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Abstract

We investigate an optimization formulation using nonlinear least squares with regular-
ization terms to ensure accuracy and stability in the local volatility model calibrating for
option prices. By controlling regularization parameters in our objective function, we can
balance calibrating errors and model complexity. In this investigation our local volatility
function is represented by a radial basis function kernel. The radial basis function kernel is
sufficiently complex to calibrate local volatility function correctly. However, its complexity
may greatly reduce the stability of the model. Therefore, we wish the coefficient vector of
the radial basis function kernel is sparse and the radial basis functions are simple. If so, the
model can be greatly simplified, which can ensure the stability of the model. Therefore,
we use regularization terms to reach this purpose. The model accuracy is controlled by
the nonlinear least squares, while the model complexity is controlled by the regularization
terms. We will evaluate the performance of our model based on S&P 500 market index
option data. In detail, we illustrate the accuracy through the relative errors between the
calibrated option prices and the given option prices, and the stability through calibrating
the local volatility function by two sets of market option data on close dates. In addition,
we demonstrate that the calibrated local volatility surface is similar to the observed implied
volatility surface.
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Chapter 1

Introduction

For model calibration problems in derivatives markets, traders usually evaluate the model
validation from two aspects: accuracy and stability of the model. According to the Ock-
ham’s razor, accuracy requires that the model calibration should be complex enough to
match all the given market data, however, unfortunately stability requires the model as
simple as possible. Therefore how to balance the accuracy and stability of the model is a
significant and interesting topic in finance.

Among all financial models, local volatility function (LVF) model, without a doubt,
plays an important role for option pricing. To describe the local volatility function model,
we need to introduce the well-known Black-Scholes model (Black and Scholes, 1973). The
Black-Scholes model can be described as

ds,
b (r —q)dt + odZ, (1.1)
Si
where S; is the stock price at time ¢, r is the risk free interest rate, ¢ is a constant continuous
dividend rate and o is a constant volatility. Here Z; is a standard Brownian motion.

We can easily observe that the Black-Scholes (B-S) model is simple, which indicates
it should be very stable. However, in fact the volatility in real market is more complex.
Therefore, traders often use implied volatility to represent the constant volatility in B-S
model. Thus in order to evaluate the option, traders generally offer the implied volatility
instead of the actual option price. From this, we can see the implied volatility is a very
important standard.

The local volatility function model is just a simple extension to the B-S model. The



general form of a local volatility model is described as follows:

%St = (r —q)dt + o(S, t)dZ; (1.2)
t

where the local volatility function o just depends on the underlying price S; and time t.
The model is attractive because there is only one random term in the model. Because
of this, in a local volatility function model, option risk can be completely eliminated by
setting some conditions including no arbitrage, continuous trading and no transaction cost.
Therefore, we can get the famous Black-Scholes partial differential equation (PDE):

o 1, 0%V oV

— 4+ —0%(5,1)S* — —q)S—=—=—rV =0 1.3
0SS e+ (r— )S e — (13)
From the PDE, we can easily see that the option value V just depends on the stock price S
and the time ¢t. By solving the PDE, traders can price options based on the local volatility

function model.

Due to advantages mentioned above, the local volatility function model has been exten-
sively investigated. Some practical and interesting local volatility functions have been put
forward. In [7], the local volatility function is represented by a cubic spline with a fixed
number of spline knots and end conditions. But this model may lack stability and have
unrealistic oscillations. In [8], the local volatility function is represented by a kernel spline.
The objective function is a regularized optimization formulation, where the regularization
term is the 1-norm of the coefficient vector for a kernel spline. Through minimizing the
1-norm of the coefficient vector, they can reach the purpose of minimizing the number of
support vectors, which in general leads to good performance for the calibrating. Unfor-
tunately this process is difficult to automate and the performance of the local volatility
function are quite dependent on the training region. Because for the kernel spline, the
training points have to be select manually and the calibration accuracy can be kept only
for the region close to the training points.

In this study, we use a radial basis function kernel to represent the unknown local
volatility function. The radial basis function kernel is complex enough to represent most
functions correctly. Due to its complexity, the radial basis function kernel may lack stability
for model calibrating. In the context of radial basis function calibrating, we require the
cocfficient vector of the radial basis function kernel to be positive. Morcover, the radial
basis function kernel can be greatly simplified by minimizing the 1-norm of the coefficient
vector and making the radial basis functions constant as much as possible. Therefore, the
complexity of the model is controlled by two regularization parameters based on the above
perspectives.



Chapter 2

Optimization Formulation

2.1 Local Volatility Function

For a fixed pair of strike K and maturity T, we can get the corresponding initial European
option value through solving the PDE (1.3), where we assume the initial underlying price
So at time t = 0 is given. Let VO(K,T) denote the initial European option value, which
only depends on the strike K and maturity 7. It can be shown that the initial option price
VO(K,T) satisfies the dual Black-Schloes equation:

ove 1 0?Ve

ov?o
252 2 _ A 0 _
57 ~ 3° (K, T)K RN + (r q)KaK +qV' =0 (2.1)

where o(K,T) is the corresponding local volatility. See details in [1] and [10].

By changing the form of (2.1), we get the following form (2.2):

avo 0 ovo
S +qVP+ (r—q) KS5=
o} (K, T) =22 P 0K

OK?
The local volatility can be uniquely determined by the initial option price function VO(K, T),
when the right hand side of the formula is always nonnegative.

(2.2)

However, the market provides option prices only for a limited finite set of strikes and
maturities. Assume that m initial market option price {Vjo}_,jm:1 corresponding to strike
and maturity pairs {K;,T;},j = 1,...,m. are provided. Thus the problem changes into
calibrating a stable local volatility function o(S;,t) such that the calibrated option prices
match all the given market data.



In the context of support vector learning, radial basis function kernel is sufficiently
complex that it can have a good performance to approximate any given function. Therefore,
we use the RBF kernel in (2.3) as our local volatility function:

T (K5, T3

o(K,T) = Zaje ; (2.3)
=1

We can rewrite the local volatility as a function of underlying price S an t, which is shown
in (2.4)
m s — (K, T3
o(S,t) = aje g (2.4)

j=1

2.2 Finite Difference Method

There are several methods to price the initial option values, of which solving the B-S PDE
using finite difference method is obviously an easy and efficient method. The key technique
is using finite difference method to get an approximation for all differential terms such as
%—‘;, ngZ and g—‘g. To this end, we have to define a finite difference grid. For S, we define
Si,1 =1, .., k. which means different stock values and AS; = S;.1—S;,i =1,...,k—1.. For
t, we define the time step At = ¢! —¢",

Therefore, we can get the following finite difference approximations to terms in the B-S
PDE:

(-

ot ), At
gooan VSR veeve, (2.5)
O°V\"  Tas AS, .
052 /. - AS;+AS;
T 2
For 2%
as’

av\" Vi, -V
89S ), ~ AS,+AS_,

2.6
VN Vi~V (2:6)
as ) AS;



where the first row is the central form and the second row is the forward form. Substituting
all the discrete approximations into the B-S PDE, we get the following scheme after some
algebra calculations:

The values of a; and b; depend on the choice of central, forward.

For the central form:

Y o252 B 7S
(S = Sit)(Sip1 — Sic1) S — Sia
5 o2 (2.8)
b — o Sz . TS@
‘ (Si1 — Si)(Siy1 — Sic1)  Sig1 — Sica
For the forward form:
0?52
a; =
(Si = Si—1)(Sig1 — Siz1) 2.9
025? rS; (2.9)
bi = - + :

(Sit1 — Si)(Sig1 — Siz1)  Sig1 — S

For the central form, the convergence rate is O(AS?), while for the forward form, the
convergence rate is O(AS). In order to make the scheme accurate, we should use central
form as much as possible. But sometimes when we use central form, it may lead to an
unstable scheme. Having all coefficients positive is the precise mathematical requirement
for a reasonable discretization for a hyperbolic problem. Luckily for the forward form, we
can guarantee the positivity of the corresponding coefficients. Therefore, our technique
implement is described as follows:

e For each time-step, we should calculate the coefficients of our scheme using central
form.

e If all the coefficients are positive, we will choose the central form. If not, we will use
the forward form.

Applying the scheme (2.7), we can get the initial option value. This method is called
an explicit method. But the explicit method has a global truncated error O(At). In order



to increase the stability of our finite difference method, we will refer to some more complex
schemes. Firstly, we will introduce the fully implicit method, whose scheme is shown as:

VI =V At (VI = V) + oV = V) = eV (2.10)
Unfortunately the fully implicit method has the same time truncated error as explicit
method O(At). However, by combining explicit method and fully implicit method, the
Crank-Nicolson (C-N) method has a better time truncated error O(At?). The Crank-
Nicolson uses the following scheme:

: At , : , , ,
Vi’H_l :‘/in + T[GZ(‘/;T,IJ - V;n—&-l) + bz(‘/;i-%-l o Vn—i—l) . T“/Z-”—H}

At
£ SV = V) + (Vi = V) =)

(2.11)

The values of a; and b; are the same as the above definition.

However, in practice, we do not use C-N method directly, because unreasonable oscil-
lations may occur in delta (Vg) and gamma (Vsg) . In order to keep delta and gamma
smooth and 2nd order convergence, we will refer to the C-N Rannacher method, which
requires taking two fully implicit timesteps and then using C-N timesteps after each rough
initial state. See details in [11].

2.3 The Objective Function

In this section, we will propose a regularized optimization formulation for optimization
calibration. We have defined the local volatility function (2.4). Through the finite difference
method, we can get the initial option price Vj(a,b) corresponding to the pair of the strike
price K; and maturity 7; based on the local volatility function (2.4), where a and b are
vector forms of a; and b;. Suppose the initial market option price Vj corresponding to
strike and maturity pair {K;,T;} has been given by the market. Therefore, we can easily
get an unconstrained nonlinear least square problem through our calibrated option prices
and the given market prices:

min ||V (a, b) — V|3 (2.12)

where V(a,b) and V are the vector forms of Vj(a,b) and V;. Since volatility should be
nonnegative, we require the coefficient vector a of the radial basis function kernel to be
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nonnegative. Furthermore, in order to control the complexity of the model, we need to
minimize the 1-norm of the coefficient vector ¢ and make radial basis functions as simple
as possible. Since b; is the width of the corresponding radial basis function, we can get
b; > 0. Therefore, we can just treat it as nonnegative. We want all the b; to be as large as
possible, since as b; — 4-00 the corresponding radial basis function is close to constant 1.
Combining all the requirements mentioned above, we get the final objective function with
regularization parameters:

a>0,b>0

min [[V(a,b) = V|3 = XD log(b;) + A Y _ a; (2.13)
j=1 Jj=1

where A\, and )\, are two regularization parameters.



Chapter 3

Computational Examples

3.1 Solving the regularized optimization problem

To solve the optimization problem (2.13), we use the Matlab built-in function fmincon.
To apply fmincon, the gradient of the objective function must be given. In addition,
the Hessian matrix of the objective function can greatly speed up the convergence of the
optimization problem. But the new problem is that the cost of computing the Hessian
matrix is too much. In order to solve this problem, we can use a good approximation to
the Hessian and the cost of calculating the approximation can be accepted relatively.

For the regularization terms, we can easily calculate the corresponding gradient and
Hessian matrix. So the key point is how to calculate the gradient and approximate the
Hessian matrix of ||V (a,b) — V||3.

Firstly, we need to define some formulas to simplify our mathematical expression.
F(z)=V(a,b) -V

©)=Vien -V -

flx) =1[V(a,b) = Vi3

where x = [a, b] (z is the vector form of a and b). Through some mathematical manipula-
tion, we can get the gradient of f(z) is

Vf(z)=2J(z) F(x) (3.2)

where J(z) is the Jacobian matrix of F'(z). The Hessian matrix of f(z) is

2J(z) " J(z) + 2 Z V2E,(z)Fy(z) (3.3)
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where F}(z) is the ith entry of F(z), and V2F;(z) is the Hessian matrix of Fj(z). Since all
the terms F;(x) are likely small in magnitude when z is close to s minimizer, we can just
use the following simple form to approximate the Hessian matrix of f(x):

V2f(x) = 2J(x)" () (3.4)

The default algorithm for fmincon function is trust-region-reflective, which is an interior
point trust region method for bound constrained problems. See details in [5] and [0].

3.2 Computing a good starting point

The optimization problem (2.13) is nonconvex. For any given starting point, we can find
a local minimizer through optimization process, but it is hard to determine whether it is a
global minimizer or it is sufficiently close to the global minimizer. Therefore, a good choice
of the starting point ay and by can increase the probability of finding the global minimizer
and speed up the convergence rate of the method. In addition, the computational cost of
the optimization algorithm can be greatly reduced with a good starting point. In local
volatility calibration, it is reasonable to determine the value of a and b such that the
corresponding volatility surface given by a and b is close to the observed implied volatility
surface as much as possible.

We assume that m implied volatilities {7;}™, corresponding to the pairs of strike and
maturity {(K;, T;)} are given by the market data. Combing our local volatility function
(2.3), it is reasonable to determine an initial point by solving the following nonlinear least
squares problem (3.5):

m m LT = TR 2
. b2 —
min a;e J — T 3.5
Join O a ) —Ti (3.5)

i=1 \ j=1

However, this problem is almost as complex as our proposed optimization problem.
Here I give two simple ways to get a good approximation for the starting point.

The first way: in order to make our model stable, the value of b; should be as large
as possible. So if we substitute some large values for b;, our optimization problem can be
simplified into the following bounded least square problem:

m m RIEDRCIEN 2
min (> aje ) ) — 0y (3.6)
1\ j=1

a>0 4
1=



where b is a constant vector with sufficient large positive numbers,e.g. b; = 100.

The second way is similar to the first in spirit. If b is a sufficient large positive vector,
the coefficient matrix for the above optimization problem is close to the matrix whose
entries are all 1. The solution for this problem is just that the sum of a; equals to the
average of all 7;. If we require all a; are equivalent, we can easily get all the values of a;.

3.3 Calibration from S&P 500 index option data

In order to check how our calibration approach performs with the real market data, we
implement the local volatility model using the S&P 500 market option data. I use the
same data sets in [1] [7] and [3]. Table 3.1 represents implied volatilities one day in Oct
1995. On that day, the corresponding S&P 500 index value Sy=$590, interest rate r=6%,
and dividend rate q=2.62%. The corresponding European call option prices are listed in
Table 3.2.

Maturity\Strike  85%  90%  95% 100% 105% 110% 115% 120%

0.695 0.172 0.157 0.144 0.133 0.118 0.104 0.100 0.101
1 0.171 0.159 0.150 0.138 0.128 0.115 0.107 0.103
1.5 0.169 0.160 0.151 0.142 0.133 0.124 0.119 0.113

Table 3.1: Implied volatility for Oct 95 S&P 500 index options with strikes in % of the
spot price.

Maturity\Strike  85%  90%  95% 100% 105% 110% 115% 120%

0.695 101.9 76.26 52.76 32.75 16.47 6.02 193 0.62
1 108  83.6 61.50 41.57 2541 1275 5.5 2.13
1.5 1172 9437 73.14 5397 3733 23.68 143 7.65

Table 3.2: European call prices on Oct 95 S&P 500 index options with strikes in % of the
spot price.

Figure 3.1 shows the observed implied volatility surface given by Table 3.1 :

Firstly, we should calculate the starting point to analyze our problem: we choose 100
as the values of all b;. By those two ways introduced in Section 3.2, we can calculate
the corresponding a; for each way based on Table 3.1. In order to determine the better
starting point, we test the performance of these two starting points based on Case 1.

10



Imphad wekality

Figure 3.1: Implied volatility for S&P 500 index option market data on Oct 1995.

Using fmincon function, after each iteration, the change of the objective function value is
decreasing. Therefore, through balancing the optimization cost and the accuracy of the
optimizer, we require that it just takes 30 iterations to get the solution. For the first
starting point, the initial objective function value is 59.7967, but after 30 iterations, the
objective function value decreases to 4.7706. While for the second starting point, the
initial objective function value is 1444.68, but after 30 iterations, the objective function
value decreases to 4.34125. Moreover, the second way is easier. Both of these suggest that
the second starting point is a better choice for this case.

Through extensive testing, the starting points given by these two ways perform sim-
ilarly. Due to the simplicity of the second way, we calculate our starting point by that
way.

Next, we investigate the influence of A\, and A, on calibrating. In order to check how

the calibrated local volatility surface performs with different A\, and ), , we choose the
value of A\, and A, in the 4 x 4 grids, described in Table 3.3.

Valueof A\, and \y, X, =01 X,=1 X, =10 X,=100

A, =0.1 Casel Case2 Case3 Case 4
A =1 Case b5 Case6 Case7 Case 8
A = 10 Case 9 Case 10 Case 11 Case 12
Ay, = 100 Case 13 Case 14 Case 15 Case 16

Table 3.3: Cases for different choices of A\, and A,

Through our model and optimization process, we get the corresponding calibrated local
volatility surfaces. We graph them in Figure 3.2 and Figure 3.3.
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In spite of its simplicity and attractive properties, the local volatility function model
often meets some criticisms in the real derivatives markets. There are two main criticisms:
the first is the calibrated local volatility surface often have unreasonable oscillations, which
you can refer to [7], and the other one is the calibrated local volatility surface usually has
large changes for the options with a small maturity. The second phenomenon is reasonable.
For the options with a small maturity, its option value is nearly the payoff of the option,
so in order to change a small value for the option price, there must be a large change for
the implied volatility.

From Figure 3.2 and Figure 3.3, we observe that the local volatility surface is very
smooth for all the cases. With the value of A\, and )\, increasing, we can find the local
volatility surface is more flat and similar to the implied volatility surface in shape. However,
if we choose larger values for A\, and )\, , it will influence our model accuracy greatly. It
seems that the pair of A\, = 100 and )\, = 100 is an appropriate choice here, and we will
use these two values in the following calibrations.

In order to check the accuracy of our model, we can use the relative price errors, which
is defined as W (in %). The relative price errors are shown in Table 3.4

Maturity\Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 -0.71 -0.09 147 4.04 1420 40.83 54.59 10.59
1 -091 -0.51 -0.37 1.10 238 9.77 1511  2.90
1.5 -1.21 -1.22 -1.23 -1.49 -221 -348 -10.62 -20.07

Table 3.4: Relative calibration error in % for S&P 500 index options on Oct 1995 for case
16

The calibration error for most option are within £5%. However, for some specific
options which are out-of-the money options, the errors are quite large, because these prices
are relatively smaller. Thus the contribution of the corresponding squared errors to the
objective function becomes relatively small. Thus if we choose larger weights on these
terms, the calibration errors for out-of-the money call options can be decreased. Basically
jump model has been suggested in finance to explain the error for out-of-the-money option.

Therefore we will investigate the calibration with individual weights. Seeing from Table
3.4, we observe that the range of error is from 0 to 60%. Therefore, we can change the
weights by setting the individual weights as (3.7)

14



40 error > 40%
20 20% < error < 40%
5 5% < error < 20%

otherwise

(3.7)

Therefore, we get the corresponding local volatility surface shown in Figure 3.4.

Case 16 Case 17

alibrated Local Yolatility Surface

Figure 3.4: Calibrated local volatility for S&P 500 index option market data on Oct 1995
for case 16. Left plot is for uniform weights. Right plot is using individual weights

The corresponding relative price errors are shown in Table 3.5:

Maturity\Strike  85% 90% 95% 100% 105% 110% 115% 120%

0.695 -1.59 -191 -1.80 -1.28 5.87 2790 39.82 2.85
1 -2.08 -2.57 -3.62 -3.67 -4.02 158 640 -2.92
1.5 -2.62 -340 -434 -562 -7.30 -9.19 -15.85 -23.68

Table 3.5: Relative calibration error in % for S&P 500 index options on Oct 1995 with
individual weights

The calibrated local volatility for specific maturities are shown in Figure 3.9 .

Comparing Figure 3.4 with Figure 3.1, we can find the calibrated local volatility surface
using individual weights is higher for the out-of-the-money option than that using uniform
weights.

15
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Figure 3.5: Calibrated local volatility for S&P 500 index options on Oct 1995. The left
plot is using uniform weights. The right plot is using individual weights
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3.4 Stability of Proposed LVF Model

We investigate the stability of the local volatility function model from two perspectives:

e A stable calibrated LVF model should return model prices similar to market data
on nearby dates. Specifically, we calibrate a local volatility model on one particular
day and compare the calibrated implied volatility surface to observed market implied
volatility on nearby dates.

e A stable LVF model should yield similar local volatility surfaces for option data on
nearby dates.

Therefore, we consider two sets of S&P 500 options data from two close dates, March
2, 2004 and April 5, 2004 respectively. On March 2, 2004, the index value Sy = $1149.1,
while on April 5, 2004, the index value Sy = $1150.57. The other parameters for the two
options are the same: interest rate »r = 1% and dividend yield ¢ = 1.6%. Table 5 and
6 present the implied volatilities and the corresponding European call prices on March 2,
2004. Table 7 and 8 present the implied volatilities and the corresponding Kuropean call
prices on April 5, 2004. (Using the same data sets in [1] [7] and [%])

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.58 0.197 0.1872 0.1645 0.1588 0.1538 0.1398 0.1323 0.1257
0.84 0.194 0.1801 0.1709 0.1595 0.1576 0.1448 0.1344 0.1324
1.34 0.1976 0.1908 0.1782 0.1725 0.1649 0.1577 0.1503 0.1402

Table 3.6: Implied volatility for S&P 500 index options on March 2, 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.58 141 1204 81 65 509 26.9 12.7 5
0.84 148.7 1271 93 7™ 622 374 20 109
1.34 164.2 145.8 111.8 964 81 576 386 23

Table 3.7: European call prices for S&P 500 index options on March 2, 2004

We use the data given by the Table 3.8 and Table 3.6 to get the corresponding observed
implied volatility surfaces in Figure 3.6.
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Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.5 0.1952 0.1852 0.1597 0.1582 0.1471 0.1305 0.1228 0.1164
1 0.201 0.1936 0.1797 0.1689 0.1628 0.152 0.1473 0.1394
1.25 0.2097 0.196 0.1894 0.1785 0.1776 0.1673 0.1584 0.1511

Table 3.8: Implied volatility for S&P 500 index options on April 5, 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.5 1389 1179 772 622 46 21.7 88 28
1 157.1 138.1 103 8.2 70.6 459 29.2 16.3
1.25 167.7 146.4 115.2 973 853 60.2 40.3 25.6

Table 3.9: European call prices for S&P 500 index options on April 5, 2004
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Figure 3.6: Implied volatility for S&P 500 index option market data. Left plot is for market
option data on March 2, 2004. Right plot is for market option data on April 5, 2004.
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3.4.1 The first perspective of stability

In order to check the first perspective, we calibrate our local volatility function model based
on the market data on March 2, 2004 as the process described in section 3.3. Then we
apply the calibrated local volatility function model directly to the market data on April
5, 2004 to evaluate the performance of our local volatility function model. In the process
of applying the calibrated LVF model to the market data on April 5, we need to care that
the variable ¢ is the exact time, not the relative time.

For the choices of A\, and \,, we can refer to the conclusion shown in section 3.3:
A = 100 and A, = 100.

Therefore we get the corresponding calibrated implied volatility surfaces shown in Fig-
ure 3.7.
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Figure 3.7: Calibrated implied volatility surface for S&P 500 index option market data.
Left plot is for market option data on March 2, 2004. Right plot is for market option data
on April 5, 2004.

The relative price errors for these two options are shown in Table 3.10 and 3.11.

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.58 -0.47 0.73 588 7.03 7.65 14.28 17.51 26.49
0.84 -1.09 154 232 596 438 7.69 12.78 4.69
1.34 -4.46 -3.85 -3.04 -3.06 -2.06 -5.50 -9.63 -9.57

Table 3.10: Relative price errors in % for S&P 500 index options on March 2, 2004.

From Figure 3.7 Table 3.10 and Table 17, we can observe that these two calibrated
implied volatility surface are quite similar and the relative price errors for the option data
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Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.5 0.11 134 7.69 7.17 1238 27.89 43.61 7594
1 -3.51 -298 -223 0.00 0.14 -036 -7.10 -9.77
1.25 -6.79 -482 -7.03 -549 -893 -12.56 -17.62 -24.21

Table 3.11: Relative price errors in % for S&P 500 index options on April 5, 2004.

on April 5, 2004 are almost small. Therefore, we can conclude that our calibrated local
volatility function model will yield similar implied volatility surface and relatively small
relative price errors when it is applied on the market data on nearby date, which perfectly
proves the first perspective of stability.

3.4.2 The second perspective of stability

Now we consider the second perspective of stability. We separately calibrate two local
volatility function models based on the two sets of market data on nearby dates (March 2,
2004 and April 5, 2004).

The relative price errors for these two options are shown in Table 3.12 and 3.13.

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.58 -0.47 0.73 588 7.03 7.65 14.28 17.51 26.49
0.84 -1.09 154 232 596 438 7.69 1278 4.69
1.34 -4.46 -3.85 -3.04 -3.06 -2.06 -5.50 -9.63 -9.57

Table 3.12: Relative price errors in % for S&P 500 index options on March 2, 2004.

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

0.5 1.94 3,53 10.13 9.22 13.88 30.11 58.58 129.74
1 -1.74 -0.86 040 284 317 458 381 11.57
1.25 -5.19 -2.80 -445 -258 -5.78 -7.63 -7.94 -7.84

Table 3.13: Relative price errors in % for S&P 500 index options on April 5, 2004.

Figure 3.8 presents the corresponding calibrated local volatility surfaces.
Figure 3.9 graphs the corresponding calibrated local volatility for specific time.

From Table 3.12 and Table 3.13, we can conclude both of the calibrated local volatility
function models are stable. From Figure 3.8 and Figure 3.9, we can observe that these two
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Figure 3.8: Calibrated local volatility surface for S&P 500 index option market data. Left
plot is based on market option data on March 2, 2004. Right plot is based on market
option data on April 5, 2004.

calibrated local volatility function models yield similar local volatility surfaces. Therefore,
we have illustrated the stability of our model from the second perspective. In addition,
comparing Figure 3.8 with Figure 3.6, we can see that these two calibrated volatility
surfaces are similar to the observed implied volatility surface.
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Figure 3.9: Calibrated local volatility for S&P 500 index options. The left plot is for the
option market data on March 2,2004. The right plot is for the option market data on April
5, 2004. Uniform weights are used.
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Chapter 4

Concluding Remarks

In this research, we investigate an optimization formulation using nonlinear least square
with regularization terms to ensure the accuracy and stability of the local volatility function
model calibrating for option prices. Our local volatility function is represented by the radial
basis function kernel. The complexity of our model is controlled by the minimizing the
1-norm of the coefficient vector of the radial basis function kernel and choosing sufficient
large kernel width parameters to make our radial basis function close to 1.

Based on preliminary computational results, we can make the following observations:

e The effect of regularization parameters A\, and )\, on the calibrated local volatility
function model. From Figure 3.2 and 3.3, we find the local volatility surface is most
flat for the case A\, = 100 and A\, = 100. However, if we choose larger values for
A, and )y , it will greatly influence our model calibrating accuracy. Therefore, we
should choose proper large values for A\, and )\, in order to ensure the stability of our
model.

e Choosing the starting point. Because our model is a nonconvex function, the ideal
starting point solved by the optimization problem (3.5) is as complex as our proposed
regularization optimization formulation. Therefore, we have put forward two easy
ways to get an approximation of the ideal starting point. Through testing, we find
that both of these two ways return good solutions. In order to save the cost, we will
choose the easier way to get the starting point.

e (Calibration errors. We observe that the calibration relative errors are mostly within
5%. For some out-of-the-money options, the errors are large; because these prices are
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relatively smaller which leads to the small contribution of the corresponding squared
errors to the objective function. If we choose larger weights on these options, the
calibration errors for out-of-the-money call option can be decreased. We can observe
this phenomenon in Table 3.5. And it can also be proved by Figure 3.4 that the
calibrated local volatility surface using individual weights is higher for the out-of-
the-money option than that using uniform weights..

Overall, we can conclude our calibrated local volatility model performs reasonably
well. The accuracy of our model calibration is demonstrated by the small relative errors
between the calibrated option price and the given option price. The stability of our model
calibration is demonstrated by the facts that the calibrated local volatility functions from
option data on close dates are similar and the calibrated local volatility function model
gives back quite similar calibrated local volatility surfaces on nearby date. In addition, we
can observe that the calibrated local volatility surface is similar to the observed implied
volatility surface.

In this paper, we do not choose any training point for our local volatility model. There-
fore, our calibrated LVF model seems to be accurate and stable only near the given pairs
of strike price and maturity.
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