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The derivations in Section 2.2.1 are a generalization of the derivations in Bogacz’s tutorial
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Abstract

Predictive coding is a theory of neural computation inspired by biological evidence
and with mathematical backing. As with any theory, it is only useful if it is explanatory
and predictive. This project uses predictive coding neural networks to model the facial
perception pathway in human brains. We accurately reproduced the results of an elec-
troencephalography experiment, which was the motivating study for this project [38]. In
that study, the authors found a delay in P1, N170, and P2 Event Related Potentials (ERP)
components in the EEG recordings of participants when shown faces with fewer parafoveal
features. Our predictive coding model exhibits the same time delay. We also propose a
mechanistic explanation for this behaviour based on the activities of neurons in V1, the
inferior occipital gyrus, and the posterior fusiform gyrus.
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1 Introduction

Facial recognition and face detection are an application of artificial intelligence with a rich
history. Beginning in the 1960s with a dataset of only 60 images, machine learning tools
for facial recognition have grown to use many millions of inputs [13]. The driving force
behind this explosion in capabilities is the advent of neural networks. Neural networks can
achieve comparable performance to, or even superior performance than, humans at this
task [34].

However, machine learning models trained to recognize faces, even neural networks, are
not always suitable models for the facial perception process in human brains. Winward
et al. describe an experiment that measures the response times of humans when presented
with different kinds of stimuli [38]. Participants are shown images of faces with various
combinations of facial features: some have only one eye, others have two eyes and a mouth,
etc. As the number of features decreases, the response time of the participants increases.
This response time is measured using an electroencephalogram (EEG).

Given a model of the brain where parts of the visual cortex perform some operations
on the sensory input and pass the results onto the next layer, these results are counter-
intuitive. If there is less data, as is the case for a face with fewer features, the brain should
be able to process the information faster. The delayed response times indicate that the
brain may operate using a predictive coding (PC) model.

A predictive coding network is one in which the flow of information is bidirectional.
Predictions flow from higher-level areas in the brain to lower levels, informing the lower
levels what they should expect to observe. Meanwhile, error signals flow back up the
network, telling each layer how wrong their predictions are [28]. This has long been held
as a theory of brain function [21]. A layer encodes predictions of what the previous layer
observes, hence the name.

These kinds of networks have been claimed to model human neural networks and exhibit
behaviour mimicking them as well [20]. Particularly, they have seen success as models
of the visual system [27, 28]. Predictive coding has even been posited as a model for
introspection in the brain [32]. There is also neuro-biological evidence that the wiring
within, and between, cortical columns is consistent with predictive coding.[1].

Beyond its presence in neuroscience, this predictive coding framework can be expressed
mathematically and implemented as an artificial neural network. PC networks can be
used for classification, regression, and generative machine learning tasks [15]. Predictive
coding as a model for artificial intelligence has been gaining popularity since around 2017
[3, 24, 25].
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Theoretical neuroscience is a field where scientists propose mechanistic neural-network
models to explain neuroscientific observations, like EEG. This project seeks to present
further evidence supporting the theory that predictive coding networks model the human
brain. It will do so by replicating the experimental results in the study by Winward et al.
using a predictive coding network, suggesting explanations for these results, and making
predictions for future experiments that may be done [38].

2 Background

2.1 Facial Perception and the Brain

The current understanding of facial perception in the brain is informed largely by brain
imaging studies and individuals with facial perception disorders [29, 31]. From these exper-
iments and observations, scientists have deduced which regions of the brain are associated
with facial perception, what their roles may be, and how they interact. Fig. 1 depicts a
simplified version of the facial perception pathway in the brain [11]. We are not concerned
with the detailed anatomy of the human brain, just the flow of information between layers.
Data from the retina flows into early visual regions (V1). This information passes into
higher-level regions of the brain, namely the inferior occipital gyrus (IOG) and the poste-
rior fusiform gyrus (pFUS) [7, 11]. Note that the arrows depicting connections in Fig. 1
are indeed bi-directional. This reflects the predictive coding nature of the model we will
implement and use.

Figure 1: A simplified model of the facial perception pathway in the human brain. Stimuli
data flows from left to right whereas predictions are sent in the other direction.

In the study by Winward et al. [38], participants fix their gaze on a screen and an
image of a face is flashed. The image is positioned on the screen such that one of the
face’s eyes is in the participant’s fovea (centred and in focus). The image sizes are such
that the remainder of the face is in parafovea, or just out of focus. The experiment varies
the number of facial features in parafovea, henceforth referred to as parafoveal features,
and records the brain’s activity using an EEG. From these recordings, they extract event-
related potentials associated with facial perception; the most important ERPs being P1,
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N170, and P2 [39]. As the number of parafoveal features decreases, there is an increased
delay in the presence of these ERPs as measured from stimulus onset. There is also a
decrease in their magnitude for the N170 and P2 nodes [38].

The response delay of human brains when presented with faces having fewer parafoveal
features was measured using EEGs. These are the motivating results for this project, so it
is worthwhile to discuss their basis. EEG devices measure the change in electric potential
across the scalp resulting from post-synaptic activities of groups of neurons [39]. This
provides a natural interpretation of the results from our neural network. EEGs indirectly
measure the concentration and distribution of neural activities. Thus, when we analyze
the activities of the neurons in an artificial neural network, we are performing an EEG-like
experiment on our model. This link will be discussed in more detail in Section 3.2.

2.2 Predictive Coding

The majority of artificial neural networks (ANNs) and their learning algorithms are not
biologically plausible representations of the brain. Specifically, we seek to define an ANN
that satisfies the conditions of local computation and plasticity. Biologically, the former
refers to the principle that neural activity is performed “on the basis of the activity of its
input neurons and synaptic weights associated with these inputs” [3]. The latter refers
to the principle that changes to these weights are “based on the activity of pre-synaptic
and post-synaptic neurons” [3]. For an ANN, this means any computation done in a
neuron should only use inputs to that neuron and connection weights. This is the case in
standard feed-forward or convolutional neural networks. It also means that the update of
synaptic connection weights should be done with only the activities of the neurons that
are connected. Classic neural networks fail to satisfy local plasticity because of this. In
backpropagation, the same synaptic connection weights are used for forward passes and
error propagation back through the network [16]. This sort of weight copying requires
synapses to be bi-directional, which is not biologically plausible.

Mathematically, each layer of the network is represented by a vector of activities. The
ith layers has activities v⃗i. Not all network states are equally likely as a trained network
will prefer certain states based on its learned connection weights. Furthermore, the activity
of each layer will depend only on the activity of the layer directly above it [20]. This makes
the network a Bayesian chain, thus the distribution of neural activations for the layers is
given by

p(v⃗0, . . . , v⃗N) = p(v⃗N)
N−1∏
i=0

p(v⃗i|v⃗i+1). (1)
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Each of these layers may have different dimensionalities. We assume that the conditional
probabilities are normally distributed so that

p(v⃗i|v⃗i+1) = N (v⃗i; gi(v⃗i+1,Wi),Σi) (2)

where p represents probability, N is a normal distribution, gi is a nonlinear function pa-
rameterized by the parameter matrix Wi, and Σi is the normal distribution’s covariance
matrix. There are N+1 layers, with the 0th layer being the input layer and the Nth being
the output layer. Our choice of normal distribution is a general assumption since we can
arbitrarily pick gi to reshape our distribution. We only concern ourselves with a special
case of these functions, namely gi(v⃗i+1,Wi) = Wihi(v⃗i+1) where hi is some other nonlinear
scalar function applied element-wise to its vector input. In this case, Wi is the matrix of
weights connecting the (i− 1)th layer to the ith layer and hi is an activation function, just
as with standard neural networks. The biological interpretation of this equation is that Wi

is the strength of the synapses connecting neurons [3].

2.2.1 Maximum Likelihood Estimator

In predictive coding, we seek the maximum likelihood estimator (MLE) of Eq. (2) [3, 20, 40].
That is, we want to maximize the joint probability over its arguments given data (in our
case, images of faces). This is biologically justified since at any given moment, it is likely
that the brain stores a single value as an estimate rather than a probability distribution
of estimates [3, 9]. Our optimization problem is to find the values of each layer’s activity,

θ⃗1, . . . , θ⃗N−1, such that

θ⃗1, . . . , θ⃗N−1 = argmax
v⃗1,...,v⃗N−1

p(v⃗N)
N−1∏
i=0

p(v⃗i|v⃗i+1). (3)

Note that the optimization space is over layers 1 to N − 1. During training, the values of
v⃗0 and v⃗N are fixed to be the values of the image inputs and target labels denoted by θ⃗0
and θ⃗N , respectively. This means p(v⃗N) is constant and, after taking the logarithm of the
objective function, the right-hand side of Eq. (3) can be rewritten as

argmax
v⃗1,...,v⃗N−1

[
ln p(v⃗N) +

N−1∑
i=1

ln p(v⃗i|v⃗i+1)

]
(4)
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since the natural logarithm is monotonically increasing. Plugging in the values of θ⃗i gives
us the log-likelihood of the network state at the MLE:

F = ln p(θ⃗N) +
N−1∑
i=1

ln p(θ⃗i|θ⃗i+1) (5)

where F is called the negative free energy. Plugging in Eq. (2) and dropping constant
terms from the normal distribution gives

F = ln p(θ⃗N)−
N−1∑
i=1

(θ⃗i −Wihi(θ⃗i+1))
TΣiϵ⃗i, (6)

where ϵ⃗i = θ⃗i − Wihi(θ⃗i+1) is the difference in the activities of the ith layer, θ⃗i, and
the prediction of the ith layer’s activities based on the following layer’s activities, the
connection weights, and the activation function (Wihi(v⃗i+1)). Just as we consider θ⃗i a
vector representing a layer in the neural network, we can think of ϵ⃗i as a vector representing
the error between layers. They act as neurons, just like θ⃗i.

Finding the MLE of Eq. (1) and maximizing the negative free energy are identical
processes. To see this we must make use of the fact that finding the MLE is asymptotically
equivalent to minimizing the Kullback–Leibler (KL) divergence over a family of possible
distributions parametrized by the MLE [8]. As stated previously, we seek the MLE of
Eq. (2). We restrict the family of distributions to be Dirac delta distributions, denoted by
δ [3, 12]. Thus, the KL divergence between the conditional probability distribution and
the δ distribution centred at the MLE, δθ⃗i , is

KL(δθ⃗i(·), p(·|θ⃗i+1)) =

∫ ∞

−∞
δ(v⃗i − θ⃗i) ln

δ(v⃗i − θ⃗i)

p(v⃗i|θ⃗i+1)
dv⃗i. (7)

We can write the conditioned probability in p(·|θ⃗i+1) using the MLE of the next layer
instead of v⃗i+1 because we want to simultaneously maximize Eq. (2) for all i.

Next, consider the sum of Eq. (7) over the index, i. This yields

N−1∑
i=1

KL(δθ⃗i(·), p(·|θ⃗i+1)) =
N−1∑
i=1

∫ ∞

−∞
δ(v⃗i − θ⃗i) ln

δ(v⃗i − θ⃗i)

p(v⃗i|θ⃗i+1)
dv⃗i

=
N−1∑
i=1

∫ ∞

−∞
δ(v⃗i − θ⃗i) ln

δ(v⃗i − θ⃗i)

p(v⃗i, θ⃗i+1)
dv⃗i +

∫ ∞

−∞
δ(v⃗i − θ⃗i) ln p(θ⃗i+1)dv⃗i,

(8)
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where the second line follows from the properties of the natural logarithm and the law
of conditional probabilities [30]. The second integral in the last line of Eq. (8) is trivial,
allowing us to rewrite Eq. (8) as

N−1∑
i=1

∫ ∞

−∞
−δ(v⃗i − θ⃗i) ln

p(v⃗i, θ⃗i+1)

δ(v⃗i − θ⃗i)
dv⃗i + ln p(θ⃗i+1).

We split the remaining integral using logarithm properties to give

N−1∑
i=1

∫ ∞

−∞
−δ(v⃗i − θ⃗i) ln p(v⃗i, θ⃗i+1)dv⃗i +

∫ ∞

−∞
δ(v⃗i − θ⃗i) ln δ(v⃗i − θ⃗i)dv⃗i + ln p(θ⃗i+1). (9)

The second integral in Eq. (9) is 0 for all terms in the summation. This can be shown with
simple integration by parts. The first integral is also straightforward, yielding

N−1∑
i=1

− ln p(θ⃗i, θ⃗i+1) + ln p(θ⃗i+1).

Using the law of conditional probabilities one last time gives our final equation

N−1∑
i=1

− ln p(θ⃗i|θ⃗i+1)− ln p(θ⃗i+1) + ln p(θ⃗i+1) =
N−1∑
i=1

− ln p(θ⃗i|θ⃗i+1). (10)

This equals the sum of the KL divergences in Eq. (8). Plugging Eq. (5) for the negative
free energy into Eq. (10) yields

N−1∑
i=1

KL(δθ⃗i(·), p(·|θ⃗i+1)) = −F + ln p(θ⃗N),

which, noting that the KL divergence is always non-negative, can be rearranged to the
final inequality

ln p(θ⃗N) ≥ F. (11)

By maximizing F we are increasing the probability that the system will observe the max-
imum of ln p(θ⃗N).
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2.2.2 Gradient Ascent

To find the MLE, we start with a guess for all θ⃗i and model parameters Wi and Σi. We
then perform gradient ascent on F with simple Euler time stepping. To find the dynamical
system of equations describing this model we need to find the gradients of F . The addition
of ln p(θ⃗N) is a constant term and does not alter the derivatives. Using matrix calculus
identities, we can find the derivatives of F with respect to all relevant parameters [26].
They can be summarized by

∇θ⃗i
F = −ϵ⃗i + h′

i−1(θ⃗i)⊙ (W T
i−1ϵ⃗i−1) (12a)

∇ϵ⃗iF = θ⃗i −Wihi(θ⃗i+1)− Σiϵ⃗i (12b)

∇Wi
F = ϵ⃗ihi(θ⃗i+1)

T (12c)

∇Σi
F =

1

2
(⃗ϵiϵ⃗

T
i − Σ−1

i ), (12d)

where ⊙ is element-wise multiplication, also called the Hadamard product, i ranges from
1 to N − 1, hi is a scalar function applied element-wise to a vector, and h′

i is its derivative.
Special care must be taken when defining the update rules for layers 0 and N ; this will be
discussed in Section 3. Since the MLE occurs at a maximum by definition, it occurs when
the gradient of F is zero, which is an equilibrium solution of Eq. (12). Our variables are
unrestricted so there are no boundary conditions to consider.

There is a problem with Eq. (12d), namely the matrix inverse of Σi. This gradient
updates the connection weights between ϵ⃗i and itself. By the requirement of local plasticity,
this can only be done using the value of the connection weights themselves and pre/post-
synaptic activities. Finding the matrix inverse requires information about all the terms in
that matrix i.e. updating the connection weights between any two neurons in ϵ⃗i requires
information about the connections between all other neurons. For this reason, we set Σi

to the identity matrix and will not include Eq. (12d) in our network dynamics.

2.2.3 Neural Network Implementation

Eqs. (12a) to (12c) can be implemented by an ANN. This is our predictive coding model of
the facial perception pathway in the human brain as outlined in Section 2.1. We will create
a five-layered neural network: one input layer corresponding to the retina, an output layer
for the higher-level regions of the brain, and three hidden layers for V1, the IOG, and the
pFUS. Thus, N = 4 since the input layer is indexed by 0. For the rest of this report, when
we refer to ‘the network architecture,’ we mean the specific architecture in Fig. 2.
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Figure 2: Architecture diagram for the predictive coding network. Paths terminating in
circles indicated inhibitory connections and those ending in arrows indicate excitatory ones.

Fig. 2 shows the neural network architecture and connections. The connections between
layers implement the second terms in Eqs. (12a) and (12b). The connection from ϵ⃗i to itself
implements the −Σϵ⃗i term in Eq. (12b). Each layer is labelled according to a section of
the facial perception pathway in the human brain. This reinforces the analogy between
the predictive coding model and the model in Fig. 1. The input layer has 6, 800 neurons,
the subsequent layers have 300, 200, and 100 neurons respectively, and the output layer
has 2 neurons1. There are connections going in both directions (up and down the network)
but each uses its own unique set of synaptic weights. Thus, predictive coding does not run
into the same plausibility issue as backpropagation i.e. bi-directional connections.

The network depicted in Fig. 2 contains closed loops, therefore the order in which we
update the system is important. To perform one iteration of Euler time stepping using
the ANN, we update the activities of each layer using Eq. (12a), starting with the lowest
layer and working our way up. We then perform an update on the errors using Eq. (12b),
again starting from the lowest layer. Once the activities and errors of each layer have been
updated, we update the connection weight matrices using Eq. (12c). Thus, at iteration
t+1 of the network, we update the activities using the system values at t, then we update
the errors using the activities at t + 1 but the errors and weights at t, and finally update

1In standard diagrams for neural network architectures, each block is a vector containing several circular
nodes. These nodes are the scalar elements of that vector. In this diagram, each of the two circles in a
block are identically-sized vectors containing the activities of the layers and the errors.
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the connection weights using the activities and errors at t+ 1 and the weights at t.

It is worth noting that one may also implement a PC network where information flows
in the opposing direction from that described [36]. That is, predictions flow up the net-
work, originating at the stimulus, and the higher-level regions send error signals down the
network. Mathematically, the conditional probability terms in Eq. (1) would be p(v⃗i+1|v⃗i)
and the equation would have a leading p(v⃗0) term. For a model of the brain, it is intuitive
that the higher-level layers make predictions as opposed to the lower levels [28].

3 Neural Learning and Inference with PC Networks

3.1 Neural Learning

Training a predictive coding neural network for facial perception is a supervised learning
problem. To train a neural network, we would normally tune its connection weight matrices
based on the derivatives of a loss function. With PC networks, we use Eq. (12c) to update

all Wi. To this end, we set the values of θ⃗0 and θ⃗4 to the inputs and targets, respectively.
These values are not updated during training. Note this means ϵ⃗4 is also not updated, but
ϵ⃗0 is. To see this, refer to Fig. 2 and note that the ϵ⃗0 node still connects to the first layer,
thus the values it stores are important. This also implies that W0 will be updated using
Eq. (12c). For all other θ⃗i, ϵ⃗i, and Wi, we perform gradient ascent using Eqs. (12a) to (12c)
for a set number of iterations. Afterwards, we update the inputs and outputs to the next
sample and repeat.

This learning method is inherently sequential; we need to run the network to equilibrium
for one sample before moving on to the next. However, there is a way to parallelize the
network. If we pass samples through the network in batches as in a standard feed-forward
neural network, we run into the issue of the connection weight matrices and the fact
that all the samples in the batch share the same set of connection weights. For feed-
forward networks, we only update the connection weights after running the network and
computing the gradients. With Eq. (12), we are supposed to update Wi at every iteration.
To remedy this, we can keep the connection weights constant throughout one batch, store
the gradients, and then update Wi at the end of one batch. This greatly speeds up training
and allows us to use more advanced optimization techniques for updating the connection
weights such as momentum-based techniques.

The programming implementation was built off code originally made by Junteng Zheng
at the NeuroCognitive Computing Lab at the University of Waterloo.

9



3.2 Inference

During inference, we are no longer training so we do not want to updateWi. Only Eqs. (12a)
and (12b) will play a role in the dynamics. When we want the network to perform inference,

we clamp the input layer but not the output layer. This means that θ⃗4 is now a free variable
and is included in our optimization problem Eq. (3). Following the pattern in Fig. 2, there

is now an excitatory connection from ϵ⃗3 to θ⃗4, and θ⃗4 can be updated using an equation
similar to Eq. (12a). However, this leaves the question of what to do with ϵ⃗4; since θ⃗4 is no
longer constant, the error nodes will now receive a signal input. The gradients of F with
respect to the activities/errors of the last layer are

∇θ⃗4
F = −ϵ⃗4 + h′

3(θ⃗4)⊙ (W T
3 ϵ⃗3) (13a)

∇ϵ⃗4F = θ⃗4 − ϵ⃗4, (13b)

recalling that Σi is the identity matrix for all i. We may parallelize the network as in
Section 3.1 since Wi are all constant.

Since there is no layer after the fourth, there is no value to compare its prediction
against hence the missing term in Eq. (13b). Recall that the MLE occurs at an equilibrium

point, so by setting Eq. (13b) to 0 we get θ⃗4 = ϵ⃗4 and Eq. (13a) becomes ∂F/∂θ⃗4 =

−θ⃗4 +∇h3(θ⃗4) ⊙ (W T
3 ϵ⃗3). The activity of the fourth layer is constantly driven towards 0

due to the decay term. To avoid this, we completely remove the fourth error node from
the system. The activity update equations then become

∇θ⃗4
F = h′

3(θ⃗4)⊙ (W T
3 ϵ⃗3) (14)

for that layer. This decision is also consistent with the interpretation of ϵ⃗i as the difference
between the activity of the ith layer and the prediction of the following layer; if there is
no layer afterwards, there cannot be a prediction error.

Our goal is to replicate the behaviour of human face perception in response to different
numbers of parafoveal features, specifically the latent reaction time when presented with
a face image with few features. To do this, we need a way to measure the response time of
our neural network. The use of the Euler method for the gradient ascent of F provides a
natural way to measure this time. With a constant step size, α, and t iterations of gradient
ascent, we can record the time passed as t ·α. We will record t as the number of iterations
it takes for the activity of the output neurons to reach some threshold.

The choice to use a threshold merits some justification. A single electrode in an EEG
study records a scalar number after every time step. It takes the activities of many millions
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of neurons and distills them into one observation i.e. electrical potential. The layers
in our neural network are represented by vectors, of which each element corresponds to
a single neuron. There are two neurons in our output layer, one that becomes active
when the network is shown a face and one that becomes active when it is shown another
object. As the network becomes more certain that the image it sees is a face (or not a
face), the appropriate output neuron becomes more active. Recording the time when the
threshold of activity is met is analogous to the EEG machine recording a voltage potential
signal. Moreover, there are results from theoretical decision-making that support the use
of thresholds when comparing the activities of neuronal populations [4].

4 Training the Network for Facial Perception

4.1 Data

We have 32 unique images of human faces, half male and half female. These images
are artificially created using computer software; they are centred and have identical head
outlines. They are the same images used by Winward et al. [38]. These images form the
basis for what we use to train the network.

In order to classify faces, the network needs other non-face images to compare against.
As humans learn, they are bombarded with countless classes of objects and variations.
To replicate this learning process, we include several object types in our dataset. The
ImageNet dataset contains tens of thousands of classes, making it an ideal source of non-
face images to use [6]. We use a small subset of these classes. We pick the classes such that
the associated images are unlikely to include a face or a person by accident. For example,
the ‘cowboy hat’ class would not be appropriate since it likely includes many pictures of
people wearing cowboy hats. Table 1 compiles all the classes we use during training. In
total, we have 664 ImageNet images in our dataset.

We want to ensure that the PC network is learning to distinguish faces by the presence
of parafoveal features and facial contours. There is no guarantee that our neural network
will use this information when classifying images. It may compare the smoothness of the
images, identify the blank background associated with the face images, or recognize the
distribution of pixel intensities. To this end, we need to standardize our images.

First, we resize all images to 68×100, convert colour images to grayscale, and normalize
the pixel values to the interval [0, 1]. We then take the two-dimensional Fourier transform
of the images. We set the smallest frequencies in a 2 × 3 rectangle around the center of
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Table 1: ImageNet class codes and labels used for training.

n11939491 daisy
n04330267 stove
n04326547 stone wall
n04328186 stopwatch, stop watch
n04330267 stove
n09468604 valley, vale
n09472597 volcano
n04522168 vase
n02974003 car wheel
n03220513 dome
n03223299 doormat, welcome mat
n03240683 drilling platform, offshore rig
n03355925 flagpole, flagstaff
n03930630 pickup, pickup truck
n03837869 obelisk
n03773504 missile
n03530642 honeycomb
n02701002 ambulance
n02747177 ashcan, trash can
n02727426 apiary, bee house
n02980441 castle

the spectrum to 0. This removes low-frequency content, such as overall brightness and
brightness gradients. Thus, the network should learn object shapes and contours, which
means it should learn facial features.

To further ensure that the network learns to recognize faces using the presence and
orientation of features, we will include shuffled faces. This shuffling is done pixel-wise
and block-wise. For pixel-wise shuffling, we randomly permute all the pixels of the face
images. For block-shuffling, we partition the images into sixteen 25× 17 blocks and shuffle
these. We label these shuffled faces as non-face images. The resulting images have the
same distributions of pixel intensities. This makes sure the network does not simply learn
to recognize those distributions.

One technique that often greatly improves the performance of neural networks, and
machine learning models in general, is data augmentation [22]. For this project, we restrict
our augmentation to rotations, translations, and reflections. This sort of augmentation is
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Figure 3: Samples of training images after processing and augmentation.

biologically plausible since human brains learn to recognize faces by seeing them from
various positions and orientations. For each face image, we include its horizontal reflection
(a reflection across the veritcal axis of symmetry). For each of these now 64 images, we
create three rotated versions by randomly choosing a rotation from a uniform distribution
over [−45◦, 45◦] and three random vertical translations in the range of −15 and +30 pixels.
These ranges are chosen to ensure that all parafoveal features remain visible for training.
Fig. 3 shows samples of face and non-face images after processing and augmentation.

The images are labelled using one-hot encoding. This works naturally with our network
architecture since we have a two-dimensional output layer. Non-face images are labelled
(1, 0) and face images are labelled (0, 1).

Table 2 shows the breakdown of the training dataset in terms of the kinds of images
and their labels. Just over a third of the augmented dataset is composed of face images.
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Table 2: Training dataset composition. The face category includes the rotated and trans-
lated faces.

Image Category Frequency Label
Face 448 (0, 1)

ImageNet 664 (1, 0)
Block-Shuffled Faces 64 (1, 0)

Pixelwise-Shuffled Faces 64 (1, 0)

4.2 Missing Features

In addition to the face images, we also have access to modified versions that are missing
parafoveal features. The combinations of features can be found in Table 3. This table
also shows the grouping of feature combinations by parafoveal feature count. In the study
by Winward et al., gaze fixation is enforced to reduce experimental error; face images are
flashed with one of the eyes always kept in the participant’s fovea [38]. The number of
features in addition to this eye is the number of parafoveal features.

Table 3: Grouping of facial feature combinations by parafoveal feature number.

Number of Parafoveal Features Feature Combinations
0 One eye

1
Two eyes

One eye, nose
One eye, mouth

2
Two eyes, nose
Two eyes, mouth

One eye, nose, mouth
3 Full face

Human eyes perform saccades, rapid eye movements, which introduce experimental
noise to EEG studies. To reduce their presence, experimenters enforce fixation in their
participants [39]. Fixation is achieved automatically in our neural network, since there is
no concept of ‘in focus’ or ‘out of focus’. For easier, clear comparisons to our motivating
study, we will continue using the parafoveal feature notation.
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4.3 Training Algorithm and Hyperparameters

We train a population of 45 predictive coding neural networks. This is the same as the
number of participants in the study by Winward et al. [38]. We train each network on the
dataset for 18 epochs, using batch sizes of 64. The activities and errors are updated using
a step size of α = 0.05. For each sample, we perform 500 steps of gradient ascent using
Euler time-stepping.

The connection weight matrices are updated using the process outlined in Section 3.1.
We use the Adam optimizer with a learning rate of 10−4 and exponential decay rates of
β1 = 0.9 and β2 = 0.999 [17].

4.4 Inference Algorithm and Hyperparameters

When performing inference, we update the activities and errors using a smaller step size,
α = 0.005. We do this because we want a finer-grain measurement of response time, as
opposed to training when we simply want the network to learn its connection weights. For
each sample, we run the network until one of the two output neurons reaches a threshold
as described in Section 3.2. The recorded response time is t · α, where t is the number
of iterations. If after 20, 000 iterations the network does not reach the threshold, we stop
the network and do not record the response time. However, this maximum number of
iterations was never reached throughout our experiment.

The threshold we choose is 1. This is because our network is trained using one-hot
encoded labels, so the output neurons should have activities of one when the network
successfully classifies an image.

We always initialize the hidden layers with activities of 0 and the output layer with
activities of 0.5. This is done to not bias the output since the expected targets are always
(0, 1) or (1, 0).

5 Results

5.1 Accuracy

After training, the 45 networks achieve an average accuracy of 0.879 on the training set
with a standard deviation of 0.009. Most of this accuracy comes from the networks’ ability
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to recognize face images. The networks correctly categorize all face images, without fail.
This extends to faces with different combinations of features. The models have perfect
recall, which is what we had hoped for. The models also correctly classify all pixel-shuffled
images and classify block-shuffled faces as non-faces with accuracies ranging from 0.95 to
1.0.

Most of the prediction error comes from the ImageNet images, which is to be expected;
these images are more varied and contain more details. When testing on ImageNet’s
validation dataset, again using only the classes in Table 1, we get a mean test accuracy of
0.658 with a standard deviation of 0.046.

Our goal is to train PC neural networks to recognize faces using the presence of facial
features. It is more important for our purposes that this is the case as opposed to training
models with high accuracies. This is why we include much of the data processing in
Section 4.1. Had we not filtered the training images or included shuffled faces, the network
could very easily use unintentionally diagnostic, but not face-related, image features to
learn to distinguish faces from ImageNet images.

5.2 Activity Phase Space

In Section 4.4, we described the process by which we measure the response times of net-
works. To summarize, we clamp the activities of the input layer to match the pixel values
of an image and run the network until we reach a threshold. We measure the response
times as the number of Euler time steps we take, multiplied by the step size.

Fig. 4 plots the L2 norms of each layer’s activity and the derivative of this norm2. The
0th layer is not shown since it is held constant, so plots of the norm of the activity and
its derivative would not be informative. To create these plots, we randomly select one
of the 45 networks and present it with a random full face as input. We repeat using the
same network and face with two eyes, only one eye and a mouth, etc. through all the face
conditions. This is the same face identity, the only difference is the presence or absence of
parafoveal features.

The activities and derivatives of each layer follow a similar fluctuating pattern before
tapering off to some equilibrium. The final layer is an exception because it has no error
feedback to taper its growth. As the third layer reaches some non-zero equilibrium, the
output layer will continue to receive constant input. This is evidenced by the fourth layer’s

2The L2 norm is defined for any vector x⃗ of size d as ∥x⃗∥2 =
(∑d

i=1 x
2
i

)1/2

.
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Figure 4: L2 norm of the activities and derivatives for each layer in a PC network. The
0th layer is not shown since it is held constant.

roughly constant derivative. It takes longer for the fluctuations in the hidden layers’
activities to settle the further up the network they are from the input. This is because the
input layer is clamped, so the first hidden layer quickly adapts to this information before
passing it on to the next layer, which must adapt before passing it on again. While the
L2 norm of the activities is greater for the first layer than the others, it is because it has
more neurons than them (300 as opposed to 200 and 100). The only differences between
the full-face condition and the partial feature conditions are the magnitudes of the norms;
all curves have the same shape with no horizontal translation between the two. As the
number of features decreases, so does the magnitude of the norms. We also include the
network’s response when shown just the outline of a face (one with no features). It has
the smallest amplitude and greatest response time, which is consistent with the pattern
we observed.
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Fig. 5 shows the activities of the neurons in the output layer under similar circumstances
as in Fig. 4; the network is shown both a full face and a face with one eye and one mouth.
A different network and different images from Fig. 4 were randomly selected. The solid
lines plot the activity of the neuron in the output layer that activates when the network is
shown a face. The dashed line is for the neuron that activates when the network is shown
anything else.

Figure 5: Activities of each of the two neurons in the output layer. The blue curves are
the output neurons for a network when shown a full face. The red curves are the output
neurons when shown a face with one eye and a mouth, labelled as a part face in this figure.
The solid lines are the activities of the neurons associated with the presence of a face, the
dashed lines are for the other neurons.

The face neuron’s activities grow while those of the other neuron remain roughly con-
stant, even slightly decreasing. The initial dip in activities is likely an artifact of initializing
both neurons at 0.5. Information from the rest of the network harshly corrects this initial
guess, then the activities settle into regular behaviour as the network stabilizes. The gen-
eral shape of this curve is what we expect to see. The network processes information from
the input image and gathers evidence that the image is a face. This evidence is reflected
by the increasing solid curves in Fig. 5, all the while there is no evidence convincing the
network that the input image may not be a face. Again, the only difference between the
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Table 4: Mean response times and standard deviation across networks for each feature
combination treatment. Recall, that there are 45 networks.

Treatment Mean Standard Deviation
1 Eye 15.26 1.02
2 Eyes 13.54 0.86

1 Eye, Nose 14.31 0.94
1 Eye, Mouth 13.54 0.77
2 Eyes, Nose 12.78 0.80

1 Eye, Nose, Mouth 12.79 0.70
2 Eyes, Mouth 12.17 0.64

Full Face 11.57 0.60

two conditions is the amplitude of the curves, not their shapes or their positions on the
graph.

5.3 Feature Combination Response Times

For each network, we measure the response times when presented with the 32 face images.
We take the mean of these response times as our data point. Each of the 45 networks is
treated as an individual participant in the experiment. This is repeated for all eight feature
combinations in Table 3. This is a repeated measures experiment where the trained neural
networks are the experimental units [19]. The treatments are the eight different feature
combinations. The measurements are the mean response times when presented with images
of faces whose feature combinations correspond to the treatment. We do not include the
face outline condition in our statistical analysis, even though we include it in Fig. 4. This
is because all face identities share the same outline, so we only have one data point for
each of the 45 neural networks.

The data analysis in this section and in Section 5.4 is done using the Pingouin software
package for Python [35]. Specifically, we use the rm_anova, normality, sphericity, and
pairwise_tests functions.

Fig. 6 shows the distribution of response times of the networks for different treat-
ments. The distributions are unimodal without a large spread. The response times across
treatments are on the same order of magnitude, but with some clear differences. These
differences are clearer in Fig. 7. The white circles on the boxplot indicate the treatment’s
mean. The boxplot and the histograms tell us the distribution of response times tends
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Figure 6: Histogram of average response times to different feature combinations.

to be right-skewed towards longer response times. The skewness tends to be small, as
evidenced by the presence of only two outliers out of 360 observations across all treatments
and participants.

Table 4 tabulates the means of the response times for each treatment, across the 45
networks. This is a mean of means.

To formalize this difference in means, we apply a repeated measures analysis of variance
(ANOVA). We use the Greenhouse-Geisser correction for the p-value to correct for the lack
of sphericity in the data [10]. Another sufficient requirement is normality across each
treatment. Using the Shapiro-Wilk normality test, we do not find enough evidence to
reject normality at the 0.05 significance level for any treatments, except for the two eyes
condition, see Table 5. Given the relatively small skewness of the data for that treatment
and the normality of all other treatments, this violation is not likely to significantly increase
the probability of a Type I error [14]. The repeated measurement ANOVA finds significant
evidence that there is a difference in means (F (7, 308) = 655.88, p-value = 1.85 · 10−69).
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Figure 7: Boxplot of average response times to different feature combinations. The boxplot
follows standard conventions [19]. The white circle indicate the treatment’s mean response
time.

Table 5: p-values for the Shapiro-Wilk normality test applied to feature combinations data.

Treatment p-value
1 Eye 0.200260
2 Eyes 0.007801

1 Eye, Nose 0.556800
1 Eye, Mouth 0.493095
2 Eyes, Nose 0.224850

1 Eye, Nose, Mouth 0.540330
Full Face 0.566282

2 Eyes, Mouth 0.214591
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To further explore this difference, we apply pairwise paired samples t-tests to each
pairing of treatments. Since we are performing multiple comparisons, we must adjust the
p-value to correct for Type I errors. To do so, we use the Bonferroni correction, which
amounts to multiplying the p-value by the number of tests we perform, 28 in our case [5].
Table 6 summarizes the results from these tests. All comparisons, except for two, provide
significant statistical evidence against the null hypothesis. These exceptions are the entries
in the table with p-values of 1.0. In Fig. 7, these comparisons correspond to the orange vs.
red boxplots and the purple vs. brown boxplots. It is visually clear that these means are
similar.

5.4 Parafoveal Feature Response Times

The next question we seek to answer is, how does the number of facial features affect the
response times of the networks, regardless of the type of feature? EEG studies indicate a
positive linear relationship between the parafoveal feature number and the response time
[38]. This design is also a repeated measures experiment, albeit with different treatments.
The four parafoveal feature number treatments (0− 3) are created by combining the infer-
ence results of varying feature combinations, as outlined in Table 3.

Figure 8: Histogram of average response times to different parafoveal feature numbers.
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Table 6: Results of paired samples t-tests for feature combination. T is the test statistic.
The p-values are corrected using a Bonferroni correction.

Treatment A Treatment B p-value DOF T
1 Eye 1 Eye, Mouth 1.31 · 10−27 44 27.05
1 Eye 1 Eye, Nose 6.35 · 10−23 44 20.77
1 Eye 1 Eye, Nose, Mouth 1.06 · 10−31 44 33.86
1 Eye 2 Eyes 4.73 · 10−26 44 24.81
1 Eye 2 Eyes, Mouth 1.73 · 10−32 44 35.33
1 Eye 2 Eyes, Nose 8.22 · 10−30 44 30.54
1 Eye Full Face 2.09 · 10−34 44 39.18

1 Eye, Mouth 1 Eye, Nose 1.27 · 10−12 44 −10.89
1 Eye, Mouth 1 Eye, Nose, Mouth 2.67 · 10−23 44 21.23
1 Eye, Mouth 2 Eyes 1.0 44 −0.00
1 Eye, Mouth 2 Eyes, Mouth 9.77 · 10−27 44 25.77
1 Eye, Mouth 2 Eyes, Nose 4.41 · 10−10 44 9.00
1 Eye, Mouth Full Face 4.81 · 10−30 44 30.93
1 Eye, Nose 1 Eye, Nose, Mouth 1.08 · 10−27 44 27.18
1 Eye, Nose 2 Eyes 1.14 · 10−12 44 10.92
1 Eye, Nose 2 Eyes, Mouth 1.93 · 10−26 44 25.35
1 Eye, Nose 2 Eyes, Nose 1.54 · 10−26 44 25.49
1 Eye, Nose Full Face 1.21 · 10−32 44 35.63

1 Eye, Nose, Mouth 2 Eyes 5.07 · 10−11 44 −9.68
1 Eye, Nose, Mouth 2 Eyes, Mouth 1.19 · 10−13 44 11.70
1 Eye, Nose, Mouth 2 Eyes, Nose 1.0 44 0.12
1 Eye, Nose, Mouth Full Face 3.91 · 10−27 44 26.35

2 Eyes 2 Eyes, Mouth 9.38 · 10−28 44 27.27
2 Eyes 2 Eyes, Nose 1.74 · 10−23 44 21.46
2 Eyes Full Face 6.06 · 10−32 44 34.30

2 Eyes, Mouth 2 Eyes, Nose 7.29 · 10−13 44 −11.08
2 Eyes, Mouth Full Face 1.48 · 10−23 44 21.54
2 Eyes, Nose Full Face 6.93 · 10−28 44 27.47
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Figure 9: Boxplot of average response times to different parafoveal feature numbers. Same
conventions as in Fig. 7.

Figs. 8 and 9 plot the distribution of response times for the different parafoveal number
treatments. They follow the same conventions as Figs. 6 and 7. Here we can more clearly see
the linear relation between feature number and response time, in addition to the difference
in means.

Table 7 tabulates the means of the response times for each parafoveal feature treatment,
across the 45 networks. This is a mean of means. The one and two parafoveal feature
treatments are comprised of three feature combinations, so there are 135 data points.

Performing a repeated measures ANOVA with Greenhouse-Geisser correction on the
parafoveal features treatments indicates significant statistical difference between the means
(F (3, 132) = 1070.81, p-value = 1.44 · 10−53). A Shapiro-Wilk normality test finds that
only the one parafoveal feature treatment is not normal at the 0.05 significance level. This
is unlikely to affect our results for the same reasons outlined in Section 5.3. The normality
test results are summarized in Table 8.

Pairwise paired samples t-tests with the Bonferroni correction indicate that the mean
response times across all parafoveal feature numbers are statistically different from one
another. The results of the t-tests are not surprising given Section 5.3. The only pairs of
means which were not significantly different were found within the same parafoveal feature
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Table 7: Mean response times and standard deviation across networks for each parafoveal
number treatment.

Treatment Mean Standard Deviation Data Points
0 Parafoveal Features 15.26 1.02 45
1 Parafoveal Feature 13.80 0.93 135
2 Parafoveal Features 12.58 0.77 135
3 Parafoveal Features 11.57 0.60 45

Table 8: p-values for the Shapiro-Wilk normality test applied to parafoveal feature number
data.

Treatment p-value
0 Parafoveal Features 0.20
1 Parafoveal Feature 0.0075
2 Parafoveal Features 0.069
3 Parafoveal Features 0.57

number treatment. These results are summarized in Table 9.

5.5 Discussion

The results from Sections 5.3 and 5.4 show that predictive coding neural networks repli-
cate the behaviour of human brains when trained to recognize faces. The difference in
response times across parafoveal feature treatments, and the smaller differences within
each treatment, are consistent with experimental results [38].

Table 9: Results of paired samples t-tests for parafoveal feature number. T is the test
statistic. The p-values are corrected using a Bonferroni correction.

Treatment A Treatment B p-value DOF T
0 Parafoveal Features 1 Parafoveal Feature 1.01 · 10−26 44 34.02
0 Parafoveal Features 2 Parafoveal Features 1.76 · 10−30 44 36.65
0 Parafoveal Features 3 Parafoveal Features 4.48 · 10−35 44 39.18
1 Parafoveal Feature 2 Parafoveal Features 3.72 · 10−24 44 40.29
1 Parafoveal Feature 3 Parafoveal Features 1.30 · 10−32 44 43.36
2 Parafoveal Features 3 Parafoveal Features 1.49 · 10−28 44 47.67
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EEGs measure voltage potentials across the scalp, which are used to extract ERPs
and make inferences about activity inside the brain. It is important to note that these
measurements do not directly measure the activation levels of individual neurons; an EEG
measures the electrical fields of neuronal populations after they are propagated and dis-
torted through different mediums before reaching the scalp. This distinction is crucial
because, in our PC network experiment, we are measuring individual neuronal activity
directly. The decreased ERP results found by Winward et al. [38] and the results in Figs. 4
and 5 are similar but present different information. Figs. 4 and 5 provide a hypothetical
explanation for the ERP latency effects but not their amplitudes.

The neurons in our PC neural networks are less active when shown faces with fewer
parafoveal features, as compared to being shown a full face. Because the neurons are not
as active, it takes longer for them to reach a threshold where a signal can be registered. We
can interpret this behaviour as the network being ‘less sure’ of what it sees. Biologically,
this means the neurons fire less often, slowing down the rate of charge buildup. This is
not what is observed in experiment [38]. Our results do not explain this discrepancy but
potential explanations and future avenues of research will be discussed in Section 6. In
contrast, the delay in response times can be explained. Since the neurons collect charges
more slowly, it will take longer for the population to reach the state where it creates the
face signal charge. Whatever that state is, the results from this project cannot suggest; it
may be a certain amount of information exchange between layers or interactions of neurons
within a layer, something this predictive coding model does not account for.

In the study by Winward et al., they also recorded EEG response times when partici-
pants were shown images of isolated eyes (just one eye on a white background, no outline
or other features) [38]. These types of images had the greatest delay in response times.
We cannot replicate these results because our networks classify these isolated eyes as non-
face images. This is an understandable classification since it is reasonable to say that an
isolated eye is not actually a face.

6 Conclusion

In this project, we implemented a predictive coding neural network as a mechanistic model
for facial perception in the human brain. We trained the network using a mixture of face
images, ImageNet images, and data augmentation. The accuracy of the model was not
high in comparison to how other models would perform on the dataset, but accuracy is
not a good measure of model aptitude for our purposes. Using analogies to biology and
EEGs, we devised a way to measure the network’s response time when presented with
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stimuli. We find statistically significant increases in response times when exposing the
network to face images that are missing features versus full-face images. These findings
are consistent with experimental evidence of how the human brain works [38]. They also
provide a possible explanation for the delayed response time’s origin, and make predictions
for future experiments. As exciting as these results are, they do not come without caveats.

During training, we used very regular images of human faces. We attempted to address
this limitation by including data augmentation. While this certainly helped the network
recognize faces from the presence of facial features, it is a far cry from how human brains
are trained. From birth, people are exposed to countless faces of different shapes and sizes,
and at various angles in three-dimensional space. In addition, we see many more kinds of
objects than listed in Table 1. Training our neural network is a limited approximation of
this human learning that takes many years. It would be interesting to train a predictive
coding neural network using a much larger, richer dataset and compare the results to those
in this paper.

Our predictive coding neural network architecture is mathematically derived from our
assumptions about the layers’ probability distributions and their conditioned variables.
Setting all Σi to the identity matrix is a further restriction. Besides these restrictions, our
overall model is a simple interpretation of the human brain. The number of neurons in
each layer and the number of layers are simplifying assumptions since there are no hard
delimitations between regions of the human brain. In a human brain, there are many
connections between neurons within each layer, which would greatly alter the behaviour of
the network.

In our neural network architecture, we label the fourth and final layer as ‘higher levels’.
This is a useful abstraction allowing us to interpret the behaviour of the network. In reality,
there are more than just two neurons after the pFUS; these higher-level layers are used for
more than just facial perception in the actual human brain. With this simplification, we
disregard all higher-level activity that may contribute to observed phenomena.

Another aspect of the human brain not reflected in our architecture is skip connections.
Our hierarchical layering of the network, enforced by Eq. (2), prevents us from including
this. There is evidence for a connection between V1 and the pFUS [11]. This would change
the behaviour plotted in Fig. 4; the signals in each layer would no longer follow this delayed
pattern. Our PC network can be modified to include this skip-connection architecture.

Mathematically, the implementation of skip connections poses a non-trivial question:
how does the probability distribution in Eq. (2) change? For brevity, we will consider a
skip between the first and third layers of Fig. 2 only, but this discussion can be extended
to connections between any other layers. Thus, the distribution of the first layer’s activity
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may be
p(v⃗1|v⃗2, v⃗3) ∝ N (v⃗1; g12(v⃗2,W12),Σ12) · N (v⃗1; g13(v⃗3,W13),Σ13), (15)

where variables with subscript 1i correspond to the interaction between the first and the
ith layer. Alternatively, the probability could be

p(v⃗1|v⃗2, v⃗3) = N (v⃗1; g12(v⃗2,W12) + g13(v⃗3,W13),Σ1). (16)

In deriving F and the parameters’ update equations from Eq. (15), we would find that
we need two error nodes for the first layer, one to compute the prediction error for layer
two and one to compute the prediction error for layer three. From Eq. (16), we would
find that the activities from the second and third layer both feed into the first layer’s error
node. The former can be interpreted as the first layer needing to simultaneously predict
the activities of both the second and third layers, the latter means that the first layer needs
to predict the sum of their activities.

It is not immediately obvious which of these interpretations is most biologically plausi-
ble. Should the distinction become clearer, it would be natural to enhance our predictive
coding model of the visual system with this skip connection. This is only one of the nu-
merous avenues of exploration we may take in applying predictive coding models to the
brain. Any combination of these improvements would be exciting and worth pursuing in
future work.

Besides changes to the architecture, there are numerous experiments left to run using
trained networks. How does permuting the facial features affect the network’s perception
of faces? What about inverting the faces? The answers to these questions and others
provide predictions that can be verified or refuted using human experiments to test our
predictive coding model.
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