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Abstract

Adaptive grid generation has a wide range of applications in the areas of fluid mechan-
ics, aerodynamics and heat transfer. It gives improvements in accuracy and efficiency of
the numerical computation of partial differential equations. In adaptive grid generation,
equidistribution has traditionally been a fundamental principle according to the literatures.

In this thesis, we propose a numerical method for generating two and three dimensional
equidistribution grids based on Monge-Kantorovich optimization, and we implement algo-
rithms based on our method. The procedure of our method involves solving a Monge-
Ampère equation using Hamilton-Jacobi-Bellman formulation. The algorithms are tested
with different examples. According to the numerical experiments, the algorithms generate
grids according to the equidistribution principle; the shapes of the generated grids match
the geometric features of the densities prescribed in the examples.
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Chapter 1

Introduction

Many problems of practical interest in the natural science, engineering and even finance can
be modeled and analyzed using partial differential equations (PDE). PDEs are a powerful
family of equations that describe how objects or quantities change over time under other
variables such as gravity, force and viscosity. Most PDEs are difficult to solve analytically.
This means that for many problems, there exists no natural “closed-form” expression which
is easily computed and understood in terms of the input quantities. In other words, the
solutions that we care about are implicitly described.

Typically, we approximate solutions to PDEs that cannot be solved analytically using a
popular technique called discretization. Discretization involves sampling the problem at a
fixed number of points and simulating the equations that describe the behavior. If enough
points are chosen, then simulating the equations will provide meaningful answers. Such
domains of sample points are often called grids in the literature. In a single dimension, a
grid corresponds to points on an arc; in higher dimensions, a grid corresponds to points in
some coordinate system.

A grid with its points evenly distributed is called a uniform grid. However, in many
applications, non-uniform grids in which points are not evenly distributed are more useful.
For instance, in modeling of hurricane and other storms, the physical processes (such as
the change of atmospheric pressure and the movement of convection currents) involved in
each region may vary widely. Active regions typically require densely spaced grid points to
capture features of interest, while less active regions can be coarsely simulated using widely
spaced grid points (Weller et al [29], Mandli and Dawson [22]). To meet the computational
requirements of such problems, the use of adaptive grid generation is required.
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Figure 1.1: Left: hurricane storm surge (Image source: Berger [2]). Right: adaptive grid for storm surge
model. (Image source: Budd [3])

An important notion in adaptive grids is that of equidistribution; that is a given quan-
tity being distributed uniformly along cells in the grid. Equidistribution has traditionally
been a fundamental principle in adaptive grid generation (Huang et at [15], Thompson
[26]). The concept of equidistribution principle is first introduced by de Boor [10] for
solving boundary value problems for ordinary differential equations, involves choosing grid
points so that some measure of the numerical error of approximating a function using
piecewise polynomial functions (splines) is equalized over each subinterval. Huang et al
[15] show that this is a superior guiding principle for adaptive grid generation and leads to
improvements in accuracy and efficiency of the numerical computation of PDEs.

In one dimension (Thompson [26], Eiseman [12], Liseikin [21]), the grid constrained
to a given equidistribution principle exists uniquely, since each cell of the grid contains
only one unknown that can be uniquely determined by the specified Jacobian of the grid
transformation. In higher dimensions, there can be many possible grids that satisfy a given
equidistribution principle; additional constraints are typically required for selecting a grid
that is optimal according to some user criteria among all the possible grids. Such notions
of optimality include a grid transformed from a uniform grid using the least amount of
physical energy.

A number of different methods have been developed in the past for generating equidis-
tributed grid in two or higher dimensions. Huang and Sloan [16] developed an adaptive
grid method in two dimensions by considering equidistribution along a one-dimensional
grid in the multi-dimensional domain. The approach is attractive as it decomposes the
task of multidimensional grid generation into a series of one-dimensional grid equidistri-
bution. However, the grids obtained by this method are only locally equidistributed and
may even be folded (Huang and Sloan [16]). Another example is the deformation method

2



proposed by Liao and Anderson [19] based on the work of Moser [23, 9]. The method in-
volves computing the new positions of the points of an existing grid according to a system
of ordinary differential equations (ODE). The drawback of this method is that there exists
great latitude in choosing the ODE system, and for a fixed ODE system the resulting grid
does not appear optimal in any sense (Delzanno et al [11]).

Recently proposed numerical methods based on Monge-Kantorovich (MK) optimization
for optimal grid generation include the work of Delzanno et al [11], Sulman et al [25] and
Weller et at [28]. The common idea of these methods is to minimize a grid quality measure
derived from the MK transportation problem and constrained locally by the equidistribu-
tion principle, which involves solving a Monge-Ampère (MA) equation resulting from the
MK optimization. While these methods have many common characteristics, the difference
between the methods, on the other hand, appears in variations of the resulting MA equa-
tions and the techniques employed for solving the MA equations. For example, the method
proposed by Delzanno et al [11] involves solving an elliptic MA equation numerically with a
Jacobian-Free Newton-Krylov method. Sulman et al [25] compute the grid transformation
by integrating a parabolic MA equation to steady state at every step. Weller et al [28]
compute the grid transformation on a sphere by computing a semi-implicit solution of a
parabolic MA equation.

In this thesis, we propose a numerical method for two and three dimensional grid
equidistribution based on Monge-Kantorovich optimization, and we implement algorithms
based on our method. The procedure of our method involves solving an elliptic MA equa-
tion using Hamilton-Jacobi-Bellman (HJB) formulation. The advantage of our approach is
that the computation of the HJB formulation of the MA equation is numerically amenable,
since the differential operator of the HJB equation under fixed controls is linear, which will
be demonstrated in details in Chapter 3. We will show that, based on the numerical ex-
periments, our algorithms generate grids for prescribed densities according to the equidis-
tribution principle; the shapes of the grids match the geometric features of the prescribed
densities.

The remainder of this thesis is organized as follows. In Chapter 2, we provide the
necessary background knowledge about grid generation problem and basic concepts of the
method that we use to solve the problem. In Chapter 3, we present the algorithms for
solving the two-dimensional and three-dimensional grid generation problems. In Chapter
4, we discuss the results of our numerical experiments. Finally, we give a conclusion of our
work in Chapter 5.
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Chapter 2

Background

Our objective is to generate adaptive grids in two and three dimensions according to the
equidistribution principle. The numerical method proposed in this thesis for solving the
problem is based on MK optimization. In this chapter, we provide background knowledge
on the concepts of our method. We start by explaining the mathematical formulation of
the grid generation problem and the connection between the MK optimal transport model
and the MA equation that we attempt to solve. Then we introduce the HJB formulation
of the MA equation and the related concepts.

2.1 Monge-Kantorovich Optimization

The grid generation problem considers generating a grid that evenly distribute a given
quantity along its cells. The mathematical formulation of the problem is as follows. Let
ρ′ be a prescribed positive, non-uniform density function on a physical domain ΩP ⊂ Rn,
where n is the dimension of the space. Let x be a uniform grid in a computational domain
ΩC ⊂ Rn and dnx and ρ be a constant density function on ΩC such that ρ is equidistributed
over x, i.e,

ρ(x)dnx = constant,

where ρ(x)dnx is the mass in each cell dnx of the grid x (we note that dnx ≡ dxdy in two
dimensions and dnx ≡ dxdydz in three dimensions). See Figure 2.1.
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Figure 2.1: Left: the image of a non-uniform density function ρ′ > 0 on a physical domain ΩP = [0, 1]×
[0, 1]. Right: the image of a constant density ρ > 0 equidistributed by a uniform grid x ∈ ΩC = [0, 1]×[0, 1].

The goal is to find a coordinate transformation φ : ΩC → ΩP of x such that the new
grid x′ = φ(x) equidistributes the density ρ′ on ΩP :

ρ′(x′)dnx′ = ρ(x)dnx = constant. (2.1)

Accordingly, we have ∫
x′∈ΩP

ρ′(x′)dnx′ =

∫
x∈ΩC

ρ(x)dnx = constant. (2.2)

Differentiating both sides of Equation (2.2), we get ρ′(x′) det[J (x′)] = ρ(x), or equivalently,

det[J (x′)]
ρ′(x′)

ρ(x)
= 1, (2.3)

where J (x′) is the n× n Jacobian matrix ∂x′

∂x
and det[J (x′)] is the Jacobian determinant.

Equation (2.3) is called the equidistribution principle; it ensures the generated grid x′ is

equidistributed according to the prescribed densities ρ′ and ρ. The scalar function ρ′(x′)
ρ(x)

is
also known as a monitor function in the literature.

Figures 2.2 and 2.3 are sketchs of the grid x′ generated according to ρ and ρ′.
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Figure 2.2: Sketch of a coordinate transformation φ : ΩC → ΩP that transforms a uniform grid x
(left) into a non-uniform grid x′ (right), such that x′ equidistributes the density ρ′ (ΩC = [0, 1] × [0, 1],
ΩP = [0, 1]× [0, 1]).
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Figure 2.3: A sketch of the deformed grid x′(= φ(x) = (x′, y′)) that equidistributes ρ′ on ΩP =
[0, 1]× [0, 1]; The mass ρ′(x′, y′)dx′dy′ in each cell dx′dy′ of the grid x′ is uniform.
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We note that the above grid generation problem is not well-posed for two or higher
dimensions. More specifically, there exist infinitely many transformations that solve the
problem. Figure 2.4 shows an example of the non-uniqueness of equidistribution grid in
two-dimensional.
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6

Figure 2.4: Example of two different 2 × 2 equidistribution grid (solid lines) generated for the sample
prescribed density ρ′ (gray area: ρ′ = 3; white area: ρ′ = 1). The grid x′ on the left hand side is closer to
a uniform grid than the grid x′′ on the right hand side.

To make the problem well-posed, we aim at finding an optimal coordinate transforma-
tion φ∗(x) in a sense that it minimizes some measure of energy cost for transforming a
uniform grid x into a deformed grid x′ according to the equidistribution principle. For this
purpose, we use the L2-norm to measure the grid displacement between x and x′. The
optimal transformation φ∗(x) is then defined as

φ∗(x) ≡ arg min
φ(x)

∫
x∈ΩC

‖x− φ(x)‖2
L2
dnx. (2.4)

That is, the optimal transformation φ∗(x) minimizes the total squared grid displacement
between x and x′. The optimal transformation exists uniquely amoung all the transfor-
mations that are constrained to the equidistribution principle (2.3). The minimization
problem (2.4) constrained to (2.3) is called Monge-Kantorovich (MK) optimization. As we
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will see later, the optimization (2.4) not only helps to reduce mesh skewness but it also
helps to prevent mesh tangling.

In this thesis, we specialize our discussion without loss of generality to the case that
ΩC = ΩP = Ω.

2.2 Monge-Ampère Equation

Knott and Smith [17] show that the optimal transformation φ∗(x) that minimize (2.4) is
the gradient ∇u(x) of a convex function u(x) ∈ C(Ω). Thus, to find the solution φ∗(x) to
the grid generation problem, it suffices to solve

det[D2u(x)]
ρ′(∇u(x))

ρ(x)
= 1, u is convex (2.5)

for u(x), where D2u(x) ∈ Rn×n is the Hessian matrix of u(x) arising from (2.3). Let

f(u(x)) ≡ ρ(x)
ρ′(∇u(x))

. Then (2.5) can be rewritten as

det[D2u(x)] = f(u(x)), u is convex. (2.6)

Equation (2.6) is called Monge-Ampère (MA) equation.

We note that the grid generation method based on the MA equation (2.6) is robust to
grid tangling (Budd et al [4], Weller et al [28]) due to the convex constraint of (2.6). Since
u(x) is convex, det[D2u(x)] is positive, or equivalently, the Jacobian determinant det[J (x′)]
is positive. It follows that the J (x′) is invertible (by the inverse function theorem) and so
the generated grid x′ will not tangle.

We now specify the boundary conditions of (2.6) in order to complete the grid generation
model. Following Delzanno et al [11], we require the gradient ∇u(x), which corresponds
to the optimal transformation φ∗(x), to satisfy

(∇u(x)− x) · n = 0 on ∂Ω, (2.7)

where ∂Ω denotes the boundary of Ω, ∇u(x) − x is the displacement of a point on ∂Ω,
and n is the unit vector normal to ∂Ω. That is, the displacement of a point is tangential
to the boundary under the transformation φ. Equation (2.7) is called Neumann boundary
condition.

8



2.3 Viscosity Solution

We note that the MA equation (2.6) is a fully nonlinear PDE, i.e., (2.6) is nonlinear in the
highest-order derivatives of the prospective solution u(x), since the left hand side of (2.6)
consists of products of the second-order derivatives of u(x). Accordingly, (2.6) may have
multiple weak solutions, i.e., solutions that satisfy the equation almost everywhere. We
are concerned with a particular type of weak solution, known as the viscosity solution.

The viscosity solution (Crandall et al [7], Crandall and Lions [8]) of a fully nonlinear
PDE is a type of weak solution. The notion of viscosity solution is first introduced by
Crandall and Lions [8] as a generalization of the classical concept of a solution to a PDE
and it allows merely continuous functions to be solutions of fully nonlinear equations of
second order (Crandall et al [7]). In our grid generation problem, we are interested in the
viscosity solution of (2.6), since the viscosity solution of the MA equation is globally convex
(Froese and Oberman [13]) while other weak solutions may not be convex. In addition, the
existence and uniqueness of the viscosity solution of the MA equation (2.6) are guaranteed
due to the constraint that u is convex and that Ω is bounded and convex (Crandall et al
[7] and Gutiérrez,[14]), which makes the problem well-posed.

To give precise definition of the viscosity solution of (2.6), we rewrite the MA equation
(2.6) as

F(x, D2u(x)) ≡ − det[D2u(x)] + f(u(x)) = 0. (2.8)

Definition 2.1. A convex function u ∈ C(Ω) is a viscosity sub-solution (or super-solution)
of the MA equation (2.8), if for all the test functions v ∈ C2(Ω) and all x ∈ Ω, such that
u− v has a local minimum (or maximum) at x, we have

F∗(x, D2v(x)) ≤ 0 (or F∗(x, D2v(x)) ≥ 0),

where F∗ (or F∗) is the lower (or upper) semi-continuous envelope of F : C → R on a
closed set C, defined as:

F∗(x) = lim
y→x,

inf
y∈C
F(y)

(
or F∗(x) = lim

y→x,
sup
y∈C
F(y)

)
.

Furthermore, u is a viscosity solution if it is both a viscosity sub-solution and super-solution.

According to Barles and Souganidis [1], it is desirable to employ a monotone scheme in
the discretization of a fully nonlinear second order PDE in order to converge to the viscosity
solution of the PDE. The definition of a monotone scheme (Barles and Souganidis [1]) is
included as follows.
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Definition 2.2. A scheme in the form un+1
i =

kR∑
k=−kL

bku
n
i+k (where kL and KR are two

non-negative integers, bk are the coefficients of the scheme, and uni+k are data value at time
level n) is said to be monotone, if all coefficients bk are non-negative.

2.4 Hamilton-Jacobi-Bellman Formulation

Our goal is to compute the viscosity solution of the MA equation (2.6). While we could
attempt to solve (2.6) directly, we notice that it is difficult to design a numerical scheme
for discretizing (2.6) due to the nonlinear operator det[D2u] in it. Instead of solving
the equation (2.6) directly, we convert (2.6) into an equivalent Hamilton-Jacobi-Bellman
(HJB) equation (Chen and Wan [5, 6]). As we will see later, the differential operator of the
equivalent HJB equation under fixed control parameters is linear, which makes the HJB
equation amenable to numerical techniques. Hence, we apply the HJB formulation in the
numerical computation of the MA equation (2.6).

The equivalence of MA equation and HJB equation is first established by Krylov [18]
and Lions [20] for arbitrary dimensions. We include the equivalence as follows.

We adopt the notation that A � 0 (or A � 0) means that A is positive semi-definite
(or negative semi-definite). We note that A is symmetric if A � 0 (or A � 0).

Lemma 2.1. Let B ∈ Rn×n be a symmetric matrix, n ≥ 2, and let c ≥ 0. Define the set

S+
1 ≡

{
A ∈ Rn×n : A � 0, Tr[A] = 1

}
. (2.9)

Then

max
A∈S+

1

{Tr(AB) + c n
√

det[A]} = 0 (2.10)

if and only if

B � 0, n n
√

det(−B) = c. (2.11)

Proof. We refer readers to Lemma 2.6 of Smears [24]

By applying Lemma 2.1, we reformulate the MA equation (2.6) into the following HJB
equation (2.12):
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Theorem 2.1. Let Ω ⊂ Rn be a convex set. Let u ∈ C2(Ω) be a convex function, and
f ∈ C(Ω) be a non-negative function. Then u solves the MA equation (2.6) if and only if
it solves the following HJB equation

max
A(x)∈S+

1

{
−Tr

[
A(x)D2u(x)

]
+ n n

√
det[A(x)]f(u(x))

}
= 0 (2.12)

where S+
1 is the set defined in (2.9) and A(x) ∈ S+

1 is the control at point x ∈ Ω.

Proof. Let c = n n
√
f , B = −D2u. Then Equation (2.10) becomes (2.12), and (2.11) gives

det[D2u] = f , which is the MA equation (2.6). By Lemma 2.1, u solves (2.6) if and only
if it solves (2.12).
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Chapter 3

Methodology

In the previous chapter, we provided background knowledge of our method for grid gen-
eration, including the HJB formulation (2.12) of the MA equation (2.6) that arises from
the grid generation model. In this chapter, we present our contribution of solving the HJB
equation (2.12) in two and three dimensions numerically using finite difference methods and
constructing algorithms for grid generation. We start by introducing the parametrization
of the HJB equation (2.12) in two and three dimensions. Then we describe the monotone
schemes employed for discretizing the parametrized HJB equations and the resulting dis-
crete systems. At last, we present the algorithms based on our numerical method for grid
generation.

For simplicity, we specialize our discussion to the case that ρ = 1, Ω = [0, 1]× [0, 1] for
two-dimensional case and Ω = [0, 1]× [0, 1]× [0, 1] for three-dimensional case.

3.1 Parametrization

Our objective is to solve the HJB equation (2.12) for u(x). For this purpose, we need an
explicit form of the matrix A(x) in (2.12). Since A(x) ∈ S+

1 is positive semi-definite, it can
be diagonalized by an orthogonal matrix. More specifically, A(x) can be parametrized by
a set of controls, which is shown as follows. We note that the following parametrization
covers all the matrices contained in the set S+

1 , i.e., the parametrization is fully general.

12



3.1.1 2D Case

In two dimensions, following the work of Chen and Wan [5, 6], we parametrize A(x) using
a pair of controls (a(x), θ(x)) at point x as

A(x) = P (θ(x))TD(a(x))P (θ(x)), (3.1)

where

P (θ(x)) =

(
cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

)
, D(a(x)) =

(
a(x) 0

0 1− a(x)

)
and (3.2)

a(x) ∈ [0, 1], θ(x) ∈ [−π, π).

We note that the matrix P (θ(x)) in (3.2) is an orthogonal matrix. Let Γ = [0, 1]×[−π, π]
denote the set of admissible controls from (3.2) and let C(x) denote the pair of controls
at point x, i.e., C(x) ≡ (a(x), θ(x)). By (3.1) and (3.2) , the HJB equation (2.12) in two
dimensions (i.e., n = 2) can be re-formulated as the following equation, which we attempt
to solve:

max
(a(x),θ(x))∈Γ

{−α11(C(x))uxx(x)− α22(C(x))uyy(x)

−2α12(C(x))uxy(x) + 2
√
a(x)(1− a(x))f(u(x))

}
= 0, (3.3)

where α11(C(x)), α12(C(x)), α22(C(x)) are coefficients of the second order derivatives
uxx(x), uxy(x), uyy(x) of u(x), defined as:

α11(C(x)) =
1

2
[1− (1− 2a(x)) cos 2θ(x)],

α22(C(x)) =
1

2
[1 + (1− 2a(x)) cos 2θ(x)],

α12(C(x)) =
1

2
(1− 2a(x)) sin 2θ(x).

The differential operator of the HJB equation (3.3) is

DC,u ≡ −α11(C)uxx − α22(C)uyy − 2α12(C)uxy + 2
√
a(1− a)f,

which is linear under fixed controls C. Thus, comparing with the MA equation (2.6) that
is non-linear, the HJB equation (3.3) is more amenable to numerical techniques.
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3.1.2 3D Case

We generalize the technique of parametrizing A(x) in two dimensions for the three dimen-
sional case. We parametrize A(x) in three dimensions using a set of controls (a1(x), a2(x),
θ(x), ϕ(x), ψ(x)) at point x as follows:

A(x) = P (θ(x), ϕ(x), ψ(x))TD(a1(x), a2(x))P (θ(x), ϕ(x), ψ(x)), (3.4)

where

P (θ, ϕ, ψ) =

cosψ cosϕ − sinψ cos θ + cosψ sinϕ sin θ sinψ sin θ + cosψ sinϕ cos θ
sinψ cosϕ cosψ cos θ + sinψ sinϕ sin θ − cosψ sin θ + sinψ sinϕ cos θ
− sinϕ cosϕ sin θ cosϕ cos θ


D(a1, a2) =

a1 0 0
0 a2 0
0 0 1− a1 − a2

 and (3.5)

a1 ∈ [0, 1], a2 ∈ [0, 1− a1], θ ∈ [−π, π), ϕ ∈ [−π, π), ψ ∈ [−π, π).

We note that the matrix P (θ(x), ϕ(x), ψ(x)) in (3.5) is an orthogonal matrix. Let C(x) ≡
(a1(x), a2(x), θ(x), φ(x), ψ(x)) denote the set of controls at x and let Γ denote the five-
dimensional set of admissible controls from (3.5). By (3.4) and (3.5), the HJB equation
(2.12) in three dimensions (i.e., n = 3) can be rewritten as the following equation, which
we attempt to solve:

max
C(x)∈Γ

{−α11(C(x))uxx(x)− α22(C(x))uyy(x)− α33(C(x))uzz(x)

−2α12(C(x))uxy(x)− 2α13(C(x))uxz(x)− 2α23(C(x))uyz(x)

+ 3 3
√
a1(x)a2(x)(1− a1(x)− a2(x))f(u(x)) } = 0, (3.6)

where uxx(x), uyy(x), uzz(x), uxy(x), uxz(x), uyz(x) are the second order derivatives of
u(x), and

α11(C(x)) = (cos2 ψ cos2 ϕ)a1 + (sin2 ψ cos2 ϕ)a2 + sin2 ϕ(1− a1 − a2),

α22(C(x)) = (−sinψ cos θ + cosψ sinϕ sin θ)2a1

+ (cosψ cos θ + sinψ sinϕ sin θ)2a2

+ cos2 ϕ sin2 θ(1− a1 − a2),

α33(C(x)) = (sinψ sin θ + cosψ sinϕ cos θ)2a1

+ (− cosψ sin θ + sinψ sinϕ cos θ)2a2

+ cos2 ϕ cos2 θ(1− a1 − a2),
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α12(C(x)) = cosψ cosϕ(− sinψ cos θ + cosψ sinϕ sin θ)a1

+ sinψ cos θ(cosψ cos θ + sinψ sinϕ sin θ)a2

− sinϕ cosϕ sin θ(1− a1 − a2),

α13(C(x)) = cosψ cosϕ(sinψ sin θ + cosψ sinϕ cos θ)a1

+ sinψ cosϕ(− cosψ sin θ + sinψ sinϕ cos θ)a2

− sinϕ cosϕ cos θ(1− a1 − a2),

α23(C(x)) = (− sinψ cos θ + cosψ sinϕ sin θ)(sinψ sin θ + cosψ sinϕ cos θ)a1

+ (cosψ cos θ + sinψ sinϕ sin θ)(− cosψ sin θ + sinψ sinϕ cos θ)a2

+ cos2 ϕ sin θ cos θ(1− a1 − a2).

We note that the differential operator of the HJB equation (3.6) is

DC,u ≡− α11(C)uxx − α22(C)uyy − α33(C)uzz − 2α12(C)uxy
− 2α13(C)uxz − 2α23(C)uyz + 3 3

√
a1a2(1− a1 − a2)f,

which is linear under fixed controls C.

3.2 Finite Difference Discretization

We now discretize the re-formulated HJB equations (3.3) and (3.6) using finite difference
methods. We intend to use monotone schemes in order to converge to the viscosity solu-
tions, as we mentioned earlier in Section 2.3.

For brevity, we use the following notation:

Ui,j (or Ui,j,k) ≡ discrete approximation of u(xi,j) (or u(xi,j,k)),

fi,j (or fi,j,k) ≡ f(u(xi,j)) (or f(u(xi,j,k))),

ai,j ≡ a(xi,j),

Ci,j ≡ the controls (a(xi,j), θ(xi,j)), (3.7)

Ci,j,k ≡ the controls (a1(xi,j,k), a2(xi,j,k), θ(xi,j,k), ϕ(xi,j,k), ψ(xi,j,k)),

(αind)i,j ≡ αind(Ci,j), ind ∈ {11, 12, 22}.
(αind)i,j,k ≡ αind(Ci,j,k), ind ∈ {11, 22, 33, 12, 13, 23}.
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3.2.1 2D Case

In two dimensions, we consider an N ×N square grid

{xi,j ≡ (xi, yj)| xi,j ∈ Ω for 1 ≤ i, j ≤ N ; xi,j ∈ ∂Ω for i, j = 0 or N + 1}

with grid size h = 1
N

. We approximate uxx(xi,j) and uyy(xi,j) in (3.3) using central finite
differences:

uxx(xi,j) ≈ (Uxx)i,j ≡
1

h2
(Ui+1,j − 2Ui,j + Ui−1,j), (3.8)

uyy(xi,j) ≈ (Uyy)i,j ≡
1

h2
(Ui,j+1 − 2Ui,j + Ui,j−1). (3.9)

For uxy(xi,j) in (3.3), we approximate it using a standard 7-point stencil discretization,
which leads to a monotone scheme in the following two cases (Chen and Wan [5, 6]):

(i) if

(α11)i,j ≥ |(α12)i,j|, (α22)i,j ≥ |(α12)i,j|, and (α12)i,j ≥ 0, (3.10)

then uxy(xi,j) ≈ (Uxy)
(1)
i,j , where

(Uxy)
(1)
i,j ≡

2Ui,j + Ui+1,j+1 + Ui−1,j−1 − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1

2h2
. (3.11)

(ii) if

(α11)i,j ≥ |(α12)i,j|, (α22)i,j ≥ |(α12)i,j|, and (α12)i,j < 0, (3.12)

then uxy(xi,j) ≈ (Uxy)
(2)
i,j , where

(Uxy)
(2)
i,j ≡

−2Ui,j − Ui+1,j−1 − Ui−1,j+1 + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1

2h2
. (3.13)

If either Condition (3.10) or Condition (3.12) is satisfied at xi,j, then the discretization of
the HJB equation (3.3) at xi,j can be written as

max
Ci,j∈Γ

{
−(α11)i,j(Uxx)i,j − 2(α12)i,j(Uxy)

(idx)
i,j − (α22)i,j(Uyy)i,j + 2

√
ai,j(1− ai,j)fi,j

}
= 0, (3.14)
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where

U (idx)
xy =

{
U

(1)
xy in (3.11) , if Condition (3.10) is satisfied,

U
(2)
xy in (3.13) , if Condition (3.12) is satisfied.

We note that Conditions (3.10) and (3.12) are determined by the coefficients (α11)i,j,
(α12)i,j and (α22)i,j, which depend on the controls Ci,j. The computation of Ci,j depends
on fi,j, which further depends on the values of the prescribed density functions ρ and ρ′.
According to our numerical experienments, if ρ and ρ′ are smooth functions, i.e, ρ and
ρ′ have continuous derivatives up to first order over their domains, then either Condition
(3.10) or Condition (3.12) is satisfied at each point xi,j.

3.2.2 3D Case

In three dimensions, we consider an N ×N ×N cubic grid

{xi,j,k ≡ (xi, yj , zk) | xi,j,k ∈ Ω for 1 ≤ i, j, k ≤ N ; xi,j,k ∈ ∂Ω for i, j, k = 0 or N + 1}

with grid size h = 1
N

. Similar to the two-dimensional case, we approximate uxx(xi,j,k),
uyy(xi,j,k) and uzz(xi,j,k) in (3.6) using central finite differences:

uxx(xi,j,k) ≈ (Uxx)i,j,k ≡
1

h2
(Ui+1,j,k − 2Ui,j,k + Ui−1,j,k) (3.15)

uyy(xi,j,k) ≈ (Uyy)i,j,k ≡
1

h2
(Ui,j+1,k − 2Ui,j,k + Ui,j−1,k) (3.16)

uzz(xi,j,k) ≈ (Uzz)i,j,k ≡
1

h2
(Ui,j,k+1 − 2Ui,j,k + Ui,j,k−1). (3.17)

For uxy(xi,j,k), uxz(xi,j,k) and uyz(xi,j,k) in (3.6), we approximate them using standard

7-point stencil discretization. For uxy(xi,j,k), we consider the two approximations (Uxy)
(1)
i,j,k

and (Uxy)
(2)
i,j,k that are derived from the Taylor expansions of Ui+1,j+1,k, Ui−1,j−1,k, Ui+1,j−1,k

and Ui−1,j+1,k:

(Uxy)
(1)
i,j,k =

2Ui,j,k + Ui+1,j+1,k + Ui−1,j−1,k − Ui+1,j,k − Ui−1,j,k − Ui,j+1,k − Ui,j−1,k

2h2
, (3.18)

(Uxy)
(2)
i,j,k =

−2Ui,j,k − Ui+1,j−1,k − Ui−1,j+1,k + Ui+1,j,k + Ui−1,j,k + Ui,j+1,k + Ui,j−1,k

2h2
. (3.19)
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Similarly, for uxz(xi,j,k) and uyz(xi,j,k), we consider the following approximations:

(Uxz)
(1)
i,j,k =

2Ui,j,k + Ui+1,j,k+1 + Ui−1,j,k−1 − Ui+1,j,k − Ui−1,j,k − Ui,j,k+1 − Ui,j,k−1

2h2
, (3.20)

(Uxz)
(2)
i,j,k =

−2Ui,j,k − Ui+1,j,k−1 − Ui−1,j,k+1 + Ui+1,j,k + Ui−1,j,k + Ui,j,k+1 + Ui,j,k−1

2h2
, (3.21)

(Uyz)
(1)
i,j,k =

2Ui,j,k + Ui,j+1,k+1 + Ui,j−1,k−1 − Ui,j+1,k − Ui,j−1,k − Ui,j,k+1 − Ui,j,k−1

2h2
, (3.22)

(Uyz)
(2)
i,j,k =

−2Ui,j,k − Ui,j+1,k−1 − Ui,j−1,k+1 + Ui,j+1,k + Ui,j−1,k + Ui,j,k+1 + Ui,j,k−1

2h2
. (3.23)

Theorem 3.1. The discretization (3.15) – (3.23) of the second-order derivatives of u(xi,j,k)
can lead to a monotone scheme for discretizing the HJB equation (3.6) in the following eight
cases:

(i) if

(α12)i,j,k ≥ 0, (α13)i,j,k ≥ 0, (α23)i,j,k ≥ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.24)

then uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.

(ii) if

(α12)i,j,k ≤ 0, (α13)i,j,k ≥ 0, (α23)i,j,k ≥ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.25)

then uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.

(iii) if

(α12)i,j,k ≥ 0, (α13)i,j,k ≤ 0, (α23)i,j,k ≥ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.26)

then uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.

(iv) if

(α12)i,j,k ≤ 0, (α13)i,j,k ≤ 0, (α23)i,j,k ≥ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.27)

then uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.
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(v) if

(α12)i,j,k ≥ 0, (α13)i,j,k ≥ 0, (α23)i,j,k ≤ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.28)

then uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.

(vi) if

(α12)i,j,k ≤ 0, (α13)i,j,k ≥ 0, (α23)i,j,k ≤ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.29)

then uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.

(vii) if

(α12)i,j,k ≥ 0, (α13)i,j,k ≤ 0, (α23)i,j,k ≤ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.30)

then uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.

(viii) if

(α12)i,j,k ≤ 0, (α13)i,j,k ≤ 0, (α23)i,j,k ≤ 0, (α11)i,j,k ≥ |(α12)i,j,k|+ |(α13)i,j,k|,
(α22)i,j,k ≥ |(α12)i,j,k|+ |(α23)i,j,k|, (α33)i,j,k ≥ |(α13)i,j,k|+ |(α23)i,j,k|, (3.31)

then uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.

Proof. There are eight possible numerical schemes for discretizing the HJB equation (3.6)
at point xi,j,k, based on the approximations (3.15) – (3.23), since each of the derivatives
uxy(xi,j,k), uxz(xi,j,k) and uyz(xi,j,k) has two forms of discretization. Let CUi,j,k

denote
the coefficient of Ui,j,k in the discretized HJB equation obtained by using one of the eight
schemes. By Definition 2.2, the employed scheme is monotone if CUi,j,k

≥ 0 and CUi′,j′,k′
≤ 0

for all (i′, j′, k′) 6= (i, j, k), which leads to Conditions (3.24) – (3.31) as follows.

(i) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.
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Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k−(α12)i,j,k−(α13)i,j,k−(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k+(α12)i,j,k+(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k+(α12)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k+(α13)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi+1,j+1,k
= CUi−1,j−1,k

=
−(α12)i,j,k

h2
≤ 0,

CUi+1,j,k+1
= CUi−1,j,k−1

=
−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k+1
= CUi,j−1,k−1

=
−(α23)i,j,k

h2
≤ 0,

which is fulfilled if Condition (3.24) is satisfied.

(ii) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.

Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k+(α12)i,j,k−(α13)i,j,k−(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k−(α12)i,j,k+(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k−(α12)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k+(α13)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi+1,j−1,k
= CUi−1,j+1,k

=
(α12)i,j,k

h2
≤ 0,

CUi+1,j,k+1
= CUi−1,j,k−1

=
−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k+1
= CUi,j−1,k−1

=
−(α23)i,j,k

h2
≤ 0,

which is fulfilled if Condition (3.25) is satisfied.

(iii) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.
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Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k−(α12)i,j,k+(α13)i,j,k−(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k+(α12)i,j,k−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k+(α12)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k−(α13)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi+1,j+1,k
= CUi−1,j−1,k

=
−(α12)i,j,k

h2
≤ 0,

CUi+1,j,k−1
= CUi−1,j,k+1

=
(α13)i,j,k

h2
≤ 0,

CUi,j+1,k+1
= CUi,j−1,k−1

=
−(α23)i,j,k

h2
≤ 0

which is fulfilled if Condition (3.26) is satisfied.

(iv) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(1)
i,j,k.

Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k+(α12)i,j,k+(α13)i,j,k−(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k−(α12)i,j,k−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k−(α12)i,j,k+(α13)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k−(α13)i,j,k+(α23)i,j,k

h2
≤ 0,

CUi+1,j−1,k
= CUi−1,j+1,k

=
(α12)i,j,k

h2
≤ 0,

CUi+1,j,k−1
= CUi−1,j,k+1

=
(α13)i,j,k

h2
≤ 0,

CUi,j+1,k+1
= CUi,j−1,k−1

=
−(α23)i,j,k

h2
≤ 0

which is fulfilled if Condition (3.27) is satisfied.

(v) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.
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Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k−(α12)i,j,k−(α13)i,j,k+(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k+(α12)i,j,k+(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k+(α12)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k+(α13)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi+1,j+1,k
= CUi−1,j−1,k

=
−(α12)i,j,k

h2
≤ 0,

CUi+1,j,k+1
= CUi−1,j,k−1

=
−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k−1
= CUi,j−1,k+1

=
(α23)i,j,k

h2
≤ 0

which is fulfilled if Condition (3.28) is satisfied.

(vi) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(1)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.

Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k+(α12)i,j,k−(α13)i,j,k+(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k−(α12)i,j,k+(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k−(α12)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k+(α13)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi+1,j−1,k
= CUi−1,j+1,k

=
(α12)i,j,k

h2
≤ 0,

CUi+1,j,k+1
= CUi−1,j,k−1

=
−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k−1
= CUi,j−1,k+1

=
(α23)i,j,k

h2
≤ 0

which is fulfilled if Condition (3.29) is satisfied.

(vii) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(1)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.
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Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k−(α12)i,j,k+(α13)i,j,k+(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k+(α12)i,j,k−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k+(α12)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k−(α13)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi,j,k
= CUi,j,k

=
−(α12)i,j,k

h2
≤ 0,

CUi,j,k
= CUi,j,k

=
(α13)i,j,k

h2
≤ 0,

CUi,j,k
= CUi,j,k

=
(α23)i,j,k

h2
≤ 0

which is fulfilled if Condition (3.30) is satisfied.

(viii) Suppose the discretization scheme is constructed using

uxy(xi,j,k) ≈ (Uxy)
(2)
i,j,k, uxz(xi,j,k) ≈ (Uxz)

(2)
i,j,k, uyz(xi,j,k) ≈ (Uyz)

(2)
i,j,k.

Then the scheme is monotone if

CUi,j,k
=

2((α11)i,j,k+(α22)i,j,k+(α33)i,j,k+(α12)i,j,k+(α13)i,j,k+(α23)i,j,k)

h2
≥ 0,

CUi+1,j,k
= CUi−1,j,k

=
−(α11)i,j,k−(α12)i,j,k−(α13)i,j,k

h2
≤ 0,

CUi,j+1,k
= CUi,j−1,k

=
−(α22)i,j,k−(α12)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi,j,k+1
= CUi,j,k−1

=
−(α33)i,j,k−(α13)i,j,k−(α23)i,j,k

h2
≤ 0,

CUi,j,k
= CUi,j,k

=
(α12)i,j,k

h2
≤ 0,

CUi,j,k
= CUi,j,k

=
(α13)i,j,k

h2
≤ 0,

CUi,j,k
= CUi,j,k

=
(α23)i,j,k

h2
≤ 0

which is fulfilled if Condition (3.31) is satisfied.

According to our numerical experiments, if the prescribed density functions ρ and ρ′

are smooth functions, then at each point xi,j,k, one of the conditions (3.24) – (3.31) is
satisfied. If so, the discretization of the HJB equation (3.6) at xi,j,k can be represented as

max
Ci,j,k∈Γ

{
− (α11)i,j,k(Uxx)i,j,k − (α22)i,j,k(Uyy)i,j,k − (α33)i,j,k(Uzz)i,j,k

− 2(α12)i,j,k(U
(idx)
xy )i,j,k − 2(α13)i,j,k(U

(idx)
xz )i,j,k − 2(α23)i,j,k(U

(idx)
yz )i,j,k

+ 3 3

√
a1(xi,j,k)a2(xi,j,k)(1− a1(xi,j,k)− a2(xi,j,k))fi,j,k

}
= 0, (3.32)

where idx ∈ {1, 2} and U
(idx)
xy , U

(idx)
xz and U

(idx)
yz are given by (3.18) – (3.23).
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3.3 The Discrete Systems

In the previous section, we discretized the HJB equation (3.3) in two dimensions and the
HJB equation (3.6) in three dimensions using finite difference methods.

The discretization of (3.3) (on an N ×N grid) leads to a discrete system of N2 equa-
tions; each of the discrete equations corresponds to a grid point xi,j and is given by the
discretization (3.14). The discretization of (3.3) (on an N ×N ×N grid) generates a dis-
crete system of N3 equations; each of the discrete equations corresponds to a grid point
xi,j,k and is given by the discretization (3.32).

We show that the two discrete systems arising from (3.14) and (3.32) can be written
into a general matrix form as follows.

• In two dimensions, we let

U ≡ {Ui,j|1 ≤ i, j ≤ N} ∈ RN2×1

be a vector of the unknowns, and let a ∈ RN2×1 and θ ∈ RN2×1 be vectors of the
corresponding controls. Then (3.14) can be written into the matrix form:

max
(a,θ)∈Γ

{A(a, θ)U− F(a, θ; U)} = 0, (3.33)

where A(a, θ) ∈ RN2×N2
is the matrix that consists of the coefficients of the un-

knowns {Ui,j} in (3.14), F(a, θ; U) ∈ RN2×1 is the vector that consists of the term

2
√
a(1− a)f in (3.14) and the boundary term that arises from the Neumann bound-

ary condition (2.7). We note that A(a, θ) depend on the controls (a, θ), while
F(a, θ; U) depends on (a, θ) and U.

• In three dimensions, we let

U ≡ {Ui,j,k|1 ≤ i, j, k ≤ N} ∈ RN3×1

be a vector of the unknowns

U = (U1,1,1, U2,1,1, · · · , UN,1,1, U1,2,1, U2,2,1, · · · , UN,2,1, · · · U1,N,1, U2,N,1, · · · , UN,N,1,
U1,1,2, U2,1,2, · · · , UN,1,2, U1,2,2, U2,2,2, · · · , UN,2,2, · · · U1,N,2, U2,N,2, · · · , UN,N,2,
· · ·
U1,1,N , U2,1,N , · · · , UN,1,N , U1,2,N , U2,2,N , · · · , UN,2,N , U1,N,N , U2,N,N , · · · , UN,N,N)T
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and let a1 ∈ RN3×1, a2 ∈ RN3×1, ϕ ∈ RN3×1, θ ∈ RN3×1, ψ ∈ RN3×1 be vectors of the
corresponding controls. Then (3.32) can be written into the form

max
a1,a2,θ,ϕ,ψ∈Γ

{A(a1, a2, θ, ϕ, ψ)U− F(a1, a2, θ, ϕ, ψ; U)} = 0, (3.34)

where A(a1, a2, θ, ϕ, ψ) ∈ RN3×N3
is a matrix that assembles the coefficients of the

unknowns {Ui,j,k} in (3.32), F(a1, a2, θ, ϕ, ψ; U) ∈ RN3×1 is a vector consists of the

term 3 3
√
a1a2(1− a1 − a2)f in (3.32) and the boundary term arising from the Neu-

mann boundary condition (2.7).

Without ambiguity, we will use

max
C∈Γ
{A(C)U− F(C; U)} = 0 (3.35)

to represent both the discrete systems (3.33) and (3.34) in the follow sections. Here, C
represents the set of controls, i.e., C = (a, θ) in two dimensions and C = (a1, a2, θ, ϕ, ψ) in
three dimensions. The explicit form of (3.35) is determined based on the context.

3.4 The Algorithm

In this section, we construct algorithms for solving the discretized system (3.35) numeri-
cally.

For brevity, we use the following notation:

C(m) ≡ the optimal controls C at m-th iteration

U(m) ≡ the numerical solution U at m-th iteration,

A(m) ≡ the matrix A(C(m)),

F(m) ≡ the vector F(C(m); U(m)),

R(m) ≡ the residual A(m)U(m) − F(m),

xt ≡ a grid point xi,j (or xi,j,k) in Ω, (3.36)

Ct ≡ the set of controls at the point xt,

L(xt; C; U) ≡ the equation contained in {A(C)U− F(C; U)} that

corresponds to the grid point xt.
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Our first attempt is to use Policy Iteration (Chen and Wan [6]), which is a fixed point
iteration algorithm. The Policy Iteration algorithm iteratively performs the following two
steps:

(i) compute the optimal controls C(m) = {C(m)
t }xt∈Ω under a given solution U(m), where

C(m)
t is the set of optimal controls at point xt ∈ Ω :

C(m)
t ≡ arg max

Ct∈Γ
L(xt; C; U(m)) (3.37)

(ii) solve the following linear system for U(m+1) under a given set of controls C(m):

A(C(m))U(m+1) = F(C(m); U(m)). (3.38)

However, according to our numerical experiments, the resulting matrix A(C(m)) in
(3.38) is singular and the right-hand side term F(C(m); U(m)) of (3.38) is not in the range
of A(C(m)), in which case the system (3.38) is inconsistent.

To approximate the numerical solution to (3.38), we replace Step (ii) of the Policy
Iteration by solving the following system for U(m+1):

(λI + A(C(m)))U(m+1) = F(C(m); U(m)) + λIU(m) (3.39)

where I is an identity matrix and λ (> 0) is a constant regularizer specified by the user.
The idea is that the solution u to the system

du

dt
+ Au = F (3.40)

approaches to the solution û to the system

Aû = F (3.41)

as the temporal variable t→∞. Let

dt ≡ 1

λ
I, du ≡ U(m+1) −U(m), u ≡ U(m+1) and û ≡ U(m+1).

Then (3.40) becomes (3.39), and (3.41) becomes (3.38). We can see that ‖U(m+1)−U(m)‖
decreases faster as 1

λ
→ 0 (i.e., λ→∞) since λ is correlated to t.
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We note that a small λ corresponds to a large step size in the iteration of the algorithm
and leads to a fast convergence to an approximation of the numerical solution U(m+1) to
the system (3.38). However, according to our numerical experiments, if λ is too small, then
the algorithm may not converge due to floating point errors. This gives arise to concerns
on the computational efficiency of the algorithm, since reducing the number of iterations
leads to a decrease in the likelihood for the algorithm to converge.

To improve computational efficiency, we use an adaptive regularizer instead of a con-
stant regularizer in the algorithm. The adaptive regularizer, denoted by λ, changes at each
iteration of the algorithm according to the following criteria: at the m-iteration,

• if ‖R(m)‖ < ‖R(m−1)‖ (where R(m) is the residual defined in (3.36)), i.e., ‖R‖ keeps
decreasing, then we reduce λ by λ = λ ∗ λdamp, where λdamp ∈ [0, 1] is the damping
of λ, so that the residual ‖R‖ decreases faster;

• if ‖R(m)‖ ≥ ‖R(m−1)‖, i.e., ‖R‖ stops decreasing, which implies that the λ selected
for computing the solution U(m) is too large, then we go back to the (m − 1)th
iteration and iteratively perform the following two steps at the (m− 1)th iteration:

(a) increase λ by λ = λ ∗ λamp, where λamp > 1 is the amplification of λ,

(b) re-calculate the solution U(m) using the new λ and compute the corresponding
residual R(m),

until ‖R(m)‖ < ‖R(m−1)‖ or ‖U(m) −U(m−1)‖ ≤ tolerance.

We note that, while we increase the regularizer λ to make the algorithm converges, we may
encounter floating point errors if λ is too large. To reduce numerical errors, we require the
maximum value λmax of λ to satisfy λmax ≤ 1√

ε
, where ε is machine epsilon. Meanwhile,

we specify a minimum value λmin(> 0) of λ in order to make the algorithm less likely to
diverge.

In addition, the procedure of performing the two steps (a) and (b) to adjust the value

of the regularizer at each iteration can be repeated up to logλamp

(
λmax

λ

)
times, where λ is

the current choice of regularizer. The iterative behavior of this procedure can be reduced
by choosing a smaller safety factor λmax or a larger amplification λamp.

The complete procedure of the algorithm is described in Algorithm 1.
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Algorithm 1 (2D & 3D)

Input: ρ, ρ′, λ, λdamp, λamp, λmax, λmin.
Output: Numerical solution U and the corresponding optimal controls C∗.

1: Set U(0) =

{
1
2
(x2 + y2) in 2D case

1
2
(x2 + y2 + z2) in 3D case

, where (x, y) or (x, y, z) is the coordinate

system of a uniform grid in two or three dimensions.

2: for m = 0, 1, ... until convergence do
3: Compute the optimal controls C(m) = {C(m)

t }xt∈Ω under the current solution U(m),

where C
(m)
t is given by (3.37). The computation can be done using brute-force or

Newton’s method.

4: Compute the residual R(m) given by (3.36)

5: if ‖R(m)‖ ≤ tolerance then return
6: Solve the system (3.39) for U(m+1)

7: if ‖R(m) −R(m−1)‖ ≤ tolerance or ‖U(m+1) −U(m)‖ ≤ tolerance then return
8: if‖R(m)‖ < ‖R(m−1)‖ then λ = λ ∗ λdamp unless λ = λmin.
9: else set λ = λ ∗ λamp and go back to Step 6.

10: end for
11: return U = U(m), C∗ = C(m).
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Chapter 4

Numerical Results

In this chapter, we present the numerical results of the algorithms discussed in Chapter 3.
We start by explaining the assessment criteria and measures for diagnosing the quality of
the generated grids. The results of the numerical experiments are discussed by analyzing
equidistribution error, convergence of the algorithms and presenting the generated grids.
The algorithms are tested with several non-trivial examples for robustness analysis.

4.1 Assessment Criteria and Measures

Since our objective is to find an optimal grid cooridinate transformation that minimizes the
grid displacement (2.4) under the equidistribution constraint (2.3), we assess our numerical
method by checking the global displacement of the generated grids and the enforcement of
the equidistribution.

4.1.1 Global Displacement

Let x denote the coordinate system of the uniform cells and x′ be the coordinate system
of the generated cells. We measure the global displacement d of the grid points by

d =
∑
i,j,k

(‖x′ − x‖2
L2

)i,j,k∆x∆y∆z (4.1)

which is a first-order approximation of the Monge-Kantorovich optimization (2.4). We
report the geometric mean d1/n (where n represents the dimension of the space) of the
global displacement d as a meansure of the deformation of the generated grid.
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4.1.2 Equidistribution Diagnostic

To assess the enforcement of equidistribution, we define the discretized volumes of the
generated cells in terms of the determinant of the Jacobian matrix of x′ with respect to
x. Since the generated cells are deformed, we need to compute the Jacobian determinant
numerically. We use Jnum to denote the numerically computed Jacobian determinant for
brevity.

In the 2D case, we employ a four-point approximation from Delzanno et al [11] to
compute Jnum. Let (x′i, y

′
i), i = 1, 2, 3, 4 denote the four vertices of a given cell in the new

grid coordinate system (see Figure 4.1).

(x, y) x

y

(x+ ∆x, y)

(x, y + ∆y) (x+ ∆y, y + ∆y)

φ

x′

y′

(x′1, y
′
1)

(x′2, y
′
2)

(x′3, y
′
3)

(x′4, y
′
4)

Figure 4.1: Sketch of the transformation of a two-dimensional cell.

The derivatives at each cell center are computed as

∆x′

∆x
=
x′2 − x′1 + x′3 − x′4

2∆x
,

∆x′

∆y
=
x′4 − x′1 + x′3 − x′2

2∆y
,

∆y′

∆x
=
y′2 − y′1 + y′3 − y′4

2∆x
,

∆y′

∆y
=
y′4 − y′1 + y′3 − y′2

2∆y
.

Then the numerical Jacobian determinant at the center of the cell is computed by

Jnum =
∆x′

∆x

∆y′

∆y
− ∆x′

∆y

∆y′

∆x
. (4.2)

The discretized cell volume in two-dimensional space is Jnum∆x∆y. With this discretiza-
tion, the area of the deformed cell corresponds to the natural geometrical area of the
polygon connecting the four vertices of the cell (Delzanno et al [11]).
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In 3D case, we derive an eight-point approximation from the above four-point approx-
imation to compute Jnum. We denote the eight vertices of a given cell in the new grid
coordinate system by (x′i, y

′
i, z
′
i), i = 1, 2, ..., 8 . See Figure 4.2.
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Figure 4.2: Sketch of the transformation of a three-dimensional cell.

We compute the derivatives at each cell center by

∆x′

∆x
=

(x′8 − x′1) + (x′5 − x′4) + (x′7 − x′2) + (x′6 − x′3)

4∆x
,

∆y′

∆x
=

(y′8 − y′1) + (y′5 − y′4) + (y′7 − y′2) + (y′6 − y′3)

4∆x
,

∆z′

∆x
=

(z′8 − z′1) + (z′5 − z′4) + (z′7 − z′2) + (z′6 − z′3)

4∆x
,

∆x′

∆y
=

(x′4 − x′1) + (x′5 − x′8) + (x′3 − x′2) + (x′6 − x′7)

4∆y
,

∆y′

∆y
=

(y′4 − y′1) + (y′5 − y′8) + (y′3 − y′2) + (y′6 − y′7)

4∆y
,

∆z′

∆y
=

(z′4 − z′1) + (z′5 − z′8) + (z′3 − z′2) + (z′6 − z′7)

4∆y
,

∆x′

∆z
=

(x′2 − x′1) + (x′3 − x′4) + (x′7 − x′8) + (x′6 − x′5)

4∆z
,

∆y′

∆z
=

(y′2 − y′1) + (y′3 − y′4) + (y′7 − y′8) + (y′6 − y′5)

4∆z
,

∆z′

∆z
=

(z′2 − z′1) + (z′3 − z′4) + (z′7 − z′8) + (z′6 − z′5)

4∆z
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and the numerical Jacobian determinant at the center of the cell is computed as

Jnum =
∆x′

∆x

∆y′

∆y

∆z′

∆z
− ∆x′

∆x

∆y′

∆z

∆z′

∆y
− ∆x′

∆y

∆y′

∆x

∆z′

∆z
+

∆x′

∆y

∆y′

∆z

∆z′

∆x

+
∆x′

∆z

∆y′

∆x

∆z′

∆y
− ∆x′

∆z

∆y′

∆y

∆z′

∆x
(4.3)

and Jnum∆x∆y∆z is the discretized cell volume in 3D.

According to the equidistribution principle (2.3), if the coordinate system x′ of the
generated cells strictly satisfies equidistribution constraint, then we have

det[J (x′)] =
ρ(x)

ρ′(x′)
, (4.4)

where J (x′) is the Jacobian matrix ∂x′

∂x
, ρ and ρ′ are prescribed densities. We let J′

denote the Jacobian determinant in (4.4) for brevity. In order to assess the enforcement of
equidistribution, we compare the determinant of the numerical Jacobian of the generated
coordinate system x′ with the prescribed Jacobian determinant, i.e., we check if J′ = Jnum

at the cell centers. For this purpose, we define the equidistribution error of the generated
cells as

Error =

(∑
i,j,k

|Jnum − J′|2i,j,k∆x∆y∆z

)1/n

. (4.5)

We note that the equidistribution error is an absolute error.

4.2 Experimental Results

In this section, we present the numerical results for grid generation using our algorithm.

We note that, since we are using adaptive regularization, each iteration may not have
the same number of function evaluations, which can be seen later from the results of the
following examples. At each iteration, the function can be re-evaluated up to logλamp

(
λmax

λ

)
times in order to find a suitable regularizer, where λ is the current choice of regularizer,
λmax is the maximum value that λ can be assigned with, and λamp is the amplification of
λ. In our examples, the worst case is to re-evaluate the function up to 5 times at each
iteration. This worst case generally occurs on the final iteration.

32



Informally, the algorithm has three stages: initialization, stabilization and terminan-
tion. Initialization is a cold-start that determines a suitable regularizer, stabilization is
where λ = λmin or some other choice that does not frequently change and termination is
where several function evaluations are made to verify convergence has occurred. The stage
of initialization typically requires one or two function evaluations until a stable regularizer
is chosen. Later iterations with λ = λmin require a single function evaluation. In the worst
case, iterations between initialization and termination require two function evaluations.
This occurs because λ 6= λmin and λ alternates between an acceptable value and an un-
acceptable value. Other heuristics such as delayed gratification (Transtrum and Sethna
[27]), i.e. decrease the regularizer λ by a small fixed factor when the residual ‖R‖ keeps
decreasing and increase λ by a large fixed factor when ‖R‖ stops decreasing, or choosing
a smaller safety factor λmin can be used to reduce this type of cycling behavior.

In each of the following examples, we assess the algorithm on grids of N × N points
with N = 10, 20, 40, 80. We consider ρ = 1 and Ω = [0, 1]× [0, 1] for all 2D examples and
Ω = [0, 1] × [0, 1] × [0, 1] for all 3D examples, as we mentioned earlier. All computations
of the examples presented in this chapter are implemented in Matlab 2013b and tested
on a computing machine with 132 GB of memory (CPU model: Intel(R) Xeon(R) CPU
E5-2630 v2 @ 2.60GHz).

2D case

Example 1. Consider the density function

ρ′(x′, y′) = exp

(
−(x− 0.5)2 + (y − 0.5)2

0.05

)
+ 0.1.
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Figure 4.3: Example 1. Left: ρ′(x′, y′). Right: A mesh plot of ρ′(x′, y′) for illustrating the gradient of
the densities.

This example corresponds to a diffusion centered at (x′, y′) = (0.5, 0.5). Since a gener-
ated grid equidistributes the quantity given by ρ′(x′, y′), that is, the volume in each cell of
the generated grid is the same, the shape of the grid is expected to look like a contraction
centered at (x′, y′) = (0.5, 0.5).

The results of Example 1 are presented in Table 4.1. The equidistribution error (i.e.
Error in Table 4.1) decreases as the grid becomes finer. Meanwhile, the geometric mean√

d of the global displacement d defined in (4.1) increases as the number of cells in the
generated grid increases. Intuitively, the displacement of a grid point (x′, y′) tends to be
large when the rate of change in density at the point (x′, y′) is large. By looking at the
mesh plot of ρ′(x′, y′) in Figure 4.3, we notice that the norms of the gradient of the density
at most of the grid points are large. This leads to the result that most of the cells in a
generated grid are deformed when the grid is small. As the generated grid becomes finer,
the total number of deformed cells increases, while the deformation of the cells becomes
smaller, which causes the phenomenon that the global displacement keeps increasing, while
the rate of the increment keeps decreasing as the number of cells in the generated grid
increases.

In Table 4.1, the columns Iterations and Function evaluations represent the number of
iterations and the number of function evaluations taken by the algorithm until it converges,
respectively. We observe that in this example, the computational cost of a grid (including
CPU time, Iterations and Function evaluations) increases as the grid becomes finer. This
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may be caused by the fact that the total number of deformed cells of the generated grid
in this example increases as the grid becomes finer, as we mentioned above, and that the
cell coordinates of the generated grid are transformed from the ones of a uniform grid,
which is shown in Algorithm 1. As the number of grid points increases, more unknowns
(i.e. coordinates of grid points) are involved in the discrete system (3.35) and need to be
computed, which results in an increase in the computational cost.

In addition, we notice that in Table 4.1, the number of function evaluations is larger
than the number of iterations, which indicates that there are extra function calls are made
to adjust the value of a suitable regularizer λ in the process of the algorithm. The extra
function calls are mainly made at the stages of initialization and termination, as we will
see later from Figure 4.4 and Figure 4.5. According to our experiments, given a fixed
prescribed density ρ′, the choice of a suitable λ at each iteration of the algorithm stays
almost the same when the grid size increases. Accordingly, the number of extra function
calls (i.e. the difference between Function evaluations and Iterations in Table 4.1) made
for adjusting λ throughout the whole process of the algorithm remains approximately the
same as the grid becomes finer.

The behavior of the iterates ‖U(m+1)−U(m)‖ and the change of ‖R(m)‖ (where R(m) =
A(m)U(m) − F(m) is the residual at m-th iteration) at each iteration of the algorithm are
shown (in log scale) in Figure 4.4 and Figure 4.5. From the figures we can observe the three
stages of the algorithm. The first two iterations are the stage of initialization, where the
algorithm is in the process of determining a suitable regularizer λ. At this stage, ‖R(m)‖
decreases slowly, since the current choice of λ is larger than the suitable value. Accordingly,
the value of λ keeps decreasing, which leads to an increase in the iterates ‖U(m+1)−U(m)‖
(recall that a small λ corresponds to a large step size in the iteration, as we have shown in
Section 3.4). Once a suitable regularizer is determined, the algorithm enters the stage of
stabilization: ‖R(m)‖ decreases faster than the previous stage and the iterates behave as
expected. At the last stage, ‖R(m)‖ stops decreasing and the value of a suitable regularizer
keeps increasing until convergence has occurred. The increase of λ at this stage leads to a
decrease in the iterates ‖U(m+1) −U(m)‖, which can be seen from Figure 4.4.

Figure 4.6 shows two samples of the generated grids of different sizes. We can see that
the shapes of both grids look like contractions centered at (0.5, 0.5), as we described earlier.
The computed results are consistent with the geometric features (such as the gradient of
the density) of the prescribed density function ρ′.
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Table 4.1: Example 1 (λ = 103, λamp = 10, λdamp = 0.1, λmax = 106, λmin = 100).

Number of cells Error
√

d CPU time (s) Iterations Function evaluations
10× 10 1.15× 10−1 0.0530 5.89 22 26
20× 20 4.60× 10−2 0.0567 11.55 23 27
40× 40 1.75× 10−2 0.0585 31.97 25 29
80× 80 6.60× 10−3 0.0594 123.9 28 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
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Figure 4.4: Example 1. Change of ‖U(m+1) −U(m)‖.
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Figure 4.5: Example 1. Change of log10 ‖R(m)‖.
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Figure 4.6: Example 1. Left: new grid of 20× 20 cells; Right: new grid of 80× 80 cells.
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Example 2. Consider

ρ′(x′, y′) =
0.01

2 + cos(8π
√

(x′ − 0.5)2 + (y′ − 0.5)2)
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Figure 4.7: Example 2. Left: ρ′(x′, y′). Right: A mesh plot of ρ′(x′, y′) for illustrating the gradient of
the densities.

Example 2 corresponds to a periodic diffusion centered at (x′, y′) = (0.5, 0.5). Com-
paring with Example 1 which corresponds to a single diffusion, the gradient of the density
ρ′ in this example has more local diffusion patterns and the local convexity/concavity of
the density function ρ′ varies widely over the domain, as we can see from Figure 4.7. The
computational difficulty is increased in this example, since we need competing dialations
and contractions that arise when convexity/concavity changes.

The results of Example 2 are presented in Table 4.2. We note that, comparing with
Example 1, the difference between the maximum and minimum values of ρ′(x′, y′) in this
example is smaller, therefore the equidistribution errors, the geometric mean

√
d of global

displacement and the computational cost are all smaller. By comparing the numbers of
iterations and the numbers of function evaluations, we observe that additional function
evaluations are made to adjust the regularizer during the process of the computation.

Figures 4.8 and 4.9 show the change of the iterates ‖U(m+1) −U(m)‖ and the residual
‖R(m)‖ of the discretized linear system that the algorithm solves for the numerical solution

38



U. We can see that, during the first two iterations of the algorithm, the value of ‖R(m)‖
has been decreased slowly, since the current value of the regularizer λ is larger than a
suitable value. The value of λ has thus been increased, which leads to an increase in the
iterate ‖U(m+1) −U(m)‖ (see Figures 4.8). At the last a few iterations of the algorithms,
the value of ‖U(m+1)−U(m)‖ keeps decreasing rapidly since λ is being reduced for verifying
the occurrence of convergence. In general, for different grid size, the algorithm takes about
the same amount of iterations to converge.

Figure 4.10 illustrates the generated grids of different sizes. We can see that the shapes
of the grids look like a sequence of contractions and dilations, which is what we predicted;
the generated grids are symmetric with respect to the point (x′, y′) = (0.5, 0.5), which
matches the symmetry properties of the prescribed density ρ′(x′, y′).

Table 4.2: Example 2 (λ = 103, λamp = 10, λdamp = 0.1, λmax = 106, λmin = 100).

Number of cells Error
√

d CPU time (s) Iterations Function evaluations
10× 10 9.22× 10−2 0.0020 3.6 14 18
20× 20 3.68× 10−2 0.0023 7.37 15 19
40× 40 1.38× 10−2 0.0023 20.39 16 20
80× 80 5.31× 10−3 0.0023 69.8 16 20
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Figure 4.8: Example 2. Change of log10 ‖U(m+1) −U(m)‖.

39



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 -2

10 -1

Figure 4.9: Example 2. Change of log10 ‖R(m)‖.
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Figure 4.10: Example 2. Left: new grid of 20× 20 cells; Right: new grid of 80× 80 cells.
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Example 3.

ρ′(x′, y′) =

(
2

(5r cos(θ − 10r2))2 + 1
+ 1

)
,

where r =
√

(x′ − 0.7)2 + (y′ − 0.5)2, θ = tan−1
(
y′−0.5
x−0.7

)
.
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Figure 4.11: Example 3. Left: ρ′(x′, y′). Right: A mesh plot of ρ′(x′, y′) for illustrating the gradient of
the densities.

Example 3 is a spiral centered at (x′, y′) = (0.7, 0.5); the geometric features of the
density ρ′(x′, y′) is shown in Figure 4.11. Comparing with Example 2, the difference be-
tween the maximum and minimum values of ρ’ in this example is much larger; the diffusion
patterns of the gradient of ρ′ in this example are also more irregular. The computational
difficulty is increased in this example, since the high and irregular variance of the local con-
vexity/concavity of the density function ρ′ makes it harder to generate properly displaced
grid points.

The results of this example are shown in Table 4.3. We notice that the geometric mean√
d of the global displacement of the generated grid in this example decreases as the grid

becomes finer. This phenomena is likely caused by the geometric features of the density
ρ(x′, y′). From Figure 4.11 we notice that there are many grid points, such as the center
(x′, y′) = (0.7, 0.5), at which the rate of change in ρ′(x′, y′) is close to zero. The new
grid points that are transformed from these grid points tend to be approximately uniform
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grid points. As the generated grid x′ becomes finer, the portion of deformed cells in x′

becomes smaller, which lead to a decrease in the global displacement d of x′. We also note
that, when the size of the generated grid is small, the global displacement of the generated
grid tends to be large due to truncation error arising from the discretization of the HJB
equation. From Table 4.3 we can also see that the number of iterations and the number of
function evaluations decreases as the grid becomes finer, which matches the change of

√
d.

Figures 4.12 and 4.13 show the changes of ‖U(m+1) − U(m)‖ and ‖R(m)‖ during the
whole process of the algorithm. We can see that the algorithm went through the stages
of initialization, stabilization and termination based on these changes. The stage of ini-
tialization in this example costs one more iteration than that in the previous examples,
which indicates that the performance of the algorithm is more sensitive to the choice of
the regularizer λ on this problem. Overall, the process of the algorithm in this example is
similar to those in the previous examples. Figure 4.14 shows the new grids generated for
ρ′(x′, y′) in this example. We observe that the geometric features of ρ′(x) in Figure 4.11
are reflected on the deformed grids in Figure 4.14.

Table 4.3: Example 3 (λ = 103, λamp = 10, λdamp = 0.1, λmax = 106, λmin = 10).

Number of cells Error
√

d CPU time (s) Iterations Function evaluations
10× 10 6.51× 10−2 0.0639 10.07 23 28
20× 20 3.24× 10−2 0.0559 10.11 20 26
40× 40 1.33× 10−2 0.0529 25.09 18 23
80× 80 5.01× 10−3 0.0523 89.42 18 23
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Figure 4.12: Example 3. Change of log10 ‖U(m+1) −U(m)‖.
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Figure 4.13: Example 3. Change of log10 ‖R(m)‖.
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Figure 4.14: Example 3. Left: new grid of 20× 20 cells; Right: new grid of 80× 80 cells.
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3D Case

Example 4. Consider the density function

ρ′(x′, y′, z′) = exp

(
−(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

0.05

)
+ 0.1. (4.6)

This example corresponds to a diffusion centered at (x′, y′, z′) = (0.5, 0.5, 0.5) and it
can be considered as the 3D generalization of Example 1. We set the parameters λ, λmax,
λmin, λamp and λdamp in this example to be the same as the ones in Example 1 in order to
compare the two examples.

The results of Example 4 are shown in Table 4.4. We can see that the equidistribution
error decreases as the grid becomes finer, which is similar to our observation on Example 1.
When the number of cells in the grid increases, the total number of deformed cells increases,
which leads to an increase in the geometric mean 3

√
d of global displacement; meanwhile,

the deformation of each cell becomes smaller, which causes the rate of the increment of
3
√

d keeps decreasing. The computational cost also increases as the grid becomes finer.
By comparing the number of iterations and the number of function evaluations in Table
4.4, we know that addtional functions calls are made in order to adjust the value of the
regularizer λ during the computational process. In general, the computational time of a
3D grid is much longer than that of a 2D grid due to the exponential growth in the number
of grid points.

The changes of the iterates ‖U(m+1) −U(m)‖ and the residual ‖R(m)‖ in this example
are presented in Figure 4.15. From the figure we can see that the three stages of the
algorithm. At the first two iterations, the value of ‖U(m+1) −U(m)‖ increases due to the
adjustment of the value of the regularizer; Meanwhile, the value of ‖R(m)‖ decreases slowly.
After the stage of initialization, the iterates ‖U(m+1)−U(m)‖ keeps decreasing and ‖R(m)‖
is decreasing fast until convergence.

We present the generated grids x′ by plotting 2D slices of x′. In this example, we plot
slices of x′ only along the z-axis due to the symmetry properties held by ρ′(x′, y′, z′). The
plots are shown in Figure 4.16. We can see that the deformation of the grid becomes less
noticeable as z′ changes from 0.5 to approximately 0.031, because the difference between
the maximum value and the minimum value of ρ′(x′, y′, z′) for z′ = 0.031 is smaller than
that for z′ = 0.5.
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Table 4.4: Example 4 ( λ = 103, λamp = 10, λdamp = 0.1, λmax = 106, λmin = 100).

Number of cells Error 3
√

d CPU time (s) Iterations Function evaluations
10× 10× 10 1.99× 10−1 0.0997 1.1808× 102 30 34
20× 20× 20 1.13× 10−1 0.1065 1.0437× 103 36 40
40× 40× 40 6.29× 10−2 0.1099 7.5584× 103 38 42
80× 80× 80 3.80× 10−2 0.1117 2.7821× 105 42 46
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Figure 4.15: Example 4. Top: change of log10 ‖U(m+1) −U(m)‖; Bottom: change of log10 ‖R(m)‖.
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Figure 4.16: Example 4. From Left to right: ρ′(x′, y′, z′), generated 80× 80 grid; From top to bottom:
slice for z′ ≈ 0.5, z′ ≈ 0.125, z′ ≈ 0.031.
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Example 5. Consider

ρ′(x′, y′, z′) =
0.01

2 + cos(8π
√

(x′ − 0.5)2 + (y′ − 0.5)2 + (z′ − 0.5)2)
.

This example corresponds to a periodic diffusion centered at (x′, y′, z′) = (0.5, 0.5, 0.5);
the density function in this example is generalized from the one in Example 2. We set the
parameters λ, λmax, λmin, λamp and λdamp in this example to be the same as the ones in
Example 2 in order to compare the two examples.

The results of Example 5 are shown in Table 4.5. We can see that the equidistribution
error, the geometric mean 3

√
d of the global displacement and the computational cost all

increase as the dimension of the grid increases. For the three dimensional grids in this
example, as the grid becomes finer, the equidistribution error decreases; meanwhile, the
value of 3

√
d does not increase much, since the difference between the maximum value

ρ′max and minimum value ρ′min of ρ′ is small. The difference between the number funtion
evaluations and the number of iterations indicates that there are extra function calls made
for adjusting λ at some iterations of the algorithm. We observe that, comparing with grids
of other sizes, the number of iterations taken for generating a 40× 40× 40 grid is smaller.
This is likely to occur when the grid is very fine and the difference |ρ′max − ρ′min| is small;
in this case, the trunction errors in spatial discretization dominate the computation error.

Figure 4.17 shows the changes of the iterates ‖U(m+1)−U(m)‖ and the residual ‖R(m)‖
in this example. We notice that after the first 10 iterations, the iterates ‖U(m+1) −U(m)‖
and the residual ‖R(m)‖ appear decreasing more slowly: ‖U(m+1) − U(m)‖ decrease by
approximately 10−4 and ‖R(m)‖ decreases by approximately 10−3. One can choose a dif-
ferent metric for convergence in order to terminate the algorithm sooner and get a similar
result of which the equidistribution error is slightly larger. In addition, we observe that
the iterates ‖U(m+1) − U(m)‖ that correspond to generating a 20 × 20 grid have briefly
increased at the final stage of the algorithm. This happends because the residual ‖R(m)‖
is still decreasing at those iterations, in which case the algorithm keeps reducing the value
of the regularizer λ in order to get a fast convergence. When λ decreases, the step size of
the iteration increases, which results in an increase in ‖U(m+1) −U(m)‖.

The generated grids x′ are shown in Figures 4.18 and 4.19. We plot slices of x′ only
along the z-axis due to the symmetry properties of ρ′(x′, y′, z′). From the figures we can
see that the shape of the generated grid matches the geometric features of the density ρ′.
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Table 4.5: Example 5 (λ = 103, λamp = 10, λdamp = 0.1, λmax = 106, λmin = 100).

Number of cells Error 3
√

d CPU time (s) Iterations Function evaluations
10× 10× 10 3.776× 10−1 0.0107 1.3559× 102 34 38
20× 20× 20 2.476× 10−1 0.0123 9.5838× 102 34 37
40× 40× 40 1.372× 10−1 0.0126 6.5522× 103 32 36
80× 80× 80 7.560× 10−2 0.0126 2.6293× 105 35 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
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Figure 4.17: Example 5. Top: change of log10 ‖U(m+1) −U(m)‖; Bottom: change of log10 ‖R(m)‖.
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Figure 4.18: Example 5. From Left to right: ρ′(x′, y′, z′), generated 80× 80 grid; From top to bottom:
slice for z′ ≈ 0.5, z′ ≈ 0.25, z′ ≈ 0.125.
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Figure 4.19: Example 5. From Left to right: ρ′(x′, y′, z′), generated 80× 80 grid; From top to bottom:
slice for z′ ≈ 0.0625, z′ ≈ 0.025, z′ ≈ 0.0125.
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Example 6. Consider the density function

ρ′(x′, y′, z′) =

(
2

(5r cos(θ − 10r2))2 + 1
+ 1

)
,

where r =
√

(x′ − 0.7)2 + (y′ − 0.5)2 + (z′ − 0.3)2, θ = tan−1
(
y′−0.5
x−0.7

)
.

The ρ′(x′, y′, z′) in this example is similar to a 3D generalization of the density function
in Example 3; the projection of ρ′(x′, y′, z′) on the x′ − y′ plane corresponds to a spiral
centered at (x′, y′) = (0.7, 0.5). From Figures 4.21 to 4.23 we can see that this example
is relatively more complicated than the previous ones, since the diffusion pattern of the
density function ρ′(x′, y′, z′) in this example is asymmetric and non-uniformly distributed.
We use this example to test the robustness of our algorithm.

The results of Example 6 are shown in Table 4.6. The equidistribution error decreases
as the number of grid points increases. Similar to Example 3, the geometric mean 3

√
d

of the global displacement in this example decreases as the grid becomes finer. This
phenomenon is likely caused by the geometric features of ρ′(x′, y′, z′) and truncation errors
that arise from the spatial discretization of the HJB equation. From Table 4.6 we also
observe that the computation of a small grid does not always take fewer iterations/function
evaluations than that of a big grid does. The number of iterations/function evaluations
taken by the computation depends on the portion of deformed cells among all the cells in
the generated grid, since the generated grid is transformed from a uniform grid (as it is
shown in Algorithm 1). If the portion of deformed cells is small, then the algorithm tends
to take fewer iterations/function evaluations to converge. In addition, when the computed
grid is fine, the truncation errors arise in spatial discretization may dominate the numerical
error, in which case the number of iterations taken by the algorithm may decrease as the
number of grid points increases.

Figure 4.20 shows the changes of the iterates ‖U(m+1)−U(m)‖ and the residual ‖R(m)‖.
At the beginning of the computation of each grid, the value of ‖U(m+1) − U(m)‖ keeps
increasing since the algorithm keeps reducing the value of λ for a faster convergence. When
a suitable value of λ is determined, the computational process becomes stabilized, and
‖U(m+1)−U(m)‖ behaves as expected; meanwhile, ‖R(m)‖ decreases fast. At the final stage,
‖R(m)‖ gradually stops decreasing, and ‖U(m+1)−U(m)‖ decreases since the suitable value
of λ increases. We observe that the iterates ‖U(m+1)−U(m)‖ that correspond to a 10× 10
grid has briefly increased at the final stage of the algorithm. This occurrs since the residual
‖R(m)‖ is still decreasing at these iterations. Accordingly, the algorithm keeps reducing λ
for a faster convergence, which leads to an increase in the iterates ‖U(m+1) − U(m)‖. In
general, the process of the algorithm in this example is similar to those in the previous
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examples. Figures 4.21 to 4.23 show slices of the generated grids x′ along z-axis, y-axis
and x-axis. From the figures we can see that the shape of the generated grids matches the
geometric features of the prescribed density ρ′(x′, y′, z′).

Table 4.6: Example 6 (λ = 103, λamp = 10, λdamp = 0.1, λmax = 106, λmin = 10).

Number of cells Error 3
√

d CPU time (s) Iterations Function evaluations
10× 10× 10 2.292× 10−1 0.1497 1.0385× 102 24 30
20× 20× 20 1.672× 10−1 0.1364 6.6468× 102 22 28
40× 40× 40 9.550× 10−2 0.1312 5.0173× 103 24 29
80× 80× 80 5.091× 10−2 0.1303 1.7582× 105 23 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 -8

10 -6

10 -4

10 -2
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Figure 4.20: Example 6. Top: change of log10 ‖U(m+1) −U(m)‖; Bottom: change of log10 ‖R(m)‖.
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Figure 4.21: Example 6. From Left to right: ρ′(x′, y′, z′), generated 80× 80 grid; From top to bottom:
slice for z′ = 0.525, y′ = 0.525, x′ = 0.525.
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Figure 4.22: Example 6. From Left to right: ρ′(x′, y′, z′), generated 80× 80 grid; From top to bottom:
slice for z′ = 0.25, y′ = 0.25, x′ = 0.25.
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Figure 4.23: Example 6. From Left to right: ρ′(x′, y′, z′), generated 80× 80 grid; From top to bottom:
slice for z′ = 0.125, y′ = 0.125, x′ = 0.125.
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Chapter 5

Conclusion

In this thesis, we have proposed a numerical method for grid generation in two and three
dimensions based on MK optimization. The two-dimensional grid generation method is
developed by modifying an existing technique of Chen and Wan [6], which involves using an
adaptive regularizer to reduce the computational cost of solving the HJB formulation of the
MA equation that arises from the MK optimization. The three dimensional grid generation
method is a generalization of the two-dimensional method. While the theory behind the
generalization to higher dimensions is straightforward, the implementation is not. The
implementation requires overcoming several computational challenges. For instance, the
optimal controls in the two-dimensional case have closed-forms (Chen and Wan [6]), while
the ones in the three-dimensional case have no closed-form and can only be approximated
using numerical methods such as Newton’s method.

Chapter 4 shows successful numerical results of our algorithms. In all of the examples,
the geometric features of the prescribed densities are reflected by the deformation of the
newly generated grids. By inspecting the results, we observe that the equidistribution
error of a generated grid is more likely dominated by the spatial discretization error when
the grid is sparse, as we can see a decrease occurring in the increment of the equidistribu-
tion error when the number of cells in the grid increases; when the grid is more refined,
the equidistribution error is more likely caused by the truncation error arising from the
discretization of the HJB equation.

In terms of efficiency, our numerical experiments have indicated that the use of adaptive
regularizer leads to rapid convergence. In fact, when using constant regularizers (e.g., λ =
104), a small example on 10×10 (or 10×10×10) grid can take up to 2000 (or 4000) function
evaluations to obtain convergence to the displayed results. With adaptive regularizers, the
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numbers of function evaluations required to generate a 10× 10 (or 10× 10× 10) grid drops
to less than 30 (or less than 50). The examples on 80×80×80 in Chapter 4 (implemented
in Matlab 2013b) are completed in approximately 24 hours on a computing machine with
132 GB of memory (CPU model: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz). Without
using adaptive regularizers, these large examples would take several weeks of computation
time to obtain the same results. We note that in our work, the discrete system (3.39) is
solved using unstructured method. The matrix A(C(m)) under the current controls C(m) in
(3.39) is a sparse banded matrix. To further accelerate the computation, one can consider
using a banded solver to solve the system (3.39).

The work contained in this thesis provides a unified method for solving the Monge-
Ampère equation arising from grid generation with an experimental analysis of robustness
and demonstrates improvements over existing techniques by reducing the number of iter-
ations required. Future work and other open problems relating to this work involve:

• performing a detailed theoretical convergence/sensivity analysis to determine the
optimal regularizer on each step;

• adapting the method to other finite difference/finite element methods for discretizing
the HJB equation so that it can generate grids of triangular or other convex polygon
meshes;

• modifying the method so that it computes a coarse grid and uses it as an initial guess
for generating a finer grid in order to accelerating the method for fine grids.
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