
Efficient Computation of Hessian
Matrices in a Monte Carlo Setting

using Automatic Differentiation

by

Xixuan Yu

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof.Thomas.F.Coleman

Waterloo, Ontario, Canada, 2016

c© Xixuan Yu 2016

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

The evaluation of differentiable functions often requires computation of the first and
second derivatives. Automatic differentiation is a good method to compute the derivatives,
but it can be costly to compute the Hessian when involving large number of variables.
In this paper, we develop a new structured AD technique which is applicable when the
objective function is in structured form, such as in a Monte Carlo setting. Both the theory
and experimental results show that our new structured AD has a very high efficiency in
computational space utilization for the Hessian evaluation.

iii

Acknowledgements

I would like to appreciate my supervisor Prof.Thomas.F.Coleman, for his patient guid-
ance and generous support on my research paper. I would like to thank all my classmates
and professors in University of Waterloo. I had a wonderful master experience in Compu-
tational Math program.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Hessian Background . 1

1.2 Automatic Differentiation Advantage . 2

1.3 Implement AD in Monte Carlo Settings . 3

1.4 Paper Overview . 4

2 Hessian Computation Path by Path 5

2.1 General Structured Function . 5

2.2 Structured Function in a Monte Carlo setting 7

2.3 Structured AD for the Hessian Computation by MC paths 10

3 The Hessian Computation by Monte Carlo Segment 14

3.1 Compute the Hessian segment by segment 14

3.2 Final Hessian evaluation of all paths . 19

4 Experimental Results 22

4.1 A Financial application . 22

4.2 Comparison results . 24

vi

4.3 Experimental results for only increasing Asset number 25

4.4 Experimental results for only increasing MC-Path number 26

4.5 Experimental results for only increasing Segments number 30

5 Conclusion 31

References 33

vii

List of Tables

4.1 Initial parameters of x in Heston Model . 25

4.2 Only increasing Asset number . 26

4.3 Only increasing MC-Path number . 27

4.4 Only increasing segments number . 30

viii

List of Figures

2.1 Principle of path-wise computation. 8

3.1 The computational graph of composite function 15

4.1 Tape Comparison Asset=40, Segments=50 28

4.2 Time Comparison Asset=40, Segments=50 28

4.3 Tape Ratio Asset=40, Segments=50 . 29

4.4 Time Ratio Asset=40, Segments=50 . 29

ix

Chapter 1

Introduction

Derivative calculation is an important part of many scientific applications, especially in
financial engineering [3]. In quantitative finance, derivatives are used to measure the sen-
sitivity of financial instruments, such as options and futures. Sensitivity can effectively
reflect the reaction of financial instruments to the fluctuations of underlying factors, there-
fore helping in a hedging strategy. Thus, how to efficiently calculate derivatives is a critical
part in quantitative finance.

Evaluating first and second derivatives are the most two common cases in derivative
calculation. In particular, the repeated evaluation of the gradient is extremely popular in
finance, since the first derivative is necessary for most hedging techniques. Nevertheless, the
second derivative also plays an important role when hedging complex financial derivatives.
For example, in gamma hedging, the second derivative best explains the local profit and
loss movements [3]. In addition, many constrained optimization methods need to use
second derivatives information to solve real world problems. Thus, it is often desirable to
compute, second derivatives.

1.1 Hessian Background

The Hessian of a function f : Rn → R is its n by n symmetric matrix of second derivatives.
The local behavior of a twice continuously differentiable function at any point of f can
be accurately described by its gradient and Hessian[9] (evaluated at the current point x).
The Hessian is the key to many non-linear optimization algorithms. However, there are
two main issues for Hessian computation: how to twice differentiate and code the second

1

derivative of functions, and how to determine the cost of the corresponding calculation
(at each iterate x). Computing all second derivatives consumes a great deal of time and
CPU memory, which makes the Hessian calculation become much more expensive than the
relatively simple gradient computation.

Although many numerical methods are developed to compute or approximate the Hes-
sian matrix, each method has its drawbacks. For example, one popular method, finite
differences, can yield poor accuracy in computing the second derivatives. In addition,
computing all of the second derivatives via finite differencing may require a prohibitive
number of function evaluations, especially for objective functions with high dimensions.
The advent of automatic differentiation [2] can offer a significant improvement on these
two issues.

1.2 Automatic Differentiation Advantage

Automatic Differentiation (AD) is a chain-rule-based [8, 9, 12, 6] technology for computing
derivatives, with respect to the input variables. In calculus, the chain rule is a rule for
computing derivatives based on functions composition. In particular, the basic idea of
AD is that all computer programs, regardless of complexity, can be defined by a relatively
small number of elementary operations in programming language. The output values or
functions in computer programs are simple combinations of these elementary operations.
Since all partial derivatives of elementary operations are known, the overall derivatives can
be obtained by using the chain rule.

Automatic Differentiation has two basic modes of operations: the forward mode and
the reverse mode. These two modes differ in the order of chain rule execution. In forward
mode, the evaluation of derivatives is propagated directly using the chain rule. In the re-
verse mode, AD computes derivatives in the reverse order: evaluating objective functions
first, saving all intermediate variables afterwards. The forward mode operation has com-
putational advantages when the input number is small; the reverse mode is advantageous
for the small number of outputs with a large number of inputs. Reverse mode AD [10] can
be much faster in the cases where there is a small number of output variables, but may
require more computer space to save intermediate variables for the whole calculation.

Xu, Chen and Coleman [13] have developed a new structured AD view to optimize the
calculation of AD when functions are structured. They believe that most functions used in
modeling are structured. If a function can be presented in a structured form, AD can be
tailored to that form, and the hidden sparsity [11] in the corresponding Hessian matrix can

2

be exploited. Thus, the new structured (sparse) AD technique can calculate the Hessian
matrix much more efficiently than a straightforward AD approach.

In contrast to the traditional finite differencing method, structured automatic differen-
tiation [1] has two main advantages in computation: accuracy and efficiency. In addition,
structured automatic differentiation method can be more applicable in many applications,
since it can be flexibly applied to any analytical or numerical method (such as Monte Carlo
simulation) without restrictions and make impressive efficiency gains. The structured AD
technique perseveres the numerical properties of the original methods, such as stability,
convergence and accuracy.

1.3 Implement AD in Monte Carlo Settings

Monte Carlo simulation [5, 4] approximates the value of stochastic functions based on the
expectation of its generated random objects. Derivatives calculation via Monte Carlo simu-
lation involves generating a large number of stochastic paths with different random inputs.
In particular, each generated path can be broken into a finite set of segments or timesteps.
Rather than simply drawing points randomly from space [0, 1] or [0, 1]d , Monte Carlo
process explores particular paths from generated samples in the objective space. Thus,
the Monte Carlo long-run average value will be equal to the true value when the number
of path is sufficient large. Since the simulation precision is determined by the number
of paths, the more paths, the less variability and the higher accuracy. Therefore, Monte
Carlo simulation is a suitable and applicable numerical simulation method for derivatives
calculation.

In order to guarantee the precision of simulation results, generating a large number of
paths is necessary, but limits the feasibility of traditional methods [14] to compute deriva-
tives. However, the structured AD technique can easily compute derivatives in Monte Carlo
settings with a relatively small number of evaluations. The structured AD method [13, 14]
relies on the fact that each sub-function in the structured form system can be generated
by a corresponding Monte Carlo path. When the evaluated function is presented in such
structured form, each sub-function in that form has similar structure and can be compos-
ited by similar elementary operations, thereby leading a more efficient computation. Thus,
the combination of structured AD technique and Monte Carlo simulation can perfectly
exhibit advantages and offset drawbacks in derivatives computation.

3

1.4 Paper Overview

In this paper, we focus on how to efficiently compute Hessian matrices via a structured
AD method in a Monte Carlo setting. In chapter 2, based on the general structured
form background, we design a new structured form for evaluated function f(x) in a Monte
Carlo setting, and develop two algorithms for computing the Hessian by Monte Carlo path.
Afterwards, we theoretically compare the computational time and space usage between
structured AD and straightforward AD.

In chapter 3, we consider the evaluated function as a composite function, which is highly
recursive in the Monte Carlo process. In this case, each Monte Carlo path can be divided
into T segments (or Timesteps), and the first and second derivatives can be computed
segment by segment. We design another structured form for the composite function and
develop two new algorithms for computing the Hessian with respect to segments. Then
discuss the improvement of computational time and space utilization of structured AD,
comparing to the straightforward AD. Numerical experiments of the Hessian computation
are executed in chapter 4. Experimental results reveal a significant difference between
the two AD methods: structured AD completes the Hessian computation in a very high
efficient space utilization, saving much more computer space than straightforward AD,
especially for the large number of paths. Finally, we make a conclusion in Chapter 5.

4

Chapter 2

Hessian Computation Path by Path

Many objective functions in practical applications have the structured form as (2.1) [13, 14].
If the objective function can be presented in this explicit structured form, efficient and
accurate methods can be employed to evaluate the function, thereby reducing the difficulty
of derivatives calculation, such as the gradient and the Hessian calculation. We begin at
reviewing the general structured form of a function, and later showing how this form
improves the computational efficiency.

2.1 General Structured Function

We define a general structured function as follows. Assume to evaluate the scalar-valued
function, f(x) : Rn → R , the computation is expressed:

solve for y1 : F1(x)−M1y1 = 0
solve for y2 : F2(x, y1)−M2y2 = 0
solve for y3 : F3(x, y1, y2)−M3y3 = 0

...
...

solve for yp : Fp(x, y1, y2, . . . , yp−1)−Mpyp = 0
solve for z : f̄(x, y1, y2, . . . , yp)− z = 0

(2.1)

where F
′
i s(i = 1 : p)and f̄ are intermediate functions, vectors yi(i = 1 : p) are intermediate

variables of various dimensions. The matrix Mi is non-singular. In many applications, Mi

is a simple diagonal matrix, often the identity matrix.

5

Note that the evaluation of any deterministic continuous function f can, in principle, be
presented as following form (2.1). We assume that each Fi is a continuously differentiable
vector function. The Jacobian matrix of (2.1) is:

JE =



J1
x −M1

J2
x J2

y1
−M2

J3
x J3

y1
J3
y2
−M3

...
...

...
. . .

Jp
x Jp

y1
Jp
y2

Jp
yp−1

−Mp

0 ∇f̄T
y1
∇f̄T

y2
∇f̄T

y3
. . . ∇f̄T

yp


. (2.2)

Note that the Jacobian matrix of Fi, i.e., (J
i
x, J

i
y1
, J i

y2
, . . . , J i

yi−1
,Mi) is often sparse.

We partition JE into four parts:

JE =



J1
x −M1

J2
x J2

y1
−M2

J3
x J3

y1
J3
y2
−M3

...
...

...
. . .

Jp
x Jp

y1
Jp
y2

Jp
yp−1

−Mp

0 ∇f̄T
y1
∇f̄T

y2
∇f̄T

y3
. . . ∇f̄T

yp


=

[
ĴE
x ĴE

y

∇f̄T
x ∇f̄T

y

]
. (2.3)

Then the gradient of f can be expressed [13]:

∇fT
x = ∇f̄T

x −∇f̄T
y (ĴE

y)
−1
ĴE
x . (2.4)

To develop the structured Hessian view, we define function g :

g(x, y, ω) = f̄(x, y) +

p∑
i=1

ωT
i Fi(x, y), (2.5)

where vector variable ω is the solution of (JE
y)

T
ω = −∇f̄y , ωT = (ωT

1 , ω
T
2 , . . . , ω

T
p) corre-

sponds to vector yT = (yT1 , y
T
2 , . . . , y

T
p) .

Next, we define the new ’auxiliary Hessian matrix’ Ha by differentiating (2.5) with
respect to three variables (x, y, ω) :

Ha =

 ĴE
x ĴE

y 0

∇2
yxg ∇2

yyg (ĴE
y)T

∇2
xxg ∇2

xyg (ĴE
x)T

 . (2.6)

6

We assume Ha is sparse; the Hessian of (2.5), ∇2
xxg(x, y, ω) is evaluated by applying

sparse AD to g(x, y, ω).

Similarly, we partition Ha into four parts:

Ha =

 ĴE
x ĴE

y 0

∇2
yxg ∇2

yyg (ĴE
y)T

∇2
xxg ∇2

xyg (ĴE
x)T

 =

[
A L
B M

]
. (2.7)

Based on Schur complement computation, the Hessian of f related to Ha is [13]:

H = B −ML−1A. (2.8)

2.2 Structured Function in a Monte Carlo setting

Monte Carlo simulation is broadly used in the financial field for approximating values of
evaluated functions. In this chapter, we are concerned with how to apply the structured
AD method in a Monte Carlo setting to perform a highly efficient evaluation of Hessian
matrices via each Monte Carlo path.

We assume that function U(x, Z) contains initial parameters x and random innovations
Z [13]. The expectation of this function is:

E(U(x, Z)) =

∫
U(x, Z)ρ(Z)δZ, (2.9)

where ρ(Z) is the probability density function of Z. ρ(Z)is not influenced by the set of
initial parameters x. In our assumption, function U(x, Z) satisfies the certain regularity
conditions, and integration and differentiation order can be interchanged as:

∂E(·)
∂x

=
∂

∂x

∫
U(x, Z)ρ(Z)dZ =

∫
∂U(x, Z)

∂x
ρ(Z)dZ. (2.10)

Another expression of formula (2.10) is:

∂E(U(x, Z))

∂x
= E

(
∂U(x, Z)

∂x

)
. (2.11)

It is usually difficult to calculate the expectation E(x), but it is relatively easier to
estimate the integral value in the Monte Carlo simulation. Note that the random innovation

7

Z can be broken down to p discrete vectors Zi, and each vector corresponds to a simulation
path. The new expression of E(x) in the Monte Carlo setting is:

Ê(x) =
1

p

p∑
i=1

U(x, Zi) =
1

p

p∑
i=1

Ûi, (2.12)

where Ûi represents simulation paths. Since paths are independent with each other in
Monte Carlo simulation, Ûi can be estimated path by path (named path-wise). The prin-
ciple of path-wise computation is illustrated in Figure 2.1.

Figure 2.1: Principle of path-wise computation.

Based on structure (2.9), we have a corresponding relationship:

E(Û(x, Z)) ≡ f̄ . (2.13)

Each yi = Fi(x, y1, y2, . . . , yi−1) is consistent with path Ûi in yi = Ûi = ̂U(x, Zi). Note in
a Monte Carlo setting, yi has no dependence on vector yk, any k < i, k, i = 1 : p. In this

8

situation, we can simplify the structure as:

F1(x)− y1 = 0
F2(x)− y2 = 0
F3(x)− y3 = 0

...
Fp(x)− yp = 0

f̄(x, y1, y2, . . . , yp)− z = 0

(2.14)

where Fi(x) = Û(x, Zi), i = 1, . . . , p.This specific form (2.14) is known as Generalized
Partially Separable Function, and is also the structured function for the path-wise compu-
tation of Hessian matrices. Fi(x) is independent with each other, and only depends on the

initial control parameters x. Then we can obtain f̄(x, y1, y2, . . . , yp) =
1

p

∑p
i=1 Û(x, Zi). A

simplified corresponding extended Jacobian matrix is:

JE
1 =



J1
x −I
J2
x −I
J3
x −I
...

. . .

Jp
x −I
0 ∇f̄T

y1
∇f̄T

y2
∇f̄T

y3
. . . ∇f̄T

yp


=

[
ĴE
x ĴE

y

∇f̄T
x ∇f̄T

y

]
, (2.15)

where the gradient satisfies:

∇fT
x = 0−∇f̄T

y · I · ĴE
x =

p∑
i=1

∇f̄T
yi
Ĵ i
x. (2.16)

In order to evaluate the Structured Gradient, Algorithm 1 is developed:

Algorithm 1: Implicit Structured Gradient Compute (evaluation of ∇f̄T
x)

1. Evaluate z = f̄(x, y1, y2, · · · , yp) and apply reverse-mode AD to f̄ to obtain
∇f̄T = (∇xf̄

T ,∇y1 f̄
T ,∇y2 f̄

T , · · · ,∇yp f̄
T).

2. (a) Evaluate yi = Fi(x), i = 1, ..., p.

9

(b) Evaluate and differentiate f̄ = (y1, y2, · · · , yp) using reverse-mode AD to get
ωi = ∇f̄yi , i = 1, ..., p.

(c) Compute by reverse-mode AD: vTi = ωT
i · J i

x, where J i
x is the Jacobian of

Fi(x), i = 1, ..., p.

(d) Set ∇f(x)←
∑p

i=1 vi.

In Algorithm 1, for structured AD, time is proportional to ω(f), and space usage σ
satisfies σ ∼ max{ω(f̄), ω(Fi(x)), i = 1, . . . , p}. Although the time complexity of both AD
methods is the same, memory requirement of structured AD becomes much less. Compared
to the space utilization of straightforward AD: σ ∼ ω(f(x)), structured AD only requires
σ ∼ max{ω(f̄), ω(Fi(x)), i = 1, . . . , p}. Thus, the larger p, the less memory increase in
structured AD algorithm. If p is very large, ω(f) � max{ω(f̄), ω(Fi(x)), i = 1, . . . , p}.
The structured AD becomes much more efficient in space utilization [13].

2.3 Structured AD for the Hessian Computation by

MC paths

For the Hessian matrix calculation, we define:

h(x, y, ω) = f̄(x, y) +

p∑
i=1

ωT
i Fi(x, y). (2.17)

In a particular Monte Carlo setting, (2.17) can be simplified as:

h(x, y, ω) = f̄(x, y) +

p∑
i=1

ωT
i U(x, Zi)

= f̄(x, y) +

p∑
i=1

ωT
i Ûi (2.18)

=
1

p

p∑
i=1

Ûk +

p∑
i=1

ωT
i Fi(x, y)

10

where vector variable ω satisfies (ĴE
Y)Tω = −∇yf̄ . In particular, (ĴE

Y)T is made up of
identity matrices:

(ĴE
Y)T =


−I

−I
−I

. . .

−I

 . (2.19)

Thus, ω can be written as:

ωT = ∇Y f̄
T =

(
∇f̄T

y1
∇f̄T

y2
∇f̄T

y3
· · · ∇f̄T

yp

)
. (2.20)

Then the specific ’auxiliary Hessian matrix’ Ha
1 in a Monte Carlo setting is:

Ha
1 =

 ĴE
X ĴE

Y 0

∇2
yxh ∇2

yyh (ĴE
Y)T

∇2
xxh ∇2

xyh (ĴE
X)T

 =

[
A1 L1

B1 M1

]
. (2.21)

In order to obtain H1 = B1 −M1L
−1
1 A1, we decompose L1 as [14]:

L1 =

(
ĴE
Y 0

∇2
yyh (ĴE

Y)T

)
=

(
I 0

∇2
yyh(ĴE

Y)−1 (ĴE
Y)T

)(
ĴE
Y 0
0 I

)
where both decomposed matrices are non-singular. Thus, L1 has inverse matrix [14]:

L−11 =

(
ĴE
Y 0
0 I

)−1(
I 0

∇2
yyh(ĴE

Y)−1 (ĴE
Y)T

)−1
,

and

M1L
−1
1 A1 = M1

(
ĴE
Y 0
0 I

)−1(
I 0

∇2
yyh(ĴE

Y)−1 (ĴE
Y)T

)−1
A (2.22)

Applying (2.22), H1 becomes:

H1 = ∇2
xxh+∇2

xyh · yx + yTx∇2
yxh+ yTx∇2

yyh · yx, (2.23)

where intermediate variables yx = −(ĴE
y)−1ĴE

x = ĴE
x .

In particular, the final path-wise Hessian computation formula in a Monte Carlo setting
is:

HPath
MC = ∇2

xxh+∇2
xyh · (ĴE

x) + (ĴE
x)T∇2

yxh+ (ĴE
x)T∇2

yyh · (ĴE
x), (2.24)

11

where ∇2
xxh,∇2

xyh,∇2
yyh can be computed by the structured reverse-mode AD.

Algorithm2 is developed for evaluating (2.24) to obtain the Hessian matrix.

Algorithm 2: Algorithm Explicit-Structured-Hessian MC Compute

1. Compute ωi and yi by using Algorithm 1;

2. Set ∇2
xxh = ∇2

xxf̄ ,∇2
xyh = ∇2

xyf̄ ,∇2
yyh = ∇2

yyf̄ by applying sparse AD on f̄ ;
Set yx = 0;

3. For i = 1, 2, 3, ..., p, update partial derivatives by applying sparse AD on
functions (ωT

i · Ûi)

∇2
xxh = ∇2

xxh+∇2
xx

(
p∑

i=1

ωT
i · Ûi

)

∇2
xyh = ∇2

xyh+∇2
xy

(
p∑

i=1

ωT
i · Ûi

)

∇2
yyh = ∇2

yyh+∇2
yy

(
p∑

i=1

ωT
i · Ûi

)

yx = ĴE
x ;

4. Matrix multiplication: C ′ = (∇2
xyh) · yx, R′ = yTx · ∇2

yyh · yx;

5. Finally: HMC = ∇2
xxh+ C ′ + C ′T +R.

To compute the sparse Hessian matrix, time and space complexity are ω ∼ χ(∇2f) ·
ω(f) and σ ∼ ω(f) [14]. In a Monte Carlo setting, we can obtain ωk from ∇f̄T

y directly,

and ĴE
y is the identity matrices. The total time and space usage in Algorithm2 decreases

12

to

ω ∼
p∑

i=1

[
χ(J i

x) +
i∑

j=1

χ
(
1 + χ

(
∇2(ωT

i Fi)
))]
· ω(Fi) + χ(∇2f̄) · ω(f̄)

and
σp ∼ |∇2h|nnz + max

i
{ω(Fi), ω(f̄)}.

It is hard to say whether the structured reverse-mode AD costs less time than the
straightforward AD, since it depends on the evaluated functions. However, the space re-
quirement of structured AD has a significant decrease. The space requirement of straight-
forward AD is:

σP−unsAD ∼ |∇2h|nnz + {
p∑

i=1

ω(Fi) + ω(f̄)},

where {
∑p

i=1 ω(Fi) + ω(f̄)}]� maxi{ω(Fi), ω(f̄)}(structured AD space usage), especially
for large p. Since in straightforward reverse-mode AD, saving all intermediate variables is
unavoidable, which consumes massive CPU memory. Instead of saving the whole compu-
tational graph, structured AD only saves useful information, which dramatically decreases
the memory usage. Therefore, the structured AD technique is much more efficient in space
utilization.

13

Chapter 3

The Hessian Computation by Monte
Carlo Segment

In chapter 2, we developed the Monte Carlo path-wise computation of Hessian matrices
for the structured function. In this chapter, we expose to a deeper computational level, by
noting that each Monte Carlo path represents a composite function.

3.1 Compute the Hessian segment by segment

We consider the objective function f as a highly recursive function, and each sub-function
as (2.1) of it is a composite function. Recall Figure 2.1, each Monte Carlo simulation path
Ui represents a composite function, and has formula:

Ûi = zi = f̄ i
(
F̃T

(
F̃T−1

(
. . . F̃ (xi) . . .

)))
, (3.1)

where F̃j, j = 1 : T represents the highly recursive vector-valued function in path i, and f̄ i

is a continuously differentiable scalar-valued function.

The path computation (3.1) can be presented in the structured form:

solve for ỹ1 : F̃1(x
i)− ỹ1 = 0

solve for ỹ2 : F̃2(ỹ1)− ỹ2 = 0

solve for ỹ3 : F̃3(ỹ2)− ỹ3 = 0
...

...

solve for ỹT : F̃T (ỹT−1)− ỹT = 0
solve for zi : f̄(xi, ỹ1, ỹ2, . . . , ỹT)− zi = 0

(3.2)

14

where f̄ i is a scalar-valued function; F̃j is a vector-valued function, and both of them can
be continuously differentiated.

Figure 3.1: The computational graph of composite function

Based on the structured form (3.2), the corresponding extended Jacobian matrix of f i

is:

JE
i =



∂F̃1(x
i)

∂xi
−1

0
∂F̃2(ỹ1)

∂ỹ1
−1

0
∂F̃3(ỹ2)

∂ỹ2
−1

...
.

0
∂F̃T (ỹT−1)

∂ỹT−1
−1

∇f̄T
xi ∇f̄T

ỹ1
∇f̄T

ỹ2
∇f̄T

ỹ3
· · · ∇f̄T

ỹT


=

[
ĴE
xi ĴE

ỹ

∇f̄T
xi ∇f̄T

ỹ

]

(3.3)
The gradient of f̄ i can be presented as:

∇fT
xi = ∇f̄T

xi −∇f̄T
ỹ · (ĴE

ỹ)−1 · (ĴE
xi

) (3.4)

where ĴE
xi

is the sparse matrices and ∇fT
xi = 0.

Next, we define a vector variable ωT
i =

(
ωT
i1, . . . , ω

T
iT

)
to satisfy ωT

ij = ∇fT
ỹ · (ĴE

ỹ)−1, j =

15

1 : T in a transposed form:

−1
∂F̃1(ỹ1)

∂ỹ1

−1
∂F̃2(ỹ2)

∂ỹ2

−1
∂F̃3(ỹ3)

∂ỹ3
.

−1
∂F̃T (ỹT−1)

∂ỹT−1
−1





ωi1

ωi2

ωi3
...

ωi(T−1)
ωiT


=



∇ỹ1 f̄
iT

∇ỹ2 f̄
iT

∇ỹ3 f̄
iT

...

∇ỹT−1
f̄ iT

∇ỹT f̄
iT



(3.5)
In (3.5), the reverse-mode operation of AD has the best performance to calculate ωij, j =
1 : T : compute ωiT first and then compute ωi(T−1) based on ωiT , and etc., until ωi1 is
obtained. The most advantage of the reverse mode is that we can obtain all ωij without

actually computing the whole extended Jacobian matrix ĴE
ỹ , which contributes a significant

reduction in computation. Thus, equation (3.4) can be simplified as:

∇fT
xi = −ωi1 ·

∂F̃1(x
i)

∂xi
(3.6)

Next, we define a new function h(xi, ỹ, ωi) for the Hessian computation:

h(xi, ỹ, ωi) = f̄ i(xi, ỹ) +
T∑

j=1

ωT
ij · F̃j(x

i, ỹj) (3.7)

where the vector-variable ωij is the same as (3.5). Scalar-valued function f̄ i represents the
output of (3.2), and ỹ represents all the intermediate variables of path i in (3.2). Then,
we define the new ’auxiliary Hessian’ matrix for the composite function:

Hs =

 ĴE
xi ĴE

ỹ 0

∇2
ỹjxihi ∇2

ỹkỹj
hi (ĴE

ỹ)T

∇2
xixihi ∇2

xiỹj
hi (ĴE

xi)T

 =

[
Ai Li

Bi Mi

]
. (3.8)

Note j, k = 1, . . . , T .

The Hessian of f i related to Hs satisfies:

Hs = Bi −MiL
−1
i Ai

= ∇2
xixi +∇2

xiỹj
hi · yxi + yTxi · ∇2

ỹjxihi + yTxi · ∇2
ỹj ỹk

hi · yxi (3.9)

16

where yxi = −(ĴE
ỹ)−1 · ĴE

xi .

In addition, among ωT
ij, Ĵ

E
ỹ , and −∇f̄T

ỹ , we have:

ĴE
ỹ · ωT

ij = −∇ỹf̄
T (3.10)

and
ωT
ij · ĴE

xi = −∇f̄T
ỹ · (ĴE

ỹ)−1 · ĴE
xi = ∇f̄T

ỹ · yxi (3.11)

Thus, the intermediate parameters yxi can be computed by:

yxi = ∇f̄−Tỹj
· ωT

ij · ĴE
xi (3.12)

We develop the Algorithm 3 for the segment-wise gradient computation in a Monte
Carlo setting:

Algorithm 3: Compute Implicit Structured Gradient by segment

1. Evaluate all ỹ1, ỹ2, . . . , ỹT , and store ỹT ;

2. Evaluate f̄(xi, ỹ1, ỹ2, . . . , ỹT) = zi,
and obtain ∇xi f̄T = (∇f̄T

xi ,∇f̄T
ỹ1
,∇f̄T

ỹ2
,∇f̄T

ỹ3
, . . . ,∇f̄T

ỹT
);

3. Calculate gradient:
Initial vj = 0, j = 1 : n,∇fT

xi = ∇f̄T
xi .

For j = T, T − 1, . . . , 1
−ωij = ∇f̄ỹj − vj;
Evaluate g(ỹT−1, z

i), and use reverse-mode AD with ωij

to compute ωij · (0, . . . ,
∂F̃j(ỹj−1)

∂ỹj−1
,−1, 0, . . . , 0). Set vj = vj +ωij ·

∂F̃j(ỹj−1)

∂ỹj−1
, j =

1, . . . , T ;

4. Update ∇fT
xi = ∇f̄−T

xi − ωi1 ·
∂F̃1(x

i)

∂xi
;

5. For j = 1, 2, . . . , T

Evaluate and store yxij = ∇f̄−Tỹj
· ωi1 ·

∂F̃1(x
i)

∂xi
.

17

Algorithm 4 is for the segment-wise Hessian (H i
s) computation:

Algorithm 4: Compute-Structured-Hessian in segment level

1. Obtain ωij and yxij from Algorithm 1;

2. Set


∇2

xixih(xi, ỹj, ωi) = ∇2
xixi f̄(xi, ỹj)

∇2
xiỹj

h(xi, ỹj, ωi) = ∇2
xiỹj

f̄(xi, ỹj)

∇2
ỹkỹj

h(xi, ỹj, ωi) = ∇2
ỹkỹj

f̄(xi, ỹj)
;

3. For j = 1, 2, . . . , T ; k = 1, 2, . . . , T
Update partial derivatives directly:

∇2
xixih(xi, ỹj, ωi) = ∇2

xixih(xi, ỹj, ωi) +∇2
xixiωT

ij · F̃j(x
i, ỹj)

∇2
xiỹj

h(xi, ỹj, ωi) = ∇2
xiỹj

h(xi, ỹj, ωi) +∇2
xiỹj

ωT
ij · F̃j(x

i, ỹj)

∇2
ỹkỹj

h(xi, ỹj, ωi) = ∇2
ỹkỹj

h(xi, ỹj, ωi) +∇2
ỹkỹj

ωT
ij · F̃j(x

i, ỹj)

;

4. Vector multiplication:{
Ci = ∇2

xiỹj
h(xi, ỹj, ωi) · yxi

Ri = yTxi · ∇2
ỹkỹj

h(xi, ỹj, ωi) · yxi
;

5. Segment level Hessian matrix is:

H i
s = ∇2

xixih(xi, ỹj, ωi) + Ci + CT
i +Ri.

In Algorithm 4, we assume that h(xi, ỹj, ωi) is not a function of xi:

∇2
xixih(xi, ỹj, ωi) = ∇2

xiỹj
h(xi, ỹj, ωi) = ∇2

ỹjxih(xi, ỹj, ωi) = 0 (3.13)

Thus, Hs
i can be simplified as:

Hs
i = yTxi · ∇2

ỹkỹj
h(xi, ỹj, ωi) · yxi (3.14)

where ∇2
ỹkỹj

h(xi, ỹj, ωi) = 0, if k 6= j. Therefore, ∇2
yyh is a block diagonal matrix. A

simplified version for the Algorithm 4 is:

18

Algorithm 4 (simplified): Compute-Structured-Hessian in segment level

1. Obtain ωij and yxij from Algorithm 3;

2. Set


∇2

xixih(xi, ỹj, ωi) = 0
∇2

xiỹj
h(xi, ỹj, ωi) = 0

∇2
ỹkỹj

h(xi, ỹj, ωi) = ∇2
ỹkỹj

f̄(xi, ỹj, ωi)
;

3. For j = 1, 2, . . . , T ; k = 1, 2, . . . , T
Update partial derivatives directly:

∇2
ỹkỹj

h(xi, ỹj, ωi) = ∇2
ỹkỹj

h(xi, ỹj, ωi) +∇2
ỹkỹj

ωT
ij · F̃j(x

i, ỹj);

4. Segment level matrix addition:

Hs
i = yTxi · ∇2

ỹkỹj
h(xi, ỹj, ωi) · yxi .

3.2 Final Hessian evaluation of all paths

We can apply the segment-wise structured AD method to obtain zi = f i(x) and ∇f i
x(i =

1, . . . , p) in each Monte Carlo path. The final Hessian of the original evaluated function f
can be obtained by an appropriate combination of all the Hessian result in each path.

In order to compute the final Hessian, we recall the Monte Carlo evaluation principle
in Figure 2.1, and obtain the outputs zi = f i(x) of all paths. The evaluated function f
can be presented in the structured form:

solve for z1 : f 1(x)− z1 = 0
solve for z2 : f 2(x)− z2 = 0
solve for z3 : f 3(x)− z3 = 0

...
...

solve for zp : fp(x)− zp = 0
solve for z : f̄(x, z1, z2, z3, . . . , zp)− z = 0

(3.15)

19

where each zi is a scalar-valued function. f̄ is a simple, often linear, function. In the

Monte Carlo setting, we have f̄(x, z1, z2, z3, . . . , zp) =
1

p

∑p
i=1 z

i.Then, the final extended

Jacobian matrix of all paths is:

JE =



(∇f 1(x))T −1
(∇f 2(x))T −1
(∇f 3(x))T −1

...
. . .

(∇fp(x))T −1

0
∂f̄

∂z1
∂f̄

∂z2
∂f̄

∂z3
. . .

∂f̄

∂zp


=

[
ĴE
X ĴE

Y

∇X f̄
T ∇Y f̄

T

]
. (3.16)

The corresponding auxiliary Hessian matrix of evaluated function f is:

Hp =

 ĴE
X ĴE

Y 0

∇2
yxh ∇2

yyh (ĴE
Y)T

∇2
xxh ∇2

xyh (ĴE
X)T

 =

[
A L
B M

]
. (3.17)

The final Hessian Hp = B −ML−1A can be presented as:

HFinal
MC = ∇2

xxh+∇2
xyh · yx + yTx · ∇2

yxh+ yTx · ∇2
yyh · yx, (3.18)

where yx = −(ĴE
Y)−1 · ĴE

X = ĴE
X . Then, the final Hessian HFinal

MC for all paths is:

HFinal
MC = ∇2

xxh+∇2
xyh · (ĴE

X) + (ĴE
X)T · ∇2

yxh+ (ĴE
X)T∇2

yyh · (ĴE
X) (3.19)

Moreover, in Monte Carlo settings, we assume that zi = f i(x) is not the function of xi,
since xi represents the initial value of input parameters. Thus, we have ∇2

xxh = ∇2
xyh =

∇2
yxh = 0. Therefore, HFinal

MC is actually the summation of Hs
i of all paths:

Hall−paths
MC = (ĴE

X)T · ∇2
yyh · (ĴE

X) =

p∑
i=1

H i
s (3.20)

In segment-wise structured AD, the space requirement in each path is:

σs ∼ |∇2h|jji + max
j
{ω(F̃j), j = 1, 2, . . . , T, ω(f̄ i)}. (3.21)

whereas, the space usage of straightforward reverse-mode AD is:

σs−unsAD ∼ |∇2h|jji + {
T∑

j=1

ω(F̃j) + ω(f̄ i)}. (3.22)

20

Compare (3.21) with (3.22), it is clear that

{
p∑

i=1

{
T∑

j=1

ω(F̃j) + ω(f̄ i)}} � max
j
{ω(F̃j), j = 1, 2, . . . , T, ω(f̄ i)},

especially for large number of MC paths.

For the final Hessian computation of the evaluated function, the total space requirement
is the summation of the space usage of each paths sub-Hessian computation:

σs−strAD−all paths ∼
p∑

i=1

|∇2h|jji + max
j
{ω(F̃j), j = 1, 2, . . . , T, ω(f̄ i)}; (3.23)

σs−unsAD−all paths ∼
p∑

i=1

|∇2h|jji + {
p∑

i=1

{
T∑

j=1

ω(F̃j), ω(f̄ i)}}. (3.24)

where σs−strAD−all paths represents the total space usage for structured AD, and σs−unsAD−all paths

represents for straightforward AD.

Note in (3.23) and (3.24), σs−unsAD−all paths � σs−strAD−all paths, especially for large p
and T . Instead of saving the whole computational graph, storage of the necessary infor-
mation only contributes a lot to space saving. Therefore, the structured AD technique can
greatly improve the space utilization efficiency, in the segment-wise Hessian computation.

In chapter 4, the experimental results show, more directly, how the difference of com-
putational space utilization between structured AD and straightforward AD.

21

Chapter 4

Experimental Results

4.1 A Financial application

In many financial applications, the deterministic function can be presented in the struc-
tured form (2.1), which allows using the structured AD technique to compute Hessian
matrices. In this chapter, we consider a simple option pricing model, the Heston [7], as
our objective model. Then, we respectively apply the structured AD and straightforward
AD to evaluate the Hessian of the Heston model in a Monte Carlo setting.

The Heston model can provide a good explanation of the volatility for an underlying
asset . In the discrete stochastic process, the Heston model can be defined as:

∆Si
j = µSi

j−1∆t+
√
vij−1S

i
j−1∆W

Si

j−1 (4.1)

∆vij = κ(θ − vij−1)∆t+ ξ
√
vij−1∆W

vi

j−1 (4.2)

where ∆W Si

j−1 and ∆W vi

j−1 represent the Wiener process, corresponding to the random
innovation Zi. The variables in the Heston model are: µ is the risk-free interest rate; θ is
the long-run average variance; κ is the rate at which v reverts to θ; ξ is the volatility of v.

When applying the structured AD with Monte Carlo simulation in the Heston model, i
represents ith path, and j represents the segments in each Monte Carlo path. In particular,
for the path-wise computation, the stochastic processes from path 1 to p are examples of
the evaluation of sub-functions U(x, Zi) in (2.13), where i = 1 : p. In the segment-wise

22

computation: we further divide each path into T segments, and in each specific path i, the
stochastic processes from segment 1 to T are examples of the evaluation of sub-functions
F̃j in (3.2).

Under risk neutral pricing theory [7], the expectation of options price is defined as:

P = E[V (S)] (4.3)

where V (S) is the payoff function of the underlying asset S at maturity. The underlying
asset value S is presented as the combination of initial parameters x and random variables
Z:

S = g(x, Z) (4.4)

where x is a vector variable of initial parameters, including risk free interest rate, ini-
tial value, volatility and some other deterministic parameters for the evolution of S. Z
represents the random innovations. Thus, the price P has an integral form as:

P =

∫
V (g(x, Z))ρ(Z)dZ (4.5)

where ρ(Z) is the probability density function of Z and independent with the initial variable
x. In particular, we can interchange the order of integration and differentiation in the
integral form of P :

∂P

∂x
=

∂

∂x

∫
V (g(x, Z))ρ(Z)dZ =

∫
∂V (g(x, Z))

∂x
ρ(Z)dZ (4.6)

Next, we use the Monte Carlo simulation generating p paths to approximate the integral
value. The approximate expectation formula in Monte Carlo simulation is:

P̂ =
1

p

p∑
i=1

V (g(x, Zi)) =
1

p

p∑
i=1

p̂i (4.7)

∂P̂

∂x
=

1

p

p∑
i=1

∂V (g(x, Zi))

∂x
=

1

p

p∑
i=1

∂p̂i
∂x

(4.8)

where the random innovation Zi ∈ R, (i = 1 : p) corresponding to the simulation paths in
Figure 2.1. We focus on the path-wise evaluation of the Hessian in this chapter. Since all
Monte Carlo paths are independent with each other, the structured AD can be tailored
into the path-wise computation, and we can use Algorithm 1 and 2 to efficiently compute
the Hessian.

23

There are two payoff functions of the option, one is for Call option as (1), and another
is for Put option as (2). They are usually presented as:

[ST −K]+(1)or[K − ST]+(2) (4.9)

We choose the European call option to do the path-wise computation. Combined with the
payoff function, the path-wise evaluated estimator can be expressed as:

1

p

p∑
i=1

∂V (g(x, Zi))

∂x
1(STi

>K) (4.10)

where 1(STi
>K) is the indicator function which reflects whether the value of underlying

asset S is bigger than strike price K at maturity time T . If STi
< K,we do not execute the

call option, and the value of ∂V (g(x,Zi))
∂x

1(STi
<K) is zero. Thus, we do not need to compute

∂V (g(x,Zi))
∂x

, and we can directly set the value of ∂V (g(x,Zi))
∂x

1(STi
<K) to zero. In particular,

if using the structured reverse-mode AD, we can set the ∂V (g(x,Zi))
∂x

1(STi
<K) to zero before

executing the reverse order evaluation of derivatives. Compared with the forward-mode
AD, the reverse-mode AD can significantly save computational time and space with the
ellipsis of a huge amount of derivative calculation. Hence, we choose reverse-mode in the
structured AD technique for the path-wise Hessian computation.

Last, we compare the performance of the structured AD and straightforward AD in the
Hessian computation. Theoretically, if the payoff function is in the structured form, the
gradient and Hessian matrices are sparse, which can significantly reduce the computational
complexity. However, if we do not consider the structure of payoff functions, straightfor-
wardly using reverse-mode AD, we need to generate numerous zero elements in the gradient
and Hessian matrices, which consumes massive CPU memory. In most cases, such a huge
CPU memory requirement makes the Hessian computation very expensive, thereby making
computers break without any outputs.

4.2 Comparison results

For consistency, all experiments are performed on the UW server with 262GB memory,
while running Matlab R2015a under the Windows Sever 2008R2 system. The AD toolbox
for the reverse-mode AD is ADMAT 2.0 [2].

Structured AD and straightforward AD are compared in three different versions. Firstly,
we keep the Monte Carlo path number and segment number as constant, only increasing

24

the asset number; secondly, only increasing the Monte Carlo path number; thirdly, only
increasing the segment number. Finally, we compare the difference between the structured
AD and straightforward AD in both time and space utilization.

Before performing the experiment, we set the following initial parameter values of x in
the Heston model as:

Initial parameters of x in Heston Model
S0 abs(randn(NAssets,1)) Initial stock price
µ 0.005 Risk-free interest rate
v0 ones(NAsset, 1) ∗ (µ/2)2 Initial volatility
κ 0.1 Rate of reverting
ξ κ/4 volatility of volatility v
K mean(S0) Strike price
ρ 0.5 correlation of Wiener Processes

Table 4.1: Initial parameters of x in Heston Model

There are another three variables in each comparison form: NAsset represents the
number of assets in portfolios; NMC Instance represents the Monte Carlo path number in
simulations; NSegment represents the segment number in each Monte Carlo path. In the
path-wise experiment, the segment number is the same in each Monte Carlo path.

4.3 Experimental results for only increasing Asset num-

ber

As the assets increase in numbers, both structured and straightforward AD require more
space (tape) to complete the evaluation. When the MC path number is 1000 and segment
number is 50, straightforward AD requires more than 500 times the space needed by
structured AD. The structured AD requires only around 10MB tape, but straightforward
AD needs more than 5000 MB tape.

When we increase the MC path number to 2000, the segment number to 100, and the
number of assets to 200, the tape demand of straightforward AD rises to more than 40,000
MB tape, whereas the structured AD only needs 80MB. Therefore, the tape demand of
straightforward AD significantly increases with the increasing number of assets, whereas
the tape of structured AD only increases very slightly.

25

Structured AD Straightforward AD

NAsset
NMC

Instance
Nsegments Tape (MB) Time(s) Tape (MB) Time(s)

Tape
Ratio

Time
Ratio

10 1000 50 9.4123 347.0920 1984.4800 285.3985 210.8381 0.8223
20 1000 50 10.8047 354.3805 2246.9507 278.5683 207.9603 0.7861
40 1000 50 9.8884 353.3727 3481.1677 305.9876 352.0428 0.8659
80 1000 50 17.8151 364.4671 5240.2803 313.9215 294.1481 0.8613
100 1000 50 14.7242 364.5445 5233.2764 316.8103 355.4196 0.8691

10 2000 100 5.3425 1335.7755 7894.6515 1225.4974 1477.6871 0.9174
20 2000 100 8.9813 1352.5386 9644.0038 1149.5256 1073.7764 0.8499
40 2000 100 19.6760 1384.3007 13848.2293 1444.6707 703.8121 1.0436
80 2000 100 35.4456 1403.0559 20845.4553 1433.4063 588.0956 1.0216
100 2000 100 29.2938 1432.3050 20816.1889 1283.5254 710.5985 0.8961
200 2000 100 82.7546 1496.9616 41837.1331 3280.1093 505.5562 2.1912

Table 4.2: Only increasing Asset number

4.4 Experimental results for only increasing MC-Path

number

When the number of assets and segments are constant, the space requirement for struc-
tured AD always remains constant no matter how much the number of Monte Carlo paths
increases. In addition, the tape requirement of structured AD is significantly smaller than
that of straightforward AD. If the asset number is 40, the Monte Carlo path is 8000 and
the segment number is 50, then structured AD requires only 9.88MB tape to complete
the evaluation, whereas the straightforward AD requires 27,849MB (equal to 27.2GB). In
one more example, when we increase the asset number to 80, the MC path up 4000, and
the segment number to 100, then structured AD requires only 35.44MB to compute the
Hessian, whereas straightforward AD needs 41690MB (equal to 40.7GB), more than 1170
times of space requirement. No matter how large of the MC path number, structured AD
can always evaluate the Hessian, but the straightforward AD will break when it runs out
of CPU memory.

In real-world Hessian evaluation, such huge memory demand cannot be satisfied by most
local computers. In addition, generating over 10,000 Monte Carlo paths for high accuracy
is common, which makes using the straightforward AD for the Hessian computation very
expensive. Thus, the structured AD technique significantly raises the space-utilization

26

Structured AD Straightforward AD

NAsset
NMC

Instance
Nsegments Tape (MB) Time(s) Tape (MB) Time(s)

Tape
Ratio

Time
Ratio

10 200 50 2.6839 66.0299 396.9067 56.8078 147.8832 0.8603
10 500 50 2.6839 167.3581 992.2467 144.9778 369.7007 0.8662
10 1000 50 2.6839 347.0920 1984.4800 285.3985 739.3963 0.8222
10 1500 50 2.6839 519.9241 2976.7133 428.3622 1109.092 0.8238
10 2000 50 2.6839 687.1953 3968.9465 558.3885 1478.7878 0.8125
10 8000 50 2.6839 2695.4196 15875.7458 2674.7563 5915.1359 0.9923
10 20000 50 2.6839 6745.8712 39689.3445 6054.8171 14787.832 0.8975

20 500 50 4.5130 175.4615 1123.4823 145.5246 248.9411 0.8293
20 1000 50 4.5130 354.3805 2246.9507 278.5683 497.8791 0.7861
20 1500 50 4.5130 545.5506 3636.4145 435.2705 805.7564 0.7978
20 2000 50 4.5130 733.9949 4848.5479 597.9032 1074.3409 0.8145

40 1500 50 9.8884 528.5701 5221.7435 468.7873 528.06337 0.8869
40 2000 50 9.8884 699.3492 6962.3193 619.8291 704.1355 0.8863
40 4000 50 9.8884 1414.3551 13924.6224 1221.5780 1408.1663 0.8637
40 8000 50 9.8884 2825.6240 27849.2288 2398.7290 2816.3309 0.8489

80 2000 100 35.4456 1403.0559 20845.4553 1433.4063 588.0956 1.0216
80 4000 100 35.4456 2819.3328 41690.8914 2456.3808 1176.1907 0.8713
80 8000 100 35.4456 5528.6956 Nan Nan Nan Nan

100 2000 252 73.5856 3504.9084 52279.1405 3196.1551 710.4528 0.9119
100 3000 252 73.5856 5276.8601 78418.7012 4701.3353 1065.6791 0.8909
100 4000 252 73.5856 7042.8322 Nan Nan Nan Nan
100 6000 252 73.5856 10617.6426 Nan Nan Nan Nan
100 10000 252 73.5856 17230.0683 Nan Nan Nan Nan

Table 4.3: Only increasing MC-Path number

27

efficiency in the Hessian evaluation, especially for larger numbers of Monte Carlo paths.

The comparison results are more obvious in graphs.

Figure 4.1: Tape Comparison Asset=40, Segments=50

Figure 4.2: Time Comparison Asset=40, Segments=50

There is a significant difference in space utilization between the structured AD and
straightforward AD in Figure 4.1. As for the time consuming aspect in Figure 4.4, the two
AD techniques require a similar computational time for the Hessian evaluation.

28

Figure 4.3: Tape Ratio Asset=40, Segments=50

Figure 4.4: Time Ratio Asset=40, Segments=50

29

4.5 Experimental results for only increasing Segments

number

Structured AD Straightforward AD

NAsset
NMC

Instance
Nsegments Tape (MB) Time(s) Tape (MB) Time(s)

Tape
Ratio

Time
Ratio

20 2000 50 21.5945 733.9949 4848.5479 597.9032 224.5261 0.8145
20 2000 100 21.5945 1414.9126 9644.0038 1149.5256 446.5937 0.8124
20 2000 252 22.5651 3341.1727 24222.1898 3197.1225 1073.4331 0.9568

40 2000 50 9.8884 699.3492 6962.3193 619.8291 704.0839 0.8863
40 2000 100 19.6760 1384.3007 13848.2293 1444.6707 703.8121 1.0436
40 2000 252 49.4302 3376.2734 34781.3958 3035.5861 703.6465 0.8991

Table 4.4: Only increasing segments number

When only the segment number increased, the tape increase conclusion is very similar
to the former two cases. The structured AD technique also has a small space require-
ment for computation, around 20 MB, whereas the straightforward AD requires more than
20,000MB. In our experiment, the largest number of segments(time-step) is 252, since it
represents the whole year time-steps in stock market.

To summarize, for computational space utilization, our structured AD has major advan-
tage in path-wise Hessian computation, compared with the straightforward AD, especially
for a large number of Monte Carlo paths.

30

Chapter 5

Conclusion

In quantitative finance, the evaluation of Hessian matrices is important for hedging and
sensitivity analysis. However, twice differentiating the objective function can be difficult
and costly. Many traditional methods are either too costly or inaccurate when computing
the Hessian. Automatic differentiation is an alternative way to obtain the second deriva-
tives. However, simply applying the straightforward AD is still relatively inefficient in
Hessian evaluation. Thus, it is useful to develop a new efficient AD method to compute
the Hessian.

The advent of the structured AD technique [14] provides a way forward to efficiently
compute the Hessian. Many objective functions in practice can be presented in the struc-
tured form and this form usually exposes underlying sparsity. Our proposal is how to tailor
the AD technique to the structured form, and use the ’hidden’ sparse property to obtain
the Hessian more efficiently. Compared with the straightforward AD, our structured AD
can significantly improve the space utilization for structured problems arising in a Monte
Carlo setting.

In this paper, we used the Heston model to develop numerical experiments. Our results
show that the structured AD has a very high efficiency in computational space utilization.
When the number of assets and time-segment number are constant, the structured AD
only requires a small fixed computational space, regardless of how large number of the
MC paths, whereas the space demand of straightforward AD soars for the large MC paths
number. For example, when the number of assets is 10 and time-segment number is 50: for
2,000 MC paths, the structured AD requires 2.68MB tape, whereas the straightforward AD
requires 3.88GB tape; for 20,000 MC paths, the structured AD still needs 2.68MB tape,
however, the straightforward AD requires 38.76GB tape (14,788 times space more than

31

that of the structured AD). In addition, we compared the final Hessian results between
the two AD methods, and their absolute error is less than 1.0 ∗ 10−14. Therefore, the new
structured AD is a very efficient and accurate technique to compute the Hessian, and more
applicable for local computers.

The Heston model is a stochastic volatility model for options pricing, and involves
the evaluation of two stochastic differentiable equations of underlying assets S and the
volatility. We applied the Heston model for Monte Carlo simulation to do the options
pricing. For path-wise computation of the Hessian, the stochastic processes in the Heston
model from path 1 to p are corresponding to ps Monte Carlo simulation paths, respectively,
and all paths are independent with each other.

When the evaluated function is highly recursive, each Monte Carlo path involves a
finite set of segments. In this case, we can use segment-wise computational algorithm
to compute the Hessian. Theoretically, in structured AD technique, the segment-wise
computation of the Hessian also has a very highly efficient space utilization, compared
with the straightforward AD, although we did not do numerical experiments for it.

With the high efficiency and accuracy gains, the structured AD technique can be
broadly used to compute the Hessian matrices for real-world applications. In addition,
it is worth to do further research of segment-wise computation of the Hessian for more
complicated Monte Carlo processes, such as the nested Monte Carlo cases. In conclusion,
it is reasonable to believe that the appropriate application of structured AD technique of
derivatives calculation will gain more efficiency in both time and space utilization.

32

References

[1] T. F. Coleman and G. F. Jonsson, The efficient computation of structured gra-
dients using automatic differentiation, SIAM Journal on Scientific Computing, 20
(1999), pp. 1430–1437.

[2] T. F. Coleman and W. Xu, Automatic differentiation in matlab using admat with
applications, 2016.

[3] M. C. Fu, What you should know about simulation and derivatives, Naval Research
Logistics (NRL), 55 (2008), pp. 723–736.

[4] M. Giles and P. Glasserman, Smoking adjoints: Fast monte carlo greeks, Risk,
19 (2006), pp. 88–92.

[5] P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer
Science & Business Media, 2003.

[6] A. Griewank and A. Walther, Algorithm 799: revolve: an implementation of
checkpointing for the reverse or adjoint mode of computational differentiation, ACM
Transactions on Mathematical Software (TOMS), 26 (2000), pp. 19–45.

[7] S. L. Heston, A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options, Review of financial studies, 6 (1993), pp. 327–
343.

[8] C. Homescu, Adjoints and automatic (algorithmic) differentiation in computational
finance, Available at SSRN 1828503, (2011).

[9] M. Joshi and C. Yang, Algorithmic hessians and the fast computation of cross-
gamma risk, IIE Transactions, 43 (2011), pp. 878–892.

33

[10] C. Käbe, J. H. Maruhn, and E. W. Sachs, Adjoint-based monte carlo calibration
of financial market models, Finance and Stochastics, 13 (2009), pp. 351–379.

[11] A. Walther, Computing sparse hessians with automatic differentiation, ACM Trans-
actions on Mathematical Software (TOMS), 34 (2008), p. 3.

[12] Wikipedia, Chain rule.

[13] W. Xu, X. Chen, and T. F. Coleman, The efficient application of automatic
differentiation for computing gradients in financial applications, J. Comput. Finance,
(2014).

[14] W. Xu, S. Embaye, and T. F. Coleman, Efficient computation of derivatives and
newton steps for minimization of structured functions using automatic differentiation,
(2016).

34

	List of Tables
	List of Figures
	Introduction
	Hessian Background
	Automatic Differentiation Advantage
	Implement AD in Monte Carlo Settings
	Paper Overview

	Hessian Computation Path by Path
	General Structured Function
	Structured Function in a Monte Carlo setting
	Structured AD for the Hessian Computation by MC paths

	The Hessian Computation by Monte Carlo Segment
	Compute the Hessian segment by segment
	Final Hessian evaluation of all paths

	Experimental Results
	A Financial application
	Comparison results
	Experimental results for only increasing Asset number
	Experimental results for only increasing MC-Path number
	Experimental results for only increasing Segments number

	Conclusion
	References

