
A Heuristic Algorithm for Integer
Hermite Normal Form

by

Xiaoyu Liu

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof. Arne Storjohann

Waterloo, Ontario, Canada, 2017

c� Xiaoyu Liu 2017

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

This report describes a new heuristic algorithm to compute the upper triangular (row)
Hermite normal form of an integer matrix A 2 Zn⇥m that has full column rank. The
algorithm has three features. First, the algorithm is online: column k of A can be given
one at a time for k = 1, 2, . . . ,m. As soon as the first k columns of A are known the
algorithm will produce column k of the Hermite form. Second, the algorithm has a running
time that, in terms of n and m, seems to be within a polylogarithmic factor of O(nm2) bit
operations. Assuming standard matrix multiplication, this is a factor of about m faster
than previous algorithms that are deterministic and analysed in the worst case. Third, the
intermediate space requirements of the algorithm seem to be, in terms of bits, about the
same as the number of bits required to write down a dense input matrix. Empirical results
from a Maple implemention of the algorithm are discussed.

iii

Acknowledgements

I would like to thank to my supervisor, Prof. Arne Storjohann, for all the guidance,
support, patience and encouragement. I would also like to thank Prof. George Labahn for
his feedback on this project.

iv

Dedication

To my parents for their unconditional commitment to support me.

To my boyfriend, Shenghao, for providing much motivation and inspiration, without
his love this work would be meaningless to do.

v

Table of Contents

1 Introduction 1

2 Hermite Form via Gaussian Elimination 4

2.1 An On-line Variation . 9

3 Our Refinement of the Algorithm 12

3.1 Factoring out the Hermite basis . 12

3.2 Utilizing Lattice Compression . 15

4 The Specialized Outer Product Adjoint with Applications 17

4.1 Nonsingular Linear System Solving . 19

4.2 Updating the SOPA . 23

5 Conclusions 25

References 28

vi

Chapter 1

Introduction

In elementary linear algebra, a common computation is to transform an input matrix to a
canonical form. One of the more useful canonical forms of an integer matrix is the Hermite
form. Let A 2 Zn⇥m have full column rank m. The (row) Hermite form of A is an upper
triangular matrix that is left equivalent to A. By Hermite basis we mean the submatrix of
the Hermite form comprised of the nonzero rows. The Hermite basis of A is then

H =

2

6664

h1 h12 · · · h1m

h2 · · · h2m

. . .
...
hm

3

7775
2 Zm⇥m,

where the o↵-diagonal entries h⇤i satisfy 0 h⇤i < hi for i = 1, 2, . . . ,m. These conditions
on the h⇤i ensure uniqueness of the form.

For example, the Hermite form of

A =

2

4
4 8 3
9 10 2
8 10 9

3

5 ,

is

H =

2

4
1 0 98

2 34
105

3

5 .

A unimodular matrix U satisfying H = UA is a transformation matrix with a sequence
of integer row operations for A. The usual method to compute the Hermite form is to
perform a sequence of elementary row operations. These are

1

• interchanging two rows

• adding an integer multiple of one row to another

• negating a row

By recording these row operations a unimodular matrix U 2 Zn⇥n such that UA = H can
be constructed.

The computation of the Hermite normal form is a vital tool for many algebra problems.
For instance, it can accelerate linear system solving, be used to check the span of a matrix,
and assist in integer program solving [Hung, 1990]. In more applicable areas, Hermite nor-
mal form is suggested to improve the security and e�ciency of lattice based cryptography
by reducing the size of a public key [Micciancio, 2001].

The running time and space requirements are two primary measurements of the e�-
ciency of an algorithm. Over several decades many people worked on deriving or optimizing
algorithms to compute the Hermite normal form. The first polynomial bounded algorithm
was developed by Kannan and Bachem [1979]. They only preformed basic row operations
and computed principal minors of a matrix to derive the Hermite normal form. Their
bound on the size of the entries was improved by Chou and Collins [1982]. They normal-
ized the entries above the main diagonal and achieved better bounds for both cost and
storage. Hafner and McCurley [1989] showed how to incorporate matrix multiplication
to triangularize an integer matrix. Storjohann and Labahn [1996] successfully used fast
matrix multiplication to speed up Hermite normal form computation.

Table 1.1 gives a history of results in the past several decades. It summarizes polynomial
time complexity results for the case of a nonsingular n ⇥ n input matrix A. The Time
and Space are expressed in terms of an exponent e such that required number of bit
operations and intermediate space requirements (in bits) is bounded by O (ne log ||A||)⇤)
with corresponding value of e shown in table, where for most algorithms ⇤ is a small
number, typically 1. Here ||A|| denotes the maximum in absolute value of the entries of
A. In Table 1.1, the last two algorithms di↵er from the previous in two senses: they are
randomized, and the time and space complexity is not claimed to be worst case, but rather
indicative on the running time for most inputs.

The rest of this report is organized as follows. Chapter 2 describes a previous algorithm
to compute the Hermite normal form via Gaussian elimination. Chapter 3 characterizes
two refinements of the algorithm to factor out the Hermite basis and to utilize lattice
compression to improve the running time. A key subroutine in our algorithm is to apply
the outer product adjoint to solve linear system and to update the Hermite basis; this is

2

Table 1.1: Algorithms for Computing the Hermite Form

Citation Time Space
Kannan and Bachem [1979] 6 3
Chou and Collins [1982] 4 3
Domich [1985] 4 3
Domich et al. [1987] 4 3
Iliopoulos [1989] 4 3
Hafner and McCurley [1989] 4 3
Storjohann and Labahn [1996] ✓ + 1 3
Storjohann [2000] 4 2
Pauderis and Storjohann [2012] 3 2
This report 3 2

described in Chapter 4. Finally, Chapter 5 concludes by summarizing the entire algorithm
and presents some empirical results of a Maple implementation.

3

Chapter 2

Hermite Form via Gaussian
Elimination

In this chapter we recall the algorithm of Storjohann [1996, 2003] which computes the Her-
mite form via Gaussian elimination. The algorithm makes use of the modulo extended gcd
algorithm to control the growth of integers in the matrix being transformed: the integers
in the work matrix grow in bitlength similarly as if fraction free Gaussian elimination is
performed.

Let T be a copy of an input matrix A 2 Zn⇥m that has full column rank m. The algo-
rithm directly performs unimodular row operations on T to transform T to Hermite form,
proceeding in stages for column k = 1, 2, . . . ,m. The entire algorithm can be understood
by considering a single stage k. Let Tk be the state of the work matrix at the start of stage
k. Then Tk has the shape

Tk =

2

666666666664

h1 · · · hk�1 1 ⇤ ⇤ ⇤ · · · ⇤
. . .

...
...

...
...

. . .
...

hk�1 ⇤ ⇤ ⇤ · · · ⇤
d d̄ ⇤ · · · ⇤
a ā ⇤ · · · ⇤
b1 b̄1 ⇤ · · · ⇤
...

...
...

. . .
...

b⇤ b̄⇤ ⇤ · · · ⇤

3

777777777775

2 Zn⇥m,

where the principal k ⇥ k submatrix is in Hermite form, d is nonzero, and entries below d
in column k are reduced modulo d. The goal at stage k is to transform the first k columns

4

to Hermite form. The key idea of the algorithm is to precondition row k + 1 of Tk by
adding small integer multiples of rows k + 2, k + 2, . . . ,m to row k + 1. The modulo d
extended gcd algorithm will e�ciently compute the lexicographically minimal sequence of
nonnegative integers c1, c2, . . . , c⇤ such that gcd(d, a, b1, . . . , b⇤) = gcd(d, a+c1b1+ . . . c⇤b⇤),
where ⇤ = n�k�1. Once the c⇤ have been computed, form the unimodular preconditioning
matrix

Ck :=

2

666666666664

1
. . .

1
1

1 c1 · · · c⇤
1

. . .
1

3

777777777775

2 Zn⇥n.

Then

CkTk =

2

666666666664

h1 · · · hk�1 1 ⇤ ⇤ ⇤ · · · ⇤
. . .

...
...

...
...

. . .
...

hk�1 ⇤ ⇤ ⇤ · · · ⇤
d d̄ ⇤ · · · ⇤
` ¯̀ ⇤ · · · ⇤
b1 b̄1 ⇤ · · · ⇤
...

...
...

...
...

b⇤ b̄⇤ ⇤ · · · ⇤

3

777777777775

,

where l = a + c1b1 + · · · + c⇤b⇤ and thus gcd(d, l) = gcd(d, a, b1, ..., b⇤), which is hk by
definition. We remark that during the computation of the ci’s we also ensure that the 2⇥2
minor ����

d d̄
l l̄

���� = dl̄ � d̄l

is nonzero. Next use the extended Euclidean algorithm to compute the Bezout matrix

s t
u v

�
2 Z2⇥2

such that
s t
u v

�
d d̄
l l̄

�
=

hk ⇤

e

�
2 Z2⇥2

5

is in Hermite form. It is easy to see how to extend this Bezout matrix to the unique n⇥ n
unimodular matrix

Qk =

2

664

Ik�1 ⇤ ⇤
s t
u v
⇤ ⇤ In�k�1

3

775 2 Zn⇥n

such that

Tk+1 := QkCkTk =

2

6666666666664

h1 · · · hk�1 1 hk 1 ⇤ ⇤ · · · ⇤
. . .

...
...

...
...

. . .
...

hk�1 hk k�1 ⇤ ⇤ · · · ⇤
hk ⇤ ⇤ · · · ⇤

e ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
...

...

⇤ ⇤ . . . ⇤

3

7777777777775

,

that is, such that the principal (k + 1)⇥ (k + 1) submatrix is nonsingular and in Hermite
form, and that entries below e are reduced modulo e. This completes the description of
stage k of the algorithm.

In Storjohann [2003] it is shown that the bitlengths of integers in Tk will be bounded
by O(k(log k + log |A||)) bits. Not counting the time for the calls to the modulo extended
gcd algorithm, which both in theory and in practice is negligible, the overall running
time of this algorithm is thus O(nm2) operations on integers with bitlength bounded by
O(m(logm+log ||A||)), or exactly the same as fraction free Gaussian elimination. A serious
issue with the approach is that the space requirements are relatively high because at stage
k the matrix Tk has last n� k columns filled with large integers. Actually, in Storjohann
[2003] an online version of the algorithm is presented that computes column k+1 of Tk at
the start of stage k. We will describe this online version in Section 2.1, but first we give a
worked example.

Example 1. Let

A =

2

666666664

�175 �105 5 �2
�40 140 2 118
�94 �70 �68 82
�23 �35 �28 �81
�174 70 78 104

30 0 �31 �151
76 70 25 11

3

777777775

2 Z7⇥4.

6

At stage k = 1, the preconditioning matrix C1 is used to transform A to ensure that the
gcd of the first two entries in column 1 are equal to the gcd of all entries in column 1.

C1A =

2

666666664

1
1 1 0 0 0 0

1
1

1
1

1

3

777777775

2

666666664

�175 �105 5 �2
�40 140 2 118
�94 �70 �68 82
�23 �35 �28 �81
�174 70 78 104

30 0 �31 �151
76 70 25 11

3

777777775

=

2

666666664

�175 �105 5 �2
�134 70 �66 200
�94 �70 �68 82
�23 �35 �28 �81
�174 70 78 104

30 0 �31 �151
76 70 25 11

3

777777775

.

Now we apply the extended Bezout matrix Q1 (not shown) to obtain

T2 = Q1C1A =

2

666666664

1 16695 �7751 22370
26320 �12220 35268
16380 �7682 22050
15470 �7221 20677
9800 �4396 13004
�770 319 �1159
�5390 2541 �7245

3

777777775

.

7

Stage k = 2 uses C2 to precondition the second column of T2 to obtain

C2T2 =

2

666666664

1
1

1 1 0 0 0
1

1
1

1

3

777777775

2

666666664

1 16695 �7751 22370
26320 �12220 35268
16380 �7682 22050
15470 �7221 20677
9800 �4396 13004
�770 319 �1159
�5390 2541 �7245

3

777777775

=

2

666666664

1 16695 �7751 22370
26320 �12220 35268
31850 �14903 42727
15470 �7221 20677
9800 �4396 13004
�770 319 �1159
�5390 2541 �7245

3

777777775

,

and then applies Q2 to obtain

T3 = Q2C2T2 =

2

666666664

1 35 14075 �5928
70 29651 �12491

43428 �18412
�2464 976
�29876 12604
22484 �9676
27412 �11628

3

777777775

.

At stage k = 3, gcd(43428,�2464) = h3, so C3 is just the identity matrix, and we need
only apply Q3 to transform the third column into the correct form:

T4 = Q3T3 =

2

666666664

1 35 215 772
70 83 8901

308 3508
9680
4400
�4400
�4400

3

777777775

.

8

At stage 4, C4 is again the identity matrix. Finally we obtain

Q4T4 =

2

666666664

1 35 215 772
70 83 101

308 868
880

3

777777775

,

the Hermite form of A.

2.1 An On-line Variation

From the description above, it should be clear that only the first k + 1 columns of Tk are
required to obtain the first k + 1 columns of Tk+1. In particular, the matrices Ck and
Qk depend only on the first k + 1 columns of Tk. The idea of the on-line algorithm is
to compute column k + 1 of Tk when it is needed, at that start of stage k. In the online
algorithm we apply the preconditioning matrices directly to the input matrix A so that at
stage k we have

Ak = Ck�1 · · ·C2C1A.

At the start of stage k, we thus can write the preconditioned matrix Ak using a block
decomposition as

Ak =

B b · · ·
F f · · ·

�
2 Zn⇥(k+1),

where B is k⇥ k and nonsingular, f 2 Zk⇥1, and entries to the right of the double vertical
line do not even need to be known at this point. Moreover, the Hermite basis of the first
k� 1 columns of B is the Hermite basis of the first k� 1 columns of A. The matrix Tk has

9

the shape

Tk =

2

666666666664

h1 · · · hk�1 1 ⇤ ⇤ · · ·
. . .

...
...

... · · ·
hk�1 ⇤ ⇤ ·

d d̄ · · ·
a ā · · ·
b1 b̄1 · · ·
...

... · · ·
b⇤ b̄⇤ · · ·

3

777777777775

2 Zn⇥m

where entries to the right of the double vertical line do not need to be known. Actually,
in the on-line algorithm, at the start of stage k we only have the first k columns of Tk,
namely

H
C

�
:=

2

666666666664

h1 · · · hk�1 1 ⇤
. . .

...
...

hk�1 ⇤
d
a
b1
...
b⇤

3

777777777775

2 Zn⇥k.

A main step in the on-line algorithm is to compute column k + 1 of Tk, that is,2

66666664

h̄
d̄
ā
b̄1
...
b̄⇤

3

77777775

2 Zn⇥(k+1).

It is easy to deduce that this column is given by

Uz }| {
H
C In�k

�
B�1

�FB�1 In�k

�
b
f

�
. (2.1)

where U 2 Zn⇥n is a unimodular transforming matrix such that UAk = Tk. Because Ak is
preconditioned there exists a unique such unimodular transform matrix that has last n�k
columns that of the In, namely the U shown in (2.1).

10

One of the main computations involved in (2.1) is to compute HB�1b. Since H is
triangular we may easily deduce its determinant. We can now structure the computation
of HB�1b as

(1/(detH))H(B�1((detH)b)),

where the nonsingular rational system solution B�1((detH)b) is integral. An option to
compute this system solution is to use p-adic lifting. Computing the lower part of (2.1) is
similar. The overall cost of this online version is shown to be only O(nm3(logm+log ||A||)2)
bit operations, even assuming standard integer arithmetic. Moreover, the intermediate
space requirements are reduced to O(nm(logm + log ||A||)) bits, or about the same as
required to write down the input matrix. We refer to Storjohann [2003] for more details.

The online algorithm can thus be summarized as follows. To begin, assume without
loss of generality, up to some elementary row operations, that A1 1 is positive, and define
the first column of T1 to be the first column of A. Now, for k = 1, 2, . . . ,m � 1 do the
following steps:

1. Compute column k + 1 of Tk as described above.

2. Compute Ck and Qk from Tk.

3. Define the first k + 1 columns of Tk+1 to be those of QkCkTk.

4. Let Ak+1 = CkAk.

At the end of stage m� 1 we have computed

Tm =

2

666666666664

h1 · · · hm�1 1 ⇤
. . .

...
...

hm�1 ⇤
d
a
b1
...
b⇤

3

777777777775

,

from which the Hermite form of A can be easily recovered using some additional operations
on only the last column, in particular, computing hm = gcd(d, a, b1, . . . , b⇤) and reducing
the ⇤ entries modulo hm.

11

Chapter 3

Our Refinement of the Algorithm

In this chapter we explain two refinements of the online algorithm from Section 2.1. Our
first refinement is based on the observation that, if A 2 Zn⇥m has full column rank and
the Hermite basis of A is H ⇥ Zm⇥m, then AH�1 is also integral, and in fact has Hermite
basis equal to Im. In Section 3.1 we show how the Hermite basis can be gradually factored
out of A, column by column for k = 1, 2, . . . ,m. This simplifies the process of going from
stage k to k + 1. In Section 3.2 we show how to apply a lattice compression technique to
avoid computing most of the entries in the Tk matrix at stage k.

3.1 Factoring out the Hermite basis

Let the Hermite basis of our input matrix A 2 Zn⇥m be

H =

2

6664

h1 h12 · · · h1m

h2 · · · h2m

. . .
...
hm

3

7775
2 Zm⇥m.

Note that
H = Hm · · ·H2H1

12

where

Hk =

2

6666666664

1 h1,k

. . .
...

1 hk�1,k

hk

1
. . .

1

3

7777777775

2 Zm⇥m.

For any 0 k m, the matrix AH�1
1 H�1

2 · · ·H�1
k will be integral and the Hermite basis

of the first k colums will be Ik. The first refinement of the algorithm is, at stage k, to
compute Hk+1 and remove this factor from the input matrix in preperation for stage k+1.
So, at the start of stage k we have the matrix Ak = Ck�1 · · ·C2C1AH

�1
1 H�1

2 · · ·H�1
k . Not

only is Ak preconditioned but the Hermite basis of the first k columns of Ak have now
been factored out. The purpose of this refinement is to ensure that the Hermite form of
the principal k⇥ k submatrix of Ak is generic, that is, has all diagonal entries 1 except for
possibly the last. At stage k we now have

Tk =

2

66666664

Ik�1 h h̄ · · ·
d d̄ · · ·
a ā · · ·
b1 b̄1 · · ·
...

... · · ·
b⇤ b̄⇤ · · ·

3

77777775

2 Zn⇥m, (3.1)

Because H1, . . . , Hk have been factored out of Ak, the first k� 1 diagonal entries of Tk are
1, and also hk = gcd(d, a, b1, . . . , b⇤) = 1. Like before, at the start of stage k only the first
k columns of Tk and known, and the column

2

66666664

h̄
d̄
ā
b̄1
...
b̄⇤

3

77777775

2 Zn⇥(k+1)

needs to be computed. Once this column is computed, we simply compute Hk+1 as the
Hermite basis of the first k + 1 columns of Tk.

13

The refined algorithm is summarized as follows. First recover H1 by computing the gcd
of the entries in the first column of A. Like before, assume withot loss of generality the
A1 1 is positive. Initialize A1 = AH�1

1 and proceed for k = 1, 2, . . . ,m as follows:

1. Compute column k + 1 of Tk.

2. Recover Hk 2 Zm⇥m from the Hermite basis of the first k + 1 columns of Tk.

3. Update Tk H�1
k+1.

4. Compute Ck and Qk from Tk.

5. Let the first k + 1 columns of Tk+1 be those of QkCkTk.

6. Set Ak+1 := CkAkH
�1
k+1.

After completion H1, H2, . . . , Hm are recovered, which gives the Hermite form of A.

In terms of complexity, the dominant step in the algorithm is step 1, the computation
of column k+1 of Tk. To simplify the discussion let us assume n = m. Then a single stage
of steps 2–5 are accomplished with O(n) operations on integers of bitlength bounded by
O(n(log n+log ||Ak||)). A subtlety in step 6 is that the bitlength of entries in A1, A2, A3, . . .
could (in theory) grow large, although this is not observed in practice. Indeed, for many
input matrices many of the H⇤ will be the identity matrix, and even if all H⇤ are nontrivial,
experiments show that log ||Ak|| grows only slightly compared to log ||A||. Under the
reasonable heuristic assumption that log ||Ak|| 2 O(log n + log ||A||), the cost of step 1
is thus O(n3(log n + log ||A||)2) bit operations, compared to O(n) operations on integers
bounded in bilength by O(n(log n+ log ||A||)) for the remaining steps. Assuming pseudo-
linear integer arithmetic, step 1 thus dominates the cost of the algorithm by a factor of n.

Let us examine step 1 in more detail, in particular the computation of

h̄
d̄

�
2 Zk⇥1.

At the start of stage k, write the preconditioned matrix Ak using a block decomposition as

Ak =

B b · · ·
F f · · ·

�
2 Zn⇥(k+1), (3.2)

where B is k ⇥ k and nonsingular. Then we have

h̄
d̄

�
= (1/d)

Ik�1 h

d

�
B�1(db). (3.3)

14

The main cost here is the computation of B�1(db). Using p-adic lifting this can be
accomplished in O(k3(log k + log ||B||)2) bit opearations. The next chapter defines a data
structure that, if known, can in many cases allow me to compute B�1(db) in a running
time that is factor of k faster. This faster linear solving algorithm described in the next
chapter requires the Hermite form of B to be generic.

3.2 Utilizing Lattice Compression

Consider the matrix Tk shown in (3.1). Our next refinement is to show how to avoid
computing most of the b⇤ and b̄⇤ entries. Consider the decomposition of matrix Ak shown
in (3.2). Further decompose F as

F =
⇥
F̄ f̄

⇤
2 Z(n�k)⇥k

where f̄ 2 Z(n�k)⇥1 is the last column. Stage k now proceeds as follows. First we find h̄
and d̄, and then form the matrix

2

64
Ik�1 h h̄ · · ·

d d̄ · · ·
F̄ f̄ f · · ·

3

75 2 Zn⇥m. (3.4)

which is left equivalent to Tk. To transform this matrix to have the form of (3.1) we need to
zero out the block F̄ to get the entries below d and d̄ in columns k and k+1. In particular,
we have 2

6664

a ā
b1 b̄1
...

...
bn�k�1 b̄n�k�1

3

7775
=

⇥
f̄ f

⇤
� F̄

⇥
h h̄

⇤
.

Since the bitlength of each entry of h and h̄ can be large, the matrix vector products F̄ h
and F̄ h̄ can be expensive, especially considering that the row dimension of F̄ is n � k,
which will be large for large n Empirically, we have observed that for many input matrices,

15

already for a very small `, for example ` = 3, that the Hermite basis of
2

66666664

Ik�1 h h̄
d d̄
a ā
b1 b̄1
...

...
b` b̄`

3

77777775

Z(k+`+1)⇥(k+1) (3.5)

is equal to the principal (k + 1) ⇥ (k + 1) submatrix of Hk+1. Hence, a useful heuristic
is to compute the pairs (a, ā), (b1, b̄1), . . . in succession. If the Hermite basis of (3.5) ever
becomes Ik+1 we can stop.

We can ensure that the Hermite basis of (3.5) has converged for ` ⌧ n � k � 1 with
high probability by using the lattice compression technique of Chen and Storjohann [2005].
Choose an integer parameter ` > 0. (How to choose ` will be discussed shortly.) For any
matrix R 2 Z(m+`)⇥n, the matrix

Ā =

RA
A

�
2 Z(n+m+`)⇥m

will have the same Hermite form as A. Chen and Storjohann [2005] show that if entries in
R are chosen uniformly and randomly from {0, 1, . . . ,� � 1}, where � is a multiple of six
and satisifies

� � 8⇥ (25n log2nm||A||)
1

d`/3e ,

then the probability that the Hermite basis of the principal k ⇥ ` submatrix of Ā will not
equal the Hermite basis of the first k columns of A is at most

✓
9

10

◆✓
1

2

◆`�1

.

The idea is now to contruct the matrix Ā as described above and run the algorithm
on it instead of A. At each stage we now go to the next stage using the much smaller
matrix (3.5) instead of the first k + 1 columns of Tk. Since we have m stages the overall
probablity of failure (at any stage) can be bounded by 0 < ⌧ < 1 by choosing

` > log

✓
9m

10⌧

◆
+ 1.

For example, if n = m = 10000 and ||A|| = 99, then to achieve an overall probability
of success of at least 1/2 we can choose ` = 11 and � = 1452.

16

Chapter 4

The Specialized Outer Product
Adjoint with Applications

Let A 2 Zn⇥n be nonsingular with generic Hermite form H, that is, all diagonals of H are
one except for possibly the last. Then there exists a unique unimodular matrix U 2 Zn⇥n

such that

UA = H =

In�1 h

d

�
2 Zn⇥n, (4.1)

where h 2 Z(n�1)⇥1 and d = | detA| 2 Z is the absolute value of the determinant of A. By
Cramer’s rule, the matrix dA�1 will be integral. For example, consider the input matrix

A =

2

66664

38 63 �12 �21 82
91 �26 45 90 �70
�1 30 �14 80 41
63 10 60 19 91
�23 22 �35 88 29

3

77775
2 Z5⇥5 (4.2)

with determinant d = 888309873 and Hermite form

H =

2

66664

1 118556465
1 237549876

1 649715522
1 48308716

888309873

3

77775
2 Z5⇥5.

17

Then

dA�1 =

2

66664

12806982 9064115 �46174901 5196584 34641287
�845433 �3779058 85932579 �18399891 �70484628
�15764220 �6453838 78729043 �4646392 �67730059
�3485052 1369978 7994951 432715 500092
2348172 �1890637 �31054436 11159186 28315901

3

77775
.

While the total size (number of bits to represent) A is O(n2 log ||A||), each entry of dA�1

will be (up to sign) a minor of A of dimension n� 1, and thus by Hadamard’s bound will
have bitlength bounded by O(n(log n+log ||A||)), or about n times the bitlength of entries
in A. The total size of dA�1 is thus O(n3(log n + log ||A||)), or about n times the space
required for A. Instead of representing dA�1 as a dense n ⇥ n matrix, Storjohann [2010]
shows that dA�1 can be expressed as the outer product of a column and row vector. The
outer product only captures dA�1 mod d, but if d is about the same bitlength as entries in
dA�1, then a large part of dA�1 will be known. We derive the construction now.

Considering the shape of H in (4.1), the unimodular matrix

V :=

In�1 �h

1

�

can be used to diagonalize H, that is,

UAV =

In�1

d

�
. (4.3)

Inverting both sides of (4.3), multiplying by d, and solving for dA�1 yields

dA�1 = V

dIn�1

1

�
U. (4.4)

Consider taking (4.4) modulo d. The dIn�1 submatrix vanishes and we are left with

dA�1 = vu mod d, (4.5)

where v 2 Zn⇥1 is the last column of V and u 2 Z1⇥n is the last row of U , which is
necessarily the last row of dA�1.

We call the tuple (v, u, d) 2 (Zn⇥1,Z1⇥n,Z>0) the specialized outer product adjoint
(sopa) of A. Note that the total size of the sopa is only O(n(log n + log ||A||)) bits, or
about the same as required to write down the input matrix A.

Next we give a concrete example of a sopa.

18

Example 2. The sopa for the example matrix A in (4.2) is given by d together with the
row vector

u =
⇥
2348172 �1890637 �31054436 11159186 28315901

⇤

and column vector

v =

2

66664

�118556465
�237549876
�649715522
�48308716

1

3

77775
.

Indeed, we have

vu mod d =

2

66664

12806982 9064115 �46174901 5196584 34641287
�845433 �3779058 85932579 �18399891 �70484628
�15764220 �6453838 78729043 �4646392 �67730059
�3485052 1369978 7994951 432715 500092
2348172 �1890637 �31054436 11159186 28315901

3

77775

where the mod operation reduced integers in the symmetric range modulo d. For this exam-
ple vu mod d is actually equal to dA�1, but this might not always be the case. In general,
though, we always have

dA�1 = (vu mod d) + Ed

for an integer matrix E. (In this example E is the zero matrix.) If A is well conditioned
then E will have very small entries and can be computed e�ciently using using p-adic lifting
or Chinese remaindering. However, our motivation here is not to compute the adjoint of
A but to apply the sopa to solve linear systems.

The rest of this chapter is organized as follows. In Section 4.1 we show how to use the
sopa for A to solve a nonsingular system Ax = b for x in nearly optimal time, provided
that A is well conditioned. Our algorithm in the subsequent chapter will requires the sopa
for the principal k ⇥ k submatrices of an input matrix for k = 1, 2, 3, . . . in succession. In
Section 4.2 we show how to compute the sopa for stage k + 1 given the sopa for stage k.

4.1 Nonsingular Linear System Solving

The nonsingular linear system solving problem takes as input a nonsingular matrix A 2
Zn⇥n, together with a column vector b 2 Zn⇥1, and asks for the solution vector A�1b 2

19

Qn⇥1. If an associate d of detA is known, the problem can be simplified somewhat by
solving for A�1(db), which will be integeral. Actually, we will prefer to rewrite

A�1(db) = (dA�1)b

since we are going to assume here that A has a generic Hermite form, and that we have
on hand the sopa (v, u, d) 2 (Zn⇥1,Z1⇥n,Z>0) for A. Exploiting the fact that dA�1 ⌘
vu mod d, computing (dA�1)b now has three steps:

1. Compute

s := vub mod d =

2

6664

v1
v2
...
vn

3

7775
⇥
u1 u2 · · · un

⇤

2

6664

b1
b2
...
bn

3

7775
mod d

with entries in s reduced modulo d in the symmetric range. Obviously, the dot
product of u and b should be computed first!

2. Compute r := b� As(1/d) 2 Zn⇥1.

3. Compute e := A�1r 2 Zn⇥1 using some other method such as p-adic lifting or Chinese
remaindering.

We claim that the solution vector is then (dA�1)b = s+ed. To understand the construction
consider step 2. Since (dA�1) ⌘ vu mod d we know that (dA�1)b = s+ ed for some integer
vector e 2 Zn⇥1. Solving for e yields the formula for the residue r. It turns out that
||r|| will always be small. In particular, since s has entries reduced modulo d, we have
||s(1/d)|| < 1, and

||r|| = ||b� As(1/d)||
 ||b||+ ||A||1,

(4.6)

where ||A||1 = max1in

Pn
j=1 |aij|. Thus, r can be computed modulo an integer q that is

relatively prime to d and satisfies q � 2(||b||+ ||A||1) + 1. In step 3, since a large part of
the solution vector has been recovered in step 1, e is expected to have small entries. The
method is best illustrated with an example.

20

Example 3. Let A 2 Z5⇥5 be the example matrix from (4.2). Let

b :=

2

66666664

�4
5

�91
�44
�38

3

77777775

2 Z5⇥1.

Step 1 computes

s = vub mod d

=

2

66666664

�118556465
�237549876
�649715522
�48308716

1

3

77777775

⇥
2348172 �1890637 �31054436 11159186 28315901

⇤

2

66666664

�4
5

�91
�44
�38

3

77777775

mod d

=

2

66666664

�118556465
�237549876
�649715522
�48308716

1

3

77777775

351789508 mod 888309873

=

2

66666664

�13939583
94182186

86177632

143516474

351789508

3

77777775

mod 888309873

Step 1 thus consists of producing the scalar equal to the dot product of u and b, and then mul-
tiplying the vector v by this scalar, working modulo d throughout. Assuming pseudo-linear
intreger arithemtic, the cost of step 1 is thus nearly optimal, that is, within a polylogarith-
mic factor of the space required to represent an n-dimensional vector filled with integers
reduced modulo d.

21

To perform step 2 e�ciently we choose a modulus q that is relatively prime to d and
large enough to capture entries in r in the symmetric range modulo q. In this example we
can choose q = 1009. Then we first reduce entries in s(1/d) modulo q before performing
the matrix vector product:

r = b� As(1/d)

=

2

66666664

�4
5

�91
�44
�38

3

77777775

�

2

66664

38 63 �12 �21 82
91 �26 45 90 �70
�1 30 �14 80 41
63 10 60 19 91
�23 22 �35 88 29

3

77775

2

66664

�13939583
94182186
86177632
143516474
351789508

3

77775
1

888309873

⌘

2

66664

�4
5
�91
�44
�38

3

77775
�

2

66664

38 63 �12 �21 82
91 �26 45 90 �70
�1 30 �14 80 41
63 10 60 19 91
�23 22 �35 88 29

3

77775

2

66664

361
152
230
231
166

3

77775
mod 1009

⌘

2

66664

�38
18
�122
�89
�63

3

77775
mod 1009

Finally, step 3 uses either Chinese remaindering or p-adic lifting to compute the solution
e to Ae = r. We obtain

e =

2

66666664

3

�5
�5
�1
1

3

77777775

.

22

The system solution (dA�1)b is then obtained as

(dA�1)b = s+ ed =

2

66666664

�13939583
94182186

86177632

143516474

351789508

3

77777775

+

2

66666664

3

�5
�5
�1
1

3

77777775

888309873 =

2

66666664

2650990036

�4347367179
�4355371733
�744793399
1240099381

3

77777775

.

4.2 Updating the SOPA

Suppose that we have the sopa (v, u, d) 2 (Zn⇥1,Z1⇥n,Z>0) for an A 2 Zn⇥n that has a
generic Hermite form. Suppose further that A is the principal n⇥ n submatrix of

Ā :=

A b
c a

�
2 Z(n+1)⇥(n+1).

Under the assumption that Ā also has a generic Hermite form, we show how to compute
the sopa for Ā.

Recall that, by definition, the components v 2 Zn⇥1 and d 2 Z>0 of the sopa of A define
the Hermite form of A, and vice versa. In particular, if

v =

�h
1

�
2 Zn⇥1

then the Hermite basis of A is

H =

In�1 h

d

�
.

We also know that u 2 Z1⇥n is the last row of dA�1. These observations apply also to the
sopa of Ā. Thus, computing the sopa of Ā boils down to the following computations.

1. Compute the Hermite form H̄ of Ā.

2. Compute the last row of eĀ�1 where e = | det Ā|, the last diagonal entry of H̄.

23

For step 1 we first apply to the first n rows of Ā the unimodular matrix which transforms
A to Hermite form. This gives the left equivalent matrix

H (1/d)H(dA�1)b
c a

�
2 Z(n+1)⇥(n+1)

which has the shape 2

4
In�1 h ⇤

d ⇤
⇤1 ⇤2 ⇤

3

5 2 Z(n+1)⇥(n+1). (4.7)

where
c =

⇥
⇤1 ⇤2

⇤
.

The main cost of computing (4.7) is to compute (dA�1)b; this is done using the sopa of A
as described in the previous section. Matrix (4.7) can now be transformed to Hermite form
by using In�1 to zero out ⇤1, and then performing some additional operations on only the
last two columns. The cost of transforming (4.7) to Hermite form is thus O(n) operations
on integers bounded in length by O(n(log n+ log ||Ā||)) bits.

For step 2, note that the last row of eĀ�1 is given by

⇥
�c(dA�1) d

⇤
2 Z1⇥(n+1).

The computation of c(dA�1) can also make use of the sopa of A.

24

Chapter 5

Conclusions

We begin by giving an overview of the complete Hermite form algorithm.

Let A 2 Zn⇥m be a full column rank input matrix. Assume that we have already used
the lattice compression technique described in Section 3.2 so that, with high probability,
the Hermite basis of the principal (k + `)⇥ k matrix of A is the Hermite basis of the first
k columns of A, for k = 1, 2, . . . ,m.

At the start of stage k we have the preconditioned input

Ak = Ck�1 · · ·C2C1AH
�1
1 H�1

2 · · ·H�1
k

which can be written as a block decomposition as

Ak =

B b · · ·
F f · · ·

�
2 Zn⇥m

were B is k ⇥ k and b 2 Zk⇥1. We also have the Hermite basis of B which has the shape

Ik�1 h

d

�
2 Zk⇥k.

Finally, we also have the sopa for B.

To get to stage k + 1 we proceed as follows. First, use the sopa based linear solving
algorithm described in Section 4.1 to compute the last column of the matrix

Ik�1 h h̄

d d̄

�
2 Zk⇥(k+1)

25

which is left equivalent to ⇥
B b

⇤
2 Zk⇥(k+1).

If we decompose
F =

⇥
F̄ f̄

⇤

where f̄ 2 Zk⇥1, then we know the matrix
2

64
Ik�1 h h̄ · · ·

d d̄ · · ·
F̄ f̄ f · · ·

3

75 2 Zn⇥m

is left equivalent to Ak. Use Ik�1 to zero out the first ` rows of F̄ to obtain the left
equivalent matrix 2

666666666664

Ik�1 h h̄ · · ·
d d̄ · · ·
a ā · · ·
b1 b̄1 · · ·
...

... · · ·
b` b̄` · · ·

⇤ ⇤ ⇤ · · ·

3

777777777775

2 Zn⇥m. (5.1)

The remainder of the computation from stage k to stage k + 1 can proceed using only the
principal (k + `+ 1)⇥ (k + 1) submatrices of Ak and the matrix in (5.1). A failure of the
lattice conditioning is detected by noticing that Ak+1 = CkAkH

�1
k+1 is not integral.

We have implemented the algorithm just described in in Maple. We o↵er here some
timings compared to Maple’s implementation of Hermite form, where � means there is no
return in limited time.

And also, we observe that

• when n is doubled from 250 to 500, the running time grows by about 4.77 times.

• when n is doubled from 500 to 1000, the running time grows by about 7.25 times;

• when n is doubled from 1000 to 2000, the running time grows by about 9.70 times.

Empirically, the running time is proportional to O(nm2) operations on integers bounded
in bitlength by O(n(log n+ log ||A||)) bits.

26

n New Maple
100 0.973 1.619
250 3.315 25.727
500 15.818 586.924
1000 114.689 �
2000 1111.973 �
5000 26569.598 �

Table 5.1: Time in seconds for new algorithm and LinearAlgebra[Hermite] in Maple 16

27

References

Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on integer ma-
trices. In M. Kauers, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’05, pages 92–99. ACM Press, New York, 2005.

T-W. J. Chou and G. E. Collins. Algorithms for the solutions of systems of linear dio-
phantine equations. SIAM Journal of Computing, 11:687–708, 1982.

P. D. Domich. Residual Methods for Computing Hermite and Smith Normal Forms. PhD
thesis, School of Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY, 1985.

P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form computation using
modulo determinant arithmetic. Mathematics of Operations Research, 12(1):50–59, 1987.

J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computation of
class groups. J. Amer. Math. Soc., 2:837–850, 1989.

Ming S. Hung. An application of the hermite normal form in integer programming. Lin-
ear Algebra and its Applications, page 163179, 1990. doi: https://doi.org/10.1016/
0024-3795(90)90228-5.

C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canonical
structure of finite abelian groups and the Hermite and Smith normal forms of an integer
matrix. SIAM Journal of Computing, 18(4):658–669, 1989.

R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Her-
mite normal forms of and integer matrix. SIAM Journal of Computing, 8(4):499–507,
November 1979.

Daniele Micciancio. Improving lattice based cryptosystems using the hermite normal form.
Cryptography and Lattices Conference 2001, 2001. doi: 10.1007/3-540-44670-2 11.

28

C. Pauderis and A. Storjohann. Deterministic unimodularity certification. In J. van der
Hoeven and M. van Hoeij, editors, Proc. Int’l. Symp. on Symbolic and Algebraic Com-
putation: ISSAC’12, pages 281–288. ACM Press, New York, 2012.

A. Storjohann. A fast, practical and deterministic algorithm for triangularizing integer
matrices. Technical Report 255, Departement Informatik, ETH Zürich, December 1996.

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute
of Technology, ETH–Zurich, 2000.

A. Storjohann. The modulo extended gcd problem and space e�cient algorithms for integer
matrix computations, 2003. Submitted.

A. Storjohann. On the complexity of inverting integer and polynomial matrices. Compu-
tational Complexity, 2010. Accepted for publication.

A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal forms
of integer matrices. In Y. N. Lakshman, editor, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’96, pages 259–266. ACM Press, New York, 1996.

29

	Introduction
	Hermite Form via Gaussian Elimination
	An On-line Variation

	Our Refinement of the Algorithm
	Factoring out the Hermite basis
	Utilizing Lattice Compression

	The Specialized Outer Product Adjoint with Applications
	Nonsingular Linear System Solving
	Updating the SOPA

	Conclusions
	References

