Multimodal Image Registration Using
GPU Parallel Computing Technology

by

Xiaolu Sun

Supervisor: Professor Justin W.L. Wan

A research paper presented to the University of Waterloo in fulfillment of the project
requirement for the degree of Master of Mathematics in Computational Mathematics

Waterloo, Ontario, Canada, 2010

Copyright Xiaolu Sun 2010

I hereby declare that I am the sole author of this research paper. This is a true copy of the
research paper, including any required final revisions, as accepted by my examiners.

Acknowledgements

I would like to thank Professor Justin W.L. Wan for all of his guidance with this project. |
would also like to thank Tiantian Bian for his great help.

Table of Contents

INETOAUCLION.ceieieie ettt ettt e ettt e ettt e e et e e e e s st e e s eateeaeensbeeesnseeaennaeeennsneesanns 1
BaCKEIOUNG.......oieiieiie e e e e e et e e e e et e e e e e s et abraeaaeeeaaraaaeaeeeaas 4
2.1 Fundamental concepts in image regiStrationcceeeeeeeieveuiieeeeeeeiiieeeeeeeeeinreeeeeeeeennns 4
2.1.1 Individual and joint hiStOZIamc..ceeeciieiiiiieeeiee e 5
2.1.2 Individual and joint probability density distributionceeceeveeeerveeeiiieeniveennne 7
2.1.3 Mutual InfOrmationc.eoiiiiiiiii e e 7
2.2 Interpolation MOAEL........c.uiiiiiiiii ettt 8
2.3 Partial volume modeleoiiiiiiiiii e 10
2.4 Parallel computing technology of GPU............c.cooiiiiiiiiiiiiiccee e 11
2.4.1 CUDA Programming MoOdelcooiriiiiiiiiiie et 12
GPU IMPIEMENtALION.cceiiiiiiiiiieeeitiee et e e ettt e s steeeesbeesseeeeesssaeessssteeessssaessnsseeeessseeessssseeanns 17
3.1 2D Interpolation MOdEl........ccouiiiiiiiiiiie e e 17
3.1.1 Tmage INterpOlationccvviiiiiiiiiiiie ettt etreees e e sre e e eereeessesaeaenns 17
3.1.2 2D CUDA array alloCatioN..........eeeieevieeeeiiieeeiieiessiieeestieeessereeessreeesssreeesssnsesenns 18
313 Memory copy t0 CUDA QITAYceieeiiiiiiiiieiee ettt ee e 18
3.14 Binding CUDA array to teXture MeMOTYc..eeeerureeeriereeenaeeeeesneeeeenereeeeaeeeaann 19
3.1.5 Interpolating by calling teX2D.........ccocuiiiiiiiiiciiie e 19
3.1.6 Joint probability density matrix construction............ccceeevevvvveeeeeeerciiieeeees e 20
3.1.7 Parallel REAUCHIONccooviiiiiiiiie ettt e e snnae e 23
3.1.8 Entropy CalCULationN..........cccuiiiiiiiiie e ciie ettt e e ee e sre e seree s eenaeeenns 27
3.1.9 General 2D interpolation model...........ccccoeiiiiiiiiiiiii e 27
3.2 2D Partial Volume MoOdel........ccooiuiiiiiiiieiiie ettt 28
33 3D Interpolation MOdel.........cccueiiiiiiiiiiiieiee e ee e e 30
3.3.1 3D CUDA GITAY.....cuvveieeeeeieiiieieeeeeeeieteteeeesseeteeeaessssssereeeeessssssnseseeessssnsnseeeaess 31
332 Copy data t0 3D AITAYuieiiiiiieeiiiie e et e et ee et e e e ee e e st ee s snee e e eeneeeeeeees 32
333 Texture reference and memory bINdingccceeoveeeiriiiiieriiee e 32
334 Interpolation by calling teX3D........ccceiiiiiiiiiiee e 33
NUMETICA] RESUILSvvieeiiiiie et e e et e ettt e e st ae e eenteaessnsbeeeensneeeennes 34
4.1 2D 0TS 0110157 11 PRSI 35
T 55 4 1<) 4100153 11 USRS 38
43 251 4100151 11 TSRS 41
(07073 10] 11 5 o)+ OO P PP PP TPPPRPPPR 44

g S (<) 0 11U 45

List of Figures

Figure 1-1 Images of brain need to be aligned. The brain is located at the top part of the image
(Left) and located at the bottom right of the image (Right) from the Retrospective Image
Registration Evaluation ProOJECt.cccvuiiiiiiiiieiiiiiececiiee et et evve et e e e evveeeevreeesaneae s 1

Figure 1-2 Medical Images of various modalities: CT (top left), T1-weighted MRI (bottom left),
T2-weighted MRI (top right) and PD-weighted MRI (bottom right) from the Retrospective

Image Registration Evaluation Project........ccueerrvieeiieiiieeriiiieenieeeeiieeessiieeessnreessseneessssneeens 2
Figure 2-1 Image A with intensity values (left) and its corresponding bin index at each pixel

G 113 T PP USPROPSRTNt 5
Figure 2-2 Individual histogram of the image Ac.cooeieiiiiiiiiiee e 6
Figure 2-3 Image B with intensity values (left) and its corresponding bin index at each pixel

T 4 1) PP USRROPSR 6
Figure 2-4 Joint histogram matrix of image A and B.c.ccoooiiiiiiiiiie i 7
Figure 2-5 Joint probability density matrix of image 4 and B.ccccvveeieeeiiiiiieeeee e 7
Figure 2-6 Bilinear interpolation of template image F with translation Aiand Aj.......c.ccoevee. 9
Figure 2-7 Joint histogram construction in the partial volume model..........cccccooviiviiinieennennn 11
Figure 2-8 Execution of a typical CUDA program from NVIDIA’s website.ccceecueeennnenn. 13
Figure 2-9 CUDA thread, block and grid from NVIDIA’s Website.ccceevrieieeniiiieniiieeennn. 14
Figure 2-10 Global Memory and Shared Memory from NVIDIA’s website.........ccccccevieeennnnees. 15

Figure 3-1 The intensity values of the template image F (left) and the target image G(right)...... 20
Figure 3-2 Bin index for the template image F (left) and the bin index for the target image G

G 413 S PRRT 21
Figure 3-3 Mapping from 2D bin coordinates to 1D-address-matriX.........cccoccvveeeriieeniiieeennnnens. 21
Figure 3-4 Histogram A stored in 1D lin€ar MemMOTYcoeiiiiiiiiiiiriiiieeeiee e 22
Figure 3-5 L A after the first iteration...........cocevieriiirieenienieiicie et 23
Figure 3-6 L_A after the Second HErationcoceerveereerienieniieiieiinie et 23

Figure 3-7 Parallel reduction of the first row of L A to obtain the frequency count and probability
density at the first address in the histogram A4 and the joint probability density Pgg............ 25
Figure 3-8 Parallel reduction of the second row of L A to obtain the frequency count and
probability density at the second address in the histogram A and the joint probability density
U PRRPRUSRRIIN 25
Figure 3-9 Parallel reduction of the third row of L A4 to obtain the frequency count and
probability density at the third address in the histogram A4 and the joint probability density

Figure 3-10 Parallel reduction of the fourth row of L A4 to obtain the frequency count and
probability density at the fourth address in the histogram 4 and the joint probability density
) o USSR 26

Figure 3-11 Calculate the row and column sum to obtain the individual probability density Pr and

Figure 3-12 Target image G and the transformed template image F with pixel coordinates in x and

DAL <10 o PSRRI 28
Figure 3-13 Target image G and the transformed template image F with highlighted region
indicating the out-of-bound portion of image F where CUDA threads are deactivated. 29
Figure 3-14 The transformation of image from 3D t0 2D........cccccovviiiiiiiiiiiniiee e 31
Figure 4-1 Target image (Left, size 64x64, T1-weighted MRI) and Template Image (Right, size
64x64, T2-weighted MRI)cooiiiiiiiiiiiiiei et e 35
Figure 4-2 Target image (Left, size 128%128, T1-weighted MRI) and template image (Right, size
128x128, T2-weighted MRI).....c.cooiiiiiniiiiiiiiicit ettt 35
Figure 4-3 Target image (Left, size 256x256, T1-weighted MRI) and Template Image (Right, size
256%256, T2-weighted MRI).....ocuoiiiiiiiiiiiie e 35
Figure 4-4 Target image (Left, size 512x512, T1 weighted MRI) and Template Image (Right, size
512%512, T2 weighted MRI)...coiiiiiiie e e 36
Figure 4-5 Comparison of GPU and CPU computational time for 2D interpolation model......... 37
Figure 4-6 Comparison of GPU and CPU computational time for 2D partial volume model 37
Figure 4-7 Target image (Left, size 64x64, CT) and Template Image (Right, size 64x64,
T1-Weighted MRI) ...ccooieiiiiiiie et e e et ee e e e et rae e e e e e eennneees 39
Figure 4-8 Target image (Left, size 128%128, CT) and Template Image (Right, size 128x%128,
T1-weighted MRI)....oc.iooiiiiiiiiiiinieneeesetee et e 39
Figure 4-9 Target image (Left, size 256x256, CT) and Template Image (Right, size 256x256,
T1-Weighted MRI) ...oooiiiiiiiie ettt et ee et e e et e e e enete e e e neaea s 39
Figure 4-10 Target image (Left, size 512x512, CT) and Template Image (Right, size 512x512,
T1-Weighted MRI)ccoieiiiiiiie e e e et e e e e e stae e e e s et raeae e e s esneneees 39

Figure 4-11 Comparison of GPU and CPU computational time for the 2D interpolation model..40
Figure 4-12 Comparison of GPU and CPU computational time for the 2D partial volume model

... 41
Figure 4-13 Characteristic layers of the 3D target image of modality T2-weighted MRI 42
Figure 4-14 Characteristic layers of the 3D template image of modality T1-weighted MRI........ 42

Figure 4-15 Speed-up for the 2D and 3D interpolation model............cccoocueeiiiiiiiiniiiiniiieeee, 43

List of Tables

Table 4-1 GPU Tesla C1060 SPecifiCations.........cccecuvrririeeeriiiiiiieeeeesiiniieeeeesessirreeeeeesesneneeeaeens 34
Table 4-2 CPU 17-950 SPECIfICALIONS ...eeeuviiiiiiiieeiiiieeeiiee ettt e et ee e see e e e e ee e saeeee e 34
Table 4-3 Comparison of the GPU and CPU computational time for the 2D interpolation model.
The speed-up is the CPU time over the GPU time.ccccvvieieiiiiiciiiiee e 36
Table 4-4 Comparison of the GPU and CPU computational time for the 2D partial volume model.
The speed-up is the CPU time over the GPU time.cccciviereiiiriciieiee e 36

Table 4-5 Comparison of GPU and CPU computational time for the 2D interpolation model.40
Table 4-6 Comparison of GPU and CPU computational time for the 2D partial volume model. .40
Table 4-7 Comparison of GPU and CPU computational time for the 3D interpolation model.....43

1 Introduction

This research project studies the parallel computing technique offered by the graphics
processing unit (GPU), and uses it to accelerate the computation of image registration.
Image registration is a process that aligns two images so that the point in one image
corresponds to the same anatomical point in the other. It is a key part in the medical
imaging analysis. Medical images are often taken at different time and places, resulting in
varying frame of references for the same part of the human body in the images. As shown
in Figure 1-1, a patient’s brain appears at the upper part in one image, whereas the same
brain appears at the lower right part in the other image that is taken at a different time. To
better detect the change of the patient’s brain over time, it is necessary to move one image
to align with the other so that the differences between the two images can be easily
identified.

Figure 1-1 Images of brain need to be aligned. The brain is located at the top part of the image
(Left) and located at the bottom right of the image (Right) from the Retrospective Image
Registration Evaluation project.

The first challenge in image registration is that the modalities of the medical images
could be different. Modality is the type of equipment used to acquire images of the body.
Take the image of the brain as an example again, the X-ray computed tomography (CT)
[1] helps to detect the fracture along the contour of the brain skull while the magnetic
resonance imaging (MRI) [2] is more useful to provide greater contrast between the
different soft tissues within the brain skull. Sometimes using the same equipment but with
different parameters could produce multi-model images as well, such as T1-weighted
MRI, T2-weighted MRI and proton density (PD)-weighted MRI [3]; see Figure 1-2. The
intensities between two images of different modalities are quite different so some
common measure used in monomodal image registration cannot be used here. This
project considers mutual information as the similarity measure for image registration of

1

multimodal images [4]. The mutual information and joint entropy are further explained in
Section 2.1.

Figure 1-2 Medical Images of various modalities: CT (top left), T1-weighted MRI (bottom left),
T2-weighted MRI (top right) and PD-weighted MRI (bottom right) from the Retrospective Image
Registration Evaluation project.

Another challenge in image registration is that the size of medical images is usually
large and hence the computational time for the registration process is long. This is
especially not desired when the 3- dimensional images (3D images) of certain organ of a
patient are created constantly and need to be registered within a very short span of time,
such as at the brain surgery where the surgeon has to keep track of the patient’s brain in
the real-time manner. The size of the data contained in the 3D image is particularly large.
For example, a 3D image of resolution 256x256x64 has more than 4 million voxels. If
the computation in the registration process is performed on one voxel at a time in a
sequential fashion, it will take a substantial amount of time.

In order to reduce the computational time in image registration, this project tries to
perform the computation in parallel using the general purpose graphics processing unit
(GPGPU) [5]. GPGPU is the graphics processing unit used to perform general scientific
computation. It has substantially more processing units than a CPU. Thus it is able to
perform parallel computation with every unit working at the same time. This project,
therefore, transforms most of the sequential computation in image registration to parallel
so that it becomes well-suited for the GPU computing. The Compute Unified Device

Architecture (CUDA), the parallel computing architecture developed by NVIDIA, is used
in this project to perform those parallel computations on NVIDIA’s supercomputing
device Tesla C1060 (the GPGPU).

This paper is organized as follows: Section 2 provides the background information
on mutual information and joint entropy (Section 2.1), the interpolation and partial
volume registration models (Section 2.2 and Section 2.3), and the parallel computing
architecture CUDA (Section 2.4). Section 3 explains the implementation of the
interpolation and partial volume models to register 2D (Section 3.1 and 3.2) and 3D
(Section 3.3) images using CUDA. Section 4 presents the numerical results where the
performance gain using GPU is measured against using the CPU. Section 5 is the
conclusion of this paper.

2 Background

Image registration is a fundamental task in medical imaging analysis. By aligning
two images, medical practitioner can conveniently combine the information contained in
the individual medical images, thus facilitating the diagnosis of the patients. In many
cases, however, the medical images that need to be aligned are created by different
sensors, such as CT and MRI. The multimodal images are more difficult to register than
the monomodal images because the same part of the image may have different intensity
values for different modalities and the simple sum of squared difference measure is not
applicable. Numerous registration methods have been proposed by the researchers such
as stereotactic frame-based registration [6], anatomical point landmark-based registration
[7] and surface-based registration [8]. However, stereotactic frame-based registration
although precise is cumbersome to implement. If landmarks are found by experts, then
computation is small but method is laborious. Surface-based registration is not suitable
for multimodal images [9]. This project employs the intensity-based registration method
since it is accurate and well suited to register multimodal images.

The following Section 2.1 explains several key concepts in the intensity-based image
registration, followed by the Sections 2.2 and 2.3 discussing the interpolation model and
partial volume model and then Section 2.4 introduces the background of parallel
computing technology which will be used to implement the intensity-based image
registration.

2.1 Fundamental concepts in image registration

In image registration, one image F, called the template image, has to be transformed
to align with the other fixed image G, called the target image. The transformation could
be rigid, affine, or curved. Rigid transformation includes translation and rotation only;
affine transformation considers upward or downward scaling; and curved transformation
allows translation and rotation while also permits mapping straight lines to curves [10].
This project focuses on rigid transformation, which is defined by 73 where f is the
transformation parameter that includes the translations in x and y directions and the
degree in rotation. The image registration process is to find 7sso that some similarity
measure is optimized. In this project, the measure is chosen to be the mutual information
MI. Thus image registration can be formulated as an optimization problem:

m/r;lle(F(Tﬁ),G) (1)

where F(Tp) is the template image transformed by the rigid parameter f
2.1.1 Individual and joint histogram

Before going into details of the mutual information based registration method, the
concepts of the individual and joint histogram of an image need to be first explained.
Histogram of an image is the display of the frequency counts of the image intensity
values. The number of bins will decide how many equally spaced intervals exist within
the range of the intensity values. For example, suppose image A is of resolution 4x4 with
the intensity value ranging from 0 to 7 and the number of bins is 2. Then the intensity
values 0 to 3 are grouped into bin index 1 and the intensity values 4 to 7 are grouped into
bin index 2. Image A and its bin index are shown in Figure 2-1. In this example, the
frequency count of bin index 1 is four and bin index 2 is twelve. The individual histogram,
or simply histogram, of image A is shown in Figure 2-2.

0 0 0 0 0 0 0 0
0 8 2 0 0 1 0 0
0 7 5 6 0 1 1 1
0 2 3 2 0 0 0 0

Figure 2-1 Image A with intensity values (left) and its corresponding bin index at each pixel
(right).

—
EN

—
[\

—_
=)

frequency
count

(= e

bin ndex 0 bin index 1

Figure 2-2 Individual histogram of the image A

Suppose we have a second image B of the same resolution as shown in Figure 2-3.
The joint histogram between images A and B is defined such that the bin indices of image
A and B at the same location form pairs and the number of times of these pairs found is
counted. For example, the top left pixel of image A and B would form a bin index pair (0,
1), where 0 is the bin index from image A and 1 is the bin index at the same location from
image B. We continue to count the pairs formed in this way throughout both images.
Finally, the bin index pair (0,1) appears 4 times, (1,0) appears 0 times, (0,0) appears 8
times, and (1, 1) appears 4 times. In order to represent this result in a systematic way, we
create a 2 by 2 histogram matrix (2 is the number of bins) and treat the bin index of the
image A as the row index of the joint histogram matrix and bin index of the image B as
the column index of the joint histogram matrix. Thus, the bin index pairs, (0,1), (1,0), (0,0)
and (1,1), are the location in this histogram matrix. Incrementing the histogram matrix by
1 for every pair of the bin indices will eventually produce the joint histogram matrix, as
shown in Figure 2-4.

4 0 0 7 1 0 0 1
3 6 2 0 0 1 0 0
4 7 4 6 1 1 1 1
1 2 7 2 0 0 1 0

Figure 2-3 Image B with intensity values (left) and its corresponding bin index at each pixel
(right).

Bin index <

Bin index

Figure 2-4 Joint histogram matrix of image A and B.

2.1.2 Individual and joint probability density distribution

The individual and joint probability density distributions are constructed by
normalizing the histograms defined in the previous section. More precisely, the
probability density distribution for image A is that the bin index 1 accounts for 4/16 and
the bin index 0 accounts for 12/16 of all the data. Similarly, there are 16 bin index pair in
the joint histogram of images A and B, out of which bin index pair (0,1) accounts for 4/16,
(1,0) accounts for 0/16, (0,0) accounts for 8/16, and (1, 1) accounts for 4/16. The
resulting joint probability distribution matrix is shown in Figure 2-5.

-

o | 8/16 | 4/16

Bin index <

T | o/16 | 4/16
0 1

- J
Y

Bin index

Figure 2-5 Joint probability density matrix of image 4 and B.

2.1.3 Mutual Information

Mutual information (MI) is a fundamental concept in information theory that
measures the mutual dependence of the two random variables [11]. Treating the image
intensities as random variables, the intensity-based method uses MI to measure the

similarity of two images being registered. MI can be thought as the information in image
A which is also contained in image B, or vice versa. When such information that
contained in both image reaches the maximum, the two images are successfully registered.
Ml is defined as [9]:

I(4,B)=H(A)+ H(B)-H(A,B))

where 7 is the mutual information of the two images A and B, H(4) and H(B) are the
Shannon entropy of images A and B, respectively, and H(A,B) is their joint entropy.
Entropy measures the dispersion of the image [9]. As the two images are misaligned the
joint entropy H(A,B) will increase resulting in a smaller mutual information /(4,B) based
on equation (2). The maximum mutual information hence is found when the joint entropy
H(A,B) is minimized. The entropies are defined as follows [9]:

H(A)=-)_ P(a)logP,(a) 3)
H(B)=-)_P,(b)log P,(b) (4)
H(A,B)=-)P,(a,b)logP,,(a,b) (5)

where a and b are the image intensities, P4 and P are the probability density distributions
of images A and B, and P43 is the joint probability density distribution of the two images.

2.2 Interpolation model

During image registration, the target image G is fixed, and the template image F is
translated and/or rotated to align with the target image. Since the joint histogram is
constituted by the bin index pairs of the target and template images at the same pixel
locations and the target image is fixed, the intensity values of the template image are
interpolated at the pixel locations using the intensity values of the template image after
transformed to the new positions [12]. The interpolation could be bilinear or trilinear,
depending on the images being registered are 2-dimensional or 3-dimensional,
respectively.

The bilinear interpolation for the 2-dimensional case is illustrated in Figure 2-6
below. I(xi-25,yi-2)), I(Xi-2i+1LYi-4)), I(Xi-Ai+Ly;-25-1), I(Xi-24,y5-A5-1) are the intensity
values of the template image F after transformation, where i and j are the pixel locations.
I(x;,y;) is the new interpolated image intensity after transformation at (x;y;). It is

8

computed by adding the contributing weights as follows:

Wy = Ai X AJ. (6)
Wy, ZAiX(l—Aj) (7)
W, =(1—Al.)><Aj (8)
w,; =(1=4)x(1-A)) 9)
I(x,v.}{,-) = WOO X I(x,—A,-H,y,—A/—l) + WOI X I(x, =7y A1) + W]() X I(x, —AHLy;-A;) + Wll X I(x,—A,-a}’,-—A,)
(10)
I(Xi'Ap}’j‘AJ‘) I(xi-Ai+1,yj-Aj)
® T PY
Woo A Wy
L
T Ai \
Wio Wy, T~ I(Xlﬁy_])
¢ °
I(Xi_Ai’yj-Aj -1) I(Xi-Ai+l,yj-Aj -1)

Figure 2-6 Bilinear interpolation of template image F with translation Ai and Aj.

By equations (3), (4), and (5), to compute the entropies of the images, the probability
distributions P4, Pg and P45 have to be computed based on the corresponding histograms.
We divide the intensity value of both the transformed template image F and the target
image G into the same number of bins, making the square shaped histogram matrix of
size binsxbins. When constructing the joint histogram matrix, the bin index for the
intensity value of the template image F, denoted by bin_index f, is thought as the row
index of the joint histogram matrix, and the bin index for the intensity values of the target
image G, denoted by bin_index g , is considered as the column index of the histogram
matrix.

The elements in the histogram matrix, denoted by #%/,, are obtained by forming the
pair (bin_index_f, bin_index_ g) and incrementing the histogram matrix by 1 at each such

location (bin_index_f, bin_index g) found:

h,,=h, +1 atlocation (bin_index _f, bin_index _g) (11)

The joint probability density matrix Pr; is completed by dividing 4, by the total
number of pairs. The individual probability distributions for each image, Pr and Pg, are
found by summing over the rows and columns of the joint probability density matrix,
respectively.

2.3 Partial volume model

The difference between the partial volume and interpolation model is that the
intensity value of the template image F is not interpolated after transformation, but
remains the same [9]. Thus the partial volume model constructs the joint histogram
matrix differently. Assume one pixel of the template image F is translated by Ai and Aj
in the x and y direction respectively as shown in Figure 2-7 and the bin index of that pixel
is bin_index f. Its nearest four neighboring pixels on the target image G and their bin
indices are bin _index g 1, bin_index g 2, bin_index g 3, and bin _index g 4, also
shown in Figure 2-7. Similarly, the bin index of the template image F and the target
image G are the row and column index of the histogram matrix, respectively. Next, we
increment the histogram matrix at (bin_index f, bin _index g I) by weight wy; at
(bin_index_f, bin_index g 2) by weight wyy at (bin_index f, bin_index g 3) by weight
wor, and at (bin_index_f, bin_index g 4) by weight wy; according to equations (12), (13),
(14) and (15). Note that in the partial volume model, we increment the histogram by
fractional weights rather than the integral 1. The same procedure is repeated for all the
pixels of transformed template image F, until the joint histogram is obtained.

10

bin_index g 1 bin_index g 2

¢ T ®
Woo ANj o wy
¢
Wio Wi T bin_index_f
¢ ®
bin_index_g 3 bin_index_g 4

Figure 2-7 Joint histogram construction in the partial volume model

h,,=h,, +w, atlocation (bin_index _f, bin_index g 1) (12)
hy,=h,,+w, atlocation (bin_index _f, bin_index _g _2) (13)
h,,=h,, +w, atlocation (bin_index _f, bin_index g 3) (14)
h,,=h,, +w, atlocation (bin_index _ f, bin_index g _4) (15)

The subsequent individual and joint probability density distribution, and entropy and
mutual information are obtained in the same way as in the interpolation model.

2.4 Parallel computing technology of GPU

The image registration process is often time-consuming, especially for the
3-dimensional image registration where the computation becomes exceedingly intensive.
This project employs graphics processing unit (GPU) to accelerate the image registration
process. GPU devotes substantially more hardware resources to data computation than
data caching and flow control. Therefore, the multithread and multi-processing core GPU
is well-suited for compute-intensive and parallel computation. For instance, the NVIDIA
Tesla C1060 GPU has 240 processing cores and could reach 933GFLOP/s in single
precision calculations [14], while the Intel 17-950 has 4 cores with peak performance of
42.56GFLOP/s in double precision calculations [15]. It is worth noting that while GPU is
highly efficient in single precision calculations; its performance is not equally impressive
in double precision calculations. As an example, the Tesla C1060 peak performance is
only 78GFLOP/s in double precision calculations [14]. In our project, only single

11

precision calculation is required thus we could fully utilize the computing power of the
GPU. The background information contained in this section are from NVIDIA CUDA
Programming Guide [16].

24.1 CUDA Programming Model

The Compute Unified Device Architecture (CUDA) is the parallel computing
platform developed by NVIDIA that enables GPU to carry out various numerical
applications. CUDA allows programmers to use ‘C with NVIDIA extensions (or CUDA
C)’ as the programming language. A typical CUDA program can be viewed as the
collaboration of the CPU and the GPU. It is composed of the host code, usually the
regular C code, executed sequentially on the CPU and the device code, mainly the kernel
functions, executed on the GPU. This is illustrated in Figure 2-8.

12

C Program

Sequential

Execution

Serial code Host j
Parallel kernel Device
KEernel<<<>2>> () Grid O

Block (0, 0) | Block (1, 0) !|_n|mk-(z, o).

Block (0, 1) || Block (1, 1) || Block (2, 1)

T

Serial code Host
Device
Parallel kernel
Kernell<<<»>>() Grid 1
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1,1)
Block (0, 2) Block (1, 2)

Y

Figure 2-8 Execution of a typical CUDA program from NVIDIA’s website.

2.4.1.1 CUDA kernel function

In CUDA, the kernel function is a C-like function executed on the GPU by many
CUDA threads simultaneously. It has the declaration specifier ‘°__global__’. When the
kernel is called, the programmer needs to specify the number of CUDA threads active
for this kernel function, using the <<<...>>> execution configuration syntax. The major
difference between a GPU CUDA kernel function and the standard CPU C function is
that the computations contained in the kernel function are simultaneously executed by
multiple threads in parallel whereas the computations in the CPU function are

13

sequentially executed.

2.4.1.2 CUDA thread hierarchy

Each thread that executes the kernel function needs to have an ID to decide what data
it will work on. In order to achieve this, CUDA is able to allow programmer to group
multiple threads into blocks and further group multiple blocks into grids. The block can
be 1-dimensional, 2-dimensional, or 3 dimensional, while the grid could only be either
I-dimensional or 2-dimensional. Their relation is illustrated in Figure 2-9.

Host Device
Grid 1
Kernel N Block Block
1 (0,0) (1,0)
Blogk/ I Block A
(9.1) .1 |\
4 LIS
Pd 7 1
- Grid2 s o
4 / [
/, / !
Kernel > (I
2 i)
Block (1, 1

Figure 2-9 CUDA thread, block and grid from NVIDIA’s website.

The block size and grid size specified in <<<...>>> during the kernel function call
have special CUDA type dim3. CUDA provides the built in variables threadldx.x,
threadldx.y, threadldx.z, for thread index in the X, y, and z directions, and blockldx.x,
and blockldx.y for block index in the x and y directions. The block dimension is also
given by the built-in variables blockDim.x, blockDim.y, and BlockDim.z. As an
illustration, the following code specifies the number of thread, block and grid when
invoking the kernel function:

dim3 gridsize (2,2);

dim3 blocksize(4,4,4);

kernel function name<<<gridsize, blocksize>>>(..);

14

Here, the grid is 2-dimensional with 2x2 blocks and each block is 3-dimensional with
4x4x4 threads. The blockDim.x and blockDim.y are both 2. The thread ID, idx, in each
block can be calculated as follows:

idx = threadldx.x + threadldx.y *xblockDim.x + threadldx.z xblockDim.x xblockDim.y ~ (16)

24.1.3 CUDA Memory Hierarchy

There are various types of memory specified in CUDA that can be accessed by
threads during the execution of kernel functions. The global memory is the memory that
can be accessed by all the blocks and grids while executing different kernel functions.
The shared memory can only be accessed by the threads in one block and it has the same
lifetime as that block. The memory is usually lost when the current kernel function is
finished. Accessing the shared memory is much faster than accessing the global memory
thus the program will become more efficient when the data is brought into shared
memory. The shared memory and global memory is illustrated in Figure 2-10.

| Thread Block

| e » Per-block shared
| - memory

Grid O

| Block (0, 0) || Block (1, 0) || Block (2,0) |

' Block {0, 1) | Block {1,1) | Block (2, 1) f

| Grid 1
Global memory

Block (0,0) | Block{1,0)

Block (0,1) || Block (1, 1)
—

" Block (0, 2) Block (1, 2)

Figure 2-10 Global Memory and Shared Memory from NVIDIA’s website

Another important memory type is the texture memory. It is a special type of GPU
memory that makes texture data readily available to the rendering process. By passing the
image (intensities) into the texture memory and then fetching the image back to the
global memory, the image is automatically linearly interpolated. This project uses this
feature to achieve better speed-up compared with regular image interpolation method.

15

Before using the texture memory, its texture reference needs to be set appropriately.
It is declared as a structure in CUDA C as follows:

texture<Type, Dim, ReadMode> texRef;

In our project, Type is defined as float since we only deal with single-precision floating
point calculation. Dim is set to 2 and 3 for the 2-dimensional and 3-dimensional images,
respectively. ReadMode is chosen to be cudaReadModeElementType, which copies the
original image pixel/voxel coordinates into the texture memory without normalizing it to
[0.0 1.0].

After the declaration, the texture reference attributes need to be set for the texRef. They
are texRef.addressMode, texRef.filterMode, texRef.normalized, and channelDesc,
which are explained as follows:

texRef.addressMode specifies the boundary condition. It is set as
cudaAddressModeClamp in our project. All the out-bound coordinates are clamped. For
instance, if the coordinates is from 0 to 127, the value below 0 is set to 0 and the value
above 127 is set to 127.

texRef . FilterMode specifies the interpolation method. We set it to
cudaFilterModeLinear. If the texture dimension is 2, it is bilinear interpolation, while if

the texture dimension is 3, it is trilinear interpolation.

texRef.normalized specifies whether the coordinates are normalized. In our project, we
use original image coordinates thus it is set as false.

channelDesc is set to cudaChannelFormatFloat as the data feed into the texture
memory is float type.

The detailed usage of texture memory in 2D and 3D image interpolation is covered in
Section 3.1.

16

3 GPU Implementation

As discussed in the previous sections, transforming the sequential computation into
parallel computation results in substantial increase in efficiency for the image registration
process. This chapter explains the technique of using CUDA to invoke multiple threads
on GPU to carry out the computation simultaneously for the 2D and 3D interpolation
model and the 2D partial volume model in the image registration.

Both the interpolation and partial volume model use the steepest descent to optimize
the mutual information measure by finding the minimum of the joint entropy. In our
program, the steepest descent algorithm is executed in the sequential fashion on the host
side (CPU) while the mutual information is computed in the parallel fashion on the
device side (GPU). Since steepest descent method is one of the commonly used
algorithms in intensity-based image registration and it runs on the host side, it is not the
focus of the project thus the discussion of it is skipped in this chapter. Instead, the
following sections are devoted to the parallel computation of mutual information and
joint entropy on the GPU. The parallel implementation of the 2D interpolation model is
first presented in Section 3.1, followed by the 2D partial volume model in Section 3.2 and
the 3D interpolation model in Section 3.3.

3.1 2D Interpolation Model

To compute the mutual information and the joint entropy, the template image is first
transformed through interpolation. Next, the joint histogram and joint probability density
matrix are constructed between the transformed template image and the target image.
Finally, the entropy and mutual information are computed based on the joint probability
density matrix. Below we focus on the parallel implementation of these steps using the
GPU.

3.1.1 Image Interpolation

When interpolating the template image F at the new coordinates, new intensity
values are found through interpolation. We assume that the images have wide enough
margins (the dark regions around the brain as shown in Figure 1-2) so that during the
interpolation it is not likely that the useful part of image will go out of boundary. The

17

texture memory of GPU is used to perform this task by exploiting the feature that the data
fetched from the texture memory is automatically interpolated. This involves first passing
the image to the texture memory and fetching the interpolated data from it. Unfortunately,
such direct memory copy to the texture memory is not allowed in CUDA. The image F
has to be initially copied into an opaque CUDA memory of type CUDA Array, and then
this CUDA Array needs to be bound with the texture memory with appropriate texture
memory references. To fetch the data, built-in CUDA function tex2D is invoked with the
new coordinates. The output of tex2D is the interpolated image on the new coordinates
and it is copied to the pre-allocated GPU global memory denoted by B_o.

3.1.2 2D CUDA array allocation

The following code declares cuArray of the type CUDA array:

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float> ()
cudaArray *cuBArray =0;

cudaMallocArray (&culArray, &channelDesc, f.width, f.height);

The data type the array holds is set by the cudaChannelFormatDesc to float. Then the
cuArray is allocated by calling cudaMallocArray with specified channel format and
size. The array’s width is equal to the width of the template image F, f.width, and the
array’s height is equal to the height of image F, f.height.

3.1.3 Memory copy to CUDA array

Although the image is 2-dimensional, it is always stored in the 1D linear memory in
the program by reading the intensity value from the top left to the bottom right. Copying
the image F from the 1D linear global memory to the CUDA array, cuArray, is achieved
by

cudaMemcpyToArray (cuArray ,0 ,0, d f.elements,

f.width*f.height*sizeof (float), cudaMemcpyDeviceToDevice) ;

where d_f.elements is the float type pointer on GPU global memory holding the intensity
values of image F before transformation. (Note that the letter “d” in d_f.elements
indicates that the image is now stored on the device) f.width*f.height*sizeof(float) is the
size in bytes the memory transferred and cudaMemcpyDeviceToDevice indicates that
the transfer is from device to device, since the d_f.elements and cuArray are both sitting

18

on the device side (GPU).

3.1.4 Binding CUDA array to texture memory

After the pre-transformed template image F is copied into the cuArray, we set the
texture memory reference and bind the cuArray with it. This is done by the following
code:

[* === 2-Dimensional float type texture declaration —----- */
texture<float, 2, cudaReadModeElementType> texRef;

[* ————- texRef setup —------ */

// boundary are clamped in x direction

texRef.addressMode[0] = cudaAddressModeClamp;

// boundary are clamped in y direction

texRef.addressMode[l] =cudaAddressModeClamp;

// bilinear interpolation

texRef.filterMode = cudaFilterModelinear;

// use original coordinates, without normalizing to [0,1]

texRef.normalized = false;
[* ————- Bind the array to the texture ----- */
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float> ()

cudaBindTextureToArray (texRef, cuArray, channelDesc)

cudaBindTextureToArray binds the CUDA array with the texture memory using
the specified texture reference, texRef, and the channel format, channelDesc. The
boundary conditions along both directions are clamped and the interpolation is set to
bilinear.

3.1.5 Interpolating by calling tex2D

After allocating the CUDA array, cuArray, and also binding it with the texture
memory, we are ready to call the built-in texture function tex2D alongside the new
coordinates. The new texture coordinates u and v are calculated based on the rotation
angle and the horizontal and vertical translation, shift_x, and shift y. It is important to
note that the data is stored at the “center” of the texture coordinates, thus the new texture
coordinates need to be offset by 0.5 pixels in both horizontal and vertical directions. For
example, if the original coordinates x is translated horizontally by an amount of shift x,
the new texture coordinate is:

19

u = x + shift x + 0.5;

Next, copying the output of tex2D to the pre-allocated global memory B_o is done
by:

B o[..] = tex2D(texRef,u,v);

3.1.6 Joint probability density matrix construction

The joint probability density matrix, denoted by Prg, between the transformed image
F and the target image G is obtained by dividing the elements in the joint histogram
matrix, denoted by A4, by the summation of all elements in 4. This is done by first
transforming the intensity value of both images to index of bins. The index of bins of the
template image F, denoted by bin_index f, is also equal to the row index of the
histogram matrix 4, and the index of bins of the target image G, denoted by bin_index g,
is equal to the column index of the histogram matrix 4. We then increment the element
located at (bin_index_f, bin_index g) in A by 1. However, similar to the way the 2D
image is stored on the GPU, the matrix 4 is stored as a 1-dimensional linear memory. The
2-dimensional address (bin_index f, bin _index g) is hence transformed into the
1-dimensional linear memory address using the following formula:

1-dimensional addess in A = bin_index_fxwidth of A + bin_index g (17)

Therefore, instead of counting how many times the pairs (bin_index_f, bin_index g)
appear, we count the appearance of the corresponding 1-D linear memory addresses.
Once the histogram A is constructed, each element in A is divided by the sum of all the
entries in A4, resulting the joint probability density matrix.

For easy exposition, we assume that the resolutions of the template and target images
are both 4x4 with their intensity value ranging from 0 to 7. The number of bins is chosen
to be 2. The intensity values of the two images are shown below in Figure 3-1:

0 4 3 7 2 0 1 6
3 6 5 3 3 5 0 2
5 1 0 2 3 4 3 7
7 |4 7 6 4 |0 1 0

Figure 3-1 The intensity values of the template image F (left) and the target image G(right)

20

Since each image has 16 pixels, we invoke 16 threads. Each thread accesses one
pixel of the image F, and converts it to the bin index simultaneously. The same for the
target image G. Since the number of bins is 2, the intensity value will be divided into two
levels, 0 and 1, with intensities from 0 to 3 grouped into bin index 0 and intensities from
4 to 7 grouped into bin index 1. The results are shown in Figure 3-2 below.

0 1 0 1 0 0 0 1
0 1 1 0 0 1 0 0
1 0 0 0 0 1 0 1
1 1 1 1 1 0 0 0

Figure 3-2 Bin index for the template image F (left) and the bin index for the target image G
(right)

The bins indices of the template image F and the target image G give the row and
column indices of the histogram matrix 4, respectively. Since the matrix 4 is stored in the
1D linear memory, it is necessary to convert the 2D row-column coordinates into 1D
memory address. To do so, we invoke 16 threads again, with each thread taking one bin
index of the image F and one bin index at the corresponding location in the image G, and
then computing the 1D address using formula (17). The matrix so created, denoted by
1D-address-matrix, is shown in Figure 3-3 below.

2D Bin index pair 1D address
coordinates

0,00 —— 0

0y —— 1

(1,00 — 2

a1,1) —— 3

Figure 3-3 Mapping from 2D bin coordinates to 1D-address-matrix

Each element in the /D-address-matrix represents a bin index pair between the
template image F and the target image G. Also, the same element represents the address in
the linear memory of the histogram 4. The value of the histogram A at one address is
determined by the number of times that address shows up in the /D-address-matrix. As

21

shown in Figure 3-3, address “0” shows up five times, address “1” shows up two times,
address “2” shows up six times, and address “3” shows up three times. The histogram 4,
therefore, should look like the following in Figure 3-4:

Histogram 4
Address Contents
0 5
1 2
2 6
3 3

Figure 3-4 Histogram A stored in 1D linear memory

In order to generate such a histogram, ideally, we could invoke 16 concurrent threads,
with each thread simultaneously reading one element from the /D-address-matrix (Figure
3-3) and then incrementing 4 at the corresponding location by 1. Unfortunately, this
causes multiple threads, for instance the threads reading the address 0, to attempt to
update the same location in the memory at the same time, resulting in data contention.
This is not permitted in the GPU. To avoid such data contention, a large matrix denoted
by L A is created. The number of its rows is equal to the size of 1-D linear memory of the
histogram 4 and the number of its columns is two times the size of the width of the
1D-address-matrix. Hence, in our example L A4 has 4 rows and 8 columns. Each column
is treated as one copy of the histogram 4. Next, we employ 8 concurrent threads to read
the first two rows (each row has 4 elements in our example) of the /D-address-matrix
and let each thread access one individual column of the matrix L A4 and then increment
the corresponding location by 1. There are 8 threads and 8 columns, with every thread
going to the different columns, it is guaranteed they will not write to the same memory
location at the same time thus data contention is avoided.

The same threads, then, will move to the next two rows of the /D-address-matrix and
increment the L A4 again at the corresponding locations in the same fashion until the
whole /D-address-matrix is covered. In our example, the 8 concurrent threads need two
iterations in total to cover the whole /D-address-matrix. The resulted L A after each
iteration is illustrated in Figure 3-5 and Figure 3-6.

22

Addressin 1-D
linear memory

of histogram A
0 1 0 1 0 1 0 0 1
1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 1 0
3 0 0 0 1 0 1 0 0

Figure 3-5 L_A after the first iteration

Address in 1-D
linear memory
of histogram A

0 1 0 2 0 1 0 0 1
1 0 1 0 1 0 0 0 0
2 1 | 0 0 0 1 2 1
3 0 0 0 1 1 1 0 0

Figure 3-6 L_A after the second iteration

3.1.7 Parallel Reduction

Each column of L 4 can be viewed as one copy of the linear memory for the
histogram A4 that contains only partial results. Furthermore, L A4’s row index coincides
with the 1D linear memory address for the histogram A. Therefore, summing each row of
L A will produce the histogram A. Although the amount of computation to sum all the
rows of L_A in the given example seems little, it may become formidable for the real size
medical images. The technique of parallel reduction is hence used to compute the sum of
each row simultaneously to improve efficiency.

This is done by creating multiple blocks with each block covering one row of L A.
The number of threads in each block is equal to the number of elements in each row of
L A. Our example requires four blocks with each block having eight threads, since L A4
has four rows with eight elements in each row. Mirroring those four rows of L A, four
arrays are allocated in the shared memory (the number of array in shared memory is
always equal to the number of blocks) and each row of L 4 is copied into one of those

23

arrays. Faster memory access is thus possible as the data is now sitting on the shared
memory. Next, the eight threads in each block get the eight elements in the corresponding
array. Then summation is performed in pairs: The 5™ thread is added to the 1* thread, 6"
thread is added to the 2™ thread, 7" thread is added to the 3™ thread, and 8™ thread is
added to the 4™ thread. Now the first four elements in each array contain the sum of the
four pairs while the last four elements in the array bear no interest for us. We continue to
reduce such row by adding the 3™ thread to the 1* thread and 4™ thread to the 2™ thread,
resulting in a virtually 2-element array, abandoning the other 6 elements. In the final
round of reduction, the 2™ thread is added to the 1% thread and the sum of the 8-element
array is now stored in the first thread (or the first address) in the array. The complexity of
the parallel reduction for each row of the L A is therefore log;N, where N is the number
of the elements in the row. Compared with the ordinary summation with complexity N-1,
the benefit of parallel reduction is evident when N is large.

This parallel reduction is carried out in each row of L A at the same time. In the end
all the 1*' elements in every array are passed into the pre-allocated 1-D array in the global
memory and this is the histogram matrix 4. Since parallel reduction is performed at every
row simultaneously, the efficiency is further improved on top of the reduced complexity.

After the joint histogram matrix A4 is obtained, we can easily calculate the probability
density Prg by dividing 4 by the sum of the entries in 4. In the interpolation model, the
sum of 4 is always equal to the number of pixels in the image. For instance, if the image
is 512x512, the sum of 4 is 512°. In our example, the sum is 16 since the image size is
4x4 and this can be confirmed by adding all the entries in the histogram 4 as shown in
Figure 3-4. We could perform the division after A4 is obtained, or we could merge such
division into the final round of parallel reduction. The latter is chosen since accessing the
shared memory is much faster than accessing the global memory. The parallel reduction
in each block, or each row of L A4, and the resulted probability density matrix is
illustrated in Figure 3-7, Figure 3-8, Figure 3-9 and Figure 3-10.

24

First Array — First Row of L_A

/ 1 0 2 0 1 0 0 1

=
Shared
memory < M

/ 1-D linear memory for histogram A

First Row 4/ ﬂ

Sum

Global
memory 2716 | 6/16 | 3/16

Joint probability density distribution P

Figure 3-7 Parallel reduction of the first row of L_A to obtain the frequency count and probability
density at the first address in the histogram A and the joint probability density Prg

Second Array — Second Row of L_A

/ 0 1 0 1 0 0 0 0

1

Shared
memory <

/ 1-D linear memory for histogram A

Second Row 4/ ﬂ

Sum

Global
memory 5/16 6/16 3/16

Joint probability density distribution P

Figure 3-8 Parallel reduction of the second row of L A to obtain the frequency count and
probability density at the second address in the histogram A and the joint probability density P .

25

Third Array — Third Row of L_A

/ 1 1 0 0 0 1 2 1

1]

Shared
memory <

/ 1-D linear memory for histogram A

Third Row / ﬂ

Sum

Global
memory 5/16 2/16 3/16

Joint probability density distribution P

Figure 3-9 Parallel reduction of the third row of L_A to obtain the frequency count and probability
density at the third address in the histogram A4 and the joint probability density Prg.

Fourth Array — Fourth Row of L_A

/ 0 0 0 1 1 1 0 0

Shared
memory <

/ 1-D linear memory for histogram A
k 3o e 512 6.

FourthRow 7 ﬂ

Sum

Global
memory 5/16 2/16 6/16

Joint probability density distribution P

Figure 3-10 Parallel reduction of the fourth row of L A4 to obtain the frequency count and
probability density at the fourth address in the histogram A4 and the joint probability density Prc .

26

Note that when processing the image of size 512x512, the row size of L 4 is 1024
but this is over the limit of the maximum 512 threads allowed in one block. The remedy
for this problem is to set the number of threads in one block to the maximum 512 and let
the threads take the first 512 elements in each row of L A and add onto the next 512
elements of the same row and then perform the parallel reduction.

3.1.8 Entropy calculation

After the joint probability density distribution Pgg is obtained, we are ready to
compute the entropies and finally, the mutual information. Although Prg is stored in a 1D
memory, it is considered as a 2-D matrix during the entropy calculation as illustrated in
Figure 3-11. We sum over its rows and columns to compute the individual probability
density distribution for image F and G, Pr and Pg, respectively. The row and column sum
are obtained by the parallel reduction in the similar fashion as discussed in Section 3.1.7.

8/16 P, 5/16 2/16

<l

9/16 Row sum 6/16 3/16

Column sum ﬂ Ps

11/16 5/16

Figure 3-11 Calculate the row and column sum to obtain the individual probability density Pr and
Pg

The individual entropy Hp, Hg and joint entropy Hpg are calculated directly using

equations (3), (4), and (5), respectively, on the host side (CPU). The mutual information
is then computed according to equation (2) on the host side as well.

3.1.9 General 2D interpolation model

Although the image interpolation, the construction of the joint probability density
matrix, and the computation of the entropy and mutual information are illustrated using
the example with resolution 4x4 and the number of bins 2, the implementation of real

27

medical imageswith resolution 128x128, 256x256, and 512x512 and number of bins 32
follow exactly the same pattern. For real size images and large number of bins, the
computation is intensive and the real benefit of GPU parallel computation should
manifest. For instance, the 512x512 image has 262144 pixels, the size of the histogram 4
is 32x32 and L A4 is 1024x262144 with approximately 2.68435x10° elements. The
computational time for the bilinear interpolation, histogram creation, and row/column
summation is extensive, should they were carried out in the sequential fashion using the
CPU. The desired efficiency gain is hence achieved by using GPU to perform millions of
computation with concurrent blocks and threads.

3.2 2D Partial Volume Model

Comparing the 2D partial volume model with the 2D interpolation model, the
entropy calculation is the same once the histogram matrix 4 is obtained. However, in the
partial volume model, the intensity value after image transformation is not explicitly
interpolated, but combined into the construction of the histogram matrix 4 and the joint
probability density matrix Prg. The example used for the 2D interpolated model is
repeated here to illustrate such difference and the CUDA implementation.

First the bin index for both the template image F and the target image G are obtained,
in the same fashion as in the 2D interpolation model. The resulted matrices for the two
images are shown in Figure 3-2 in Section 3.1.6. Next, suppose the template image F is
translated by 0.5 pixel in both the x and y directions. The target image G and the
transformed template image F are illustrated in Figure 3-12. Note that the pixels or their
intensity values/bin indices are represented by the solid and empty circles in Figure 3-12 .

0 — / Target Image G
-
0.5 |- /Transformed Template
ll Image F
1 -
1.5 —
>
25—
5 L
® O
[| | | | | J
0 0.5 1 1.5 2 2.5 3

Figure 3-12 Target image G and the transformed template image F with pixel coordinates in x and
y direction

28

In the transformed template image, the new coordinates of the pixels are computed
by invoking 16 threads with each adding 0.5 on the corresponding pixel’s old coordinates.
As highlighted in Figure 3-13, after the transformation, some pixels of the template image
F fall outside the region of the target image. Those pixels with their neighboring pixels
are eliminated in the following computation. In order to identify those out-of-bound
pixels and their neighboring pixels, we let 16 threads read the transformed image
coordinates, x and y, and check simultaneously the floor(x), floor(y), x+1 and y+1 all fall
in the range [0,3], otherwise those threads will be deactivated and not participate in the
following calculation.

0or— & < @ O/ Target Image G
4
0.5 |- @ 9 Transformed Template
N
Image F
1 — @& & 4 J
1.5 —
2 — @ 4 L 4 .
25—
3 - @ L 2 L 2 @
&

| | | | | | | Deactivated Region

Figure 3-13 Target image G and the transformed template image F with highlighted region
indicating the out-of-bound portion of image F where CUDA threads are deactivated.

Next, following the procedure outlined in Section 2.3, for every pixel of the template
image falling in the non-deactivated region, four neighboring pixels of the target images
are found. They are (bin _index f, bin_index g 1), (bin_index f, bin_index g 2),
(bin_index_f, bin_index g 3) and (bin_index f, bin_index g 4) (see Figure 2-7 in Section
2.3). Similar to the 2D interpolation model, the bin index of the transformed image F is
the row index of the histogram matrix 4 and the bin index of the target image G is the
column index of the histogram matrix 4. The locations (bin_index f, bin_index g 1),
(bin_index f, bin_index g 2), (bin_index f, bin index g 3), and (bin_index f,
bin_index g 4) are then converted simultaneously to the 1D address of the histogram 4,
by the non-deactivated threads, resulting [D-address-matrix 1 for (bin_index f,
bin_index g 1), 1D-address-matrix 2 for (bin_index f, bin_index g 2),
1D-address-matrix_3 for (bin_index f, bin_index g 3), and I[D-address-matrix 4 for
(bin_index f, bin _index g 4). The same non-deactivated threads also calculate the
weights wog, wos, wig, and w;; using equations (6), (7), (8), and (9) in Section 2.2.

29

Once the four 1D address matrices and weights are obtained, following equation (12)
in Section 2.3, the large matrix L A is incremented by the /D-address-matrix_1 in the
same manner as in the interpolation model but the increment is the fractional weight wy,
not integral 1. L A is then updated by /D-address-matrix 2 using equation (13). The
same procedure is repeated for /D-address-matrix_3 and ID-address-matrix_4, following
equation (14) and (15).

The parallel reduction is then used to obtain the final histogram matrix 4 and the
joint probability density matrix Prg. The remaining calculation of the entropy and mutual
information will be the same as in the interpolation model.

Although the procedure is illustrated using the 4x4 images, real size image follow the
same procedure with the variance that more threads and blocks are used. For example,
with a 128x128 image we invoke 16 blocks with each block 256 threads. The
2-dimensional blocks and grids are declared and included in the kernel function as
follows:

Dim3 Block(16,16);
Dim3 Grid(2,2);

Somekernelfunction<<<Grid,Block>>>(..);

3.3 3D Interpolation Model

In the 3D interpolation model, we work on the 3D images of dimension 256x256x64.
Similar to the 2D model, the template and target images are registered by minimizing the
joint entropy using the steepest descent algorithm. The construction of the joint
probability density matrix and the entropy calculation are the same as in the 2D
interpolation model.

The only difference is at the interpolation phase, where 3D texture memory is used
rather than the 2D texture memory and rotation is not considered. The technique using the
3D and 2D texture memory differ and thus justifying the detailed explanation. In
preparation of the interpolation using the 3D texture memory, the 3-dimensional image
has to be transformed and stored in a 1-dimensional linear memory. As shown in Figure
3-14, the cube representing the 3D image with 256 pixels in width and height and 64
pixels in depth is sliced into 64 layers along its depth and transformed into a 2D matrix
by placing one layer below another. Reading and storing this 2D matrix one at a time
from top left to the bottom right, it is converted into the 1D linear memory for the texture
memory interpolation.

30

256

LAY oo ’ \
. . B '.0'... 2 56
Layer 3 { Layer 1
Layer 2
Layer 1
Layer 2
. > |
Layer 3
256 <
L
—)
VT Layer
256 64

Figure 3-14 The transformation of image from 3D to 2D.

The major steps in 3D texture memory interpolation are similar to the 2D texture
memory though it is greatly more complicated. They include allocating a 3D CUDA array,
copying the image from the 1D linear memory into the 3D CUDA array, setting
appropriate texture memory reference, binding 3D CUDA array with the texture memory,
and finally interpolating the image by calling built-in CUDA function tex3D with new
coordinates. The following sections follow this order. 3-dimensional CUDA texture
memory is learned by consulting the material in [17].

3.3.1 3D CUDA array

The structure volumeSize is created to indicate that the dimension of the array that
will be allocated. volumeSize has the same dimension as the 3D image.

cudaExtent const volumeSize = {width, height, depth};

The 3D CUDA array, d_volumeArray, is then allocated with the indicated volumeSize
and the data contained in the array is of float type, which is set by channelDesc.

cudaArray *d volumeArray = NULL;

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();

cudaMalloc3DArray (&d volumeArray, & channelDesc, volumeSize);

31

3.3.2 Copy data to 3D Array

Copying the 3D image from the 1D global memory to the 3D CUDA array is
cumbersome. There are multiple parameters, contained in copyParams need to be set
before the memory copy. They are copyParams.srcPtr, copyParams.dstArray,
copyParams.extent, and copyParams.kind.

copyParams.srcPtr contains the pointer hin pointing to the source of the memory
copy, which is the 1D linear global memory for the image. Also, it indicates that the pitch
in byte of the allocated memory is volumeSize.width*sizeof(float) and the number of
elements along the width and height of such memory are volumeSize.width and
volumeSize.height, respectively.

copyParams.dstArray sets the destination array, which is the allocated 3D CUDA
array, d_volumeArray. copyParams.extent indicates the complete dimension of the 3D
array and the related size of the ensuing memory copy. copyParams.kind sets the
direction of the copy. It is set to cudaMemcpyDeviceToDevice as both the 1D linear
global memory containing the image and the d_volumeArray both sit on the GPU. The
CUDA code is given as follows:

cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr =

make cudaPitchedPtr ((void**)hin,volumeSize.width*sizeof (float),

volumeSize.width, volumeSize.height);

copyParams.dstArray = d volumeArray;
copyParams.extent = make cudaExtent (width, height,depth);
copyParams.kind = cudaMemcpyDeviceToDevice;

// copy data to the 3D CUDA Array
cudaMemcpy3D (©Params) ;

3.3.3 Texture reference and memory binding

Setting the texture reference and binding the 3D CUDA array to the texture memory
are similar to the 2D case. The interpolation is trillinear since it is in the 3D space. The
filterMode is set to cudaFilterModeLinear. The boundary condition, in X, y, and z
direction, represented by addressMode[0], addressMode[1] and addressMode[2], are

32

set to cudaAddressModeClamp. The code is given below:

// set texture parameters

texRef.normalized = false; // actual texture coordinates
texRef.filterMode = cudaFilterModeLinear; // trilinear interpolation
texRef.addressMode[0] = cudaAddressModeClamp;

texRef.addressMode[l] = cudaAddressModeClamp;

texRef.addressMode[2] = cudaAddressModeClamp;

// bind array to 3D texture

cudaBindTextureToArray (texRef,d volumeArray,channelDesc);

3.3.4 Interpolation by calling tex3D

Once the 3D CUDA array is bound with the texture memory, new texture coordinates
u, v, and w are generated given the image translation shift_x, shift_y, shift_z, in the x, y
and z direction, respectively. Since the data is stored at the “center” of the texture
coordinates, the new texture coordinates have to be further offset by 0.5 pixel to ensure
the correct interpolation results. Passing the new texture coordinates alongside the texture
reference texRef to the built-in CUDA function tex3D, the results fetched from it will be
the desired interpolated data and they are transferred to the pre-allocated memory, B_o.
Denoting x0, y0 and z0 the original coordinates, the code for calculating and then
offsetting the new texture coordinates, calling the tex3D function and finally copying the
results to pre-allocated memory is given below:

int idx = x0 + y0O*width + z0 * width * height;
float u = x0+0.5f-shift x;

float v = y0+0.5f-shift y;

float w = z0+0.5f-shift z;

B_o[idx] = tex3D(texRef,u,v,w);

33

4 Numerical Results

Three experiments are conducted in this project to register medical images of
different sizes and modalities, using the GPU parallel computation techniques outlined in
Section 2 and Section 3. The computational time is compared with the time when
performing the same task using CPU only, where the computation is sequential. Also, the
various aspects that affect the efficiency gain using the GPU are discussed in this section.

The medical images considered in this project are 8-bit grey-scale images with
intensity value ranging from 0 to 255. They are obtained from retrospective image
registration evaluation project (RIRE) [18]. They are of various modalities, either from
different sensors: magnetic resonance image (MRI) and X-ray computed tomography
(CT), or from the same sensor but with different parameters: T1-weighted magnetic
resonance imaging (MRI) and T2-weighted MRI. For the 2D image registration, the
following image resolutions are used: 64x64, 128x128, 256x256, and 512x512; and for
the 3D case the image resolution is 256%256x64.

The GPU and CPU used in this project are Tesla C1060 and Intel 17-950, respectively.
Their specifications are listed in Table 4-1 and Table 4-2 below. The RAM in the
workstation is 8G DDR3.

of Streaming Processor Cores 240

Frequency of processor cores 1.3 GHz

Single Precision floating point performance (peak) | 933

Floating Point Precision IEEE 754 single & double
Total Dedicated Memory 4G DDR3

Memory Speed 800MHz

Software Development Tools C-based CUDA

Table 4-1 GPU Tesla C1060 Specifications

of Cores 4

of Threads 8
Clock Speed 3.06 GHz
Intel® Smart Cache 8 MB

Table 4-2 CPU 17-950 Specifications

34

4.1 Experiment 1

The first experiment is to register 2D multimodal images with varying sizes using the
interpolation and partial volume model. The process is first carried out by the CUDA
program employing the GPU parallel computation technique and then compared with the
standard C program run by CPU only. The modality is T1-weighted MRI for the target
image and T2-weighted MRI for the template image. The image resolution varies from
64x64, 128x128, 256x256, to 512x512. They are shown below in Figure 4-1, Figure 4-2,
Figure 4-3 and Figure 4-4.

Figure 4-1 Target image (Left, size 64x64, T1-weighted MRI) and Template Image (Right, size
64x64, T2-weighted MRI)

Figure 4-2 Target image (Left, size 128x128, T1-weighted MRI) and template image (Right, size
128x128, T2-weighted MRI)

Figure 4-3 Target image (Left, size 256x256, T1-weighted MRI) and Template Image (Right, size
256%256, T2-weighted MRI)

35

Figure 4-4 Target image (Left, size 512x512, T1 weighted MRI) and Template Image (Right, size
512x512, T2 weighted MRI)

Since the whole image registration process is dominated by minimizing the joint
entropy, the computational time of this calculation is of major interest to this project.
Thus time used for comparison is the time to compute the joint entropy and mutual
information only once based on the new translation and rotation parameters. Furthermore,
due to the restriction that GPU is only able to perform single precision floating
computation efficiently, the variables and calculation in the CPU program are all of type
“float” to ensure fair time comparison. Table 4-3 and Table 4-4 summarize the
computational time for the 2D interpolation and partial volume model using CUDA
program and C program with various image sizes. Figure 4-5 and Figure 4-6 show the
plots of the GPU and CPU time.

Computational Time (milliseconds)
- Speed-up
Image Resolution CUDA (GPU) C (CPU)
64x64 0.2 0.725 3.63
128x128 0.275 2.95 10.73
256x256 0.50 11.78 23.55
512x512 0.825 50.40 61.09

Table 4-3 Comparison of the GPU and CPU computational time for the 2D interpolation model.
The speed-up is the CPU time over the GPU time.

Computational Time (milliseconds)
; Speed-up
Image Resolution CUDA (GPU) C (CPU)
64x64 0.325 0.50 1.54
128x128 0.55 1.75 3.18
256x256 1.175 7.025 5.98
512x512 2.40 28.875 12.03

Table 4-4 Comparison of the GPU and CPU computational time for the 2D partial volume model.
The speed-up is the CPU time over the GPU time.

36

- GPU
—=— CPU

Computational Time
(miliseconds)

64 x 64 128 x 128 256 x256 512 x 512
Image size

Figure 4-5 Comparison of GPU and CPU computational time for 2D interpolation model

2

E3

S 5

§ S —— GPU
s .2 = CPU
8 E

E —

@)

Q

64 x 64 128 x128 256 x256 512 x512

Image size

Figure 4-6 Comparison of GPU and CPU computational time for 2D partial volume model

37

Several observations are drawn from the above tables and figures. First, as the image
size increases, the time consumption increases dramatically for the CPU while remains
relatively flat for the GPU, as shown in Figure 4-5 and Figure 4-6. This is because when
the image size grows, GPU could simply employ more concurrent threads to perform the
computation simultaneously at each pixel. Whereas the standard C program running
under CPU has to finish the computation at one pixel before moving to the next. Thus as
the image size doubles, triples or even quadruples, so does the computational time.

Second, larger speed-up ratio is gained with the growing image size, thanks to the
scalability of the GPU through invoking more threads. For instance, for the 64x64 image
size the speed-up is 3.63 and 1.54 for the interpolation and partial volume models. It
reaches 61.09 and 12.03 respectively when the image size became 512x512.

Third, better speed-up ratio is obtained for the interpolation model than for the partial
volume model as indicated in Table 4-3 and Table 4-4. This is due to the fact that when
constructing the joint histogram the partial volume model needs to update the matrix L A
four times by adding one fractional weight each time (see Section 3.2, 2D Partial Volume
Model) while the interpolation model just needs to update the L A once (see Section 3.1,
2D Interpolation Model). The updating of L A4 process is quite time consuming because it
is not a completely parallel process. It processes only two rows of the /D _address matrix
at one time (see Section 3.1.6). As an example, the 512x512 image needs 256 such
iterations due to the 512 rows of the /D address matrix. Furthermore, GPU prefers
ordered memory access where, say, the first thread accesses the 1st element of the array;
the second thread accesses the 2nd element of the array and so on. However, this is not
the case when updating L A, where the thread goes is determined by the
1D address_matrix. Suppose the 1st thread reads the first element of /D _address matrix
with value 5; then the thread has to go to the 5th element in the L A other than the 1st
element. When the memory access is entangled in this way, the speed of the process
slows.

4.2 Experiment 2

In this experiment, the modalities of the two images differ from the experiment 1.
The modality of the target image is X-ray computed tomography (CT) while the template
image is T1-weighted MRI. The pairs of target and template images are of resolutions
64x64, 128x128, 256%256, to 512x512, as shown in Figure 4-7, Figure 4-8, Figure 4-9
and Figure 4-10.

38

Figure 4-7 Target image (Left, size 64x64, CT) and Template Image (Right, size 64x64,
T1-weighted MRI)

Figure 4-8 Target image (Left, size 128x128, CT) and Template Image (Right, size 128x128,
T1-weighted MRI)

Figure 4-9 Target image (Left, size 256x256, CT) and Template Image (Right, size 256%256,
T1-weighted MRI)

Figure 4-10 Target image (Left, size 512x512, CT) and Template Image (Right, size 512x512,
T1-weighted MRI)

39

Similar to the experiment 1, the four pairs of images are registered using the GPU
and CPU, respectively. The computational time is summarized in Table 4-5 and Table 4-6.

Figure 4-11 and Figure 4-12 show the plots of the GPU and CPU time.

Computational time (milliseconds)
- Speed-up
Image Resolution CUDA (GPU) C (CPU)

64%64 0.20 0.58 2.90
128x128 0.28 2.68 9.57
256%256 0.48 10.73 22.35
512x512 0.80 47.88 59.85

Table 4-5 Comparison of GPU and CPU computational time for the 2D interpolation model.
Computational time(milliseconds)
; Speed-up
Image Resolution CUDA (GPU) C (CPU)

64%64 0.33 0.48 1.45
128x128 0.53 1.70 3.21
256%256 1.05 6.80 6.48
512x512 2.25 27.13 12.06

Table 4-6 Comparison of GPU and CPU computational time for the 2D partial volume model.

60

50

40

—— GPU

30

—&-CPU

20

Computational Time
(miliseconds)

10

64 x 64

128 x 128

256 x 256

512 x 512

Image Resolution

Figure 4-11 Comparison of GPU and CPU computational time for the 2D interpolation model

40

30
25 Vs
2 /
F ~
— 7 20
g 3 s ——GPU
‘8 O
*§ L / - CPU
gi 10
Q
S //
5
0 .£/+

64 x 64 128 x 128 256 x 256 512 x 512

Image Resolution

Figure 4-12 Comparison of GPU and CPU computational time for the 2D partial volume model

From the above tables and figures several similar observations can be drawn. First, as
the image size increases the computational time increases. However, the slope of the
increase is much steeper for the CPU while it remains generally flat for the GPU, as
indicated in Figure 4-11 and Figure 4-12. The benefit of deploying more concurrent
threads when image size grows manifests here again. Second, similar to the experiment 1
the larger speed-up ratio is obtained when image size is larger due to the scalability of the
GPU. Third, in the experiment 2 the speed-up ratio is still higher for the interpolation
model than for the partial volume model as indicated in Table 4-5 and Table 4-6, for the
same reason explained in the experiment 1. Fourth, the computational time and the
speed-up to a great extent remain the same when the modalities of the images being
registered are different from experiment 1.

4.3 Experiment 3

In this experiment 3D images of resolution 256x256x64 are registered using the 3D
interpolation model. The modality of the template and the target image is T1-weighted
MRI and T2-weighted MRI, respectively. Layer 2, 14, 20 and 30 of the 3D images are
shown in Figure 4-13 and Figure 4-14.

41

Figure 4-14 Characteristic layers of the 3D template image of modality T1-weighted MRI

The computational time for the 3D image registration is much longer than the 2D
cases. In our experiment the time needed to compute the joint entropy and mutual
information once is 1742.7 milliseconds on CPU and 24.3 milliseconds on GPU. As a
comparison, the computational time for the 512 x512 image in the 2D interpolation

42

model is 50.4 milliseconds and 0.83 milliseconds using CPU and GPU, respectively. This
is due to the fact that the number of pixels of the 3D image exceeds any of the 2D images
in the experiment 1 and 2, resulting larger amount of computation.

The speed-up, 71.72 times (Table 4-7), in experiment 3 is the highest among all three
experiments. But comparing with the speed-up 61.09 times in the case of 512 x512 image
in the 2D interpolation model, it is not a substantial gain in efficiency, even though the
3D image has 16 times the pixels of the 512 x512 image. There are two explanations for
this phenomenon. First, the size of the image, 64 megabytes, is large. This causes all the
arrays, such as the bin index array, and the coordinates array, used in the program to have
similar or even bigger size. The large memory consumption might have reached the limit
of the GPU and slows down the process. Second, recall that the procedure of updating the
large matrix L A is not perfectly parallel. We only process two rows of the
1D address_matrix once. In the 3D case, the size of the /D address matrix is much
larger which demands more iterations. Therefore the amount of time needed for updating
L A does not remain flat but increases with the size of the image. Table 4-7 summarizes
the results of experiment 3 and Figure 4-15 incorporates the speed-up result with the ones
from 2D interpolation model.

Computational time(milliseconds)

Image Resolution CUDA (GPU) C (CPU) Speed-up

256x256x64 243 1742.7 71.12

Table 4-7 Comparison of GPU and CPU computational time for the 3D interpolation model

@ /
) /

. /

. M

10 /

/

64 x 64 128 x 128 256 x 256 512 x 512 256 x 256 x 64

Speed-up for 2D and 3D interpolation model

Image Resolution

Figure 4-15 Speed-up for the 2D and 3D interpolation model

43

5 Conclusion

This project has addressed the challenge of the intensive computational time for
registering multimodal 2D and 3D medical images. The modalities used are T1-weighted
MRI, T2-weighted MRI, and CT. To perform the image registration, two models,
interpolation and partial volume model, are used where mutual information is used as the
measure. Their computation are transformed from sequential to parallel so that GPU
could perform the computation on every pixel or voxel at the same time, in the parallel
manner. The GPU computational time is compared with the CPU time where all
computational is performed in a sequential way.

When calculating the mutual information and joint entropy using the parallel
computing architecture, CUDA, several of its key technologies are used, such as the
thread-block hierarchy, shared and texture memory and the parallel reduction, to ensure
the image interpolation, joint histogram construction and entropy calculation are done in
a parallel and efficient way. The highest speed-up is 61.09 for the 2D interpolation model
and 12.06 times for the partial volume model. For the 3D interpolation model the
speed-up is achieved at 71.12, the best among all the experiments. It is thus found that as
more pixels or voxels are involved in the computation, the performance gain using GPU
is higher due to the scalability of the GPU where more threads are invoked to perform the
calculation.

Possible future work includes 3D image registration using the 3D partial volume
model and exploring deeper into the CUDA technology to discover more intricacy such
as the bank conflict in the shared memory and the actual execution of thread wrap in the
CUDA thread block, in order to further improve the GPU efficiency in the image
registration problem.

44

6 Reference

[1]S. C. Bushong, Computed Tomography. NY:McGraw-Hill Medical, 2000.

[2] C. Westbrook, C. K. Roth, and J. Talbot, MRI in Practice, 3rd edition, Turin:
Wiley-Blackwell, 2005.

[3] M. L. Miller, G. E. Christensen, Y. A. Amit, and U. Grenander, In Mathematical
Textbook of Deformable Neuroanatomies, Vol. 90, Medical Sciences, National
Academy of Sciences.1993, pp. 11944—-11948.

[4] P. Viola and W. M. Wells I1I, “Alignment by Maximization of Mutual Information,”
International Journal of Computer Vision, vol.24, pp. 137-154, 1997.

[5]J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming, Addison-Wesley Professional,2010.

[6] L. Lemieux and R. Jagoe, “Effect of fiducial marker localization on stereotactic target
coordinate calculation in CT slices and radiographs.” Phys. Med. Biol., vol.39, pp.
1915-1928, 1994.

[7] A. C. Evans, S. Marrett, J. Torrescorzo, S. Ku and L. Collins, “MRI-PET correlation
in three dimensions using a volume of interest (VOI) atlas.” J. Cerebral Blood Flow
Metabolism, vol. 11, A69—A78, 1991.

[8] Y. Ge, C. R. Maurer, and J. M. Fitzpatrick, “Surface-based 3-D image registration
using the iterative closest point algorithm with a closest point transform,” Medical
Imaging: Image Processing, Vol. 2710, pp. 358-367, 1996.

[9] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, “Multimodality
Image Registration by Maximization of Mutual Information,” /EEE Transactions on
Medical Imaging, vol. 16, No.2, 1997.

[10]J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,”
Medical Image Analysis, vol.2 pp. 1-36, 1998.

[11] K. Kuczynski and P. Mikofajczak, “Information theory based medical images
processing,” Opto-Electronics Review, vol.11, pp. 253-259, 2003.

[12] Lin Xu, Justin Wan, and Tiantian Bian, “A continuous mutual information model for

multimodality image registration.”

[13]J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, “Mutual information based

registration of medical images: a survey,” IEEE Transcations on Medical Imaging,
vol. xx, No. Y, 2003.

[14] NVIDIA Corporation (2010). NVIDIA Tesla C1060 Specifications [Online]. Available:

http://www.nvidia.com/object/product tesla c1060 us.html

[15] Intel Corporation (2010). Intel® Core™ i7-950 Processor Specifications [Online].

Available: http://ark.intel.com/Product.aspx?1d=37150

45

[16] NVIDIA Corporation (2010). NVIDIA CUDA Programming Guide, version 3.0,
[Online]. Available:
http://developer.download.nvidia.com/compute/cuda/3 _0/toolkit/docs/NVIDIA CU
DA ProgrammingGuide.pdf

[17] G. Dalley, IAP 2009 CUDA at MIT [Online] Available:
http://sites.google.com/site/cudaiap2009/

[18] Retrospective Image Registration Evaluation Project [Online] Available:
http://www.insight-journal.org/rire/

46

