randomly. So setting the prizes of profitable vertices
to be the random number from 1 to 100 and setting the costs of the edges to be uniformly
1, or setting both the prizes and the costs to be random numbers are some of the other
variations we would try if time permitted.

For Table 5.1, in the first six columns we report the problem parameters: the problem
ID, the number of vertices |V| in the problem, the number of profitable vertices | V|, the
number of edges |F|, the number of edges |E’| in the transformed directed graph and the
value of K. In the following six columns we report the optimal objective value we get,
the total number of the violated constraints we found by the algorithm, the number of the
branch-and-cut nodes in the last iteration (i.e., the last time to run the branch-and-cut
method), the total CPU time of the computation in seconds, the number of zero-half cuts
and the number of the Gomory cuts added automatically by CPLEX. zero-half cuts and
Gomory cuts are constraints added to the model to restrict non-integer solutions that would
otherwise be solutions of the continuous relaxation. The addition of cuts usually reduces
the number of branches needed to solve an IP problem. In fact, CPLEX often adds several
kinds of cuts in the branch-and-cut algorithm, such as clique cuts, cover cuts, zero-half
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Figure 5.1: The relationship between CPU time and the cardinality of the profitable vertices
K, while fixing |V| and |N|. The CPU time gets shorter as K increases. The CPU time
is shortest and the number of the violated constraints is 0 when K = 1. The CPU time is
the longest when the difference between |N| and K is the largest. As K increases, i.e., the
difference gets smaller, the CPU time gets shorter.

cuts, Gomory cuts and so on. Zero-half cuts and Gomory cuts are two cuts applied in our
IP problem.

All the instances have been solved to optimality. 6 instances require more than 10
branching nodes whereas the other ones are solved in less than 10 nodes. In fact, according
to our observation, we can only solve the instances which require less than 15 branching
nodes under our test environment. This is a major memory problem which restrains the size
of the KPCST problem we can solve. As mentioned before, this problem is probably due
to the reason that several times of the branch-and-cut algorithm are used in the algorithm.
This memory issue will be discussed in detail in the next section.

In order to find the relationship between |V, |N| and K, we plot the following several
figures.

Figure 5.1 shows that, in general, the CPU time gets shorter as K increases while fixing
a certain |V| and |N|. The CPU time is shortest and the number of the violated constraints
is 0 when K = 1, this is because that the problem is trivial in this case: we only select the
vertex with the largest prize; the costs of the edges need not to be concerned. Therefore, as
can be seen that the CPU time jumps high when K grows from 1 to 2. Another thing one
can notice is that the CPU time is the longest when the difference between |N| and K is the
largest. As K increases, i.e., the difference gets smaller, the CPU time gets shorter. The
reason seems to be the increased difficulty generated by more choices and combinations of
the selected profitable vertices when |N| is big and K is small. Finally, the instances with
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Table 5.1: Computational results of the algorithm for the mining problem

Problem Parameters OptimalNo. of violated No. of Total No. of No. of
ID ||V|| [N] | |E| | |E'| | K | value | constraints [B&C NodesCPU time “Zero-half CutsGomory Cuts
5.11 125 1 40 81 1 -100 0 1 2.091 0 0
5.21 (25| 2 40 82 1 -100 0 1 2.612 0 0
5.22 25| 2 40 82 2 -197 10 1 7.654 0 0
552125 5 | 40 | 8 | 2 | -190 15 3 10.873 0 0
554125 5 | 40 | 8 | 4 | -372 31 1 13.812 0 0
555 (25| 5 | 40 | 8 | 5 | -462 43 1 13.865 0 0
581 (25| 8 | 40 | 88 | 1 | -100 0 1 2.812 0 0
5.84 25| 8 40 88 4 | -392 32 4 21.814 2 1
586 (25| 8 | 40 | 88 | 6 | -582 83 4 18.466 2 1
5.88 25| 8 40 88 6 | -748 56 3 16.082 3 1
5.111125| 11 40 91 1 -100 0 1 2.831 0 0
5.112|1 25| 11 | 40 91 2 | -189 67 3 14.871 0 0
5.113| 25| 11 | 40 91 3 | -297 63 4 16.912 0 0
5.117|1 25| 11 | 40 91 7 | -684 93 ) 10.522 2 1
5.119| 25| 11 | 40 91 9 | -864 91 ) 8.813 0 0
5.1111{ 25| 11 40 91 | 11 | -1058 88 1 6.101 0 0
5.151| 25| 15 | 40 95 1 -100 0 1 2.912 0 0
5.152|25| 15 | 40 | 95 | 2 | -198 45 1 29.733 0 0
5.155(25| 15 | 40 | 95 | 5 | -478 80 2 26.007 0 0
5.15825| 15 | 40 | 95 | 8 | -782 98 5 16.032 1 1
0.1511) 25 | 15 | 40 95 | 11 | -1073 145 6 12.257 3 1
0.1513 25| 15 | 40 95 | 13 | -1244 108 3 12.881 0 0
5.1515 25 | 15 | 40 95 | 15 | -1446 99 1 7.312 0 0
5.181| 25| 18 | 40 98 1 -100 0 1 2.744 0 0
5.182|25| 18 | 40 | 98 | 2 | -194 112 6 38.028 0 0
5.186(25| 18 | 40 | 98 | 6 | -583 165 5 31.214 4 2
5.18111 25| 18 | 40 | 98 | 11 | -1073 154 5 27.856 1 0
5.1815 25 | 18 | 40 98 | 15 | -1446 152 7 16.776 3 1
5.1818 25| 18 | 40 | 98 | 18 | -1735 211 3 14.265 1 1
5.211|25| 21 | 40 | 101 | 1 | -100 0 1 3.430 0 0
5.212|1 25| 21 | 40 | 101 | 2 | -197 57 3 40.980 0 0
5.215| 25| 21 40 | 101 | 5 -488 142 4 36.765 6 1
5.2111) 25| 21 | 40 | 101 | 11 | -1066 189 3 37.010 2 1
5.2116/ 25 | 21 | 40 | 101 | 16 | -1554 121 6 25.984 3 2
5.2121) 25| 21 | 40 | 101 | 21 | -2031 187 1 19.776 0 0
5.251125| 25 | 40 | 105 | 1 -100 0 1 3.859 0 0
5.252| 25| 25 | 40 | 105 | 2 | -199 70 4 81.294 0 0
5.255|25| 25 | 40 | 105 | 5 | -496 302 8 69.644 6 2
5.2510125 | 25 | 40 | 105 | 10 | -969 248 3 60.169 1 2
5.2516( 25 | 25 | 40 | 105 | 16 | -1559 230 11 44.850 11 0

®The time is in seconds and measured by a function with a high resolution in the range of 10
milliseconds to 16 milliseconds provided by Windows
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Continued Table 5.1: Computational results of the algorithm for the mining problem

Problem Parameters Optimal [No. of violated] No. of Total No. of No. of
ID ||V|]| |N| | |E| | |E'] | K pbjective valug constraints [B&C NodesCPU timeZero-half CutsGomory Cuts
5.25620/ 25 | 25 | 40 | 105 | 20 -1944 296 12 45.246 10 1
0.2525 25 | 25 | 40 | 105 | 25 -2421 150 1 25.506 0 0
6.11 136 1 60 | 121 | 1 -100 0 1 2.644 0 0
6.22 |36 | 2 60 | 122 | 2 -180 10 1 7.656 0 0
6.54 [ 36| b 60 | 125 | 4 -381 156 6 37.890 0 0
6.55 36| b 60 | 125 | 5 -478 167 5 35.764 0 0
6.81 36| 8 60 | 128 | 1 -100 0 1 2.955 0 0
6.82 36| 8 60 | 128 | 2 -194 132 5 53.901 6 0
6.86 |36 | 8 60 | 128 | 6 -581 109 6 33.575 2 0
6.151{36| 15 | 60 | 134 | 1 -100 0 1 3.890 0 0
6.155(36| 15 | 60 | 134 | 5 -490 135 1 30.111 0 0
6.15836| 15 | 60 | 134 | 8 -781 143 ) 29.012 5 2
6.1515 36 | 15 | 60 | 134 | 15 -1430 289 4 25.777 3 1
6.202(36| 20 | 60 | 140 | 2 -194 188 5 68.954 1 1
6.205(36| 20 | 60 | 140 | 5 -487 201 5 69.113 8 2
6.209(36| 20 | 60 | 140 | 8 -878 112 5 53.342 0 0
6.2015 36 | 20 | 60 | 140 | 14 -1453 232 4 35.901 2 0
6.2018 36 | 20 | 60 | 140 | 18 -1733 256 4 25.589 0 0
6.2020 36 | 20 | 60 | 140 | 20 -1913 256 5 19.782 3 0
6.252136| 25 | 60 | 145 | 2 -195 134 4 72.198 0 0
6.259(36| 25 | 60 | 145 | 9 -863 399 5 60.489 7 4
2515136 | 25 | 60 | 145 | 13 -1476 255 5 45.643 0 0
2520036 | 25 | 60 | 145 | 20 -1945 345 4 37.894 0 0
6.2525 36 | 25 | 60 | 145 | 25 -2401 356 3 28.964 0 0
6.302|1 36| 30 | 60 | 150 | 2 -198 165 2 92.301 0 0
6.308| 36| 30 | 60 | 155 | 8 =747 789 4 167.432 12 )
6.3015 36 | 30 | 60 | 155 | 15 -1466 543 5 57.876 0 0
6.3025 36 | 30 | 60 | 155 | 25 -2423 543 5 42.765 4 1
6.3030 36 | 30 | 60 | 155 | 30 -2890 454 2 26.765 0 0
6.361136| 36 | 60 | 161 | 1 -100 0 1 4.765 0 0
6.364(36| 36 | 60 | 161 | 4 -396 112 1 48.454 0 0
6.368| 36| 36 | 60 | 161 | 8 -786 236 7 72.634 1 1
6.3620 36 | 36 | 60 | 161 | 20 -1950 428 7 111.588 4 2
6.3625 36 | 36 | 60 | 161 | 25 -2433 330 3 77.439 0 0
3630/ 36 | 36 | 60 | 161 | 30 -2890 262 2 57.321 0 0
6.3636) 36 | 36 | 60 | 161 | 36 -3485 248 1 53.571 0 0
722 49| 2 84 | 170 | 2 -185 14 1 16.987 0 0
754 49| 5 84 | 173 | 4 -385 56 4 45.764 1 0
755149 5 84 | 173 | 5 -478 89 6 37.222 0 0
782149 8 84 | 176 | 2 -196 87 8 65.453 5 2
788 49| 8 84 | 175 | 8 -763 210 5 45.875 0 0
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Continued Table 5.1: Computational results of the algorithm for the mining problem

Problem Parameters Optimal  [No. of violated No. of Total No. of No. of
ID ||V|| [N] | |E| | |E'| | K pbjective valug constraints [B&C NodesCPU timeZero-half CutsGomory Cuts
7158149 | 15 | 84 | 182 | 8 -762 289 7 86.433 10 1
7.1515/ 49 | 15 | 84 | 182 | 15 -1422 654 9 78.658 1 1
7252|149 25 | 84 | 192 | 2 -194 123 9 81.099 4 0
7.2525 49 | 25 | 84 | 192 | 25 -2422 323 ) 64.765 0 0
7341149 34 | 84 | 201 | 1 -100 0 1 6.054 0 0
7345149 | 34 | 84 | 201 | 5 -489 214 7 68.755 0 0
7.3425/ 49 | 34 | 84 | 201 | 25 -2418 354 8 74.754 5 1
7.491149| 49 | 84 | 216 | 1 -100 0 1 6.785 0 0
7495149 49 | 84 | 216 | S -495 198 4 87.407 1 1
7.4927 49 | 49 | 84 | 216 | 27 -2634 879 8 143.875 4 2
7.4949 49 | 49 | 84 | 216 | 49 -4766 192 1 95.396 0 0
822 64| 2 112 | 226 | 2 -176 25 3 65.342 0 2
854164 | 5 | 112|229 | 4 -396 54 6 68.644 2 0
855|164 5 | 112|229 | 5 -475 186 10 73.421 0 0
882 (64| 8 (112 | 232 | 2 -198 87 4 69.075 0 0
888164 | 8 |112] 232 | 8 -732 298 14 164.975 0 0
8.6445( 64 | 64 | 112 | 286 | 45 -4389 836 11 271.223 1 2
922 (81| 2 (144 | 290 | 2 -195 32 8 198.875 ) 0
954 |81| 5 | 144 | 293 | 4 -391 208 3 165.754 0 0
955|181 | 5 | 144293 | 5 -491 245 1 234.865 0 0
988 |81 | 8 | 144 | 296 | 8 -756 456 13 287.553 5 4
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Total CPU Time

Total Number of Vertices

Figure 5.2: The relationship between CPU time and the number of the vertices |V'|, while
fixing K and |N|. The CPU time increases almost exponentially while |V/| increases.

more vertices are harder to solve according to the comparison of the general CPU time of
the four lines in Figure 5.1. This is demonstrated in Figure 5.2.

From Figure 5.2, we can see that the CPU time increases almost exponentially while
|V| increases.

Figure 5.3 shows the relationship between the CPU time and the number of profitable
vertices | N|. Apparently the CPU time increases as |N| increases.

A lot of related problems in other papers are solved with edge costs in a small range.
For example, in Aneja [1], they used integer edge costs in the range of [1,10]; and in Wong
[40], they used real edge cost in the range of [0,1]. As mentioned earlier, we use integer
edge costs between 1 and 10. We also want to see how a wider range of edge costs might
affect the problem difficulty.

Table 5.2 presents the results for the experiments with edge costs ranging from 1 to 10
and edge costs ranging from 500 to 10500. As before, the problem parameters: problem
ID, the number of vertices |V, the number of profitable vertices |N| and the value of K
are listed. We mainly compare the CPU time and the violated constraints in the two cases.
Figure 5.4 and 5.5 clearly show the comparison.
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Figure 5.3: The relationship between CPU time and the number of the profitable vertices
|N|, while fixing K and |V|. The CPU time increases as |N| increases.

Table 5.2: Experimental results for the edge costs from 1 to 10 and the edge costs from
500 to 1500

Problem Parameters Random edge cost (1 —10) |Random edge cost (500 — 10500)
D |[|V|| [N] | K |CPU time ¢ No. of CPU time No. of
violated constraints violated constraints
2.41 4 4 1 0.654 0 0.754 0
3.51 9 5 1 2.003 0 1.987 0
3.92 9 9 2 12.334 76 13.754 65
3.94 9 9 4 8.645 65 7.854 51
4.162 | 16 16 2 29.754 187 68.765 123
4.165 | 16 16 5 25.765 45 35.432 56
4.168 | 16 16 8 24.766 231 87.432 254
5.252 | 25 25 2 81.294 70 234.321 87
5.2510| 25 25 10 60.169 248 63.532 256
5.2520| 25 25 20 45.246 296 36.643 213
6.368 | 36 36 8 72.634 236 432.442 254
6.3630| 36 36 30 57.321 262 189.321 221
6.3636| 36 36 36 53.571 248 91.645 243
7.495 | 49 49 5 87.467 198 125.566 143
7.4927| 49 49 27 143.875 879 265.654 902
7.4949| 49 49 49 95.396 192 201.454 234
8.22 | 64 2 2 65.342 25 45.298 20
8.55 | 64 5 5 73.421 186 101.892 90
8.6445| 64 64 45 271.223 836 503.432 989

%The time is in seconds

48



®r1,10]
¥ [500,10500]

CPU Time(sec.)

00~
241 351 392 394 4162 4165 4.168 5252 52510 52520 6.368 6.3630 6.3636 7.4927 7.4949 822 855 8.6445
Problem ID

Figure 5.4: The comparison of the CPU time between the edge costs in the range of [1,10]
and the edge costs in the range of [500,10500]

®[1,10]
¥ [500,10500]

No. of Violated Constraints

241 351 392 394 4162 4.165 4.168 5252 52510 5.2520 6.368 6.3630 6.3636 7.4927 7.4949 8.22 855 8.6445
Problem ID

Figure 5.5: The comparison of the number of the violated constraints between the edge
costs in the range of [1,10] and the edge costs in the range of [500,10500]

In Figure 5.4, the CPU time grows when the edge costs range changes. We may conclude
that the edge costs range may affect problem difficulty for IP2 problem. Moreover, it can
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be observed that the increased CPU time is two to several times of that for the smaller
edge costs problem, while almost all the increased violated constraints are less than twice.
Even for instance 6.3630 and 8.55, the CPU time grows but the violated constraints drops.
The reason seems to be more time consumed in the IP solver with the larger range edge

costs.

We also applied our algorithm to the instances with real edge costs ranging from 1 to
10 to see whether the change affects the problem difficulty by comparing the changed CPU
time and the number of violated constraints. Table 5.3 lists the results for our experiments

with the real edge costs instances.

Table 5.3: Experimental results for the integer edge costs and the real edge costs

Problem Parameters Integer edge costs Real edge costs
ID ||V|| |IN] | K |CPU time No. of CPU time No. of
violated constraints violated constraints
2.41 4 4 1 0.654 0 0.568 0
3.51 9 5 1 2.003 0 1.872 0
3.92 9 9 2 12.334 76 19.897 86
3.94 9 9 4 8.645 65 5.435 78
4.162 | 16 16 2 29.754 187 19.765 167
4.165 | 16 16 5 25.765 45 23.515 45
4.168 | 16 16 8 24.766 231 31.543 289
5.252 | 25 25 2 81.294 70 79.765 78
5.2510| 25 25 10 60.169 248 78.765 234
6.368 | 36 36 8 72.634 236 87.543 246
6.3630 | 36 36 30 57.321 262 59.608 269
6.3636 | 36 36 36 53.571 248 37.041 267
7.4927| 49 49 27 143.875 879 176.764 912
7.4949| 49 49 49 55.396 192 53.765 196
8.22 | 64 2 2 65.342 25 61.654 37
8.55 | 64 5 5 73.421 186 109.709 124
8.6445| 64 64 45 271.223 836 253.986 901

%The time is in seconds

Figure (5.6) and (5.7) shows the comparison of the results.

From the above two figures, we can see that the difficulty does not seem strictly corre-
lated with the data type of the edge costs since CPU time sometimes grows (for example,
instances 3.92, 4.168, 5.2510 and 7.4927) and sometimes drops (for example, instances
4.162, 4.165, 6.3636 and 8.22). And the CPU time does not increase or decrease too much.
The comparison of the number of the violated constraints is similar.
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® Integer edge costs
¥ Real edge costs

CPU Time(sec.)

241 3.51 3.92 3.94 4.162  4.165  4.168 5.252 52510 6.368 6.3630 6.3636 7.4927 7.4949 822 8.55  8.6445
Problem 1D

Figure 5.6: The comparison of the CPU time between the integer edge costs and the real
edge costs

1,000

® Integer edge costs
¥ Real edge costs

No. of Violated Constraints

241 351 392 3.94 4162 4.165 4.168 5252 52510 6368 6.3630 6.3636 7.4927 7.4949 822 855 8.6445
Problem 1D

Figure 5.7: The comparison of the number of the violated constraints between the integer
edge costs and the real edge costs
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5.3 Out of Memory

As mentioned before, we tried to find ways to incorporate separation in each node of
branch-and-cut but did not manage in the time available. Through our algorithm, the
instances with up to 81 vertices are solved to optimality under our test environment. But
for some larger size instances, we may get the result like Figure 5.8

68300 68299
344.9827 51 2 2 275188
68400 23434
347.3115 56 B = 275498
68580 55586

cutoff B o 275928
68600 68599

cutoff B o 276387
68700 68698
536.8125 26 B = 276674
68800 68798
578.1818 29 B = 277818
68900 68899

[Zero—half cuts applied: 2
omory fractional cuts applied: 1
oncert exception caught: Out of memory
Freeing branch—and—-bound tree with 38174 nodes
nodes freed
nodes freed
nodes freed
nodes freed
nodes freed

Figure 5.8: The result of running out of memory

As a matter of fact, running out of memory is a very common difficulty with IP problems
using CPLEX. This problem almost always occurs when the branch-and-cut tree becomes
so large that insufficient memory remains to solve a continuous LP. The information about
a tree that CPLEX accumulates in memory can be substantial. In particular, CPLEX
saves a basis for every unexplored node. The list of unexplored nodes itself can become
very long for large or difficult problems. How large the unexplored node list can depends
on the actual amount of memory available, the size of the problem, and the algorithm
selected. Therefore, if we increase the amount of available memory, we extend the problem-
solving capability of CPLEX. Unfortunately, when a problem fails because of insufficient
memory, it is difficult to project how much further the process needed to go and how
much more memory is needed to solve the problem. Memory failure problem in CPLEX
can be avoided by some strategies suggested by CPLEX. For example, we can reset the
tree memory parameter, use node files for storage and change the selection strategy in
branch-and-cut tree.

Another reason is that not only one branch-and-cut procedure is needed in our algo-
rithm. In some cases, even a wealth of branch-and-cut procedures is required to solve the
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problem. It may run out of memory even though every single branch-and-cut tree can be
solved since the memory cannot be released after every single branch-and-cut procedure
according to CPLEX mechanism. The memory consumption accumulates and finally leads
to excessive memory consumption. Figure 5.9 shows what happens to the physical memory
in computer.

B Windows Task Manager E@&J

File Options View Help

| Applications | Processes_é_Services | Performance ;Network.ing | Users_.;

CPU Usage CPU Usage Histary

Memory Physical Memory Usage History

Physical Memory (MB) System

Total 5330 Handles 24124

Cached 1135 Threads 996

Available 1131 Processes 74

Free 45 Up Time 0:00:46:27
Commit {GB) 5011

kernel Memory (MB)

Paged 247

Monpaged 52 | Resource Monitor... |

Processes: 74 CPU Usage: 25% Physical Memory: 80%

Figure 5.9: The change of the physical memory

It can be observed that the physical memory consumption jumps after every branch-
and-cut procedure and finally reaches the maximum memory.

5.4 Back Cuts and Nested Cuts

The back cuts method is used in our default implementation, while the nested cuts method
is not used. In this section, we compare the performance of the algorithm with and without
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back cuts and nested cuts.

As before, we list the problem parameters and, the CPU time and the number of the
violated constraints. We also list the number of the major iterations in order to give a
clearer explanation.

Table 5.4: Comparison over the instances for separation with or without back cuts

Problem Parameters with back cuts (without nested cuts) without back cuts (without nested cuts)
ID ||V]] |N] | K |CPU time ° No. of No. of CPU time No. of No. of
violated constraintsLna_jor iterations violated constraintslmajor iterations
241 4| 4 1 0.639 0 1 0.646 0 1
33319 3 3 4.672 11 5 22.771 89 45
35119 5 1 1.045 0 1 0.905 0 1
39219 9 2 7.722 42 22 99.872 155 142
39419 9 4 5.288 30 6 141.227 389 135
4.162| 16| 16 2 17.020 36 19 409.707 628 474
416516 | 16 | 5 | 18.5640 78 14 512.321 721 356
416816 | 16 | 8 20.920 100 10 > 4 hours n/a n/a
5.252(25| 25 | 2 81.294 70 36 out of memory| n/a n/a
5.2510 25 | 25 | 10 | 60.169 248 21 > 4 hours n/a n/a
6.36836| 36 | 8 72.634 236 25 > 4 hours n/a n/a
6.3615( 36 | 36 | 15 66.332 264 13 out of memory| n/a n/a
6.3630, 36 | 36 | 30 | 57.321 262 17 out of memory n/a n/a
6.3636) 36 | 36 | 36 | 53.571 248 5 out of memory| n/a n/a

The time is in seconds

Table 5.4 documents the crucial role of using the back cuts method. The CPU time
and the number of major iterations increase dramatically without the back cuts, especially,
when the problem size grows. As in table 5.4, some of instances (for example, instances
4.168, 5.2510 and 6.368) without back cuts cannot be solved in a reasonable time limit
(4 hours) to optimality; and some of instances (for example, instances 5.252, 6.3615 and
6.3636) cannot be solved due to the memory problem mentioned before. Thus, the intro-
duction of the back cuts method significantly reduces the running time and increases the
problem-solving capability.

o4



Table 5.5: Comparison over the instances for separation with or without nested cuts

Problem Parameters without nested cuts (with back cuts) with nested cuts (with back cuts)
ID ||V|| |N] | K [CPU time No. of No. of CPU time No. of No. of
violated constraint#’uajor iterationg violated constraint#najor iterationg
2411 4 4 1 0.639 0 1 1.871 0 1
33319 3 3 4.672 11 5 10.621 8 19
35119 5 1 1.924 0 1 1.933 0 1
3.92| 9 9 2 7.722 42 22 22.187 35 36
39419 9 | 4 5.288 30 6 220.123 35 26
477116 7 7 3.479 23 3 10.782 13 32
4.1621 16 | 16 | 2 17.020 36 19 25.876 21 o8
4.165/ 16| 16 | 5 18.564 78 14 101.176 68 82
4.168/ 16 | 16 | 8 20.920 100 10 987.113 178 781
5252|125 | 25 | 2 81.294 70 36 put of memory n/a n/a
H.2510 25| 25 | 10 | 60.169 248 21 2981.212 172 2671
6.368/36 | 36 | 8 72.634 236 25 put of memory] n/a n/a
6.3615 36 | 36 | 15 | 66.332 264 13 out of memory n/a n/a
6.3630 36 | 36 | 30| 57.321 262 17 put of memory n/a n/a
6.3636 36 | 36 | 36 | 53.571 248 5 put of memory n/a n/a

The time is in seconds

Table 5.5 shows that, on the contrary, the problem with the nested cuts method takes
much longer CPU time to solve, even for the small size problems, although the reason to
use nested cuts method is to reduce the running time. In addition, by using the nested cuts,
many larger instances could not be solved to optimality while the same problem without
nested cuts can be solved in several seconds.

As explained in Section 4.2.3, the nested cuts method is supposed to find more violated
constraints in one separation phase and it indeed helps find more violated constraints to
reduce the running time in some problems (see the example in Figure 4.7). However, in our
problem, it is not like this. It can be observed from table 5.5 that sometimes less violated
constraints are found, therefore, much more major iterations are required. The reason
seems to be that setting the capacities of edges in the current minimum cuts to be 1 might
miss more violated cuts which are supposed to be found. An example is shown in Figure
5.10. Two violated cuts {1i,72} and {1¢,2i} are supposed to be found in one separation
phase by back cuts and without nested cuts. If the nested cuts method is applied, however,
the violated cut {1i,2i} cannot be found within one separation phase. In addition, the
violated cut {1¢,2i} is important for the connectedness of i. Hence, in this case, the nested
cuts method increases the running time.
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(a) The minimum cut {17,r2} (b) No more violated cut can be
which is a violated cut is found. found.

Then according to the nested cuts,

the capacities of the edges on the

minimum cut is set to be 1.

Figure 5.10: An example of the problem caused by nested cuts. Here, r is the root and
¢ is the profitable vertex while all other vertices are non-profitable vertices. The numbers
on the edges are the capacities of these edges and y; for the profitable vertex ¢ is 0.5. The
curved lines are the minimum cuts. Due to the nested cuts, only one violated cut is found
in one separation phase.
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Chapter 6

Conclusions

In this paper, we model the planning of the mining networks to the K-cardinality Prize-
Collecting Steiner Tree problem (KPCST): finding the best tree connecting K profitable
vertices. KPCST problem is a PCST problem with restrictions, whereas PCST is a gen-
cralization of the Steiner tree problem, where the terminal vertices in the solution are
fixed.

The target of this paper is to construct a formulation and give an algorithm to solve
this KPCST problem to optimality within a reasonable running time and physical memory.
The algorithm which is a variant of the one proposed by Ljubi¢ et al. [31] uses branch-
and-cut method and takes advantage of the connectivity property of the solution. We also
introduce a heuristic method to reduce the running time. Two methods: the back cuts
method and the nested cuts method, are also presented in this paper.

When implementing our algorithm on a desktop PC with 64-bit AMD Phenom (tm) 9950
Quad-Core Processor 2.20GHz and 6.00 GB RAM, we successfully solved the problem with
up to 81 vertices to optimality in several seconds. We tested about 200 instances out of
thousands of instances depending on different number of vertices, number of the profitable
vertices and number of the selected profitable vertices in the solution. All the instances
were solved to optimality in several seconds. We also compared the results with different
ranges ([1,10] and [500,10500]) and data types (integer and real number) of edge costs.
According to the computational result, we may conclude that the larger edge costs range
makes the problem harder to solve, while the data type of the edge costs does not affect
the problem difficulty. Finally, the experimental result shows that back cuts method is
crucial, but nested cuts method is not suitable for this problem.

According to our computational results, lack of memory is a main barrier to solve large
size problem. Thus, possible future work includes:

1. Improve the algorithm by the following possible methods:
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e Embedding the separation procedure into the branch-and-cut method, i.e., using
the separation procedure at every node of the branch-and-cut tree.

e Adding reduction tests and preprocessing to extend the problem-solving capa-
bility of the algorithm.

e Finding some other ways to get CPLEX to release its memory when we start
another branch-and-cut algorithm.

e Adding the heuristic method during implementation. Doing experiments for the
heuristic method to check whether and how the heuristic method could improve
the algorithm.

2. Do experiments on the variants of the planning of the mining problem described in
section 3.4.

o8



APPENDICES

29



Appendix A

Major parts of C++ Code

A.1 Separation Algorithm

This part is to implement the separation algorithm. This version contains back cuts and
nested cuts.

int cnt_cons = 0; //the no. of the wviolated constraints
int cnt_iter = 0; //the no. of the main iterations
do{

nostop = 0;
cplex.solve (MyBranchGoal(env, y, x0, x, nodesno));
cnt_iter ++;
cplex.getValues(valsy, y);
cplex.getValues(valsx0, x0);
cplex.getValues(valsprofx, profx);
for (IloInt j = 0; j < nodesno-1; j++) {
IloNumArray valsxtmp (env) ;
for (IloInt p = 0; p < nodesno-1; p++){
if (p==j+1 || p==j-1 || p==j+nosqr|| p==j-nosar){
valsxtmp.add(cplex.getValue(x[j1[pl));
}
else valsxtmp.add(0);

valsx[j] = INoNumArray(valsxtmp) ;

for (g=nodesno; g<nodesno+profno; g++){
if (valsyl[gl>0){

NumMatrix valsxl=valsx;

TIloNumATrray valsprofxl = valsprofx;

IloNumArray valsx01 = valsxO0;

do{

cnt_text = writefile(g, valsxl, valsx01l, prize, valsprofxl, cplex, ptr_text);

max_flow (&vv, ptr_text, cnt_text);
IloExpr addconsl(env) ;

if ( vv.flow_val < valsyl[gl){
nostop = 1;

//to find the arcs in the cut
IloInt s=0, 1=0;

IloBool checkl, check2, check3;

for (IloInt t=1; t<nodesno; t++){

checkl = 0;
for (IloInt k=0; k<vv.cntl; k++){
if (t == vv.max_flow_setl[k]){

checkl = 1;}

for (IloInt j=1; j<nodesno; j++){

check2 = 0;

if (j == t+1 || j==t-1 || j==t+nosqr || j==t-nosqr){
for (IloInt k=0; k<vv.cntl; k++){
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if (checkl

if (j == vv.max_flow_setl[k]){

check2 = 1;
}

}

==0 && check2 == 1 ){

addconsl += x[t-1]1[j-1];
valsx1[t-1]1[j-1] = 1;

}
}

check3=0;
if (prize[t]1>0){

for (IloInt k=0; k<vv.cntl; k++){
if (nodesno+s == vv.max_flow_setl[k])
check3 =1;
}
if (checkl == 1 && check3 == 0) {
addconsl += profx[l];
valsprofx1[1] = 1;
}
if (checkl == 0 && check3 == 1){
addconsl += profx[l+1];
valsprofx1[1+1] = 1;
}
s++; 1 += 2;
}
}
if BACKOUIS) {
cnt_text = writefilereverse(g, valsxl, valsx01,

cnt_tmp++;

max_flow (&vv_rev, ptr_text,

cnt_text);

IloExpr addcons2(env) ;
s =0; 1= 0;
if (vv_rev.flow_val < valsyl[gl){

prize, valsprofxl, cplex,

j==t-nosqr){

IloBool checkl, check2;
for (IloInt t=1; t<nodesno; t++){
checkl = 0;
for (IloInt k=0; k<vv_rev.cntl; k++){
if (t == vv_rev.max_flow_setl[k]){
checkl = 1;
¥
}
for (IloInt j=1; j<nodesno; j++){
check2 = 1;
if (j == t+1 || j==t-1 || j==t+nosqr ||
for (IloInt k=0; k<vv_rev.cnt2; k++){
if (j == vv_rev.max_flow_set2[k]){
check2 = 0;
}

}

}
if (checkl

addcons2 += x[t-1][j-1];
valsx1[t-1][j-1] = 1;
¥

}

check3=1;

if

(prize[t]>0){
for (IloInt k=0;
if (nodesnots
check3 =0;

}
if (checkl ==

0 && check3

addcons2 += profx[1];

valsprofx1l [1] = 1;

¥
if (checkl == 1 && check3
addcons2 += profx[1+1];
valsprofx1l [1+1] = 1;
}
s++; 1 += 2;

}

}
model.add (addcons2 >= yl[gl);
cnt_cons++;

}

}
model.add (addconsl >= y[gl);

cnt_cons++;

==1 && check2 ==

0 )4

k<vv_rev.cnt2; k++){
== vv_rev.max_flow_set2[k])

1 A

0){

}}while(vv.flow_val < valsyl[gl & vv_rev.flow_val < valsyl[gl);

}}}while (nostop) ;
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A.2 Branch-and-cut Algorithm

This part is to implement the branch-and-cut algorithm.

ILOCPLEXGOAIL4(MyBranchGoal, IloNumVarArray, varsl, IloNumVarArray, vars2, NumVarMatrix, varsmatr, IloInt, nodesno) {
IloNumArray x1, x2;
NumMatrix xmatr;
IloNumArray objxO0;
NumMatrix objx;
IntegerFeasibilityArray feasy, feasxO;
IntegerFeasibilityMatrix feasx;
int nosqr = sqrt(nodesno-1.0);
x1 = IoNumArray(getEnv()) ;
x2 = IloNumArray(getEnv()) ;
xmatr = NumMatrix(getEnv () ,nodesno-1) ;
objx0 = IoNumArray(getEnv());
objx = NumMatrix(getEnv (), nodesno-1);
feasy = IntegerFeasibilityArray (getEnv());
feasx0 = IntegerFeasibilityArray (getEnv());
feasx = IntegerFeasibilityMatrix (getEnv() ,nodesno-1);
getValues(x1, varsl);
getValues(x2, vars2);
for (IloInt n=0; n<nodesno-1; n++){
TloNumArray xtmp;
xtmp = IoNumArray(getEnv()) ;
for (IloInt j=0; j<nodesno-1; j++){
if (j==n+1 || j == n-1 || j == n+nosqr || j == n-nosqr){
xtmp.add (getValue (varsmatrnl[j1));

}
else xtmp.add(0);

xmatr[n] = HoNumArray (xtmp) ;

}
getObjCoefs (objx0, vars2);
for (IloInt n=0; n<nodesno-1; n++){

NloNumArray xtmp;

xtmp = INoNumArray (getEnv()) ;

for (IloInt j=0; j<nodesno-1; j++){

if (j==n+1 || j == n-1 || j == n+nosqr || j == n-nosqr){
xtmp.add (getObjCoef(varsmatr[n] [j1));

}
else xtmp.add(0);

objx[n] = HNoNumArray (xtmp) ;

}

getFeasibilities (feasy, varsl);

getFeasibilities (feasx0, vars2);

for (IloInt n=0; n<nodesno-1; n++){
IntegerFeasibility Array xtmp;
xtmp = IntegerFeasibilityArray (getEnv());
for (IloInt j=0; j<nodesno-1; j++){

if (j==n+1 || j == n-1 || j == n+nosqr || j == n-nosqr){
xtmp.add(getFeasibility (varsmatr[nl [j1));
}
else xtmp.add(Feasible);
}
feasx [n] = IntegerFeasibilityArray (xtmp) ;
}
IloInt bestj = -1;
IloInt bestn = -1;

TIoNum maxinf = 0.0;
TIloNum maxobj = 0.0;
IloCplex::Goal res;
//branch wvariable y
for (IloInt j = 0; j < nodesno; j++) {
if ( feasy[j] == Infeasible ) {
IoNum xj-inf = x1[j] - IloFloor (x1[jl);
if ( xj-inf > 0.5 )
1

xj-inf = 1.0 - xj-inf;
if ( xj-inf > maxinf ) {
bestj = j;

maxinf = xj-inf;
¥
}
if ( bestj >= 0 ) {
res = AndGoal(OrGoal(varsl[bestj] >= IloFloor (x1l[bestjl)+1,

varsl[bestj]l <= IloFloor(x1l[bestjl)),
this);
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}
else{
// if all the wvariables of y are integral, branch z0
IloInt cols2 = vars2.getSize();
for (IloInt j = 0; j < cols2; j++) {
if ( feasx0[j] == Infeasible ) {
IloNum xj_inf = x2[j] - IloFloor (x2[jl);
if ( xj-inf > 0.5 )
xj-inf = 1.0 - xj_inf;

if ( xj-inf >= maxinf L&
(xj-inf > maxinf || IloAbs (objx0[j]l) >= maxobj) ) {
bestj = j;

maxinf = xj_inf;
maxobj = IloAbs (objx0[jl);

}
}
}
if ( bestj >= 0 ) {
res = AndGoal(OrGoal(vars2[bestj]l >= IloFloor (x2[bestjl)+1,
vars2[bestj] <= IloFloor (x2[bestjl)),
this) ;
¥
else{

//otherwise, branch x
IloInt cols3 = varsmatr.getSize();
for (IloInt j = 0; j < nodesno-1; j++) {
for (IloInt n = 0; n < nodesno-1; n++) {
if ( feasx[jl[n] == Infeasible ) {
IloNum xj-inf = xmatr[j][n] - IloFloor (xmatr[j][nl);
if ( xj-inf > 0.5 )
xj-inf = 1.0 - xj_inf;

if ( xj-_inf >= maxinf 23
(xj-inf > maxinf || IloAbs (objx[j]l[n]) >= maxobj) ) {
bestj = j;
bestn = n;

maxinf = xj_inf;
maxobj = IloAbs (objx[jl[nl);

}
}
if ( bestj >= 0 && bestn >= 0 ) {
res = AndGoal(OrGoal(varsmatr[bestj] [bestn] >= IloFloor (xmatr[bestj] [bestn])+1,
\varsmatr[bestj] [bestn] <= IloFloor (xmatr[bestj] [bestn])) ,this);
}
}

}

x1.end();
x2.end () ;
xmatr.end () ;
objx0.end () ;
objx.end () ;
feasy .end () ;
feasx0.end () ;
feasx.end () ;
return res;

63



Bibliography

[

2]

3]

[4]

[5]

9]

[10]

Y.P. Aneja. An integer linear programming approach to the steiner problem in graphs.
Networks, 10(2):167-178, 1980. 47

A. Archer, M.h. Bateni, M.T. Hajiaghayi, and H. Karloff. Improved approximation
algorithms for prize-collecting steiner tree and tsp. 2009 50th Annual IEEE Symposium
on Foundations of Computer Science, pages 427-436. 8

E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621-636,
1989. 6

D. Bienstock, M.X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the
prize collecting traveling salesman problem. Mathematical Programming, 59(1):413—
420, 1993. 6, 8

J. Byrka, F. Grandoni, T. Rothvof}, and L. Sanita. An improved lp-based approx-
imation for steiner tree. Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, pages 583-592, 2010. 6

S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for
the prize-collecting steiner tree problem in graphs. Networks, 38(1):50-58, 2001. 3, 8

M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Ap-
proximation algorithms for directed steiner problems. Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 192-200, 1998. 6

S. Chawla, D. Kitchin, U. Rajan, R. Ravi, and A. Sinha. Profit maximizing mecha-
nisms for the extended multicasting game. CMU CS Technical Report CMU-CS-02-
164, 2002. 10

B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method for
the maximum flow problem. Algorithmica, 19(4):390-410, 1997. 35

M. Chlebik and J. Chlebikova. Approximation hardness of the steiner tree problem
on graphs. Algorithm Theory, SWAT 2002, pages 95-99, 2002. 6

64



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Chopra, E.R. Gorres, and M.R. Rao. Solving the steiner tree problem on a graph
using branch and cut. ORSA Journal on Computing, 4(3):320-335, 1992. 6, 11

S. Chopra and M.R. Rao. The steiner tree problem i: formulations, compositions and
extension of facets. Mathematical Programming, 64(1):209-229, 1994. 11

N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388-Graduate School of Industrial Administration, Carnegie
Mellon University, 1976. 8

R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. A faster implementation of the
goemans-williamson clustering algorithm. Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 17-25, 2001. 8

R. Cordone and M. Trubian. A relax-and-cut algorithm for the knapsack node
weighted steiner tree problem.  Asia-Pacific Journal of Operational Research,
25(3):373-391, 2008. 7, 9

A.S. Cunha, A. Lucena, N. Maculan, and M.G.C. Resende. A relax-and-cut algorithm
for the prize-collecting steiner problem in graphs. Discrete Applied Mathematics,
157(6):1198-1217, 2009. 9

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393-410, 1954.

C.W. Duin and A. Volgenant. Some generalizations of the steiner problem in graphs.
Networks, 17(3):353-364, 1987. 7, 9, 10

S. Engevall, M. Géthe-Lundgren, and P. Varbrand. A strong lower bound for the node
weighted steiner tree problem. Networks, 31(1):11-17, 1998. 9

J. Feigenbaum, C.H. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63(1):21-41, 2001. 3

P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J.C. de Pina. Primal-dual approxima-
tion algorithms for the prize-collecting steiner tree problem. Information Processing
Letters, 103(5):195-202, 2007. 8

M.R. Garey, R.L. Graham, and D.S. Johnson. The complexity of computing steiner
minimal trees. SIAM Journal on Applied Mathematics, pages 835-859, 1977. 6

M.X. Goemans and D.P. Williamson. A general approximation technique for con-
strained forest problems. Mathematical Programming, 59(1):413-420, 1993. 3, 6

65



[24]

[25]

[26]

[27]

[29]

[30]

[31]

32]

33]

[34]

[35]

M.X. Goemans and D.P. Williamson. The primal-dual method for approximation

algorithms and its application to network design problems. Approzximation Algorithms
for NP-hard Problems, 4(60):144-191, 1996. 3, 8

S. Guha and S. Khuller. Improved methods for approximating node weighted steiner
trees and connected dominating sets. Foundations of Software Technology and Theo-
retical Computer Science, pages 1056-1056, 1998. 8

M.T. Hajiaghayi and K. Jain. The prize-collecting generalized steiner tree problem via
a new approach of primal-dual schema. Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA 2006, pages 631-640, 2006. 7

D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem:
theory and practice. Proceedings of the 11th Annual ACM-SIAM Symposium On
Discrete Algorithms, pages 760-769, 2000. 3, 8

G.W. Klau, I. Ljubi¢, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to solve
the prize-collecting steiner tree problem. Genetic and FEvolutionary Computation,

GECCO 2004, pages 13041315, 2004. 8

P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted steiner trees. Journal of Algorithms, 19(1):104-115, 1995. 8

T. Koch and A. Martin. Solving steiner tree problems in graphs to optimality. Net-
works, 32(3):207-232, 1998. 16

I. Ljubié¢, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. Solving
the prize-collecting steiner tree problem to optimality. Technical Report TR-186-1-
04-01, Vienna University of Technology, 2004. iii, 3, 4, 9, 14, 16, 20, 34, 35, 41, 42,
57

A. Lucena and J.E. Beasley. A branch and cut algorithm for the steiner problem in
graphs. Networks, 31(1):39-59, 1998. 6

A. Lucena and M.G.C. Resende. Strong lower bounds for the prize collecting steiner
problem in graphs. Discrete Applied Mathematics, 141(1-3):277-294, 2004. 3, 4, 9

J.E. Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.
Handbook of Applied Optimization, pages 65-77, 1999. 32

A.B. Philpott and N.C. Wormald. On the optimal extraction of ore from an open-cast
mine. Technical Report - University of Auckland, New Zealand, 1997. 3, 4, 20, 22, 26,
27, 28, 29

66



[36] S.K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor. The rectilinear steiner ar-
borescence problem. Algorithmica, 7(1):277-288, 1992. 14

[37] G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. Pro-
ceedings of the 11th Annual ACM-SIAM Symposium On Discrete Algorithms, SODA
2010, pages 770-779, 2000. 6

[38] A. Segev. The node-weighted steiner tree problem. Networks, 17(1):1-17, 1987. 7, 8,
9

[39] D.A. Thomas, M. Brazill, D.H. Lee, and N.C. Wormald. Decline design in under-
ground mines using constrained path optimisation. International Transactions in
Operational Research, 14(2):143-158, 2007. 1

[40] R.T. Wong. A dual ascent approach for steiner tree problems on a directed graph.
Mathematical Programming, 28(3):271-287, 1984. 47

67



