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Abstract

This paper is concerned with the efficient computation of Jacobian matrices of nonlinear
vector maps using automatic differentiation (AD). Specificially, we propose the use of a
directed cutset method, weighted minimum cut, to exploit the structure of the computional
graph of the nonlinear system. This allows for the efficient determination of the Jacobian
matrix using AD software. We discuss the results of numerical experiments significant
practical potential of this approach.
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Chapter 1

Introduction

Many scientific and engineering computations require the repeated calculation of matrices

of derivatives. For example if F': R" +— R™ is a smooth differentiable mapping then many

nonlinear regression methods require the determination of the m x n Jacobian matrix,
fi(x)

i=1:m
J(z) = (g—:i) , evaluated at many iterates x € R", where F(x) = : . In a
17 j=1in

()

similar fashion the minimization of a sufficiently smooth nonlinear function, f : R" — R,
may require both the determination of the gradient, Vv f(x) = (%) and the n xn
v/ i=1ln

92 f
Ox;0x;

(symmetric) Hessian matrix, H(z) = ( )
i=1n,j=1n

The repeated calculation of these derivative matrices often represents a significant por-
tion of the overall computational cost of the process. Therefore there is notable value in
general methods and technology that yield derivate matrices accurately and efficiently.

Automatic differentiation (AD) is a field, intersecting computer science and applied
mathematics, that has advanced rapidly over the past 15 years [2]. AD can deliver ma-
trices of derivatives given a source code to evaluate the function F' (or in the case of
minimization, the objective function f). Good methods that exploit sparsity, constant
values, or duplicate values, have also been developed [3]. In addition, if the objective
function exhibits certain kinds of structures, and this structure is conveniently noted in
the expression of the objective function, then the efficiency of the automatic differentiation
process can be greatly enhanced [2, 1, 5, 9, 10, 11, 11].

This paper is concerned with the case where the problem structure is not noted priori
and automatic differentiation may subsequently be regarded as too costly either in time



or space. For example, consider the automatic differentiation of the gradient function

ox;

function f(z). Tt is well-known that the reverse-mode of automatic differentiation can
be applied to yield the gradient, accurately, in time proportional to the time required to
evaluate the function itself. However, the space required to obtain this (theoretical) running
time is proportional to the total number of arithmetic operations required to evaluate f,
and this can mean that in practice (due to lack of sufficient fast memory), the realized
running time is considerably (sometimes dramatically) worse [1] than the theory predicts.
Other examples, involving the determination of a Newton step for a system of nonlinear
equations, are given in [5]. The solution to this space challenge proposed in [7] is to identify
and exploit the structure in the problem before applying automatic differentiation and then
apply AD in a structured way. This explicit ‘slice and dice’ approach is effective but does
require that the user understand and work with the prescribed notion of problem structure.
In this paper we discuss a more general, less intrusive, solution.

Vf(z)= (ﬂ) € R", given the source code to evaluate the scalar-valued objective
i=1mn

1.1 Automatic Differentiation and The Cutset

Let us consider a nonlinear mapping

F:R" = R"
fi(z)
where F () = : , and each component function f; : R™ — R! is differentiable. The
Jacobian matrix J(x) is the mxn matrix of first derivatives: J;; = STf(z =1,--- myj=1,---

Given the source code to evaluate F(z), automatic differentiation can be used to deter-
mine J(x). Generally, the work required to evaluate J(x) via a combination of the for-
ward and reverse modes of AD, and in the presence of sparsity in J(z), is propotional to
xB(GP(J)) - w(F) where xp is the bi-chromatic number of the double intersection graph
GP(J), and w(-) is the work required, (i.e., number of basic computational steps) to eval-
uate the argument -see [10]. We note that when reverse mode AD is invoked the space
required to compute the Jacobian is proportional to w(F'), and this can be prohibitively
large. If AD is restricted to forward mode then the space required is much less, i.e., it
is proportional to o(F'), the space required to evaluate F'(x), and typically w(F') > o(F);
however, forward mode alone can be much more costly than a combination of forward
and reverse modes. For example, reverse mode can calculate the gradient of differentiable



function f : R™ — R! in time proportional to w(F') whereas forward mode requires n - w( f)
operations. The following result formalizes the space and time requirements for the bi-
coloring AD method [10].

Lemma 1.1.1. Assume f; : R* — R! is differentiable and the Jacobian matriz J is com-
puted by the bi-coloring AD method [10]. If assume optimal coloring is found, then in
general,
w(J) = O(xB(GP(J)) - w(F) + |J|NNZ)} (1.1)
o(J) = OW(F) +[J|ynz) '

Proof. According to [10], a bi-coloring for J € R™*" corresponds to thin matrices V' €
R™ and W € R™W_  where J can be determined with work O(|.J|\y,) if WJ and
JV are given. We can obtain J in O(|J|yyz) because at least one none zero entry is
determined in one substitution, so at most |J|yy, substitutions are requred. Now consider
cost for calculating W7J and JV: The forward mode of AD allows for the computation
of product JV in time proportional to O(ty - w(F')), and similarly reverse mode allows for
the computation of product W7J in time proportional to O(ty -w(F)) [10]. If the optimal
coloring is found
XB(GD(J>> = tV + tw'

and then

w(lJ) = O((tv +tw) - w(F) +|J|xnz)

= O(xn(G"(J)) - w(F) + | |ynz)

The second equation in (1.1) is obviously true because the reverse mode of AD needs
O(w(F)) space [10] and J itself needs O(|J|xyng) SPace. O

The bi-coloring AD method does not guarantee to find optimal coloring, but heuristic
coloring methods determine ty-, ty aiming for (ty + tw) = xp(GP(J)). Therefore total
work for computing J in practise is given by (1.1).

Consider now the (directed) computational graph that represents the structure of the
program to evaluate F(x):
G(F) = (V. E) (1.2)

where V' consists of three sets of vertices. Specifically, V = {V,, V,, V. } where vertices in V,
represent the input variables; a vertex in V, represent both a basic or elementary operation
receiving one or two inputs, producing a single ouput variable and the output intermediate
variable; vertices in V, represent the output variables. So input variable x; corresponds
to vertex v,, € V,, intermediate variable y;, corresponds to vertex v, € V,, and output
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Figure 1.1: Head node and tail node of a given edge e

zj = [F(x)]; corresponds to vertex v,, € V.. Note that the number of vertices in V, i.e.,
|V,|, is the number of basic operations required to evaluate F'(x). Hence w(F) = |V,].

The edge set E represents the traffic pattern of the variables. For example, there is a
directed edge ex = (vy,,v,;) € E if intermediate variable y; is required by computational

node v, to produce intermediate variable y;. If ey = (v,,,v,,) € E is a directed edge from
vertex v, to vertex v, then we refer to vertex v, as the tail node of edge e, and vertex
vy, as the head node of edge e;. See Figure 1.1 for an illustration. It is clear that if /' is

well-defined then G(F) is an acyclic graph.
Example. F : R? — R3 is defined as:

_ (21‘?2 + x?)sinm-ﬁ-cosm (13)

sin(cos(sin 27t + x3) - (51 — 623))
e(1)
cos(sin 2% + z3) + (5w — 6x2) + (2272 + 25) + (sinz; + cos x5)

X2

Then F'’s computational graph is Fig. 1.2(a):

Definition 1.1.2. E.,;, € E is a directed cutset in directed graph G z'fé —{Eou} ={G1,Gy}
where G, Gy are disjoint and all edges in E.,; have the same orientation relative to Gy,
Go.

Example. One choice of a cut for F' defined by equation (1.3) is given in Fig. 1.2(b).

Suppose E.; C Ey is a cutset of the computational graph é(F ) with orientation
forward in time. Then the nonlinear function F'(z) can be broken into two parts:

(1.4)

solve for y: Fi(x,y) =0
solve for z: Fy(x,y) — 2z =10

where y is the vector of intermediate variables defined by the tail vertices of the edge
cutset Fe,, and z is the output vector, i.e., z = F'(z). Let p be the number of tail vertices

4
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(a) F’s computational graph G (b) An example of graph G’s directed cut

Figure 1.2: An example of computational graphs and a sample directed cut

of edge set E.y, i.e., y € RP. Note: |E.:| > p. The nonlinear function Fj is defined by
the computational graph above E.,, i.e., G1, and nonlinear function F; is defined by the
computational graph below E.., i.e., G5. See Figure 1.2(b). We note that the system (1.2)
can be differentiated wrt (z,y) to yield an ‘extended’ Jacobian matrix:

e

Since y is a well-defined unique output of function Fj : R" — R"*? (F}), is a p X p non-
singular matrix. The Jacobian of F'is the Schur-complement of (1.4), i.e

J(x) = (Fo)e — (Fo)y(F1), " (F1)a (1.6)

There are two important computational issues to note. The first is that the work to evaluate
Jg is often less than that required to evaluate J(z) directly. The second is that less space
is often required to calculate and save Jp relative to calculating and saving J directly
by AD (when the AD technique involves the use of “reverse mode” as in the bi-coloring
technique). Theorem 1.1.3 formalizes this.

Theorem 1.1.3. Assume the computational graph G is divided into two disjoint subgraphs
G4, Gy with the removal of directed cutset F., as described above. Let Jg be computed by



the bi-coloring technique [10]. Then assuming optimal graph coloring, in general,

w(Jp) = OWxs(GP[(F1)s, (F1)y]) - w(F1) + XB(GP[(F2)s, (F2)y)) - w(F2) + | TE| yyz)
o(Jp) O(max(o|(F1)e, (F1)y], o[(F2), (F2)y]) + | JE] ywz)
= O(max(w(F1), w(F2)) + [Jelynz)

(1.7)

Proof. According to (1 5), to determine Jp, we first determine [(F}), (F1),], and then
determine [(Fb), (Fb),]. By Lemma 1.1.1,

w(Jg) = O(xp(GP[(F1)e, (F1),]) - w(F1) + [[(F1)z, (F1)y)Innz
X B(GP[(Fa)a, (F2)y]) - w(F2) + [[(F2)s, (F2)y)Ivnz)
= O(&(GP[(F1)a, (F1)y]) - w(F1) + XB(GP[(F2)a, (F2)y)) - w(F2) + | JElnnz)

Now consider the space: To determine [(F}), (F1),], O(w(Fy)) is required for the
reverse mode of AD. Then when start to evaluate [(Fy), (Fb),], previous memory can
be clear and needs O(w(F3)) space for Fy’s reverse mode. Consider the whole progress,
total space requirement is the peak usage which is O(max(w(F}),w(F1))). Besides extra
O(|JE|nnz) space is needed for the restore results obtained, and hence

o(Jr) = O(max(w(F1),w(F1)) + |JelnNz)

0

We can compare (1.7) to (1.1) to contrast the time/space requirements of the cutset /bi-
coloring AD approach to obtain Jg versus the time/space requirements of the bi-coloring
AD method to obtain J. Specifically, and most importantly, the space requirement typically
decreases: (1.7, o(Jg)) indicates that the required space is about O(max(w(F}),w(F))),
since the term |Jp| 5 is usually dominated by the first, whereas determining .J directly by
bi-coloring takes space approximately proportional to O(w(F')), by (1.1). For example, if
the cutset divides G(F') into two equal-sized pieces Gy, G, then o(Jg) ~ w(F)/2 ~ o(J)/2;
that is, we have essentially halved the space requirements.

The computational cost, comparing (1.7,w(Jg)) to (1.1,w(J)) can either increase or
decrease. However, due to increased sparsity

X5(GP[(F)z, (F1)y)) < x5(GP(J))

xB(GP(FY)z, (F2)y)) < xB(GP(J)) (1.8)



and then

X5(GP[(Fr)as (F1)y]) - w(F1) + x5(GP[(Fo)e, (F2),]) - w(F2) < x5(GP) - (w(Fr) + w(F?))
= xs(GP)w(F)

(1.9)
and so in this case there is a no increase (and typically a reduction) in computational cost.
The upshot is that use of the cutset often results in cost savings both in time and in space
(when computing Jg rather than J).

We have shown above that it can be less expensive, in time and space, to compute
Jg(x) rather than J(x), using a combination of forward and reverse modes of automatic
differentiation. However, it is reasonable to ask: what is the utility of Jg(z)? The answer
is that Jg(z) can often be used directly to simulate the action of J and this computation
can often be less expensive (due to sparsity in Jg that is not present in J) than explicitly
forming and using J. For example, the Newton system ‘solve Js = —F" can be replaced

with
s 0
solve Jg [t] = [_F} (1.10)

the main points are that calculating matrix Jg can be less costly than calculating matrix
J, and solving (1.10) can also be relatively inexpensive given sparsity that can occur in Jg
that may not be present in J.

1.2 Automatic Differentiation and Multiple Cutsets

The ideas discussed above can be generalized to the case with multiple mutually indepen-

dent edge cutsets, Eeuty, - -« Eeut, € E’, where we assume G — {Eeyuty, -+, Eeut, } = {G1, -+, G}

The graphs G, -+ ,Ggyq are pairwise disjoint and are ordered such that when evaluating
F. G; can be fully evaluated before G; 1,1 =1:k

Suppose Eeyt,, -+, Eeut,, € E are pairwise disjoint cutsets of the computational graph
G(F') with orientation forward in time (as indicated above). Then the nonlinear function
F(x) can be broken into k + 1 parts:

)

solve for y; : Fi(x,y1) =0
solve for gy, Fy(z,y1,2) = 0
: : (1.11)
solve for y;, : Fr(x, 1, ) =0
solve for z : Fyyq(z,y1,- - 7yk)_Z:0)

7



where y; is the vector of intermediate variables defined by the tail vertices of the edge
cutset Egy,, fori =1,--+  k+ 1 and z is the output vector, i.e., z = F(z). Let p; be the
number of tail vertices of edge set .y, i.e. y; € RP". The nonlinear function F; is defined
by the computational graph to the left of E.y,, i.e., G;. We note that the system (1.11)
can be differentiated wrt (z,y) to yield an ‘extended’ Jacobian matrix:

[ (F1), (F1)y, 0 0 0 0 7
(FZ)x (FQ)y1 (F2>y2 0 0 0
) . . . . . . o
(B (F)y (B o o (B
L(Fri)e (Fer)yn (Frn)ye 0 o0 (Fhad)y,

We note that matrix Jg is a block lower-Hessenberg matrix; moreover, since all interme-
diate variables are well-defined for arbitrary input vectors it follows that the super-diagonal
blocks (F1)y,, (F2)y,, -, (Fk)y, are all non-singular; e.g., matrix (F5),, is a p; x p; non-
singular matrix where p; is the length of vector y;. The extended Jacobian matrix is of
dimension (m + S2F_ pi) x (n+ 325 pi).

In analogy to the 1-cut case, we argue below that the matrix Jg can often be calculated
more efficiently than the Jacobian of F(z), i.e., J(z). In addition, due to the increased
sparsity /structure in Jp, the Newton system ‘solve Js = —F’ can often be solved more
efficiently by solving

S 0
t 0

Jg | | = ) (1.13)
t -F

We note that again a Schur-complement computation can yield the Jacobian matrix .J



given the extended Jacobian Jg. Specifically, if we define:

A= [(Fl)my (FQ)xv T (Fk)m]T

(F1)y, 0 0 e 0
(F2>y1 (FQ)yz 0 T 0
B = (F3)y1 (F3)y2 (F3)y3 e 0
_(Fk)yl (Fk)yz (Fk)ys U (Fk)yk_
C= [Fk+1]1
D = [(Fet1)yrs (Fret1)yos (Fitt)yss 5 (Fr1) ]
then )
B
Jg = {C’ D] (1.14)
where B is nonsingular, and
J=C—-DB'A (1.15)

The space/time requirements for the multi-cutset case will be formalized in future work,
in analogy to the 1-cut case captured by Theorem 1.1.3.



Chapter 2

On Finding Cutsets to Increase
Efficiency in the Application of
Automatic Differentiation

In Section 1.1 we observed that if a small directed cut divides the computational graph G
into roughly two equal components GG; and G, then the space requirement are minimized
(roughly halved). Moreover, the required work, as indicated by equation (1.7), will not
increase, and due to inreasing sparsity, will likely decrease.

Therefore, our approach will be to seek a small directed cutset that will (roughly) bisect
the fundamental computational graph.

2.1 Weighted Minimum Cut

Our intial weighted min cut method is based on the Ford Fulkerson algorithm [0], a well
known max-flow/min-cut algorithm. Ford Fulkerson algorithm automatically finds the
minimum directed s —t cut. An s —1¢ cut is set of edges whose removal seperates specified
node s and node t, two arbitary nodes in the graph. Minimum cut means this cut has
smallest capacity among all possible cuts, where a cut’s capacity is defined to be sum of
all capacities of forward edges in it. See Figure 2.1 for an example of weighted min cut.
Numbers on edges are the flow and capacity. i.e. 1/7 means that egdes has flow 1 and
capacity 7. Notice the minimum cut has full flows on all its forward edges.

10



1/7

1/8 lL

4/6

3/3

The minimum s-t cut

Figure 2.1: An example of weighted min cut

If a capacity of ‘1’ is assigned to every edge, Ford Fulkerson will find the smallest
cutset. However, as mentioned above, instead of merely finding a minimum cut, we also
desire that the determined cut (roughtly) divide the fundamental computational graph in
half. To add this preference into the optimization, we assign different capacities to different
edges such that away-ends-edges, i.e., edges far away from input nodes and output nodes,
have smaller capacities, while near-ends-edges have bigger capacities. With this kind of
nonuniform distribution, a ‘small’ cut will likely be loacted towards the middle of the
fundamental computaional graph.

In practice we first calculate depth of edges. See Def. 2.1.1 for definition of an edge’s
depth. See Figure 2.2 for an example.

Definition 2.1.1. Depth of an edge is the length of shortest undirected path reaching a
input node or a output node starting from this edge.

Example. Figure 2.2 is depth of edges in F’s computational graph, where F' is defined
by equation (1.3).

Then define a decreasing function
fZt 7zt (2.1)

taking depth as inputs and gives capacities for each edge as outputs. Since capacities is
an evaluation of influence/importance of edges, we also call them weights. Notice weights
are restricted to be integers because Ford Fulkerson algorithm runs faster for integral edge
capacities. There are many choices of f. Which one to choose in fact depends on and

11
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Figure 2.2: Depth of edges in F’s (equation (1.3)) computational graph

performance of numerical experiments heuristics. f may even depend on the function
F :R" — R™. Currently find that quadratic weights give reasonable results. See Chapter
3 for numerical examples. Once weights are determined, Ford Fulkerson algorithm can be
applied and cutsets can be obtained.

Cost Analysis

For integral capacities, run time of Ford-Fulkerson is bounded by O(|E|f) [0] where |E| is
number of edges in the graph, f is the maximum flow. In computational graphs, equation
(2.1) is alawys a decreasing function so weights in the middle are smaller. Due to this special
distribution, usually there exists a cut in the middle with a small capacity, bounding f. In

practice, in most cases O(|F|f) is just a very loose upper bound and running time is more
like O(|E|).

Example. Use function defined in equation (4.1) to test. Notice that Fj gets more
complicated as k increases. The time used to evaluate Fj, and find cutsets is shown in
Figure 2.3.

12
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Figure 2.3: Performance of Ford Fulkerson algorithm on Fj

Multiple Cutsets

For now there is a simple construction of multiple cutsets finding scheme. Apply single cut-
set finding scheme recursively by doing the following: Always record size of all subgraphs.
Every time after a new cutset is found, apply the single cutset finding scheme again on the
biggest subgraph, until enough number of cutsets are generated.

13



Chapter 3

Experiments

In this chapter we provide computational results on some preliminary experiments to au-
tomatically reveal ‘AD-useful’ structure using the cutset idea. These initial experiments
are based on weighted min-cut algorithms where edge weights are chosen, in a very simple
preliminary way, to find cuts that bisect the fundamental computational graph.

In particular, we weigh the edges, based on the fundamental computational graph, as
follows:
W, = (mjax D., — D.,)* +1; (3.1)

where depth D, is calculated by Def. 2.1.1.

We use the AD-tool, ADMAT(Appendix B.1) to generate the computational graphs.
However, for efficiency reasons, ADMAT sometimes condenses fundamental computational
graph to produce a condensed computational graph. In a condensed computatonal graph
nodes may represent matrix operations such as matrix-multiplication. Therefore our
weighting heuristic must be adjusted to account for this. (Appendix B.3)

In our numerical experiments we focus on two types of structure that represent the two
shape extreme cases. Specially, we consider long thin computational graphs, and short fat
graphs.

3.1 Thin Computational Graphs

Usually a thin computational graph involves iterations where result in one iteration is used
as initial value in the next iteration.

14



Example. If define

T r3 - cos(sin(27! + 3))
F1 ) = 51’1 - 625‘2 (32)
T3 2x5% + x5

and
FFy=FoF,oF oloF, oF]

FFy’s computational graph is thin.

Weights used to find the first cutset are shown is Figure 3.1(a). After three interations,
three cutsets in Figure 3.1(b) are found. Graph is divide into four subgraphs.

Visually, these cuts are good in terms of size and evenly dividing the graph.

3.2 Fat Computational Graphs

A fat computational graph is produced when macro-computations are independent of each
other. A typical example is:

6
FFy, = Z Fi(z + rand;(3,1))

i=1
where Fj is defined by eqution (3.2) in the previous experiment.

Weights follow equation (3.1), and they are shown graphically in Figure 3.2(a).

Cut indicated in Figure 3.2(b) are found by algorithm stated before. However we wish
to find a cut indicated by the horizontal curve, which is very different from the real cut
located. This is mainly because of condensed nodes. In this particular example, each node
under the curve represents a vector of dimension four. In its fundamental computational
graph, each of these nodes is supposed to split into four nodes, making the two subgraphs
separated by the curve more balanced.

Weighted min cut does not work very well on fat computational graphs. Slight asym-
metry also leads to disturbance of cut’s distribution. For this kind of functions, we need
to do re-weighting(Appendix B.3) or even explore other better algorithms to analyse their
structure.

15



Cutset 1

Cutset 2

Cutset 3

(a) Weights of Edges (b) Cutsets Founded

Figure 3.1: Weights and obtained cutsets of F'F’s condensed computational graph
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Figure 3.2: Weights and obtained cutsets of F'F3y’s computational graph
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Chapter 4

Accelerating the Calculation of the
Jacobian matrix

To illustrate how cutsets accelerate computation, we construct the following numeric ex-
ample:

Let 5
T 1‘2-2 3
f X2 = VL1T3
P T14+2x24x3
3 4
and
F,=fofo---of  where there are k f’s (4.1)

It is obvious that F,, = F, o Fy, 0--- 0 F}, provided n =" k;.

Now we try to calculate Jacobian matrix J € R3*3 of Fyygo(1g) at zy = [6,9,3]. We
will use ADMAT reverse mode to obtain J both directly and by constructing cutsets. Their
running time and space usage will be recorded to see improvements. If cutset method is
used, Jg defined by equation (1.12) will be calculated, and J will be further calculated by
equation (1.14) and (1.15).

By doing experiment, the Figure 4.1 is obtained.

For cases that cutsets method is introduced, computational graph is always divided
evenly. For example: In one cut case, Fyygg is treated as Fiogg © Fiago- In two cuts case,
Fou00 is treated as Fgoo © Fgoo © Fyo, etc.. Space and time requirement decreases inversely
as number of cuts increases, which is the same as the prediction of Theorem 1.1.3. This
is a quite remarkable result.
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Figure 4.1:

Acceleration of cutset method

The performance plot in Figure 4.1 did not count in time used to locate cutsets. The
‘running time’ refers to the time used to obtain Jacobian matrix with cutsets provided. In
practice, generation of computational graphs and analysis may be costly, compared with
those used to get Jacobian matrix direclty. However once the desired cutsets are located,
they are likely to be reusable in computations with same/similar functions but different
initial input values. Therefore this optimization is useful in terms of the long run. For
example if one want to calculate Fayn9(20)’s Jacobian matrix many times at different points,
Zo, then cutset method need only be applied a single time.

The computational graph of F} is a long thin graph. Our method locates small cutsets
that tend to break the graph in a well-balanced way. So cutsets optimization is expected to
have good performance. In practice, computational graphs are not so ideal; hence running
time and memory may not be reduced so dramatically, but we quite expect a significant

improvement.
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Chapter 5

Concluding Remarks

Our initial experiments and analysis indicate that separation of nonlinear systems with use
of directed cutsets can significantly reduce the computing time. Continued research along
these lines is recommended. Issues to be further investigated include:

e Fat computational graphs pose challenges to our current edge-weighting scheme.
More research is needed here.

e We have not focused on the expense of locating the cutsets. Note that this operation
need only to be computed once for a nonlinear system, this cost is amortized over
many iterations. Nevertheless, research on cutset efficiency is required.

e The amortization remarks above assume that the structure of F' is invariant with x.
This is not always the case. Consider the following simple example:

0 <0
f(x>:{f0($) >0

where fj is an extremely complicated function. Then one can expect computational
graphs of f(—1) and f(1) are totally different. Research is required regarding struc-
tures that vary with x.

e To reduce memory usage when generate computational graph, one possible way is to
use an online algorithm, which refers to generation of cuts with only partial informa-
tion. i.e. When evaluating a function F', only a maximum of 100MB information is
recorded. As calculation goes on, old information are deleted before new operations
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are recorded, making sure overall memory usage never exceed 100MB. Instead of
waiting for the whole graph, we always generate cutsets from the partial graph. We
wish to develop this idea in future work.
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Appendix A

Sparsest Cut

For an undirected graph G, its sparsest cut F4(G1, G3) is define to be

B . ‘E(G17G2>’
Es(Gr, Go) = arg min - (IG11,1Gal)

where |E(G1,G2)| is number of edges crossing two subgraphs G; and Gy, |G| denotes
number of nodes in graph G [7].

Definition of sparsest cut fits our requirements for cutsets very well. This problem
was well studied and there are already several approximate algorithm, which used linear
programming/semidefinite programming techniques. However among these known algo-
rithms, the best one is of O(n?) running time [7], which is still too slow in this application
to be useful in practice (recall: n ~ number of fundamental operations). As mentioned
before, sometimes we run out of fast memory while using automatic differentiation. This
means the computational graph’s size is of the scale of a PC’s memory. A quadratic algo-
rithm is absolutely not acceptable even if constant is small. So we then turn to seck other
approximation algorithms, with linear or near linear running time.
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Appendix B

Generation of Computational Graphs

B.1 A Brief Introduction to ADMAT

ADMAT is a Matlab based software which use automatic differentiation idea to compute
functions’ derivatives, Jacobian matrix, Hessian matrix fast and accurately. While doing
computation, there are two modes: forward mode and reverse mode. Two modes’ perfor-
mance depends on structure of Jacobian matrix, however for most functions a combination
of forward and backward mode works best. A crucial difference between two modes is
backward mode needs to record whole computation while forward mode does not. In AD-
MAT, a global variable ‘tape’ will be created and updated as the record of all executed
computations when reverse mode is used.

In matlab, ‘tape’ is a big vector of ‘struct’s, an user defined data type. We call these
‘struct’s cells. Usually each cell corresponds to one basic operation, i.e., plus, times, sin,
etc.. Cells in tape are ordered according to the execution time of their respective operations.
Each cell owns several child blocks recording type of operation, input cell, constants, and
other related information.

B.2 Tape to Graph

To construct the computational graph from a tape, basically one needs to read cells one by
one. Typicaly, one cell will be converted into one node. There are also some exceptions,
one type of them affects computational graph a lot. In ADMAT, vector operations are also
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Figure B.1: Equation (1.3)’s computational graph, without merging duplicated nodes

treated as basic operations, i.e., 71 + x5 where z1, 2, € R, This operation only occupies
one cell in tape, however in the fundamental computational graph it should correspond
to 10 output nodes and 20 newly added edges. We are now trying to adjust weights
to balance this shape shift, i.e., give these 2 edges heavier weights before applying Ford
Fulkerson algorithm.

Another extra work need to be done is eliminating duplicated nodes. Because ADMAT
is such implemented so that variable repeatedly used does not just occupy one cell. Instead
a new cell is always created when a variable is needed, no matter if it is already calculated
or not. When computational graph is first generated, it often contains lots of duplicated
nodes — different nodes but representing exactly a same variable. So we have to merge
them to get the real computational graph.

Example. Figure B.1 is equation (1.3)’s computational graph, but duplicated nodes are
not merged. Notice that it is very different from Figure 1.2(a).

Cost Analysis

It is obvious that generation of unmerged graph takes O(s) work where s is size of tape.
To merge duplicated nodes is more expensive: every node is compared with other nodes
with the same parent nodes, so running time is O(M - s) where M is maximum number
of child nodes among all nodes. In practice, most nodes have only one or two child nodes,
nodes merging performs like O(s).
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B.3 Compensation to Condensed Nodes

In fundamental computational graph, we treat each node the same. But in real computa-
tional graphs there might be condensed nodes, making it not rcasonable. To compensate
the distortion, we introduce concept computation intensity to each node. In chaper 2
diving graph evenly in fact is in terms of work. Consider equation (1.7), we want w(F})
and w(F») roughly equal. Therefore if we correctly define computational intensity /work T
to each node for the condensed computational graph, then we want a cut such that two
subgraphs’ computational intensity are roughly the same.

The compensation idea is simple. Originally when evaluating depth for nodes, we try to
find length of shortest path from it to any end-node. Here we make a small modification:
we still try to find length of shortest path, but redefine length of a path to be sum of its
nodes’ computational intensity. All later procedures, i.e. evaluation of edges’ weights and
Ford Fulkerson algorithm, remain the same.

If length of a path is defined in this way, edges with roughly same total intensity on
two sides will have the biggest depth and lowest weights. These nodes will be likely to lie
in the cut, to divide the graph equally in terms of /. Though no numerical experiment is
done yet, we believe this idea is valid.
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