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Abstract

Product selection is an important problem in many industries. In this
essay, we present an optimization model to identify the optimal product port-
folio. This model can be solved efficiently with simulated annealing. With
an application example, we demonstrate that our model is highly effective
and potentially brings significant profit gains. In particular, our model gives
a benchmark for the optimized portfolio size. We also propose an alternative

approach, Weighted Function, for the binary integer optimization problem.
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Chapter 1

Introduction

Global competition has forced manufacturing industries to adapt to the
fast paced change of consumer demand on a wide variety of products. To
keep competitive in the market, one crucial factor is to select optimal prod-
uct portfolios among all existing products which could satisfy the market
demand. Another crucial factor is to design the new products that could
satisfy customer’s needs and gain the lead in product efficiency and effective-
ness.

There are many factors to consider when designing a product, such as the

following:

e Operations What are the needs of the proposed new product and how
do they match the existing resources? Will the company need new facil-
ities and equipment? Does the company have the labour skills to make
the product? Can the material for production be readily obtained?

e Marketing What is the potential size of the market for the proposed



new product? How much effort will be needed to develop a market for
the product and what is the long-term product potential?

e Finance The production of a new product is a financial investment
like any other. What is the proposed new product’s financial potential,

cost, and return on investment?

There is much literature about product seclection and new product de-
sign. Peter T. Ward et al. studied the manufacturers’ competitive priorities
in [2]. R. Grussenmeyer and T. Blecker [3] researched the relevance of dif-
ferent complexity management requirements for new product development.
DeVries in [4] studied a dynamic model for product strategy selection. Su
and Pecarn studied production selection for newsboy-type products with nor-
mal demands and unequal costs in [5]. Cao et al. presented a quantitative
criterion of model selection for building material with delivery delay in [6].
Tang and Yin in [7] present a model to determine the conditions under which
a particular product selection is optimal. The reader is referred to Eliashberg
and Steinberg[8], Gaur and Honhon[9], Ho and Tang [10], Kok and Fisher
[11] for more reviews.

This project focuses on developing an optimization tool for product se-
lection from existing products as well as designs new products based on the
technical evaluation as well as market information. More specifically, we de-
velop an optimization tool which can identify a product portfolio that covers
as much demand range as possible while maximizing the market performance.

At the same time, we maintain flexibility in the optimization tool to allow



adaptation of this method over time.
To develop this optimization tool, we should first answer the following

questions:

1) Which parameters should we use to describe products?
( p P
(2) What performance measure should we use?

(3) How should we interpret sales data?

For the first question, we propose to choose fundamental parameters by
which all other parameters can be determined. After we answer the first
question, the second question becomes more natural. We propose a function
that expresses the unique characteristics and features of the company’s prod-
uct using the parameters chosen in first question. For the third question, we
propose to use an interpolation method to get a smooth sales surface that
could integrate into a performance measurement function. After answering
these questions, we are ready to build an optimization model and find the
optimal solution from a numerical perspective.

The remainder of the essay is structured as follows: Chapter 2 presents a
complete description of the problem and formulates the optimization model.
Chapter 3 describes the simulated annealing algorithm that could be used to
solve the optimization model discussed in Chapter 2 and presents a numerical
example. Chapter 4 presents an alternative approach to the binary optimiza-

tion problem. Chapter 5 summarizes the essay with further discussion.



Chapter 2

Mathematical Modelling

2.1 Problem Description

In this chapter we will build an optimization model for the product selec-
tion problem. First, we determine fundamental input parameters from which
all other parameters can be determined. For simplicity, we assume that a
product can be defined by two parameters X and Y. We denoted Range(X)
and Range(Y') as the range of X and Y, respectively.

A: Subscripts

Several subscripts are used in the model as follows:

The number of products we want to select is denoted by k, 1 < k < n,
where n is the total number of products.

B: Parameters



n: total number of products available.
X,Y : two fundamental parameters that would be used to define any product.

F: feasible range of products, i.e, F = Range(X) x Range(Y).

C: Decision variable

Decision variables are defined as follows:

1 if product i is selected,
w; =
0 otherwise.

where 1 <17 < n.

D: Objectives

A number of objective functions are possible. For example, maximizing
manufacturers’ profit, minimizing production cost, and maximizing customer
coverage. Here, we choose to identify a product portfolio that covers as much
of the feasible region as possible while maximizing the market performance.

The feasible region [F is a plane generated by X and Y. For each individual
point (z,y) in the feasible region IF, the objective function value of a single
product is evaluated as the multiplication of product performance and sales
density. If there are multiple products defined at a point (z,y), then we
choose the product with the maximum performance.

Let S(z,y) be the sales surface (a continuous density function of sales po-
tential), P;(z,y) be the performance function of product i, f;(x,y) be a func-
tion measuring the feasible region coverage of product ¢ and sales scenario.

At each individual point (x,y) € F, the value of f;(z,y) is the multiplication



of performance of product i, and sales density at point (z,y). That is,

Covering the entire feasible plane we write the objective function as follows.

/max{fz (x,y)w; }dA. (2.2)

1<:i<

/

where w = (wy, - ,w,)" is a vector of decision variables. The result of

max fi(z,y) is the maximum value of f;(z,y) among all products defined at
point (x,y), which eliminate the overlapping of different products.

D: Constraints

While considering the objectives function, several technical constraints
can be considered, such as the budget constraint, and short-term minimum
return constraint. Here, to simplify our model, we assume that the cost of
cach product is the same. This will not result in a loss of generality if we
consider a product set with similar engineering design from a manufacturing
perspective. Therefore, we only consider one constraint, which is the total

number of products in our optimal portfolio: k. This could be formulated

as:

n
E w; = k.
=1

To summarize, we select k products from a total of n products to form

the optimal portfolio by solving the following optimization problem:

min  — [p max {fi(z,y)w;}dA

1<i<n

s.t. Z w; =k (2.3)
i=1

w; € {0,1}, fori=1,--- 'n



2.2 Performance Measurement

In practice, the performance measurement function in (2.1) is crucial to
the optimization model. This function is defined from an engineering design
aspect to capture the properties of products over the feasible region. Also,
we can define multiple performance measurement functions based on the
emphasis on the different perspective of the products, and then take the
weighted sum of these functions as the performance function. In this way,
we could easily adjust the priority between different perspective of a product

as needed by changing their weights in the sum.

2.3 Sales Surface

The mathematical method requires a continuous density surface as an ap-
proximation to the real sales surface. We grid the feasible region into small
squares, count the number of sold products in each square, and then use these
new sample points to interpolate the smoothed sales surface. This method
eliminates the sample points that are close together but having extreme dif-
ference in sales quantity, which could make some interpolation methods, for
example splines, very inaccurate.

There are many interpolation methods available. One example is a spline,
which estimates values using a mathematical function that minimizes overall
surface curvature, resulting in a smooth surface that passes exactly through

the input points. It fits a mathematical function to a specified number of



nearest input points while passing through the sample points. Users could

choose different interpolation methods for different data.

2.4 Product Location

For product 7, we define the best performance point to be the point over
the feasible region where the performance function of product ¢ obtains max-

imum value. That is, we define the best performance point as

(xivyi) = arg max Pi<x7y>' (2-4)
(z,y)€F

We also refer to this point as the location of the product 1.

To calculate the best performance points for all products within the fea-
sible region ' we considered two methods.

The first method is solving the best performance points (z;,y;) for each
product i, where i = 1,--- n from (2.4) continuously.

The second method is solving the best performance points (z;, y;) for each
product ¢, where ¢ = 1,--- ,n discretely. This is realized by confining x and
y to a set of paired discrete values set D, and then solving the following

problem discretely.

(i, y;) =arg max Py(z;,yx), i=1,---,n. (2.5)

(zj,y1) €D
This method does not lose generality if we use a fine enough grid to discretize
x and y.
In this project, we use the second method to localize the products. More-

over, if products distribution is not evenly, we can choose a series with certain
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properties to grid  and y. For example, if the product density decease as x
and y increase, we could choose a gcometric series with common ratio ¢ > 1

to grid x and y.

2.5 Optimization Model

In the following text, we consider the discrete version of problem (2.3).
Assume we grid = to x1, 29, ,xn and y to yi, o, - ,yn. The objective

function becomes the following:

WE
M:

/fgagc{fz ry)witdA = — Jmax {w;fi(z5,ye)}

<
Il
—
e
Il
—

o
NE

(S(zj, yp) max {w;Fi(z), yi)})

B
Il
—

7=1
Then the optimization model becomes the following:
N M

min — ) Z(S(ﬂfj,yk) nax {wl (75, ur) })

w j=1k=1
n

st. Y w; =k (2.6)
w; € {0,1} fori=1,--- n

This model can be used to select the optimal portfolio from an existing
product pool as well as a guide to design new products. However, in general,
this is a non-convex integer optimization problem and is NP-hard [13]. There
are two different types of methods to apply to (2.6): exact and heuristic
methods. In this project, we explore two heuristic methods in Chapter 3 and

4.



Chapter 3

Simulated Annealing

In this chapter, we will first give a description of simulated annealing and
then describe how simulated annealing can be used to solve our optimization
model (2.6). Finally, we will use a numerical example to illustrate that (2.6)

can be solved effectively by simulated annealing.

3.1 Simulated Annealing Algorithm

Simulated annealing is a heuristic technique for solving non-convex opti-
mization problems. It is designed to give an acceptable answer for typical
problems in a reasonable time. It employs an iterative improvement strategy
that attempts to perturb some existing suboptimal solution in the direction
of a better solution.

Compared to the standard iteration methods, which only accept downhill

movements and can easily be trapped in a local minima, simulated annealing
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allows perturbations to move uphill in a controlled fashion. The idea, as
in iterative improvement, is to propose some random perturbation, such as
moving the current solution to a new solution, then evaluate the resulting
change in objective function Af. If the objective function is reduced, the
new solution is accepted as the starting point for the next move. However,
if the objective function is increased, the move may still happen. The uphill
movement is designed to escape from a local minima and is moderated by the
current temperature T'. Here, the temperature is simply a control parameter.
At higher temperatures, the probability of large uphill moves in objective
function value is large; at low temperatures the probability is small. One
algorithm models this using a Boltzmann distribution: the probability of an
uphill move of size Af at temperature T is Prlaccept] = e%, where C'is a
constant.

By employing a cooling schedule, a sequence of decreasing temperatures,
we moderate the acceptance of uphill moves over the course of the solution.
Initially, the temperature parameter is high enough to permit an aggressive,
essentially random search of the feasible region. Most uphill moves are al-
lowed. As the temperature cools, fewer uphill moves are allowed. We tend
to improve the value of the cost function here, but some local minima can
also be avoided. At the coolest temperatures, the solution is close to freezing
into its final form, and very few disruptive uphill moves are permitted. In
this temperature regime, annealing closely resembles standard downhill-only
iterative improvement.

In practice, we adjust the cooling schedule and trial time at each tem-
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perature by running multiple experiments and choosing heuristically. The
algorithm terminates when the objective function is essentially ”flat enough”
for a few temperatures.

Note that the simulated annealing algorithm is not deterministic and will
produce different answers each time it is run for the same problem. This is
because of the probabilistic nature of choosing moves and accepting uphill
moves. Theoretically, if we take enough trials at each temperature, simulated
annealing will give a global optimum. In practice, to limit the running time,
we place limits on trial numbers at each temperature. There is no guarantee
of getting precisely the optimum answer in any annealing algorithm or even
of getting the same answer on multiple runs. What annealing offers here is
some probability of getting out of a local optimum. We could get a reason-
ably good optimum by setting appropriate temperature parameters and trial
parameters.

Overall, simulated annealing is generally a practical approximation al-
gorithm that is able to produce a good solution. It is extensively used in
different applications. Much research has been devoted to both theoretical
and experimental study. Recent examples include: [12], [14], [15] and [16].

In this project, to get a fast convergence rate and stable solution, we

address the following:

(1) Keep track of the best solution encountered and its associated objective
function value once the algorithm has been run.

(2) Choose the number of attempts at each temperature to be a multipli-

12



cation of the problem size and number of moves to attempt with a
constant, which we refer to as the Trial Parameter. Adjust this param-
eter for different data sets to ensure convergence.

(3) Iteratively solve each problem for L times and choose the best solution
among these L solutions as the approximate solution.

(4) Let H(t) be the total number of times that algorithm hit the best
approximate solution at temperature ¢. Define a convergence ratio
p = H(t)/L. From the heuristic result, this ratio should be in [0.3,0.7].
Use the convergence ratio to adjust the number of attempts at each

temperature.

The resulting structure at temperature 7" is shown in Figure 3.1.

For the binary optimization problem (2.6), we choose the initial solution
to be a vector with length n and £ random entries with value 1. This ensures
the feasibility of an initial solution. To find a better solution, we try to swap
some entries of the current solution between 1 and 0 while keeping i w; =k

i=1

based on the temperature T'. The probability of uphill iterations is dependent

—(fnew—fold) .
cr, where C is

on the temperature vector and defined as P(T) = e
Boltzmann’s Constant and 7' is the temperature parameter that decreases
towards 0.

At each temperature, the structure is shown in algorithm 1.

13
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Figure 3.1: Simulated Annealing at Temperature T.
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Algorithm 1 Simulated Annealing at temperature T’
M = number of moves to attempt, T= current temperature

for m=1to M do
Generate a new neighbouring solution, evaluate the resulting objective
function value fnew.
if fnew < fold then
(downhill move: accept it)
Accept this new solution, and update the solution.
else
(uphill move: accept maybe)
Accept with probability P(T") < S
Update the solution if accepted.
end if

end for

3.2 Numerical Results

In this section, we apply the binary optimization model (2.6) to a pump
manufacturer and use simulated annealing to solve the resulting optimization
problem. We compare our method with the naive method, which picks the

top ranked k items based on their individual market performance function

N M
values 3 5 (S(ay, ) Pias, ), 1< 0 <.
j=1k=1
We acquired the company’s product design parameter data and three
years sales transaction data from 2010 to 2013 for all of their products.

For the pump manufacture, we find that all the parameters are derived

15



from two parameters: flow and pressure. Flow is measured in gallons per
minute (GPM) and pressure is measured in feet (ft.). Hence, we choose z
and y as flow and pressure, respectively. The range of flow is [10, 700] and
the range of pressure is [6,100]. We choose the pump performance measure
as a function of z,y. This function form is obtained from an engineering
design perspective.

The sales data contains very detailed information about sold items, in-
cluding: the two fundamental parameters flow and pressure, items sold in

each transaction, time, and item price.

90
80
70
60
50
40
30
20
10
100 200 300 400 500 600
GPM

Figure 3.2: A Single Pump Plots.

feet

Figure 3.2 is a two dimensional plot of function f;(z,y) for a single pump
in the flow and pressure plane. The number in the figure is the index i for
the plotted pump. The green point is the best performance point for the

corresponding pump. Blue is background color of the plot. The red, yellow

16



and cyan area is the feasible region of the corresponding pump. The value of

fi(z,y) deceases as the color change from red to yellow and finally to cyan.

From the sales data, we found that the pump density decreases as its flow

and pressure increases. Therefore, we use geometric series 1.5,1.52,--- 1.5

and 1.3,1.32 ... 1.3 to discretize the flow and pressure to 10 grids, re-

spectively. With the method introduced in Section 2.3 and the interpolation

method cubic spline we get the sales surface, which is plotted in Figure 3.3.

sales

LIRS
Sy VO
R

A,

300

feet GEM

Figure 3.3: Interpolated Sales Surface

Using simulated annealing approach, we solve problem (2.6). We compare

the numerical results obtained from (2.6) with the naive method, which picks

the top ranked items based on their standalone value. Table 3.1 presents the

results, varying the total number of items to be selected k.
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Table 3.1: Profit Improvement Over Naive Method, n = 100

k | Naive Method Profit ($) | Optimal Profit ($) | Profit Improvement
3 11,536 12,651 9.665 %
5 11,640 13,337 14.582 %
10 11,806 13,844 17.261 %

As shown in Table (3.1), our model (2.6) outperforms the naive method.
The reason is that there is quite a lot of overlapping effect among the products
selected by the naive method. As for our model, we effectively eliminate the
overlapping by using max fi(z,y). We use Figure 3.4 and Figure 3.5 to
illustrate this this ovcrl_al_)ping and its elimination, resp. Figure 3.4 is the
ranked top 3 pumps. Figure 3.5 is the optimized pump portfolio for k = 3.
Comparing these two figures, we observe that pump 76 and 87 have much

more overlapping than pump 65 and pump 87.

100 200 300 400 500 600
GPR

Figure 3.4: Ranked Top 3 Products Portfolio.
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feet

10 200 500 Bl

Figure 3.5: Optimized Pump Portfolio for k£ = 3.

Figure 3.6 plots the optimal portfolio for £ = 4. Compare Figure 3.5 and
3.6. We can see that the optimal portfolio for £ = 3 is not a subset of the
optimal portfolio for k = 4. This illustrates that the optimal portfolio is not

simply formed by progressively adding single items to the previous portfolio.

100 200 300 400 500 600
GPR

Figure 3.6: Optimized Product Portfolio for k£ = 4.
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feet

Figure 3.7: Optimized Product Portfolio for k£ = 25.

Another question that often arises in practice is the dependence of profit
on the total number of product offerings. Figure 3.8 is the plot of the cumu-
lative objective function value of the portfolio versus the number of pumps in
the portfolio. Many companies choose to increase their new product offerings
to keep competitive in the market. However, Figure 3.8 shows that the more
product offerings, the less increase in portfolio value. The reason is that when
the products offering exceeds certain level, the new adding products would
results more increase in overlapping. Figure 3.7 is a plot of optimized port-
folio with 25 products. From this plot, we can see that many products are
overlapping each other. This profound result gives guidance to the number

of products that should be selected.
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Figure 3.8: Optimized Portfolio Value v.s. Number of Products.

Remark 3.2.1. Figure 3.8 illustrates that:

1. Relatively few pumps give very good coverage and profit.

2. The sensitivity of portfolio value to k decreases as k increases, where k

s the number of pumps in the portfolio.

3.3 Conclusion

The numerical result presented in Section 3.2 shows that simulated an-
nealing can produce a good solution for the non-convex optimization problem
(2.6). It is robust and efficient. With the convergence ratio, it is easy to ad-

just the simulated annealing parameters for different data sets.
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Chapter 4

Optimization with Weighted

Function

This chapter focuses on an alternative method for solving binary integer

optimization problems.

4.1 Weighted Function

Consider the problem of minimizing a continuously differentiable function

while restricting the variable to be binary, i.e., x € {0,1}". The problem is:

min (7Gx} (4.1)

where f : R® — R! is continuously differentiable.

Definition 4.1.1. Weighted function h(z) : R — R is a continuously differ-

22



entiable function of a single variable z € RY with the following properties:

i) h(0) =n(1) =0,

i) h(z)>040<z<1, (4.2)
ii1) Orggécl{h(z)} =1.

Example 4.1.2. Let
h(z) = —42° + 4z. (4.3)

Example 4.1.3 (Piecewise quadratic). Choose 0 < v < % Define the con-

tinuous piecewise quadratic h(z) on 3 pieces: [0,7], [v,1 —~],[1 —~,1]:

hi(z) = —,Zy—z + %2 on [0,7],
_2)2
W(z) =-S5 4 2(1—2) on [1—,1].

Note that h, is continuously differentiable. In addition, it is twice con-
tinuously differentiable at all points except z = «,1 — 7. Note also that if
v =1, then h,(z) reduces to h(z) in (4.3).

Example 4.1.4 (Piecewise cubic). Choose 0 < v < % Define the continuous

piecewise cubic h,(z) on the 3 pieces: [0,7], [v,1 —~],[1 —~,1]:

ZS 22 Z

2 _

ho(z) =1on[y,1-1] (4.5)
z—1)3 3(z—1)2 3(z—1

h3(z) :(73) — (72) + (y)on[l—'y,l}.

Note that in this case, h, is twice continuously differentiable.

23



4.2 Weighted Function Approach For Binary
Constraint Problems

Approach 4.2.1. Replace integer minimization problem (4.1) with a se-
quence of problems k = 0,1,2--- using a sequence of weights vy, V1, - ,

and weight function h., (x;) with vo = 0,7, > Yk—1 and {y,} — o0

0<z<1

min {f(x) + 7 Y _ by, (2:)} (4.6)
i=1
where each minimization begins with the solution from the previous problem.

Now the binary integer minimization problem (4.1) becomes a continuous
minimization problem (4.6). The weight function i h, (x;) will push
non-integer solutions to integer solutions as vy, — oo.Z:1We could use the
optimization strategy to solve this unconstrained continuous optimization

problem.

Conjecture 4.2.2. Assume () solves for v, then for vy sufficiently large

(1) () €{0,13".
(2) x.(x) s a solution to (4.1).
(8) The solution we get from Approach 4.2.1 would generally be different

than rounding to integer from fraction.

Remark 4.2.3. This approach can be used for the constrained problem as

well. Replace

min {f(x): c(x) > 0,e(x) = 0} (4.7)



with a sequence of problems

Jpin (@) 4 3 ) (@) 2 0,() = 0) (48)
with weights Yo, V1, -+ , with o = 0 and v, > Ye_1, {7} — 0.

Note that rounding does not work in this case since the rounded solution

may not be feasible.

4.3 Conclusion

Although Approach 4.2.1 lacks a theoretical proof, it is generally applica-
ble and as ecasy to implement as a heuristic algorithm. The weight parameter
v, needs to be identified by trials. Different problems would have different
. Numerical experiments were conducted that suggest Conjecture 4.2.2 is
true. We believe that more research, both theoretical and experimental, is

needed to further assess the potential of this approach.
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Chapter 5

Summary

In Chapter 2 an optimization model for production selection is proposed.
This model can be used for product selection in an existing product pool as
well as the new design product pool based on the product usage coverage
and performance. We explicitly presented the approach for choosing product
performance functions and sales surfaces.

Chapter 3 focused on the approach of solving (2.6) with simulated an-
nealing and numerical results. We propose a heuristic method to adjust the
simulated annealing parameters to get a good convergence rate and stable
solutions. We numerically illustrate that our model gives a better product
portfolio compared to just choosing the top ranked products. The difference
of portfolio value becomes larger when the number of total products in the
portfolio increases. Further, our model gives a benchmark suggestion about
the size of the product portfolio.

We introduced a weighted function in Chapter 4 and proposed an alterna-
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tive approach (4.2.1) for the binary integer optimization problem. Although
the approach lacks theoretical support, it presents good propertics heuristi-
cally if we choose the appropriate parameters.

For our model (2.6), since we maintain the flexibility of embedding exist-
ing products with newly designed products, it is better to use the discretiza-
tion method with simulated annealing. In addition, different products with
close parameters are very similar. With a fine enough discretization scale,

we would be able to generate an optimal product portfolio.
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