
TREC: tree reduced ensemble
clustering

by

Wenqing Liu

Research Paper Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Math

in the
Computational Mathematics

Faculty of Math

c© Wenqing Liu 2019
University of Waterloo

Winter 2019

Copyright in this work rests with the author. Please ensure that any
reproduction or re-use is done in accordance with the relevant national

copyright legislation.

Approval

Name: Wenqing Liu

Degree: Master of Math (Computational Mathematics)

Title: TREC: tree reduced ensemble clustering

Examining Committee: Wayne Oldford
Supervisor
Professor
Department of Statistics and Acturial Science

Date Defended: Apr 15, 2019

ii

Abstract

In this paper we introduce a R package TREC: tree reduced ensemble clustering, a
R package which combines multiple clustering outcomes and generates a cluster tree.
We discussed our motivation and reasoning for TREC, and adopt a new algorithm to
accelerate implementation of TREC. We created a R package named ‘TREC’, which
simplifies procedure of using TREC. This package can also calculate distance between
clusterings and support plotting functionality.

Keywords: tree reduced ensemble clustering; R package; cluster tree plot; clustering
distance

iii

Dedication

I hereby declare that I am the sole author of this report. This is a true copy of
the report, including any required final revisions, as accepted by my examiners. I
understand that my report may be made electronically available to the public.

iv

Acknowledgements

I would like to thank my supervisor, Professor R. Wayne Oldford. Thanks for his
patience and I learned a lot from him. He gave me a lot of useful suggestions and
technical help in R. He taught me how to write sustainable and efficient R code. This
paper is impossible without his help.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Figures viii

1 Introduction 1

2 Rationale behind the algorithm 4
2.1 Motivation - multiple clusterings . 4
2.2 Method on families of graphs . 6

2.2.1 Graph family to component tree 6
2.2.2 Tree reduction . 8
2.2.3 Difference between TREC and single linkage 11

3 Algorithms in ‘TREC’ 12
3.1 Combining Clusterings . 12
3.2 A New Implementation of Combine Clusterings Algorithms 14
3.3 Clustering distance . 15

3.3.1 Clustering distance algorithm 15
3.3.2 Gram matrix . 16
3.3.3 plot cluster tree . 16

4 R package ‘TREC’ 20
4.1 getCluster.R . 20

vi

4.2 clusterTree.R . 20
4.3 distance.R . 21
4.4 plot.R . 21

5 Examples 23
5.1 Gaussian mixture data . 23
5.2 spiral data set . 26
5.3 Illustration of use of TREC package 27

6 Conclusion 33

Bibliography 34

Appendix A Installation of R package TREC 36

vii

List of Figures

Figure 2.1 a graph family . 6
Figure 2.2 adjacency matrices . 7
Figure 2.3 ordered adjacency matrices 7
Figure 2.4 The nested sequence of graphs G(1) ≥ G(2) ≥ G(3) ≥ G(4), each

graph component is a cluster. 8
Figure 2.5 component tree . 9
Figure 2.6 cluster tree density plot . 10
Figure 2.7 Steps in reducing the component tree to a cluster tree 10

Figure 3.1 cluster tree example . 18
Figure 3.2 cluster tree example . 18

Figure 5.1 a data set of mix of 3 Gaussians 24
Figure 5.2 true structure of cluster tree 25
Figure 5.3 hierarchical clustering result 25
Figure 5.4 TREC on mix of Gaussians 26
Figure 5.5 spiral dataset . 27
Figure 5.6 kmeans’ result . 28
Figure 5.7 kmeans with 3-11 clusters . 28
Figure 5.8 kmeans with 12-20 clusters . 29
Figure 5.9 TREC result on spiral data 29
Figure 5.10 illustration plot . 31
Figure 5.11 illustration of transforming distance to Gram matrix and map-

ping to 2d coordinates . 32

viii

Chapter 1

Introduction

Nowadays, clustering methods have become a popular technique in data science. Clus-
tering is a statistical technique which divides data into useful, hopefully meaningful,
groups. As a machine learning methodology, it is in the class of unsupervised learn-
ing algorithms and has broad applications including estimating densities, detecting
anomalies, segmenting images, and many others.

Clustering methods can be roughly divided into two different groups. There are
hierarchical methods, like single linkage. Single linkage grows a hierarchy of clusters
in a bottom-up fashion by combining ‘closest’ clusters [11]. There are also partitional
methods which, instead of producing a hierarchy of clusters, produce only a single
partition of the data into clusters. Examples of partitional methods include DBSCAN
and Kmeans. DBSCAN selects data points that are closely gathered in a neighbor-
hood, leaving out outliers that don’t lie near any clusters [6]. Kmeans algorithm
partitions all observations into k clusters in which each observation belongs to the
cluster with nearest mean [10].

Because of different mechanisms behind algorithms, different clustering results
arise. The notion of a ‘cluster’, is not universally defined and every clustering al-
gorithm has its own idea of what defines one. Different metrics, such as Euclidean
distance, Minkowski distance and max norm can be used within these algorithm-
s, leading to more possible clusterings. Choosing between algorithms and between
metrics can be tricky.

Combining algorithms that integrate different clusterings may lead to a better
understanding of the data.

Clustering algorithms are generally hard to compare with each other because it’s
subjective to determine which clustering is better. In this paper, we refer to the en-
semble method TREC [20] for combining multiple clustering outcomes. TREC provides

1

a general framework which makes combination of any clustering algorithm outcomes
possible, regardless of the number of clusters or whether it’s a partitional or hierar-
chical method. W.Zhou [20] describes the way of integrating multiple clusterings and
generate a series of ordered adjacency matrices as intermediate steps. These adjacen-
cy matrices correspond to graphs which naturally create nested structure contained
in TREC’s result. The framework offers a unified way of understanding and comparing
different clustering results. All clustering algorithms can be converted into a cluster
tree and distances between those clusterings can be calculated.

We have implemented a new R package TREC to realize ideas [20] referred to in
this paper. TREC stands for Tree Reduced Ensemble Clustering, which simplifies and
combines different clusterings to provide a nested structure called a cluster tree. To
select meaningful clusters and get rid of outliers, TREC implements a pruning strategy
to simplify the nested structure. To make TREC package easier and faster to use, we
improve the original algorithm of W.Zhou [20]. Given the output of most clustering
algorithms in R as arguments, TREC will automatically combine these clustering re-
sults to produce a single, simplified, nested structure cluster tree. TREC’s output of
nested clusters can be visualized as a cluster tree by TREC. R’s plot function has been
specialized to provide a list of arguments such as labels, colour of labels to visualize
the result of TREC. TREC also provides some functionalities to understand clustering
results. W.Zhou [20] describes a distance function between clusterings which we have
implemented in TREC. This allows us to compare clusterings with one another. The
distances can also be used to get coordinates for clusters. Now we are able to calculate
distances between multiple clusterings with TREC. By using TREC package, we are able
to integrate multiple clusterings easily and understand clustering results by clustering
distance and plotting functionality with simple function calls.

This paper separates into four major parts. The first part is Section 2 where
we introduce our ideas and reasoning behind TREC. This part explains why TREC is
a general framework suitable for understanding clustering. Some literature review
is used to motivate the approach. Once explained, we go through an example to
illustrate how to apply TREC on a dataset. The second major part is Chapter 3 where
the formal graph algebraic framework is abstracted mathematically and summarized.
Algorithm for constructing cluster tree is also abstracted in this section. The distance
measure is also introduced and applied to cluster trees constructed in TREC. These
distances are used in multidimensional scaling to position the various cluster trees
in a two dimensional space. This provides a quick visual means to assess various

2

characteristics of the resulting cluster trees [15]. In chapter 4, we delve into the TREC
package and describe the general design of the TREC package. In chapter 5, we apply
TREC on real datasets to evaluate its performance. Chapter 6 provides a summary of
the work.

3

Chapter 2

Rationale behind the algorithm

2.1 Motivation - multiple clusterings

Multiple clusterings arise for many reasons. For example, all hierarchical clustering
methods inherently produce multiple clusterings as a set of nested partitions [9].
Other methods intentionally generate multiple non-nested clusterings to understand
different perspectives of similarity between data (one old example being ADCLUS
[12]).

Various clustering algorithms have been developed to group data together, and
each of them provide different insights into the structure of data. These include,
for example, [15] seperating apart different concepts of humanly perceived similar-
ity between stimuli [19], fitting mixture distributions to sample measurements [7],
optimizing an objective function designed to capture ‘natural’ spatial structure in
dimensional data[13], determining high density modes from a sample (e.g [9], [5],
[17]), and determining approximate graph components in a similarity graph(e.g. [4],
[14]), to mention a few common approaches [15]. Multiple clusterings can also arise
from multiple local optima (e.g. [13]) or simply from multiple values of some ‘tuning
parameter’ (e.g. [1]). Sometimes multiple clusterings are even induced by resampling
(e.g. [18]).

A natural idea is to apply an ensemble method to different clustering outcomes.
Ensemble refers to taking a majority vote or integrated information on clustering
results. Our method intentionally takes advantage of results from multiple clustering
outcomes and constructs a nested structure among clusters. Multiple clusterings can
be summarized as a single partition [16][3], by a single tree [8], or even by several trees
as in [2]. In multiple clusterings, clustering outcomes itself could be used to generate a
new similarity matrix which is then used as input to some clustering algorithm, rerun

4

specific algorithm on new similarity matrix to generate a new clustering outcome.
The new clustering combines the knowledge of previous clusterings from different
algorithms and can be interpreted as a comprehensive understanding of clustering
of data from different perspective. W.Zhou [20] describes the method of combining
multiple clustering outcomes into one similarity matrix and clustering this similarity
matrix. Next we will introduce motivations for W.Zhou’s [20] idea.

Consider a set of m graphs Gk which represent clustering outcomes, and their
adjacency matrices Ak, k = 1, · · · ,m. Our idea is to summarize clustering information
from this set of graphs as Aω = ∑k

i=1 Ak. To explain rationality of Aω as summarized
information, we first consider how ADCLUS [12] constructs multiple overlapping
clusters.ADCLUS [12] interprets nested clustering structure by additive clustering.
More specifically, an additive clustering can be represented by an n ∗ m matrix of
binary entries P = {pij}, where:1 data i belong to cluster j

0 otherwise

Under this representation, similarity matrix S = {sij} can be derived from the cluster
assigned in matrix P . Moreover, assume salience of kth cluster is ωk, then similarity
matrix can be represented using the following structure [12]:

sij =
K∑

k=1
ωkpikpjk

For kth cluster, we define a binary vector pk = (p1k, p2k, · · · , pnk), then the additive
clustering can be rewritten as S = ∑K

k=1 ωkpkp
T
k . One interpretation of this algorithm

is a voting mechanism that each cluster has some weighted vote in consisting of a
similarity matrix. Therefore, we imagine each clustering result as a ‘vote’ for the
ensemble clustering result. Assume ωk for each cluster is one, then all clustering
information can be interpreted as a sum of each clustering outcomes. Clustering is
not exactly a graph, but we may interpret cluster as a graph by adding edges on two
data points if and only if those two data points belong to same cluster. Therefore,
each clustering outcome is a graph , hence equivalent to an adjacency matrix. We
summarize all information related to clustering as a sum of those adjacency matrices.

Another intuition is to create nested structure through multiple clustering out-
comes. Data points i, j with closer distance in similarity matrix tend to stay at higher

5

G1 G2 G3 G4 G5

Figure 2.1: a graph family

hierarchy while i, j with smaller distance stay at lower hierarchy. It motivates us to
split similarity matrix in a way that has hierarchical properties. Hierarchy can be
considered as an inequality relation. Mathematically speaking, we consider two ma-
trices A = [aij],B = [bij],A ≥ B if and only if aij >= bij for ∀i, j, Therefore, our
idea is to split similarity matrix into a series of matrices which sum up to similarity
matrix, and those matrices have an ordered inequality relation between them.

2.2 Method on families of graphs

Here our method refers to [20]. Suppose we have a collection of graphsG = {G1, G2, · · · , Gm}
and their corresponding adjacency matrices A1, A2, · · · , Am. Each Gi = (Vi, Ei) is a
labelled graph with vertex set Vi representing n data points and edges Ei representing
some association between the corresponding pair of data points. Assume each con-
nected component in the graph form a cluster, then each graph represents a clustering
outcome. A collection of graphs can be considered as multiple clustering outcomes
derived from running multiple clustering algorithms. We call G a graph family, our
objective is to transform a collection of clustering outcomes into a single, suitably
pruned, nested, cluster tree.

2.2.1 Graph family to component tree

We will go through the algorithm W.Zhou [20] with an example . Consider the follow-
ing Figure 2.1. Each graph represents a clustering outcome of six data points with each
connected component being a cluster. Differenet graphs represent different clustering
outcomes. All these graphs together form a starting graph family. The corresponding
adjacency matrices are shown in Figure 2.2.

Based on interpretation of additive clustering, each adjacency matrix is considered
a vote to similarity matrix. Therefore, multiple clustering outcomes’ similarity matrix

6

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A1

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A2

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A3

0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 1
1 0 0 1 0 1
1 0 0 1 1 0

A4

0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A5

Figure 2.2: adjacency matrices

0 1 1 1 1 1
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 1 1
1 0 0 1 0 1
1 0 0 1 1 0

A(1)

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A(2)

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A(3)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A(4)

Figure 2.3: ordered adjacency matrices

is simply the sum of all adjacency matrices. After calculation, similarity matrix is

Aω =
5∑

k=1
Ak =

0 3 1 2 1 1
3 0 2 1 0 0
1 2 0 3 0 0
2 1 3 0 1 1
1 0 0 1 0 4
1 0 0 1 4 0

Aω encodes information of similarity. Large entries of Aω imply closer relation
between two data points and they tend to stay at higher hierarchy in nested clustering.
As a result, we hope to split Aω into a a series of ordered adjacency matrices. Here
for matrix B = {bij} and C = {cij}, we say B ≤ C if bij ≤ cij for ∀i, j. We formulate
our requirement as follows: Find adjacency matrices A(1),A(2), · · · ,A(k) such that∑k

i=1 A(i) = Aω and A(k) ≤ · · · ≤ A(2) ≤ A(1). The resulting adjacency matrices
is shown in Figure 2.3. These ‘ordered’ new adjacency matrices naturally create a
nested structure in the consequent graphs G(i). The nested graph family is shown in
Figure 2.4. The construction of ‘ordered’ graphs G(i) whose adjacency matrices sum
up to Aω is also unique. We can easily find values of A(i) in Figure 2.3. Now we hope

to create a hierarchy of clusters based on this decomposition. Consider each marix
A(i) as an adjacency matrix. Then we are able to create a series of graph:

7

G(1) G(2) G(3) G(4)

Figure 2.4: The nested sequence of graphs G(1) ≥ G(2) ≥ G(3) ≥ G(4), each graph
component is a cluster.

The above graphs provide a hierarchy of clusters, but adjacency graphs are a
little bit different from clustering. We simply put all points in the same connected
component as a cluster. Then a natural component tree can be generated as Figure 2.5.

Note we only keep the part which retains all changes in cluster component, there-
fore we obtain cluster tree density plot in Figure 2.6.

2.2.2 Tree reduction

After we form a component tree, we hope to reduce the complexity of component tree
and prune redundant component. Here, we refered to the pruning method in [15]. In
this way, trivial parts of component tree are removed and we can capture essence of
cluster structure. We execute two simple rules to reduce complexity.

1. Prune the trivial components.

2. Contract pure telescopes of components.

These two rules are applied in order. The resulting component tree will be called the
cluster tree. These two rules are illustrated in Figure 2.7 using component tree shown
in picture 1 of Figure 2.7.

In picture 2 of Figure 2.7, we first apply trivial pruning, which means that we
delete all splits that only set aside one data point. Here we call components that only
contain one data point as trivial component. In picture 3 Figure 2.7, we delete all
telescopic contraction, which means that, if that contraction step does not provide
any branches, we will remove that step. In other words, we get rid of those steps that
branching is not involved, and only keep track of steps that two or more branches
are generated. Components or data points that are pruned will not be shown in our
cluster tree. Therefore, our final cluster tree is in picture 4 Figure 2.7.

8

Figure 2.5: component tree

9

Figure 2.6: cluster tree density plot

1. Component tree 2. Trivial pruning3. Telescopic contraction 4. Cluster tree

Figure 2.7: Steps in reducing the component tree to a cluster tree

10

2.2.3 Difference between TREC and single linkage

Note in figure 2.7, the final cluster tree is in picture 4. This result is completely
different from applying single linkage on distance matrix. TREC differs from single
linkage in two aspects.

1. Single linkage always splits into two branches at a time, while this is not nec-
essarily true for TREC. Due to algorithm of single linkage, it always has two
branches at each split. TREC can split into any number of branches based on the
concrete situation.

2. Single linkage does not have pruning process, while TREC removes trivial com-
ponents and does telescopic contraction. With pruning, number of points in the
next layer of cluster tree may differ from the current layer since unimportant
data points are removed. TREC will only retain those important data points that
reveal the structure of data.

11

Chapter 3

Algorithms in ‘TREC’

3.1 Combining Clusterings

Given the example gone through in Chapter 2, now we will summarized full steps of
TREC from W.Zhou [20]. We will describe our algorithm by developing the methodolgy
on a general family of graph so that TREC applies to any multiple clustering problems.
Assume we are given a series of clustering outcomes C1, · · · , Cm. Each Ci corresponds
to a graph Gi. we refer to G = {G1, G2, · · · , Gm} as a family of graphs. Each Gi =
(Vi, Ei) is a labelled graph, with each vertex representing a data point and two vertexes
are linked if and only if two vertexes belong to the same cluster. Each graph has
its corresponding adjacency matrix, let A = {A1,A2, · · · ,Am} be those adjacency
matrices. Then we start to walk through our algorithm.

Step 1: Transform clustering outcomes into adjacency matrices.
The first step is to transform clustering outcomes into a part of additive clustering.

We construct a graph Gi based on clustering outcome: connecting two data points if
and only if those two points belong to the same cluster. Then each clustering outcome
becomes a graph. Determine the corresponding adjacency matrix Ai based on graph.
Here edges symbolize certain association between two data points which belong to
the same cluster. This representation gives entry 1 in adjacency matrix if two points
are in the same cluster and entry 0 in adjacency matrix if two points are not in the
same cluster, which is exactly what we construct for the idea of additive clustering.

Step 2: Sum all adjacency matrices Aω = ∑m
i=1 Ak

Based on the idea of additive clustering [12], since all information related to
multiple clustering outcomes is adjacency matrices, our way to interpret multiple
clusterings is to sum all adjacency matrices together. Taking sums have absorbed

12

all information as it’s exactly the definition of ‘ensemble’. Assume Aω = ∑n
i=1 Ai,

Now our problem of multiple clustering has transformed to how to apply clustering
methodology on sum of adjacency matrices, which is Aω.

Step 3: Split Aω into a series of adjacency matrices A(k) = {a(k)
ij }, and a

(k)
ij =

I(aij >= k)
As we mentioned above, we hope to generate a hierarchy based on Aω. Since

each entry in Aω represents similarity between two data points, a natural idea is
to put data points with larger similarity on higher hierarchy. We construct a series
of adjacency matrices which sum up to Aω in a ordered relation. We let A(k) =
{a(k)

ij }, a
(k)
ij = I(aij >= k). Then we can observe matrices A(k) has relation A(1) ≥

A(2) ≥ · · · ≥ A(m). We may eliminate duplicate matrices among them to simplify to
a non-repetitive sequence of matrices. Anyway, this sequence of adjacency matrices
create hierarchical structure using information from multiple clustering outcomes.

Step 4: Plot graphs G(k) based on adjacency matrix A(k), assign each connected
component into one cluster

Now we try to reverse what we do in Step 1. Here we transform adjacency matrices
to graphs. Then we divide graphs into clusters based on connected components. We
assign data points in the same connected component to the same cluster. Note each
connected component may not be a complete subgraph, but we forcibly put connected
component in a cluster. This split natrually arises a nested structure among clusters.
In this way, we also follow the idea of density cluster tree. In theory of density cluster
tree, one of the most concrete and intuitive ways to define clusters when data are
drawn from a density f is on the basis of level sets of f , i.e for any λ the connected
components of {x : f(x) ≥ λ}. We select each λ as each unique different entries of Aω.
These values are the only possible ‘λ’. Follow this way, we create a series of clustering
outcomes which form a hierarchical relation.

Step 5: Construct hierarchical structure based on ordered relation between G(k)

In the series of graphs G(k), it is a process of separating entire data points into
individual points. Record the process and construct hierarchical relations involved in
this process. It will be our first nested structure of multiple clustering.

Step 6: Prune cluster tree if there are trivial components and contract pure tele-
scopes of components.

In the above hierarchical structure formed by the series of graphs G(i), prune
tree based on two rules mentioned above: remove trivial components and contract

13

pure telescopes of components. Pruning trees get rid of unimportant subcluster and
redundant nested structure which interferes us from seeing the true structure of data
more clearly. After pruning, we retain the remaining branches and get the final cluster
tree.

Note this is a general framework for any number of clustering algorithms. Multiple
clustering outcomes can be fit into this method while a unique clustering algorithm
can be considered as multiple clustering with number of clustering algorithms equal
to one. Therefore, all clustering outcomes can generate a cluster tree using the above
algorithm. In TREC R package implementation, we design R package in a way such
that any number of clustering outcomes can be simply tossed into TREC and a cluster
tree will be returned. Wu Zhou implemented this algorithm, but his implementation
is a straightforward execution using the above steps, which actually consumes a lot
more time and memory space. Next we introduce another implementation of this
algorithm which improve both time and space complexity.

3.2 A New Implementation of Combine Cluster-
ings Algorithms

The above algorithm takes ’similarity’ between data points as input to clustering
process, and ’similarity’ encodes information for hierarchy of clusters. Larger entries
of similarity matrix correspond to higher hierarchy and then we move along to small-
er entries. This relates naturally to hierarchical clustering, especially single linkage
algorithm, which also uses ’distance’ as input and produce hierarchical clustering out-
comes. In implementation of TREC package, we hope to take advantage of the existing
single linkage clustering algorithm in R to help implement TREC. In step 4,5,6 of the
Algorithm, what we do is actually very similar to executing hierarchical algorithm.
All we need to do to accomodate to TREC is to shrink the result of single linkage. After
executing single linkage on Aω, we first need to shrink all splitting that happens for
the same value. On the other hand, we also need to shrink as long as pruning process
is involved. Therefore, a split which generate a single data point will not be recorded
in the result of TREC. Furthermore, we also need to make sure telescopic contraction
will be done by removing unnecessary splitting. After those steps, We can summarize
our new algorithms for TREC:

1. Obtain clustering results from different algorithm

2. Transform clustering results into adjacency matrices

14

3. sum all adjacency matrices and result is Aω = {aω
ij}

4. execute single linkage hierarchical clustering algorithm on −Aω

5. shrink splitting if splitting happens for the same distance

6. shrink splitting if there are trivial components and contract pure telescopes of
components

7. obtain final cluster tree

Note in R, single linkage is impllemented in fortran, which is much faster than R.
Therefore TREC is implemented much faster in this fashion. We no longer need to save
all ‘level sets’ which splitting happens. Corresponding Ak does not need to be saved
in TREC’s process as well. From memory’s perspective of view, All we need to store
information is similarity matrix and result from single linkage. Other data can be
derived from the result of single linkage.

3.3 Clustering distance

3.3.1 Clustering distance algorithm

To interpret clustering result, W.Zhou [20] designed a metric to measure distance be-
tween clustering outcomes. This metric also helps us evaluate the clustering quality by
calculating distance between clustering outcomes and true clustering. Note the con-
cept of graph family is applicable to all clustering outcomes, any clustering outcome
can be represented with a cluster tree. As a result, what we need to do is to set up
a metric for different cluster trees. From cluster tree we are able to revert to recover
each adjacency matrices Ak. Note Ak is obtained by connecting all data points in the
same cluster. Then we sum those adjacency matrices together to recover original Aω.
Note all information is encoded in the upper half triangle of matrix Aω as mentioned
above. Assume there are n data points in total, then there are n∗(n−1)

2 upper triangle
elements. Our idea is to expand those elements into a long vector. Each entries in
this vector represent similarity between a pair of data points. As long as those long
vectors align with each other, those vectors can be considered as a representation
for clustering outcome. Now we can compare clustering outcome by comparing those
vectors derived from cluster tree. Suppose for two clustering outcomes T1, T2, their

15

expanded vectors are s1 and s2. We define a distance d(T1, T2) to be :

d(T1, T2) = || s1

||s1||
− s2

||s2||
||

Note each entry of s1 or s2 represent similarity between two data points. By normal-
izing the similarity vector, we are comparing the importance weight of each entry.
Therefore we are measuring distance of importance weight for two types of clustering
outcomes. Following is steps for comparing clustering distance:

1. transform two clustering outcomes into cluster trees using algorithms in section
3.2

2. revert cluster tree to a series of adjacency matrices

3. sum those adjacency matrices to obtain Aω

4. expand upper half of Aω to a long vector

5. normalize vectors and calculate euclidean distance between two vectors

3.3.2 Gram matrix

Given the algorithm for calculating distance between clustering outcomes, we are
able to derive distance matrix for multiple clustering outcomes. Each entry of dis-
tance matrix is the distance between two clustering outcomes. Now we hope to map
distance matrix to n-dimensional space. Assume distance matrix is D = [dij] and
n-dimensional coordinates or each clustering outcome is x1, x2, · · · , xm, then we have
dij = ||xi − xj||. The Gram matrix is defined to be G = [gij] where gij = xT

i xj. Then
we have formula: G = −1

2(In− 1
n
11T)D?(In− 1

n
11T) where D? = [d2

ij] . In TREC pack-
age, we create a function called distToGram which can transform distance function
to Gram matrix with one function call.

3.3.3 plot cluster tree

To visualize cluster tree obtained from TREC algorithm, we provide plot function
to cluster tree. In TREC, we organize cluster trees into clusterTree object. To plot
cluster tree, we design two functions, one is clusterTreeToPlotInfo, the other is
plot.clusterTreePlotInfo.

As function name suggests, clusterTreeToClusterTreePlotInfo transform a
cluster tree into plot info. Plot info includes coordinates of rectangles, lines, text

16

etc for plotting cluster tree. Cluster trees are generally hard to plot since cluster
trees are inherently nested, they usually have multiple layers and each layers must be
somehow connected. To plot cluster tree, we uniformly create a data structure called
clusterTreePlotInfo. Function clusterTreeToClusterTreePlotInfo transforms
a clusterTree object to clusterTreePlotInfo object.

clusterTreeToClusterTreePlotInfo takes clusterTree object as input, and
clusterTreePlotInfo object as output. We design clusterTreePlotInfo object
has three attributes: treeMatrix, plotLayerInfo and subtrees.

treeMatrix is a matrix which represents the nested structure. Each entry in
matrix represents a mapping between data point id to cluster id. In each column,
each value corresponds to mapping between data id and cluster id in that layer. For

example, let A =

1 1
1 1
1 2
1 2
2 NA

2 NA

is a treeMatrix, then treeMatrix A represents data

1,2,3,4 belong to cluster 1, data 5,6 belong to cluster 2 in the first layer. In second
layer data 1,2 belong to cluster 1 while data 5,6 belong to second layer. Data 5,6
simply disappear in the second layer. Therefore nested structure of clusterTree is
shown below(Figure 3.1):

plotLayerInfo represents plot related information in this layer. plotLayerInfo
consists of four parts, rectangles, lines, labels and runtsFlag. We represent each cluster
with a rectangle. Lines are used to suggest affiliation between each cluster. labels
represent labels for each data point. runtsFlag suggests whether those data is pruned
during pruning steps. A plot of treeMatrix A is shown in (Figure 3.2).

Since cluster tree has nested structure, we design subtrees attribute of clusterTreePlotInfo
to be ‘child’ of clusterTreePlotInfo. Therefore, subtrees are a list of clusterTreePlotInfo
which has exactly the same structure as original object.

To construct clusterTreePlotInfo object, we employ a recursive algorithm. We
first organize treeMatrix and plotLayerInfo for the first column of treeMatrix,
then we apply recursive calls to the rest of columns.

plot.clusterTreePlotInfo function plots clusterTreePlotInfo object. This
function also takes a recursive fashion to plot as well. For each clusterTreePlotInfo
object, we first plot plotLayerInfo for this object, and then we will apply recursive
function calls to each object in subtrees attribute.

17

Figure 3.1: cluster tree example

Figure 3.2: cluster tree example

18

As a result, to plot clusterTree object, all we need to do is to call two functions
clusterTreeToClusterTreePlotInfo and plot.clusterTreePlotInfo to generate
the plot.

19

Chapter 4

R package ‘TREC’

In this chapter, we mainly talk about our design of R package TREC. TREC has four
files, next we’ll introduce design of each files separately.

4.1 getCluster.R

Like we mentioned above, any clustering outcome can be transformed into cluster
tree. We hope to uniformly process different clustering outcomes generated by clus-
tering algorithm in R and transform each of them into cluster tree. We design function
getCluster to transform clustering algorithm’s output in R to a uniform data struc-
ture called clusterTree. Each clusterTree object contains a treeMatrix attribute
which is a matrix mapping data points id to cluster id. Note treeMatrix stores the
nested structure of cluster tree. Labels can be passed into clusterTree object as well.
Note getCluster function accepts output of different clustering algorithms as input,
therefore getCluster function must use useMethod in R so it can process different
class of input differently.

4.2 clusterTree.R

clusterTree.R is the most important files among TREC package. It contains three func-
tions: mergeToMatrix, combineClustering and reOrderClusterTreeMatrix.

Because single linkage algorithm only return a data structure called merge for
hierarchical structure, we design function mergeToMatrix to transform merge into
treeMatrix attribute of cluster tree.

20

combineClusterings is the most important function in TREC. Input of this func-
tion is output of various clustering algorithms. Output is the cluster tree object based
on TREC algorithms. This function implements the algorithm in Section 3.2.

As suggested by the name, function reOrderClusterTreeMatrix reorders treeMatrix
attribute of clusterTree object. It reorders treeMatrix in a way such that data
points belong to the same cluster will be next to each other. In other words, index of
data points that belong to same cluster will be consecutive numbers. This function
helps plot function mentioned later on.

4.3 distance.R

This file provides functions related to caculating distance between different clustering
algorithms. It includes three functions: clusDist, getClusDis and distToGram.

The main function is clusDist. This function transforms a number of output of
clustering algorithms into a distance object. Multiple clustering outcomes are sup-
ported.

getClusDist function takes only two argument: two clustering outcomes. It im-
plements algorithm in section 3.3.1. With this function , we are able to calculate
distance between any two clustering outcomes. This function helps implementation
of clusDist. Implementation of clusDist is actually calling getClusDist function
repeatedly to construct distance object.

After obtaining distance object between clusterings, distToGram function is pro-
vided to transform distance matrix into gram matrix. After we have gram matrix, we
are able to visualize data on 2-dimensional space.

4.4 plot.R

plot.R provides two main functions: clusterTreeToClusterTreePlotInfo and
plot.clusterTreePlotInfo.

clusterTreeToClusterTreePlotInfo function transforms clusterTree object
into clusterTreePlotInfo object. This object includes three parts: treeMatrix,
plotLayerInfo and subtrees. With those information recorded, we are able to plot
in the future.

plot.clusterTreePlotInfo provides functionality for plotting clusterTreePlotInfo
object.

21

Note both above two functions are written in recursive way. So those two functions
both call two other functions, clusterTreeToClusterTreePlotInfoRecursiveHelper
and plotClusterTreePlotInfoRecursiveHelper to recursively generate or plot func-
tions.

Note structure of clusterTreePlotInfo is nested. treeMatrix and plotLayerInfo
are information for the first layer, while subtrees are child of clusterTreePlotInfo
which has exact the same structure as clusterTreePlotInfo.

Other functions are provided to support two main functions. Because structure
of clusterTreePlotInfo object is nested, it’s pretty complicated to examine it.
Helper functions are provided to support easier look up in clusterTreePlotInfo
data structure. For example, showLabels function shows coordinates of labels in
clusterTreePlotInfo object and showLines function shows coordinates of lines in
clusterTreePlotInfo object. getBranchInfo function returns plot information on
each layer.

22

Chapter 5

Examples

5.1 Gaussian mixture data

We start with a data set from a mix of 3 Gaussians. Figure 5.1 shows a sample of 300
points, each 100 drawn from one of three distinct two dimensional Gaussians. Circles
are drawn from the first Gaussian(Group 1), the squares from the second(Group 2),
and triangles from the third(Group 3). The first and second Gaussians are located
closer to each other because Gaussians are generated using the underlying nested
hierarchical structure as shown in Figure 5.2. First we attempt to cluster data us-
ing traditional clustering algorithms, kmeans with 3 clusters. We can observe that
despite we are able to discover three Gaussian groups, no hierarchical structure will
be observed. Same thing will happen again if we apply DBSCAN algorithm on the
data. Other methods for generating nested structure of clustering, such as hierarchi-
cal clustering algorithm is applied on dataset and result is shown in figure(). As we
see, hierarchical clustering creates an extremely detailed dendogram that it’s make
it harder to see no higher level overview. Therefore, we hope to apply TREC, a com-
bination of different clustering outcomes to integrate features of different clustering
algorithms and reveal true structure of data set.

Here, We apply kmeans, single linkage(cut top three splits) and dbscan algorithms
as input to TREC algorithm. We choose those three algorithms because we want to
retain both non-hierarchical and hierarchical information at the same time. Result
is shown in Figure 5.4. TREC combines the features of three different clustering algo-
rithms and output a cluster tree which integrate those features. In the figure, red,
green and blue labels under rectangles represent group 1,2 and 3. As shown in Fig-
ure 5.4, despite some minor errors, TREC is able to capture nested structure of data set

23

Figure 5.1: a data set of mix of 3 Gaussians

as well as rough division of three groups. Here, TREC does provide further information
about clustering and wisely prune branches that are not necessary.

24

Figure 5.2: true structure of cluster tree

Figure 5.3: hierarchical clustering result

25

Figure 5.4: TREC on mix of Gaussians

5.2 spiral data set

In this section, we experiment on a spiral data set. Spirals data is generally hard to
deal with because data are tangled with each other and euclidean distance along is
not enough to reveal structure of clustering. Data points that are closer to each other
may not belong to same cluster due to special geometrical structure of data. Here
our dataset is consisted of a red curve of circles and a green curve of rectangles, as
shown in Figure 5.5. If we simply apply kmeans with two clusters on our data, result
is shown in right side of Figure 5.6. Kmeans alone will consider left side data as a
cluster and right side data as another cluster. Therefore, we try to apply kmeans with
more clusters and see whether it makes a difference. Here we apply kmeans with 3-20
clusters and plot their corresponding cluster trees. The result is shown in Figure 5.7
and Figure 5.8. In Figure 5.7 and Figure 5.8, red represents the red spiral and green
represents the green spiral. Note those clustering outcomes are entirely random and
don’t have any common clue. Then we apply TREC on those kmeans’ results. The
result is shown in Figure 5.9. Red labels represent the first spiral and green labels
represent the second spiral. Cluster tree shown in Figure 5.9 can somehow find two

26

Figure 5.5: spiral dataset

spirals in the first layer. Here we observe that even kmeans’ result is not correct, it
will be corrected by ensemble rules and produce a reasonable result. Here TREC does
work like an ensemble algorithm, which consider a variety of prediction results and
choose the most frequent clustering outcomes of all prediction results.

5.3 Illustration of use of TREC package

In this section, we’ll illustrate how to use R package TREC. Let’s start with a dataset.

data <- rbind(matrix(rnorm(100, mean = 10, sd = 2), nrow = 50),
matrix(rnorm(100, mean = 0, sd = 1), nrow = 50),
matrix(rnorm(100, mean = -10, sd = 3), nrow = 50))

Obviously this is a mixture of three Gaussians. Therefore, true clustering is three
clusters with Gaussian distribution. We generate the starting clustering outcomes by
applying four existing clustering algorithms:
clustering1 <- kmeans(data,centers=3)
clustering2 <- dbscan::dbscan(data,eps=.8)

27

Figure 5.6: kmeans’ result

Figure 5.7: kmeans with 3-11 clusters

28

Figure 5.8: kmeans with 12-20 clusters

Figure 5.9: TREC result on spiral data

29

library(mclust)
clustering3 <- Mclust(data)

Then, with TREC package, we are able to generate cluster tree directly with one
function call:
library(TREC)
clustering4 <- combineClusterings(clustering1,clustering2,

clustering3)

Now you may plot cluster tree, as shown in Figure 5.10: Note, in the figure, red labels
belong to the same cluster in true cluster. Similarly, green and blue labels also belong
to the same cluster.
plot(clustering4,labels = TRUE, labels.col = c(rep(’red’,50),

rep(’green’,50),rep(’blue’,50)))

We can calculate distance between clustering outcomes based on graph family frame-
work with one function call:
distance <- clusDist(clustering1,clustering2,clustering3,clustering4)

Also, we may map distance matrix to 2d coordinates by selecting the most important
two eigenvalues to show their relation:
gram <- distToGram(distance)
decomp <- eigen(gram)
evals <- eigen(gram)$values
coords <- eigen(gram)$vectors
savePar <- par(mfrow = c(1,2))
plot(evals/max(evals), type ="b", ylab = "contribution",

main = "Contributions to dimensionality",
sub = "Only two dimensions needed")

plot(coords[, 1:2], pch = 0:3, cex = 3,
xlab = "Var 1", ylab = "Var 2",
main = "Comparing clusters in cluster space",
sub = "kmeans and model based agree")

legend(x=0,y=0,pch = 0:3, legend = c(’kmeans’,’dbscan’,’mclust’,’trec’))
par(savePar)

The resulting graph is shown in Figure 5.11. As we see above, using TREC is sim-
ple and straightforward, which also provides quantative measure as distance and 2d
visualization.

30

Figure 5.10: illustration plot

31

Figure 5.11: illustration of transforming distance to Gram matrix and mapping to 2d
coordinates

32

Chapter 6

Conclusion

In this research paper, we introduce a R package TREC which combines multiple clus-
tering outcomes as a unique cluster tree. TREC uses a general graph family framework
which can be applied to all clustering outcome. To understand clustering qualities, we
define the notion of clustering distance between two clustering outcomes. Moreover,
we devise plot function to visualize multiple clusterings as a cluster tree. We mod-
ified our algorithm to accelerate computation of TREC. We apply TREC on real data
sets, it turns out TREC is able to combine features of different algorithms and retain
meaningful clusters.

33

Bibliography

[1] D. Ashlock, E.Y. Kim, and L. Guo. Multi-clustering: Avoiding the natural shape
of underlying metrics. Smart Engineering System Design: Neural Networks, Evo-
lutionary Programming, and Artificial Life, 15:453–461, 2005.

[2] J. D. Carroll and J. E. Corter. A graph-theoretic method for organizing over-
lapping clusters into trees, multiple trees, or extended trees. Journal of Classi-
fication, 12:283–313, 1995.

[3] E. Dimitriadou, A. Weingessel, and K. Hornik. Voting-merging: An ensemble
method for clustering. Lecture Notes in Computer Science, 2130:217 – 224, 2001.

[4] W. Donath and A. Hoffman. Lower bounds for the partitioning of graphs. IBM
J. Res. Develop., 17, 1973.

[5] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. of KDD-96,
1996.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Kdd, volume 96, pages 226–231, 1996.

[7] C. Fraley and A. E. Raftery. Mclust: Software for model-based cluster analysis.
Journal of Classification, 16:297–306, 1999.

[8] A. Fred and A. K. Jain. Evidence accumulation clustering based on the k-means
algorithm. In Structural, Syntactic and Statistical Pattern Recognition, pages
442–451, 2002.

[9] John A Hartigan. Statistical theory in clustering. Journal of classification,
2(1):63–76, 1985.

[10] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[11] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–
254, 1967.

34

[12] Michael D Lee. A simple method for generating additive clustering models with
limited complexity. Machine Learning, 49(1):39–58, 2002.

[13] J. MacQueen. Some methods for classification and analysis of multivariate ob-
servation. Proc. 5th Berkeley Symp. Math. Stat. Prob., 1:281–297, 1967.

[14] M. Meila and J. Shi. A random walks view of spectral segmentation. In 8th
International Workshop on Artificial Intelligence and Statistics, 2001.

[15] R.W. Oldford and W.Zhou. Tree reduced ensemble clustering and distances
between cluster trees based on a graph algebraic framework. 2014.

[16] A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for
combining multiple partitions. Journal of Machine Learning Research, 3:583 –
617, 2002.

[17] W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal
spanning tree of a sample. Journal of Classification, 20:25–47, 2003.

[18] A. Topchy, B. Minaei-Bidgoli, A. K. Jain, and W. F. Punch. Adaptive cluster-
ing ensembles. In Proceedings of the 17th International Conference on Pattern
Recognition, pages 272 – 275, 2004.

[19] A. Tversky. Features of similarity. Psychological Review, 84(4):327 – 352, 1977.

[20] Zhou, Wu. A new framework for clustering. 2010.

35

Appendix A

Installation of R package TREC

For TREC’s code, you can visit github repository https://github.com/rwoldford/
trec. You can follow the following instructions to install TREC.

1. Click https://github.com/rwoldford/trec, click green button "Clone or down-
load" and download zip.

2. Open terminal, go to directory where you download , and enter following com-
mand in your terminal:

tar -zcvf trec.tar.gz your_file_name

3. Open RStudio, click Packages, then click Install, install trec.tar.gz you
just created.

4. Now you can use TREC!

36

https://github.com/rwoldford/trec
https://github.com/rwoldford/trec
https://github.com/rwoldford/trec

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Rationale behind the algorithm
	Motivation - multiple clusterings
	Method on families of graphs
	Graph family to component tree
	Tree reduction
	Difference between TREC and single linkage

	Algorithms in `TREC'
	Combining Clusterings
	A New Implementation of Combine Clusterings Algorithms
	Clustering distance
	Clustering distance algorithm
	Gram matrix
	plot cluster tree

	R package `TREC'
	getCluster.R
	clusterTree.R
	distance.R
	plot.R

	Examples
	Gaussian mixture data
	spiral data set
	Illustration of use of TREC package

	Conclusion
	Bibliography
	Appendix Installation of R package TREC

