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Abstract

Kernel functions can map data points to a non-linear feature space implicitly, and
thus significantly enhance the effectiveness of some linear models like SVMs. However, in
current literature, there is a lack of a proper kernel that can deal with categorical features
naturally.

In this paper, we present a novel kernel for SVM classification based on data-driven
similarity measures to compute the similarity between two samples. It then followed by
the ensemble sclection method to combine all similarity measures. Our kernels can make
full use of information from both labeled and unlabeled data, which leads to a semi-
supervised approach. Experiment results show that our approaches largely improve the
performance of SVMs on all metrics we used. Especially, in the unbalanced class case,
keeping other performance measures on an excellent level, two methods can enhance the
prediction accuracy on the minority class significantly.
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Chapter 1

Introduction

Over the past decade, Support Vector Machine (SVM) has become a significant tool for
solving classification problems in statistical learning and data mining. A natural way
of solving classification problems is seeking a hyperplane to separate the classes. With
perfectly separable classes, there exists infinite possible separating hyperplanes. SVM is
based on the principle of finding the “best” hyperplane which is the one that is farthest
away from the classes. This principle is called maximal margin principle. The hyperplane
can be obtained by solving a convex quadratic optimization problem. However, in the
real world, most problems are not perfectly separable. Hence, a nonlinear transformation
needs to be done to separate classes effectively in another high dimensional space. Through
kernel functions, we can map the input features to this nonlinear feature space, without
computing the mapping explicitly. In this space, SVM finds a linear separating hyperplane
with the maximal margin. An important advantage of the kernel-based SVM is that the
mapping can be done using the “kernel trick”. The trick computes this transformation
implicitly and efficiently. Another advantage is that using ¢ penalty, SVM successfully
stabilizes the solution and overcomes over-fitting especially in high-dimensional problems.
Consequently, choosing a proper kernel function is central for the effectiveness of a SVM
model.

In previous studies, many kernel functions have been proposed to capture properties of
data. Radial basis function (RBF) kernels are the most common choice and has been used
extensively in the machine learning field. Using RBF kernels means choosing radial basis
function networks [9] as the prior hypothesis. Diffusion kernels [17] are widely used to
analyze the network data. They can be used to unfold correlated structures between nodes
of networks in an Euclidean space. As natural language text mining becomes increasingly



important, by assigning to each pair of elements (strings) an “inner product” in a feature
space, string kernels [19] are employed especially for text classification tasks.

Although many kernel functions have been developed for different types of data, there
is a lack of a proper kernel to deal with categorical data naturally. Categorical data is
one kind of data that each value can take one of a limited and usually fixed number of
possible values. Categorical data widely exists in many data mining problems, for exam-
ple, customer behavior data mining tasks, when predicting customer loyalty or managing
customer relationship in modern marketing strategies. Problems, containing categorical
features with many different possible values, a large number of missing values, and unbal-
anced class proportions, attract more and more attention in data mining field these days

[2, 13].

In this research project, we explore a novel kernel based on data-driven similarity
measures which are used to compute the similarity between categorical data instances. Our
motivation comes from two facts: kernel functions can be viewed as a similarity measure
between two input vectors, and using information of both labeled and unlabeled sets may
significantly improve performance. The latter approach usually is called semi-supervised
learning in the literature. Moreover, in order to combine different similarity measures,
the ensemble selection [7] approach is used to optimize the overall performance of diverse
similarity kernel-based SVMs. Under the SVM framework, we compare the performance
of our kernel with the standard RBF kernel and other leading classification models on a
customer loyalty prediction problem.

The rest of the paper is organized as follows: Chapter 2 provides some background
knowledge on SVM and kernel trick. Chapter 3 describes our novel kernel with similarity
measures and the ensemble selection method. Chapter 4 compares performance of our
approach with common used RBF kernels on customer loyalty data. Chapter 5 summarizes
the paper with further discussion.



Chapter 2

Support Vector Machines

In this chapter, we discuss SVM for the two-class classification problem. Firstly, we discuss
hard-margin SVMs, which assumes that the training data points are linearly separable in
the input space. Although it cannot be used in many real world situations, it is the easiest
model to understand and it forms the foundation of more complex SVMs. Secondly, we
extend hard-margin SVMs to the soft-margin SVMs which is for the case when training data
points are not linearly separable. Then we introduce the “kernel trick” to do classification
in the nonlinear feature space to enhance separability.

2.1 Support Vector Machine Formulations

2.1.1 Hard-Margin Support Vector Machines

The discussion follows the formulation of [22] and [21]. In a two-class classification problem,
we have M m-dimensional training data points x; (z = 1,..., M) and the associated class
labels be y; € {—1, +1}. SVMs seek an optimal hyperplane to separate the two classes.

A hyperplane in R™ can be described with a linear equation with the following form
for some nonzero vector w € R™ and b € R

w'x+b=0. (2.1)
The hyperplane

Yi (WTXH—b)zc, fori=1,...,M, and ¢ >0, (2.2)
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forms a separating hyperplane that separates {x; : y; = 1} and {x; : y; = —1}.

A hyperplane can be arbitrarily rescaled, for example,

w'x+b=0 isequaivalent to s(w'x+b) =0, Vs #0. (2.3)

In particular, the hyperplane (2.2) can be reparameterized as

yi (wix;+0) > 1, fori=1,...,M. (2.4)

A separating hyperplane satisfying condition (2.4) is called a canonical separating hy-
perplane.

This way, we can have a decision function

w'x;+b oy (2.5)
<0 for y;, =-—1.

Since the two classes are linearly separable, there exists an infinite number of separat-
ing hyperplanes. The distance between the separating hyperplane and the training data
point necarest to the hyperplane is called the margin. Figure 2.1 shows two hyperplanes
that satisfy (2.4) but with different margins. Intuitively, the hyperplane with a larger
margin has a higher generalization ability. SVMs are based on the notion of seeking the
hyperplane with the maximum margin, which is called the optimal separating hyperplane.
Mathematically, the margin can be formulated as

margin = 2 X min{y;d;, i = 1,..., M}, (2.6)

where d; is the signed distance between instance x; and the hyperplane.

It can be shown that d; is equal to [14]

1
di=——(w'x;+0b). 2.7

Then, equations (2.4) , (2.7) and (2.6) together imply that the margin of a canonical
separating hyperplane is equal to

2

2 x min{y;d;} = Tl

(2.8)



J
\\
N [
Support Vector ——> Q\ \\\
N
N N
o °
o Nk °
o N \ ®
Q
\, N ‘
O \,
0O AN @ —— Support Vector
“ ‘@
“ 4
“ .
N N
N N
N N
\, N
N /
\\
"Margin (Worse)

Margin (Better)

Figure 2.1: Two separating hyperplane with different margins. Adapted from [24]

Therefore, the optimal separating hyperplane can be obtained by solving the following
optimization problem for w and b:

1
min §||w||2 (2.9)

sty (Wix;+0)>1, fori=1,...,M. (2.10)

Problem (2.9) is a convex quadratic programming problem. The assumption of lincar
separability means that there exist w and b that satisfy (2.10). Because the optimization
problem has a convex quadratic objective function with linear inequality constraints, even
if the solutions are not unique, a local minimizer is always a global minimizer. This is one
of the advantages of support vector machines.

This constrained optimization problem can be solved by introducing Lagrange multi-

pliers o; > 0 and a Lagrangian

M
L(w, b, o) = %WTW - Z a; (yi (wix; +0) — 1), (2.11)

i=1
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where @ = (o, ..., ) . The Lagrangian L has to be minimized with respect to the
primal variables w and b, and maximized with respect to the dual variables «;, i.e. a
saddle point has to be found.

The solution satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

0
—L = 2.12
S Lw. b ) =0, (212)

0
%L(W b ) = 0, (2.13)
yl(w Xl-i-b) > 1 fori=1,..., M, (2.14)
a; (i (w' XZ—{—b)—l) = 0 fori=1,..., M, (2.15)
> 0 fori=1,...,M. (2.16)

Specifically, equations (2.15) which link inequality constraints and their associated La-
grange multipliers are called KK'T complementarity conditions.

Equation (2.15) implies that either a; = 0, or o; # 0 and y; (WTXZ- + b) = 1, must be
satisfied. The training data points, whose «; # 0, are called Support Vectors. Support
vectors lie on the margin (Figure 2.1). All remaining samples do not show up in the final
decision function: their constraints are inactive at the solution. This nicely captures the
intuition of the problem that the hyperplane is determined by the points closest to it.

Using (2.11), (2.12) and (2.13) are reduced to

M
W = Zaiyixi (2.17)
i=1
and

M
> agy = 0. (2.18)
=1

By substituting (2.17) and (2.18) into (2.11), one eliminates the primal variables and
arrives at the dual problem:

max ZO‘Z - = Z ozzozjy,y]x X; (2.19)

1]1

> ay; =0, and a; >0, i=1,...,M. (2.20)



The formulated support vector machine is called the hard-margin support vector ma-
chine. Because

LM WAL T /M
5 Z OéiCijl'ijiTXj = 5 (Z Oéiini> (Z Oéiin¢> Z O, \V/Odl' (221)
=1

i, j=1 i=1

maximizing (2.19) under the constraints (2.20) is a concave quadratic programming prob-
lem. If a solution exists, specially, if the classification problem is linearly separable, the
global optimal solution «; (i = 1,..., M) exists. For convex quadratic programming, the
values of the primal and dual objective functions coincide at the optimal solutions if they
exist, which is called zero duality gap.

Data that are associated with «; # 0 are support vectors for class with 1 or —1. Then
from (2.5) and (2.17) the decision function is given by
D(x) = Z oYX, X + b, (2.22)
€S
where S is the set of support vectors, and from the KKT conditions, b is given by

b=y, —w'x;, fories. (2.23)

Then unknown data sample x is classified into

(2.24)

y=+1 if D(x) >0,
y=-1 if D(x) <O0.

If D(x) =0, x is on the boundary and thus is unclassifiable. When the training data are
separable, the region {x| —1 < D(x) < 1} is the generalization region.

2.1.2 Soft-Margin Support Vector Machines

In the hard-margin SVM, we assume that the training data are linearly separable. But in
practice, a separating hyperplane may not exist, e.g. if a high noise level causes a large
overlap of the classes. As a result, there is no feasible solution to the hard-margin SVM so
that it becomes unsolvable. Here we extend the hard-margin SVM so that it is applicable
to an inseparable case.

To allow for the possibility of data points violating (2.10), we introduce slack variables

&>0,i=1,....M (2.25)

7
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along with relaxed constraints

y(wix;+b)>1-&,i=1,....,M. (2.26)

With the slack variable &;, feasible solutions always exist. For the training data x;, if
0 <& <1 (& in Figure 2.2), the data does not have the maximum margin but are still
correctly classified. But if § > 1 (¢; in Figure 2.2) the data is misclassified by the optimal
hyperplane.

In order to find the hyperplane which generalizes well, both the margin and the number
of training errors need to be controlled. Thus, we consider the following optimization
problem:

M
I
min Z|lwl* -+ c;@ (2.27)

1—&, i=1,...,M, (2.28)
0, i=1,...,M.

s.t. y; (W x; +b)
&

(AVARVS



where C' is the margin parameter that determines the trade-off between the maximization
of the margin and the minimization of the classification error. A larger C' penalizes more
on classification errors, consequently, leading to a lower classification error but a smaller
margin. As C decreases, we will have a larger margin but a higher classification error.
Because of slack variables, we call the SVM the soft-margin-SVM.

Similar to the linearly separable case, introducing the nonnegative Lagrange multipliers
«; and [;, we obtain

1 M M
L(w,b & e, B) = SlWIP+CY &= &
u i=1 =1
= iy (Wixi+b) —1+6). (2.29)

i=1

where o = (a,..., o), €= (&,... &), and B = (Br,....Bu)" -

For the optimal solution, the following KKT conditions are satisfied:

oL (w, b, &, a, B)

= 0 2.
L (w, b, &, a, B)
= 2.31
aL (W7 b7 57 a7 ﬂ)
= 0. 2.32
- (2.32)
a; (s (Wixi+b) —1+&) =0 for i=1,...,M, (2.33)
i (WTXZ'—i-b) >1-¢& for i=1,...,M, (2.34)
Bi& =0 for i=1,..., M, (2.35)
Oé1207 BZZO, {ZZO for 1= ,,M (236)
Using (2.29), we reduce (2.30) to (2.32), respectively, to
M
w = Z OGYiX; (2.37)
i=1

M

S - o 239
i=1

9



Thus substituting (2.37) to (2.39) into (2.29), we obtain the following dual problem:

M M
1
min Zai -3 Z O YYX] X (2.40)
i=1 i, j=1
M
st ag; = 0 fori=1,...,M, (2.41)
i=1
C>a; > 0 fori=1,..., M. (2.42)

The only difference between soft-margin SVMs and hard-margin SVMs is the upper bound
C' on the Lagrange multiplies «;. The inequality constraints in (2.42) are called box
constraints.

Especially, (2.33) and (2.35) are called KKT complementarity conditions. From these,
there are three cases for «;:

1. a; = 0. Then & = 0. Thus, x; is correctly classified.

2. 0<a; <C. Theny; (WTX1; + b) —1+4¢&, = 0and & = 0. Therefore, y; (WTXi + b) =1
and x; is a support vector. Especially, we call the support vector with C' > «; > 0
an unbounded support vector.

3. a; = C. Then y; (WTXi + b) —1+¢& =0and ¢ > 0. Thus x; is a support vector.
We call the support vector with «; = C' a bounded support vector. If 0 < ¢; < 1, x;
is correctly classified, and if & > 1, x; is misclassified.

The decision function is the same as that of the hard-margin SVM and is given by
D(x) =Y awyxx+b, (2.43)
ics
where S is the set of support vectors.

Then unknown data sample is classified into

(2.44)

y=+1 if D(x)>0,
y=-—1 if D(x)<O0.

If D(x) = 0, x is on the boundary and thus is unclassifiable. When there is no bounded
support vector, the region {x| —1 < D(x) < 1} is the generalization region, which is the
same as the hard-margin SVM.

10



2.2 Kernel Trick

SVMs construct an optimal hyperplane with the largest margin in the input space. The
limited classification power of lincar models was highlighted in the 1960s by Minsky and
Papert [20]. Using a linear model means having a hypothesis that data points are linearly
or almost linearly separable. However, many real-world applications require more complex
hypotheses than that of linear models. On the other hand, the optimal hyperplane is
a linear combination of the input features. But labels usually cannot be separated by
a simple linear combination of the input features. Consequently, more complex feature
mappings are required to be exploited.

One solution to this problem is projecting the data into a higher dimensional space
(feature space) by a non-linear mapping to increase the classification power of the linear
model as shown by Figure 2.3. This is equivalent to selecting a set of non-linear combina-
tions of features and rewriting the data in the non-linear combinations. As a result, we can
build the non-linear model in two steps: firstly, a non-linear mapping transforms the data
into a feature space F', and then a linear model is used to do classification in the feature
space. In this case, the decision function (2.43) is given by

D(x) = Zaiyi<¢ (xi), @ (x)) +0, (2.45)

i€S

where ¢p: X — F'is a non-linear map from the input space to some feature space and (-, -)
denotes the inner product.

Kernel

The kernel trick is a way of computing the inner product (¢ (x;), ¢ (x)) in the feature space
directly as a function of the original input data points, making it possible to combine the
two steps of building non-linear modes into one. The function is called a kernel function
or a kernel.

Definition. A kernel is a function K, such that for all x,z € X,

K(x,2) = (¢(x), ¢(2)), (2.46)

where ¢ is a mapping from X to a (inner product) feature space F'.

11
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Figure 2.3: The idea of non-linear SVM: map the data points into a higher dimensional
space via function ®, then construct a hyperplane in feature space. This results in a
nonlinear decision boundary in the input space. Adapted from [21].

Example. Radial basis function (RBF) kernel can be written as
K(x, z) = ¢ VxF (2.47)

where 7y is known as the width scalar. In [23], Steinwart et al. argue that RBF kernel maps
data points into a infinite-dimensional space. But when computing the inner product in
this infinite-dimensional space by the RBF kernel, we don’t need to know the information
of the corresponding feature mapping ¢.

Using the kernel function, the decision function (2.43) can be rewritten as

D(x) = Z Y K (x;, x) + b. (2.48)
ieS

Functions of Kernel

One important fact of the kernelized dual form (equation (2.48)) is that the dimension of
feature space does not effect the computation. Because kernel functions make it possible

12



to map the data implicitly into a feature and train the linear model in that space, one does
not represent the feature vectors explicitly. The number of operations required to compute
the inner product by evaluating kernel functions is not proportional to the number of
dimensions of the feature space. For example, although the RBF kernel maps data points
into a infinite-dimensional space, the number of operations required to evaluate the kernel
function is not infinity. In this way, without knowing the underlying feature mapping, we
can still compute inner product in the feature space by kernel functions and be able to
learn the linear model in the feature space.

In addition to being regarded as a shortcut of computing inner product in the feature
space, kernels can also be viewed as a function to measure similarity between two vectors.

Provided that two vectors x and x’ are normalized to length 1, the inner product of two
vectors can be interpreted as computing the cosine of the angle between these two vectors.
The resulting cosine ranges from —1 to 1. A value of —1 means that two vectors are exactly
opposite and 1 means that they are exactly the same. The zero value usually indicates
independence of the two vectors and in-between values indicates intermediate similarity.
Thus, the inner product of two normalized vectors can be viewed as a similarity of these
two vectors.

Embedding data into a feature space provides the freedom to choose the mapping ¢.
The inner product (similarity) is not restricted to the input space, but also can be used
in the feature space. Kernel functions offer the possibility of computing the mapping and
inner product implicitly. At the same time, kernel functions can be viewed as a similarity
of two vectors. Moreover, it enable us to design a large variety of similarity measures
instead of figuring out an interpretable geometric space.

13



Chapter 3

Methodology

Now, we discuss two methodologies to improve the performance of SVMs on categorical
data. Firstly, different data-driven similarity measures are used to capture the relationship
between two samples, and used as the kernel matrix in SVMs. Unlike standard kernels
like the RBF kernel that does not depend on test data, these data-driven similarities can
use the information in both the training and test data. As a result, they can extract more
information from the underlying distribution of the dataset. Then, in order to combine
benefits of each similarity measure, an ensemble selection method is used to construct an
ensemble from a library of SVM models with different similarity measures. The ensem-
ble selection method allows models to be optimized to different performance evaluation
methods.

3.1 Similarity Measures

The use of kernels is an attractive computational shortcut. Although it is possible to create
a feature space and work out an inner product in that space, in practice, the approach
taken is to define a kernel function directly. Consequently, both the computation of inner
product and design of a feature space can be avoided.

There are several ways to design a kernel by defining the kernel function directly. In
[21], Schlkopf et el. show that one can make a kernel by taking linear combination of
other kernels. Another way of making a kernel comes from designing an inner product.
However, all these methods share the same problem that the information from the test data
is ignored. As a consequence, if the training data is biased, i.e. training samples cannot

14



represent the population well, for example, when labels are unbalanced or training set is
small, the prediction error can be large.

To solve this problem, we can design a new kind of kernels which can make full use
of information in the whole dataset. Since a kernel function can be viewed as a similarity
between two vectors, a more intuitive way of designing a kernel may be using a data-
driven similarity measure. Such data-driven similarity measures take into account the
frequency distribution of different feature values in a dataset to define a similarity measure
between two categorical feature values. As a result, even though the training set may be
unbalanced or small, when computing the frequency, these data-driven similarity based
kernels can reduce the bias by involving information in both training and test data. In the
literature, the notion of using information of both labeled (training) and unlabeled (test)
data is called semi-supervised learning.

The following discussion follows the formulation of [3]. For the sake of notation, consider
a categorical dataset D containing N samples and d features. Define A, as the k" feature
and it takes ny values in the dataset. Then we can define the following notation:

e fi(x): The number of times feature Ay takes the value x in the dataset D.

e pi(x): The sample probability of feature Ay to take the value x in the dataset D.
The sample probability is given by

. T
() = % (3.1)
e pi(x): Another probability estimation [12] of feature A to take the value z in the

given dataset D is given by

Jr(@) (fe(x) — 1)
NN -1

pi(w) = (3.2)

Usually, the similarity measure assigns a similarity value between two samples X and Y
belonging to the dataset D as follows:

d
S(X,Y) = wiSi(Xy, Yi), (3.3)
k=1
where Si(X}., ) is the feature similarity between two values for one categorical feature

A and X, and Y;, are the k' values of sample X and Y respectively. The quantity wy,
denotes the weight assigned to the feature Ay.

Table 3.1 summarizes the mathematical formulas for the similarities used in this paper.
Adapted from Table 2 in [3], Table 3.1 only lists similarity measures used in this work.

15



Measure Sk (Xk, Yz) wg, k=1,...,d
1 if Xp =Y,
Overlap = Ak ok 2
0 otherwise
1 if X, =Y,
I0F = { 1 A . ‘ %{
1+log fr(Xk) log fi(Yk) otherwise
o {1 if X, =Y, .
F — 1 . E
ios 75 Tog 7 otherwise
Lin _ ) 21og pr(X) if X =Y, 1
2log(pr(Xy) + pr(Yi)) otherwise | Xiilogdi(Xi)+logpi(Y)
1=3"pi(q) if Xy =Yy
Goodalll = q€Q é
0 otherwise
1-37pie) if X =Y
Goodall2 = q€Q é
0 otherwise
1—p3(X if X, =Y,
Goodall3 = Pe(X) 3E X ok !
0 otherwise
2(X if X, =Y,
Goodall4 = P(Xe) i Xy ok 2
0 otherwise
Table 3.1: Similarity ~Measure for Categorical Features. For mea-
sure  Goodalll, {Q C Ay :Vqge Q, pr(q) <pe(Xyk)}. For measure Goodall2,

{Q C Ay : Vg€ Q, pe(q) > pe(Xk)}. Adapted from [3].
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Characteristics of similarity measures

According to the quantities being used, similarity measures listed in Table 3.1 may be
classified into four groups.

Overlap is the simplest measure listed in the table. It is developed based on the idea
of computing proportion of matching features in two samples. S}, is assigned to a value of
1 if the k' feature of two samples are the same and a value of 0 if they are different. In
addition, it equally weights matches and mismatches.

Originally used for the information retrieval in documents, OF and [OF involve the
frequency of values in a feature. The main difference of these two measures is giving differ-
ent similarities to mismatches. The IOF measure assigns lower similarity to mismatches
on more frequent values and higher similarity to mismatches on less frequent values, while
the IF measure assigns the opposite weights.

Lin is a special measure because it not only uses the probability estimation pg, but
also follows the information-theoretic framework proposed by Lin in [I8]. In terms of
weights, Lin measure gives more weights to matches on frequent values and low weights
to mismatches on infrequent values. Moreover, results in [18] show that Lin measure has
an excellent performance on measuring similarity of categorical samples. As a result, in
the experiments, the Lin measure will be used as the example of data-driven similarity
measures.

Because of using another probability estimation p?(x), Goodalll, Goodall2, Goodall3,
and Goodallj are clustered into one group. The first difference among these four measures
is that Goodalll and Goodall2 use the cumulative probability of other values in the feature
either more or less frequent than than the current showing up one. Regardless of other
values, Goodall3 and Goodallj just involve the probability of the common values that two
samples share. Secondly, in terms of weighting, Goodalll and Goodall3 assigns higher
similarity if the matching values are infrequent. While Goodall2 and Goodallj assign the
opposite similarity.

3.2 Ensemble Selection Method

An ensemble constructs a collection of models (base models) whose predictions are com-
bined by weighted average or majority vote. Mathematically, it can be formulated as

Flylr) = ) wnfm(ylo), (3.4)

meM
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where M is the index set of base models which are chosen, w,, are the weights for the
corresponding base models f,, and F' is the final ensemble. A large number of research has
shown that compared with the single model, ensemble methods can increases performance
significantly (e.g. [0, 6, [1]). However, these usual ensemble methods either simply average
all the base models without any selection, or collect a single kind of base model like tree
model.

Ensemble selection [7] was proposed as an approach of building ensembles by selecting
from large collection of diverse models. Compared with other ensemble methods, the
ensemble selection method benefits from the ability of using many more base models and
includes a selection process. Especially, ensemble selection’s ability to optimize to any
performance metric is an attractive capability of the method that is useful in domains
which use non-traditional performance evaluation measures like AUC and AP [10].

The ensemble selection method as shown in Algorithm 3.1 is a two-step procedure.
Before the procedure, the whole dataset is equally divided into three subsets. One subset
is used for training base models; another one is for validation and the other one is for
testing the ensemble performance. The two-step procedure begins by training models
using as many type of models and tuning parameters as can be applied to the problem.
Little attempt is made to optimize the performance of single models in the first step; all
models no matter what their performance, are candidates in the model library for further
selection. It is then followed by selecting a subset of models from the model library that
yield the best performance on the performance metric. The selecting step can be done
by using a forward stepwise model selection, i.e., at each step selecting the base model in
the library that maximizes the performance of the ensemble if added. The performance
of adding a potential model to the ensemble is evaluated by combining the prediction of
selected base models and the potential model on the validation set.

Preventing overfitting

The forward stepwise selection may encounter a problem that the ensemble performs much
better on the training set than on the test set, namely overfitting, in the selection procedure.
The reason of overfitting in the ensemble selection is that by greedily selecting the best base
model at each step, the ensemble yields a extremely good performance on the validation
scet. Under this circumstance, the selection stops when the ensemble is small.

Caruana et al. suggest the sorted ensemble initialization approach [7] to address the
overfitting problem. Specifically, instead of starting with an empty ensemble, sort the
models in the library by their performance on the validation set, and put the best N
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Algorithm 3.1 Ensemble Selection Algorithm

1. Start with the empty ensemble.

2. Repeat, until no model can improve the ensemble’s performance:

(a) Choose the model i in the library that maximizes the ensemble performance to
the metric after being added.

(b) Set
M « MuUi,
Flylz) — Zwiﬂfm@m
=
Break

3. Output an ensemble selection model

Flyl) = 3 |—]\14|fm<y|x>. (3.5)

meM
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models in the ensemble. N is chosen by the size of model library. As a result, the ensemble
will not contain only those models that overfit the training set.

3.3 Approach

Based on the discussion of similarity measures and ensemble selection method, we propose
two approaches to improve the performance SVM model on the categorical data.

Firstly, in order to deal with categorical data naturally, we use the data-driven similarity
measures listed in Table 3.1 as the kernel function in SVM models. Since data-driven
similarity measures use information from both training and test set, this approach can
give a better estimation of the similarity between samples.

Secondly, in order to combine benefits of those similarity measures, we use ensemble
selection technique to build up an ensemble of SVM models with different similarity mea-
sures. In doing so, we take advantage of data-driven similarity measures and the ensemble
method.
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Chapter 4

Numerical Results

In this chapter, we present numerical results of the two approaches discussed in Chapter 3.
These two methods are applied to the dataset from KDD Cup 2009, provided by a French
Telecom company. The task of the competition is to predict the customer behavior from the
customer data. The competition has two datasets and each contains three labels — churn
(switch providers), appetency (buy new products or services) and up-selling (buy upgrades
or add-ons), which indicate three different behavior of customers. In our experiments, we
focus on the small dataset with the label up-selling, which is also called slow challenge in
the competition.

The small dataset consists of 50000 samples and 230 features, out of which 40 are cat-
egorical. Almost all the features, including 190 continuous features have missing values.
There is no description of what each feature means. Table 4.1 presents the frequency of
three labels, from which we can observe that the label is highly unbalanced. In our ex-
periments, the model performance evaluation is scored based on Accuracy, Area Under
the ROC curve (AUC), and Average Precision (AP) [10] by a 3-fold cross-validation ap-
proach. In n-fold cross-validation, first the training set is divided into n subsets of equal
size. Sequentially, one set is tested using the model trained on the remaining n — 1 sub-
sets. As a result, each sample of the whole dataset is trained and predicted once and the
cross-validation performance measure is the average performance on the n subsets.

thttp:/ /www.kdd.org/kdd-cup-2009-customer-relationship-prediction
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Label Frequency of -1 : 1 | Ratio
churn 46328 : 3672 12: 1
appetency 49110 : 899 55 : 1
up-selling 46318 : 3682 12:1

Table 4.1: Frequency of labels of churn, appetency and up-selling

4.1 Data Preprocessing and Cleaning

Since the raw dataset posts several challenges, e.g., many missing values, a mixture of
categorical and continuous features and categorical features with a large number of possible
values, before experiments, we need to preprocess the raw data.

Missing Values

There are about 66% values missing in the whole dataset, which is a problem for SVM
models. After two empty categorical features are deleted, missing categorical values are less
of a problem since they can be treated as a standalone value in each feature. But missing
values for continuous data are more concerning. In terms of the high missing rate, first we
delete features with a missing rate above 95%, which contains very little information for
prediction. After this step, 43 out of 190 continuous features remain and the missing rate
is reduced to 15%. Then we follow a standard approach of imputing missing values by its
median of the corresponding feature.

Discretization

During data cleaning process, one important observation is that many continuous features
are more like “categorical” features since they contain only a limited number of discrete
values. In addition, similarity measures are suitable only for categorical features. Inspired
by the observation, we encode the 20 most common values for each continuous feature and
record all other values as a separate value. After this step, all the continuous features
become categorical features. Another benefit is that outliners are smoothed out implicitly
during the process. Note that since the RBF kernel for SVMs can deal with continuous
features, the process is only done for similarity measure based kernel SVMs.

Another problem for SVMs with the RBF kernel is that it cannot handle categorical
features directly. Moreover, there are a large amount of possible values for some categorical
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features and many values just appear once in some features. The way of encoding a
categorical feature for RBF kernels is generating indicator variables for each different values
that the feature can take. In order to avoid an explosion in the number of features in SVMs
with the RBF kernel and better estimate the frequency of each possible value for similarity
measures, rather than all the values, we limit the encoded number of possible values to 20
most common values in each feature.

4.2 Feature Selection

After preprocessing and cleaning, we are left with 121 features which is still a large number.
Among these features, there may be some features which contain very little information
for prediction. This kind of features which are irrelevant for prediction usually are called
redundant features. Moreover, these redundant features may not only cost computational
time but also increase prediction error. Before training SVM models, it is necessary to
remove redundant features by feature selection.

A naturally way of feature selection is giving each feature a score to indicate its impor-
tance. In the literature, tree method [1] is proposed for this usage. But [1/] points out that
tree method is unstable: small variations in the training set can result in large different
trees and predictions for the same text set.

In [6], Breiman proposed the random forests approach to solve the classification problem
and also measure the importance of features. Random forests are a collection of tree models
such that each tree depends on the values of random vectors sampled independently from
dataset. For each tree in the forests, random forests adopt a bootstrap sample from the set
of samples and a random subset of features from the feature set. By adding the randomness,
random forests reduce the correlation between individual trees and thus reduce the variance
of prediction. At the same time, the tree construction process can be considered as a type
of variable selection and the information measure [!] (usually accuracy or Gini index)
reduction due to the fact that a split on a specific feature could indicate the relative
importance of the variable in the tree model. By averaging trees in the forests, random
forests stabilize the feature importance of a single tree, which leads to a better prediction
performance and feature importance score. In this paper, we will use the feature importance
score generated by random forests to select features and compare the performance of our
SVM models with this leading approach.

In order to compute the feature importance scores, the random forest is trained on
the whole dataset. To save space, Table 4.2 lists the top 5 scores of features under two
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Feature | MeanDecreaseAccuracy Feature | MeanDecreaseGini
Var126 91.00 Var126 5220

Var28 26.37 Var28 1090
Var226 11.07 Var211 900

Var210 10.60 Var226 474

Var218 10.18 Var206 239

Table 4.2: Top 5 feature importance scorse from random forests

different information measures. First and third columns are names of features and second
and fourth columns are scores of using accuracy and Gini index. Table 4.2 also shows that
these two rankings share 4 out of 5 features. Thus the rankings of features are consistent
under two information measures.

In our experiments, we select top 40 features under each information measure and take
union of two selected sets to obtain 51 features out of 121 features.

4.3 Results of SVMs with the RBF kernel

As suggested by Hsu et el. in [10], in general, the RBF kernel is a reasonable first choice and
it nonlinearly maps samples into a higher dimensional space. Thus, our experiments start
with the most frequently used kernel, RBF kernel, for SVM (we refer to it as RBF kernel
SVM), whose performance will be considered as the benchmark of subsequent experiments.

The RBF kernel takes the form
K (x;, ;) = e s, (4.1)

where z; and x; are two sample vectors. In the categorical data, they are indicator vari-
ables encoded from the original data. Hence, in a SVM using RBF kernel, the margin
parameter C' in the SVM model and the scale parameter v in the RBF kernel, are two
tuning parameters to be decided. Consequently, some model selection (parameter search)
must be done to identify good (C, ) so that the model can have a good performance.
This process can be done by a “grid-search” on C' and v using cross-validation. In [16], an
exponentially growing sequence (for example, v = 2719 278 . /23) of tuning parameters
is recommended as a practical method. Also, Zhu (2008 [21]) discusses the SVM model’s
sensitivity to its tuning parameters and points out that the performance of SVMs using
RBF kernel functions is very sensitive to the parameter v while not as sensitive to the
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Figure 4.1: ROC and Precision-Recall Curves of SVMs with Lin Similarity Measure

parameter C. In order to save computational time, we may use a fine grid-search on ~
while a coarse grid-search on C'.

The results of grid-search on (C, ) as well as the cross-validation performance are
displayed in Table 4.3. Note that TotalAccuracy refers to the average accuracy rate of the
cross-validation , PosAccuracy is the average accuracy rate of the cross-validation on the
class with label 1, the bold font row indicates the best performance in terms of AUC and
red entries are the best performance of each measure.

4.4 Results of SVMs with the Lin Similarity Measure

Results (Table 4.4 and Figure 4.1) in this section demonstrate the performance of SVMs
with the Lin similarity measure. Parameters of grid search and numerical results of cross-
validation can be found in Table 4.4. The top row of Figure 4.1 displays 3 plots: ROC
curves of cross-validation on 3 folds. The bottom row displays Precision-Recall curves of
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AUC | TotalAccuracy | PosAccuracy | AP C vy
0.6646 0.9262 0.0022 0.1425 1 20
0.7223 0.9301 0.1022 0.2590 1 272
0.7552 0.9338 0.2011 0.3457 | 1 274
0.7737 0.9344 0.2293 0.3571 1 26
0.7772 0.9268 0.0838 0.3008 | 1 28
0.7782 0.9230 0.0098 0.2959 | 1 279
0.7793 0.9247 0.0054 02889 | 1 |21
0.7751 0.9257 0.0011 0.2823 | 1 |27t
0.6640 0.9262 0.0022 0.1423 | 0.1 20
0.7221 0.9298 0.0935 0.2579 | 0.1 | 272
0.7549 0.9334 0.2011 0.3443 | 0.1 | 274
0.7737 0.9344 0.2250 0.3572 | 0.1 | 2°¢
0.7741 0.9254 0.0577 0.2956 | 0.1 | 278
0.7759 0.9234 0.0218 0.2853 | 0.1 | 27°
0.7709 0.9250 0.0044 0.2562 | 0.1 | 2710
0.7668 0.9256 0.0022 0.2227 | 0.1 | 271
0.6583 0.9262 0.0022 0.1379 | 0.01 | 2¢
0.7207 0.9299 0.0924 0.2552 | 0.01 | 272
0.7550 0.9338 0.2087 0.3449 | 0.01 | 274
0.7726 0.9340 0.2283 0.3577 1 0.01 | 276
0.7705 0.9250 0.0294 0.2747 1 0.01 | 278
0.7624 0.9249 0.0011 0.2310 | 0.01 | 27°
0.7584 0.9256 0.0000 0.2018 | 0.01 | 2710
0.7497 0.9261 0.0000 0.2050 | 0.01 | 271

Table 4.3: Performance of RBF kernel SVMs. The bold font row indicates the best per-
formance in terms of AUC and red entries are the best performance under each measure.
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AUC | TotalAccuracy | PosAccuracy AP C
0.4999 0.9264 0 - 27
0.5000 0.9264 0 - 275
0.8057 0.9405 0.4011 0.4213 | 278
0.8042 0.9405 0.3924 0.4181 | 278
0.8067 0.9397 0.3772 0.4155 | 279
0.8079 0.9398 0.3609 0.4223 | 2798
0.8119 0.9393 0.3370 0.4180 | 2710
0.8169 0.9370 0.2848 0.4210 | 27105
0.8141 0.9357 0.2468 0.4139 | 271
0.8124 0.9350 0.2152 0.4109 | 27115
0.8039 0.9310 0.1121 0.3944 | 2712

Table 4.4: Performance of SVMs with Lin similarity measure. The bold font row indicates
the best performance in terms of AUC and red entries are the best performance under each
measure.

3 folds. And the title of ecach plot gives information of AUC or AP based on the curve.

In the table, AUC is the area under the ROC curve shown in Figure 4.1. Since it is
a portion of the area of the unit square, its value is always between 0 and 1. A random
guessing produces the diagonal line between (0, 0) and (1, 1) on the ROC curve, which
gives 0.5, the worst AUC. A value of 1 gives the perfect AUC. AP is the area under the
precision-recall curve shown in the second row of Figure 4.1. Although the best AP is 1
and the worst is 0, in practice, it takes value between 0.2 to 0.5.

In an ROC curve, the Y axis is the true positive rate which can be viewed as the benefit
and X axis is the false positive rate which can be viewed as the cost of a classification model.
We prefer a higher benefit with lower cost, which means a higher ROC curve when the
false positive rate is low. For the precision-recall curve, we expect the curve dropping from
1 to 0 as slow as possible to cover a larger area bounded by the X axis and the curve.

4.5 Results of the Ensemble Selection Method

Unlike single SVM models, which can only be optimized to one performance evaluation
measure, the ensemble selection method is allowed to be optimized to arbitrary performance
metrics. Similarity measures listed in Table 3.1 with parameters in Table 4.4 are used
to train the base SVM models of the model library. Then the ensemble is built via the
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Figure 4.2: ROC and Precision-Recall Curves of Ensemble Selection Method
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Ensemble Selection on AUC

AUC | TotalAccuracy | PosAccuracy | Precision | #model
Fold1 | 0.82552 0.8977 0.5229 0.4132 5
Fold2 | 0.8293 0.7798 0.6895 0.4186 8
Fold3 | 0.8294 0.7186 0.7565 0.4388 7
Avg | 0.8281 0.7987 0.6563 0.4235 6.7

Ensemble Selection on Precision

AUC | TotalAccuracy | PosAccuracy | Precision | #model
Foldl | 0.8185 0.9013 0.5098 0.4407 5
Fold2 | 0.8229 0.5460 0.8954 0.4302 10
Fold3 | 0.8241 0.6380 0.8247 0.4613 7
Avg | 0.8218 0.6951 0.7433 0.4440 7.3

Table 4.5: Performance of the Ensemble Selection Method. The bold font row indicates
the best performance in terms of AUC.

ensemble selection method described in Section 3.2. During the ensemble selection process,
the 3 fold cross-validation is adopted. The difference between the 3 fold cross-validation
used here and the previous description is that instead of using one for training and the rest
for test, here one fold is used for training base models; another one is used as a validation
set for selection and the other one is for test. The overall performance is computed by
averaging the performance on all three folds.

Table 4.5 gives the information of optimizing the ensemble selection method on AUC
and precision, respectively. The column under #model in the table indicates the number of
models in each ensemble on each fold and Avg gives the average performance over 3 folds.
Again, bold entries show the best average performance in terms of AUC and Precision.

Figure 4.2 shows ROC curves and Precision-Recall curves of two ensemble selection
methods. Top 3 plots display ROC curves on 3 folds of the ensemble selection method
with AUC optimized over AUC. And Bottom 3 plots display Precision-Recall curves on 3
folds of the ensemble selection method with AP optimized.

4.6 Comparison of Three Methods

In this section, we compare SVMs with the Lin similarity and the ensemble selection
method with standard SVM models with the RBF kernel. Table 4.6 summaries the best
performance of all methods on each performance measure.
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Method AUC | TotalAccuracy | PosAccuracy AP
RBF kernel | 0.7793 0.9338 0.2293 0.3571
Lin kernel 0.8169 0.9405 0.4021 0.4222
EnsembleAUC | 0.8281 0.7987 0.6563 0.4235
EnsembleAP | 0.8218 0.6951 0.7433 0.44402
RandomForest | 0.8380 0.8272 0.6022 0.4303

Table 4.6: Best performance of RBF kernel, Lin similarity measure kernel SVMs, ensemble
selection method and random forest

As mentioned before, the performance of the RBF kernel may be considered as bench-
mark of the performance of kernels. Compared with the RBF kernel, the kernel with Lin
similarity measure yields a better performance on all performance measures listed in Table
4.3 — 4.6. Especially, keeping the same total accuracy level, the kernel with Lin similarity
measure dramatically improves accuracy (75%) on the minority class and thus performs

well on both AUC and AP.

With the benefit of optimizing performance to arbitrary performance metric, ensemble
methods not only consistently outperform the SVM with RBF kernel on AUC and AP,
but also significantly improve accuracy on the minority class even compared with the Lin
similarity kernel SVM. In addition, because of a diverse collection of similarity measures,
the ensemble selection approach performs slightly better than random forests in terms of
accuracy of the minority class.
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Chapter 5

Conclusion

This paper has presented a novel use of kernels based on data-driven similarity measures
to dealing with categorical features for SVMs. In order to combine benefits of similarity
measures, we have applied the ensemble selection method to build up an ensemble to
optimize over several performance metrics.

Unlike standard kernels like RBF', when computing similarity measure between samples,
our kernel is more closed to a semi-supervised approach that involves the information from
both labeled and unlabeled data. The ensemble selection method uses the forward stepwise
approach to select base models for the metrics that we wish to optimize.

Compared with the benchmark — RBF kernel, the results have shown that our ap-
proaches are able to improve the performance on all the metrics we used. Especially,
keeping other performance measures at the same high level, ensemble selection method
can significantly increase prediction accuracy on the minority class which is much more
difficult to be predicted when classes are unbalanced.

Possible extension includes developing new similarity measures and introducing differ-
ent weight to each selected feature.
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