
Size proportional Venn diagrams in 2

and 3 dimensions:

vennplot(...) in R

by

Zehao Xu

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof. Wayne Oldford & Prof. Marius Hofert

Waterloo, Ontario, Canada, 2017

c� Zehao Xu. Public 2017



I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii



Abstract

Venn diagrams are popular ways to visualize sets. Wilkinson [48] and Frederickson
[18] have introduced statistical models for fitting size-proportional Venn diagram. In this
paper, we will improve their methods in several aspects. An R function vennplot() is
available to provide both 2D and 3D layout.

iii



Acknowledgements

I would like to thank my supervisor, Professor R. Wayne Oldford. Thanks for his
patience and I do learned a lot from him. He gave me a lot of useful suggestion and
technical help in R. This paper is impossible without his help; thanks Prof Martin Lysy,
he gives me a lot of help on C++; I am also appreciate Prop Marius Hofert’s help on
modifying this paper.

iv



Table of Contents

List of Figures vii

1 Introduction 1

1.1 Venn and Euler diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Examples of Venn diagrams drawn from the scientific literatures . . . . . . 4

2 Automated construction of Circular Venn diagrams 7

3 Shrink or stretch 20

4 Three dimension Venn diagram 28

5 Unspecified intersections 31

5.0.1 Common case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.0.2 Special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.0.3 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Undirected connected components 38

6.1 Divide G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Detect case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Unite G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Examples 49

v



8 Comparison with other Venn algorithms 52

9 Discussion 62

10 Appendix 64

vi



List of Figures

1.1 Number of articles containing “Venn diagram” over time from the journals
Genetics and Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Venn diagrams with 2,3,4 and 5 sets, respectively [45] . . . . . . . . . . . . 3

1.3 Five possible ways contain all the cases of two circles. Euler diagram is
above and Venn diagram is below. I) a \ b = ?; II) a \ b; III) a = b; IV)
a \ b = a; V) a \ b = b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 (a) Illustrating the number of unique and shared wMel genes matching these
four components. [27]. (b) Genes sharing by five asterid species [41]. . . . . 4

1.5 (a) Venn diagram of gene sharing by six woody species [41]. (b) Showing
the number of genes shared between isolates from investigative patients[7]. 5

1.6 (e) Illustrating the overlapping of gene ontology between the highland and
sub-highland lineages [49]. (f) Explaining the friendships through locations,
ages and interests. (data source: www.livejournal.com) [25]. . . . . . . . . 6

2.1 locate circles with target distance dij . . . . . . . . . . . . . . . . . . . . . 8

2.2 The initial point configuration of data set Figure 1.4 (a), Figure 1.6 (e) and
(f) by Jaccard distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The final point configuration of data set Figure 1.4 (a), Figure 1.6 (e) and
(f), with stress, 0.00048, 6⇥ 10

�6 and 0.0029 . . . . . . . . . . . . . . . . . 11

2.4 The final layout of disjoint set I(S)?
1

by venneuler() of Wilkinson. . . . . 12

2.5 Two dimension circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 The initial point configuration of data set Figure 1.4 (a), Figure 1.6 (e) and
(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



2.7 (a) If Si \ Sj = ?, the way to position Bi and Bj. (b) If Si \ Sj = Si or
Si \ Sj = Sj, the way to position Bi and Bj. . . . . . . . . . . . . . . . . 15

2.8 The final point configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 The layout of disjoint set I(S)?
1

by venn.js() Frederickson . . . . . . . . 18

2.10 Comparison of success rate and running time [19] . . . . . . . . . . . . . . 19

3.1 Stretch circles with � = 2 or shrink circles with � = 0.5. . . . . . . . . . . . 20

3.2 (a), (e) and (f) corresponds to Figure 1.4 (a), Figure 1.6 (e) and (f) . . . . 25

3.3 The layout of disjoint set I(S)?
1

by vennplot() . . . . . . . . . . . . . . . 26

3.4 Scatter plot. Red dots represent venneuler(), blue dots represent vennplot()
and purple dots represent vennjs(); imaginary line represents y = 0. Four
sets are on behalf of Figure 1.4 (a), Figure 1.6 (e), (f) and I(S)?

1

. . . . . 27

4.1 Dimension p = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 (a.1) and (a.2) are the same layout but observed by different angles of data
set Figure 1.4 (a); (e) and (f) are the corresponding 3D layout of Figure 1.6
(e) and (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 (a) venneuler() (b) venn.js() . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 vennplot(twoWayGenerate = TRUE) . . . . . . . . . . . . . . . . . . . . . 35

5.3 vennplot() with high weight on three way intersection . . . . . . . . . . . 36

5.4 scatter plot with high weight on three way intersection, red dots represent
venneuler, blue ones represent vennplot(), purple ones represent venn.js 37

6.1 (a) venneuler() (b) venn.js() . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 vennplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 The choice of cj and x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Translation cj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.6 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 sharks data frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



7.2 Multiple groups in one data set . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Figure 1.4 (b) data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1 venneuler()- vennplot(), abs and stress . . . . . . . . . . . . . . . . . . 52

8.2 venneuler() - vennplot(), stress(k), where 1  k  m� 1 . . . . . . . . 53

8.3 venneuler()- vennplot(), stress(m) . . . . . . . . . . . . . . . . . . . . . 54

8.4 venneuler()- vennplot(), � . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.5 venn.js() - vennplot(), abs and stress . . . . . . . . . . . . . . . . . . . 55

8.6 For set I(S)?
4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.7 venneuler()- vennplot(), stress multiple groups . . . . . . . . . . . . . . 57

8.8 (a) is the initial configuration and (b) is the final one . . . . . . . . . . . . 58

8.9 eulerr() - vennplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.10 eulerr() - vennplot(), � . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.11 eulerr() - vennplot(), stress(k) where 1  k  m� 1 . . . . . . . . . . 60

8.12 eulerr() - vennplot(), stress(m) . . . . . . . . . . . . . . . . . . . . . . 61

9.1 small stress but fit bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



Chapter 1

Introduction

“Good diagrams clarify. Very good diagrams force the ideas upon the viewer.
The best diagrams compellingly embody the ideas themselves.”
Wayne Oldford [9]

Venn diagrams are criticized for the use in probability, but they are good for sets [9].
In this paper, we consider sets. Chow and Ruskey [11] develop ways to construct area-
proportional Venn diagrams. This improvement has great ability to convey the information
from sets. In recent years variations of Venn diagrams have increasing be used in scientific
publications, particularly in genetic applications. For example, Figure 1.1

1



Figure 1.1: Number of articles containing “Venn diagram” over time from the journals
Genetics and Nature

shows the results of an online search for “Venn diagram” over all articles appearing in
the journals Nature and Genetics (including G3: Genes, Genomes, Genetics) from 1998
to 2017. As can be seen, there has been nearly a 10-fold increase since the turn of the
century.

1.1 Venn and Euler diagrams

Venn diagrams for m component sets contain all possible 2

m intersections . The are con-
structed using multiple closed curves, like circles, ellipses, and other irregular polygons
which overlap each other to show the various intersections. The interior of a closed curve

2



represents the elements of the set, while the exterior represents the complement of this set
[45]. Figure 1.2 shows some Venn diagram examples:

Figure 1.2: Venn diagrams with 2,3,4 and 5 sets, respectively [45]

In contrast to Venn diagrams, Euler [15] only contains the relevant relations when
presenting sets. In Venn diagrams, a shaded zone may represent non-intersection, but in
Euler diagrams, the corresponding zone is usually missing. Figure 1.3 shows the difference
between Euler diagrams and Venn diagrams for two circles.

I II III IV V

Figure 1.3: Five possible ways contain all the cases of two circles. Euler diagram is above
and Venn diagram is below. I) a\ b = ?; II) a\ b; III) a = b; IV) a\ b = a; V) a\ b = b.

Initially, Venn and Euler diagrams were designed for symbolic logic (not for sets) with
different purposes. Euler diagrams are to demonstrate the known content, but Venn di-
agrams are to derive the content [9]. As formal set theory developed, Venn and Euler

3



diagrams became useful tools to embody the relationship between sets. In this paper, in
keep with common use, we will call them Venn diagrams.

1.2 Examples of Venn diagrams drawn from the scien-

tific literatures

Interest often lies in the number of genes shared by different species, or perhaps by different
groups of individuals. In this section, we will show some Venn diagrams examples from
different scientific journals, such as “Science”, “Nature” and “Association for Computing
Machinery”.

Figure 1.4 (a) shows Wmel strain gene of Wolbachia pipientis shared in a combination of
the four specific criteria “Core CI genome”, “Absent in wAu”, “RNA in ovaries” and “Protein
in ovaries” [27] and (b) describes genes shared by coffee, ash, monkey flower, tomato and
bladderwort five asterid species [41]. The common features of these two graphs are that:
(1) they use the same size ellipse. (2) the number of ellipses m cuts the diagram into 2

m

disjoint areas and the size of each area does not match its count.

(a) (b)

Figure 1.4: (a) Illustrating the number of unique and shared wMel genes matching these
four components. [27]. (b) Genes sharing by five asterid species [41].

In Figure 1.5, both (c) and (d) include six data sets: in (c), irregular polygons are drawn
to illustrate genes shared by pine, grape, ash, poplar, coffee and amborella six woody species

4



[41]. Although it contains all the 2

6 possible intersections, the visualization of interacting
characteristics is missing. For example, in the centre, 13 and 4872 share the same area; the
total size of “Poplar” is the largest, however, the total area of it is the third smallest. In
(d), the diagram is depicted by differently shaped triangles, showing the number of genes
shared among six isolates (“AD04.E17”, “AD11.E17”, “AD01.F1”, “AD03.A2”, “AD06.E13”
and “AD11.B1”) from investigative patients [7]. It is difficult for triangles to separate
areas into 2

6 pieces, so that we cannot tell what intersection sets the numbers refer to.
Meanwhile, the sharp corners make the visualization less aesthetic than (c).

(c) (d)

Figure 1.5: (a) Venn diagram of gene sharing by six woody species [41]. (b) Showing the
number of genes shared between isolates from investigative patients[7].

If we look at Venn diagrams (e) and (f) in Figure 1.5, both of them convey the size of
intersections directly. In (e), It is clear that majority of “Sub-high level” gene ontologies are
shared with “High level” ; only half of “High level” genes partake with the “Sub” ones [49].
In (f), based on the diagram, we can tell location and interest are the two main factors
affecting friendships and age impacts just a little (13% in total) [25].

An informal survey of 112 Venn diagrams published in articles of journal Nature and
Genetics in the past two years, review the following common features: (1) close to half of
them (49/112) use size-proportional characteristics; (2) over two thirds of them (75/112)
use Venn diagram circles and the number of circles is either two or three; (3) in these 75
articles which use circles, 39 contain the property of size-proportion; (4) the 37 articles do
not use Venn diagram circles, and 24 have more than four closed curves. In other words,

5



(e) (f)

Figure 1.6: (e) Illustrating the overlapping of gene ontology between the highland and sub-
highland lineages [49]. (f) Explaining the friendships through locations, ages and interests.
(data source: www.livejournal.com) [25].

when the number of sets is smaller than four, almost all of them (75/88) make circular
Venn diagrams. Besides, amongst 112 Venn diagrams, no more than six sets appear in any
diagrams.

6



Chapter 2

Automated construction of Circular

Venn diagrams

Given the increased use of Venn diagrams in the scientific and other literature, it would
be of great value to have an automated way to construct these diagrams from data. Here
we will consider how we might construct circular Venn diagrams whose visual areas are as
nearly proportional to the size of the corresponding sets.

There are two characteristics that are available for us to manipulate: the size, or
radius, of each circle and the location of its centre. Suppose we have sets S = {S

1

, . . . , Sm}
and sizes s = {s

1

, s
2

, . . . , sm}. And we consider the circle (or more generally ball) to be
B = {B

1

, . . . , Bm} of area (volume) b = {b
1

, . . . , bm}. Similarly intersections and unions
of sets Si \ Sj have size sij.

One might proceed initially at least by choosing radius ⇢i such that bi / ⇢2i . If the
distances dij between centres ci and cj were known, then we could locate the centres as
follows:

7



Figure 2.1: locate circles with target distance dij

An obvious choice for the distance is the Jaccard distance, as selected for example by
[48]. Jaccard distance, also known as intersection over union, is used for comparing the
distance over sample sets and can be defined as follows [23]:

dij = 1� size(Si \ Sj)

size(Si [ Sj)
= 1� sij

si + sj � sij

which captures the size of the intersection between the two sets.

Squared distances D = [d2ij] could be used in the Gram matrix, then to the locations
[38]

G = (I�H)CCT
(I�H) = �1

2

(I�H)D(I�H)

where C = [c
1

, . . . , cm]
T, H =

1

n1m1
T
m, 1m = [1, 1, . . . , 1]T, G is the central Gram matrix

and I is the m ⇥ m identity matrix. Letting G = U⇤UT be the eigen decomposition
of the Gram matrix, we take C = U⇤

1
2 as the initial point configuration. Figure 2.2

shows the initial location of data set in Figure 1.4 (a), Figure 1.6 (e) and (f). For any set
S = {S

1

, S
2

, . . . , Sm}, the corresponding disjoint set

disjoint(S) = S?
= {S?

1

, S?
2

, . . . , S?
m}

where for all i the size of S?
i is s?i . In Figure 2.2 (a), circle Absent, circle RNA and

circle Protein are totally inside circle CoreCI, however, if we look at the original data in
Figure 1.4 (a), these three sets are not subsets of SCoreCI . Comparing with Figure 1.6 (e),

8



(a) (e) (f)

Figure 2.2: The initial point configuration of data set Figure 1.4 (a), Figure 1.6 (e) and (f)
by Jaccard distance

Figure 2.2 (e) fits well, except the right side loon of Sub-high level is almost close to the
intersections, since the intersection loon should be three times larger than the right one.
In Figure 2.2 (f), the disjoint size s?Location,Interest should earn 22/79 of the total size, which
has the largest disjoint area, nevertheless s?Location and s?AInterest both are much larger than
s?Location,Interest. The initial point configurations of these three are mediocre and could be
improved.

Wilkinson suggests an incremental method to improve this configuration by changing
the locations of centres with radii stay fixed (venneuler()). P(S) denotes power set
excluding the null set.

P(S) = {S
1

, . . . , Sm, S12

, . . . , S
12···m}

Denote by s?P the vector containing the sizes of P(S)?. Similarly, define P(B), P(B)?

and b?
P for the corresponding area (volume) of balls.

Once the point configuration is given, disjoint area b?
P can be approached. Wilkinson

introduces a quick and efficient method to access the numerical actual disjoint area b?
P .

Imagine there are m 100 ⇥ 100 bit-squares, one for each circle. In any square, a bit is 1 if
the circle for that square covers it, and is zero if it does not. Location of the Venn diagram
is the pixel-wise logical disjunction of all m squares, pixels in each disjoint region of the
diagram are identified by a unique pattern of the m bits for that location [48].

For better scale, we can force PN
i s?i = 1 and PN

i b?i = 1. If fit perfectly, b?
P should be

equal to the corresponding sizes of the disjoint sets s?P . The extent that this is not the case

9



is captured by fitting the linear model

b?
P = s?P� + r (2.1)

to the given b?
P and s?P with r as a residual vector (perfect fit denotes � = 1 and r is a

zero vector). The least squares fitted value for � is b� = (s?TPs
?
P)

�1s?TPb
?
P and the estimated

residual sum of squares

RSS =

brTbr = (b?
P � s?P

b�)
T
(b?

P � s?P
b�)

TSS = b?T
Pb

?
P

We can use stress(b?
P) as a measure of the quality of the fit, where

stress(b?
P) =

RSS

TSS
=

(b?
P � bb?

P)
T
(b?

P � bb?
P)

b?T
Pb

?
P .

(2.2)

The remaining task is to fix the radii and move centres to find a b?
P which corresponds to

the minimum stress. A descent step on each iteration for Bi is roughly proportional to:

@stress(b?
P)

@ci
⇡

NX

k=1

mX

j 6=i

(ci � cj)brkIij(k) =
mX

j 6=i

(ci � cj)brTIij (2.3)

where, Iij is a length N vector, i, j 2 {u
1

, u
2

, . . . , u`} and the kth element Iij(k) is the
indicator function

Iij(k) =

8
><

>:

1 if s?k = s?u1u2···u`
and i, j 2 {u

1

, u
2

, . . . , u`}

0 otherwise

And the centre can be updated as

c
(n+1)

i = c
(n)
i � ↵

@stress(b?
P)

@c(n)i

. (2.4)

where ↵ is 0.01 and n is the count; If the residuals are very large, use a closer approximation
to the gradient, computes stress four times (up, down, left, right) for each ball centre by
taking small steps of 0.01. The gradient direction goes with the lowest stress values for ci.
Figure 2.3 gives the final layout of these three.

10



(a) (e) (f)

Figure 2.3: The final point configuration of data set Figure 1.4 (a), Figure 1.6 (e) and (f),
with stress, 0.00048, 6⇥ 10

�6 and 0.0029

Figure 2.3 (a) is a good fit, aside from the missing four way intersections. Figure (b)
and (c) provide a very good fit, however, sometimes, Wilkinson’s algorithm fails to handle
some sets with complicated intersections. Here is an example, S

1

= {S
1

, S
2

, . . . , S
6

} and
given input disjoint set I(S)?

1

= {S?
1

, S?
2

, S?
3

, S?
4

, S?
5

, S?
6

, S?
34

, S?
35

, S?
13

, S?
14

, S?
25

, S?
15

, S?
26

} with
size

s?I = [s?
1

= 80, s?
2

= 50, s?
3

= 100, s?
4

= 100, s?
5

= 100, s?
6

= 40,

s?
13

= 30, s?
14

= 30, s?
25

= 30, s?
15

= 40, s?
26

= 10]

P(S)?
1

is the corresponding power set, any sets in P(S)?
1

\ I(S)?
1

are ? and s?P =

[s?I , 0, . . . , 0]. Based on his algorithm, Figure 2.4 gives the final layout. S
3

and S
4

are
totally overlaid, S

6

and S
2

are disjoint. The stress of it is 0.598, which denotes a poor fit.

11



Figure 2.4: The final layout of disjoint set I(S)?
1

by venneuler() of Wilkinson.

Frederickson noticed the failure of Wilkinson’s algorithm venneuler() in some cases.
Thus, he created a new algorithm called “Constrained Multiple Dimension Scaling” (or
“Constrained MDS”) by locating the sets by optimizing the distances between circles, in-
stead of the intersection areas directly.

He starts with the geometric distance: if Si \Sj = ?, then for Bi and Bj, dij � ⇢i + ⇢j
and we choose to set dij = ⇢i + ⇢j; if Si ⇢ Sj, then for Bi and Bj, dij  ⇢j � ⇢i and we
choose to set dij = ⇢j � ⇢i; if Si \ Sj 6= ?, Si 6⇢ Sj, Sj 6⇢ Si, use Si \ Sj to determine the
dij,

12



Figure 2.5: Two dimension circles

In Figure 2.5, Oi and Oj are the centres of two circles and dij is the distance between
these two centres. A and B are the points of intersection. AB ? OiOj at point C. ✓i and
✓j are two angles of the triangle AOiOj. Thus, dij can be found by

dij = |OiA| cos(✓i) + |OjA| cos(✓j)

The remaining task is to find ✓i and ✓j. Firstly, |AC| = |OiA| sin(✓i) = |OjA|⇥sin(✓j). Sec-
ondly, area bij can be separated by line AB into two parts Area(ĀBleft) and Area(ĀBright);
Area(ĀBleft) equals to area of arc OjĀB minus triangle OjAB and Area(ĀBright) equals
to area of arc OiĀB minus triangle OiAB, where |OiA| = |OiB| = ⇢i, |OjA| = |OjB| = ⇢j.
Hence, ✓i and ✓j can be found by solving the following equations:

0 = ✓i⇢2i � ⇢2i sin(✓i) cos(✓i) + ✓j⇢2j � ⇢2j sin(✓j) cos(✓j)� bij

0 = ⇢i sin(✓i)� ⇢j sin(✓j)

Use Newton-Raphson to solve for b✓i, b✓j, and hence dij. Figure 2.6 illustrates the initial
point configuration with geometric distance [dij]

13



(a) (e) (f)

Figure 2.6: The initial point configuration of data set Figure 1.4 (a), Figure 1.6 (e) and (f)

Comparing with Figure 2.2, the initial point configuration with geometric distance
shows higher accuracy. However, in Figure 2.2 (a), s?RNA is almost missing; Figure 2.2 (e)
is perfect; Figure 2.2 (f), s?Age is too large which should be the same with s?Age,Interest.

Frederickson improves the initial multidimensional scaling layout by noticing subsets
and disjoint circles. The geometric distances [dij] are fixed at their initial values, however
determined from the sets Si and Sj. This loss places a great deal of importance on the
pairwise intersections between sets Si and Sj and Bi and Bj. For example, when Si\Sj = ?
then, arguably, the circles should not intersect so placing them farther apart than the
distance dij incurs no loss on the pairwise intersections, like Figure 2.7 (a). Similarly, if
one of Si or Sj is a subset of the other, then ideally the corresponding Bi and Bj should
be entirely inside the other whatever the position of centres provided, like Figure 2.7 (b).
Hence, he defines a loss function

L(C) =

mX

i=1

`(ci) (2.5)

where for each i

`(ci) =
mX

j=1

l(ci, cj). (2.6)

Then update the configuration from its initial position by minimizing a suitably defined

14



(a) (b)

Figure 2.7: (a) If Si \ Sj = ?, the way to position Bi and Bj. (b) If Si \ Sj = Si or
Si \ Sj = Sj, the way to position Bi and Bj.

loss:

l(ci, cj) =

8
>>>>>><

>>>>>>:

0 when Si \ Sj = ? and (ci � cj)
T
(ci � cj) � d2ij,

0 when Si ⇢ Sj or Sj ⇢ Si and (ci � cj)
T
(ci � cj)  d2ij,

((ci � cj)
T
(ci � cj)� d2ij)

2 otherwise .

(2.7)

The objective is to choose a configuration which minimizes this loss. To that end, he
differentiates the loss with respect to ci and solve. The derivative of l(ci, cj) function with
respect to ci is

@l(ci, cj)

@ci
=

8
>>>>>><

>>>>>>:

0 when Si \ Sj = ? and (ci � cj)
T
(ci � cj) � d2ij,

0 when Si ⇢ Sj or Sj ⇢ Si and (ci � cj)
T
(ci � cj)  d2ij,

4((ci � cj)
T
(ci � cj)� d2ij)(ci � cj) otherwise.

(2.8)
Thus,

@`(ci)

@ci
=

X

j

@l(ci, cj)

@ci
. (2.9)

This can be used in a nonlinear conjugate gradient method [40] to find a minimum L(C)

as follows.

15



1. Initialization:
the initial configuration

C(0)  [c
(0)

1

, . . . , c(0)m ]

T

from the eigen decomposition of the gram matrix, the initial loss

L(C(0)

) 
mX

i=1

`(c0i )

and the iteration count
n 0

2. Outer loop over n:

(a) Inner loop: for i = 1, . . . ,m

• Determine the conjugate direction t
(n)
i :

t
(n)
i  

8
>>>><

>>>>:

�@`(c
(n)
i )

@c
(n)
i

+ !(n)t
(n�1)

i n � 1

�@`(c
(0)
i )

@c
(0)
i

n = 0

where

!(n)
PR  

@`(c
(n)
i )

@c
(n)
i

T Å
@`(c

(n)
i )

@c
(n)
i

� @`(c
(n�1)
i )

@c
(n�1)
i

ã

@`(c
(n�1)
i )

@c
(n�1)
i

T
@`(c

(n�1)
i )

@c
(n�1)
i

is the Polak-Ribiere choice[37] and

!(n)  max

⇣
0,!(n)

PR

⌘

where !(n) is a popular choice [40].
• Perform a line search for

↵(n)  argmin

↵
`(c(n)i + ↵t(n))

• Update the position ci:

c
(n+1)

i  c
(n)
i + ↵(n)t(n)

16



• end inner loop

(b) Update outer loop:
n n+ 1

L(C(n)
) 

mX

i=1

`(c(n)i )

(c) Outer loop ends when
���L(C(n)

)� L(C(n�1)

)

��� < ✏.

3. Return point configuration C C(n)

Figure 2.8 shows the final layout of data set in Figure 1.4 (a), Figure 1.6 (e) and (f).

(a) (e) (f)

Figure 2.8: The final point configuration

In Figure 2.8 (a) fits well, aside from the missing four way intersections. Figure 2.8 (e)
is a perfect fit and s?Age in Figure 2.8 (f) seems still too large. These three are thus mostly
perfect. Let us look at the fit of the artificial set I(S)?

1

(in Frederickson’s venn.js(), the
input combinations are I(S)

1

instead of I(S)?
1

, which are different from most programs.
Thus, we should transform I(S)?

1

to I(S)
1

). It is basically a perfect fit.

Before venneuler(), VennMaster() [24] and Chow/Rodgers algorithm [10] are widely
known generalized Venn programs. Wilkinson compares his function venneuler() to these
two algorithms. In his comparison, venneuler() has several adventages: (1) the goodness

17



Figure 2.9: The layout of disjoint set I(S)?
1

by venn.js() Frederickson

of fit stress is better than the other two. (2) VennMaster() relies on the random seed
and the solutions give no indication of how well the fit is, which makes it not trustworthy;
Chow/Rodgers algorithm is limited to 3-ring generalized Venn diagrams, so superset prob-
lems cannot be handled. Frederickson pointed out “ while venneuler() frequently gets
a solution that is close to being correct, it rarely gets a solution that is close enough for
this test to say it succeeded” [19]. Hence he compares vennplot() and venn.js() with
“success rate”.

 = max

i

|b?i � s?i |
s?i

If   10%, he marks this test successful and set “success rate” to the number of suc-
cessful test divided by the total number. In his comparison, venn.js() is far better than
vennplot(), not only the “rate” but also the running time, with circles from two to eight in
Figure 2.10. However, his test begins with possible configurations, real data also includes
impossible configurations; like the data in Figure 1.4 (a) or Figure 1.6 (f).

18



(f)

Figure 2.10: Comparison of success rate and running time [19]

19



Chapter 3

Shrink or stretch

Note that for the loss function given in equation 2.7 no consideration is given to three and
higher way intersections. A simple adjustment to the loss function is to replace the third
condition (when neither this nor that holds) by

(�(ci � cj)
T
(ci � cj)� d2ij)

2

for some fixed value of � > 0. Minimizing a loss with this value will still favour Euclidean
squared distances between centres that are now proportional to the target squared dis-
tances d2ij. The geometric effect of � is to move circles further apart or closer together.

Figure 3.1: Stretch circles with � = 2 or shrink circles with � = 0.5.

Changes in � have the effect of creating changes in all intersections. To choose � we
reintroduce the stress used by Wilkinson, back and forth, for fixed lambda.

20



Hence, the model can be defined as:

L(C,�) =
mX

i=1

`(ci,�)

For each i

`(ci) =
mX

j=1

l(ci, cj,�)

where

l(ci, cj,�) =

8
>>>>>><

>>>>>>:

0 when Si \ Sj = ? and (ci � cj)
T
(ci � cj) � d2ij,

0 when Si ⇢ Sj or Sj ⇢ Si and (ci � cj)
T
(ci � cj)  d2ij,

(�(ci � cj)
T
(ci � cj)� d2ij)

2 otherwise.

The derivative of l(ci, cj,�) with respect to ci is:

@l(ci, cj,�)

@ci
=

8
>>>>>><

>>>>>>:

0 when Si \ Sj = ? and (ci � cj)
T
(ci � cj) � d2ij,

0 when Si ⇢ Sj or Sj ⇢ Si and (ci � cj)
T
(ci � cj)  d2ij,

4�(�(ci � cj)
T
(ci � cj)� d2ij)(ci � cj) otherwise.

Thus,
@`(ci,�)

@ci
=

X

j

@l(ci, cj,�)

@ci

where � 2 R. Use a nonlinear conjugate gradient method to find the minimum of L(C,�).
In this way, we can shrink or stretch our layout and obtain the centres C (C is determined
by �).

To determine an appropriate value of �, following Wilkinson, a stress(�) could be
measured for the quality of the fit of areas. For any configuration, given �, the vector of
sizes for the disjoint balls will be b?

P(�) and

b?
P(�) = s?P� + r.

With this formulation, we can even give different weights to each pair of disjoint balls
so that the quality of fit on higher intersections can be captured. Hence, the linear model
can be defined as:

W
1
2b?

P(�) = W
1
2 s?P� +W

1
2 r,

21



where W = diag(w
1

, w
2

, ..., wN) is a N ⇥N diagonal matrix. The weighted least squares
fitted value for � is b� = (s?P

TWs?P)
�1s?P

TWb?
P(�) and the estimated residual sum of squares

RSS(�,�) =

brTWbr = (b?
P(�)� s?P

b�)
T
W(b?

P(�)� s?P
b�)

TSS = b?
P(�)

Tb?
P(�)

We can use stress(�) as a measure of the quality of the fit, where:

stress(�) =
RSS(�,�)

TSS

and
stress = argmin

�
stress(�)

An algorithm to find centre C and corresponding stress can be given as follows:

1. Initialization:
the initial point configuration

C(0)  [c
(0)

1

, . . . , c(0)m ]

T

the initial �
�(1)  1

and the initial count
n 1

2. Fixing �(n) and computing stress(�(n))

• Minimizing L(C;�(n)) and get C(n)

C(n)  argmin

C
L(C;�(n))

• Compute each area b?
P(�

(n)
) and find b�(n)

b�(n)  argmin

�
RSS(�;�(n))

b�(n) can be solved as (s?P
TWs?P)

�1s?P
TWb?

P(�
(n)

)

22



• Finding stress(�(n))

stress(�(n)) RSS( b�(n),�(n))

b?T
P(�

(n)
)Wb?

P(�
(n)

)

3. Update �(n), back and forth, until
���stress(�(n))� stress(�(n�1)

)

���  ✏, return C and
stress

For step 3, updating �, we suggest Nelder Mead Algorithm [31]. Set:

�(n)
+

 �(n) +�

�(n)�  �(n) ��

where � 2 <+, a small step size. Fixing �(n)
+

and �(n)� to compute stress(�(n)
+

) and
stress(�(n)� ).

1. Loop over n:

(a) Previous preparation:
the initial �(n) vector

�(n)  [�(n),�(n)
+

,�(n)� ]

the corresponding stress(n)

stress(n)  [stress(�(n)), stress(�(n)
+

), stress(�(n)� )]

and assuming:
stress(�

1

)  stress(�
2

)  stress(�
3

)

where, �i 2 �(n), stress(�i) 2 stress(n) and i = {1, 2, 3}. �
0

can be computed
as:

�
0

 �
1

+ �
2

2

�r is:
�r  2�

0

� �
3

(b) Update Loop
i). the �:

23



• if(stress(�
1

)  stress(�r) < stress(�
2

)) then do reflection

�(n+1)  [�
1

,�
2

,�r]

• else if(stress(�r) < stress(�
1

)) then do expansion

�e  2�r � �0

and get corresponding stress(�e)

– if (stress(�e) < stress(�r)) then

�(n+1)  [�
1

,�
2

,�e]

– else

�(n+1)  [�
1

,�
2

,�r]

• else if(stress(�r) � stress(�
2

)) then do contraction:

�c  
�
0

+ �
3

2

– if(stress(�c)  stress(�
3

)) then

�(n+1)  [�
1

,�
2

,�c]

ii). the count:
n n+ 1

(c) Shrink �:
With �(n), we can get corresponding stress(n), and assuming:

stress(�
1

)  stress(�
2

)  stress(�
3

)

where, �i 2 �(n), stress(�i) 2 stress(n) and i = {1, 2, 3}.
Shrink �j, where j = {2, 3}

�j  
�j + �

1

2

(d) Loop ends when ���max(�(n)
)�min(�(n)

)

���  ✏

or ���
max(stress(n))�min(stress(n))

���  ✏

24



(e) stress = min(stress(n))

.
We have one more method for finding �, see the appendix and multiple methods imple-
mented in vennplot().
Figure 3.2 shows the layout of data sets as in Figure 1.4 (a), Figure 1.6 (e) and (f):
comparing venneuler() and venn.js(). Figure 3.2 (a) fails to capture the global struc-

(a) (e) (f)

Figure 3.2: (a), (e) and (f) corresponds to Figure 1.4 (a), Figure 1.6 (e) and (f)

ture; (e) is almost perfect; (f) gives too large area to s?Age, the stress of these three are
0.017, 1.46⇥ 10

�6 and 0.0028. Let us look at the fit of the artificial set I(S)?
1

, see Figure
3.3

25



Figure 3.3: The layout of disjoint set I(S)?
1

by vennplot()

stress(C,�) of this layout is close to 0.00016 and L(C,�) is 9.6 ⇥ 10

�9. It is a good
fit, since all the intersections can match I(S)?

1

.

Figure 3.4 shows scatter plots for these four data sets, the x-label is s?/
PN

i s? and
y-label is s?/

PN
i s? � b?/

PN
i b?. In the scatter plot, for “Set 1”, blue dots perform

worse than the other two; for “Set 2”, blue dots and purple dots are coincident and bet-
ter than the red ones; for “Set 3”, all of them are very similar; for “Set 4”, blue and
purple ones are coincidence and better than the red ones. And we can also compute
 for each data set: for venneuler(),  ve = [1, 0.0148, 1.012, 1] (excluding 1 value),
 vj = [0.53, 0.0017, 0.86, 0.0262], for vennplot(),  vp = [2.16, 0.0017, 0.809, 0.0262] .

26



Figure 3.4: Scatter plot. Red dots represent venneuler(), blue dots represent vennplot()
and purple dots represent vennjs(); imaginary line represents y = 0. Four sets are on
behalf of Figure 1.4 (a), Figure 1.6 (e), (f) and I(S)?

1

Going back to data set 3.2 (a), none of these three algorithms could capture the four
way intersections. The main problem is the data set and dimension, the steepest descent
fails to reach a minimum or the minimum only provides a mediocre result. Hence, we could
increase 2 dimensions to 3 dimensions to illustrate Venn diagrams.

27



Chapter 4

Three dimension Venn diagram

Venn diagrams can also be illustrated in three dimensions. Let p 2 {2, 3} be the dimen-
sionality of the Venn representation. If p = 3, balls B are spheres; b = size(B) denotes
their volume; C = [c

1

, . . . , cm]
T is the m⇥ 3 matrix of ball centres; ⇢i is the radius of the

ball i, ⇢i / b
1
3
i .

The geometric distance [dij] can be accessed as follows: It is similar to p = 2. In Figure

Figure 4.1: Dimension p = 3

28



4.1, Oi and Oj are the centres of these two spheres. A and B are the points of intersection
and line AB is the diameter of the intersect plane, so AB ? OiOj at point C. ✓i and ✓j are
two angles of the triangle AOiOj. Thus, dij can be found by

dij = |OiA| cos(✓i) + |OjA| cos(✓j).

The remaining task is to find ✓i and ✓j. Firstly, |AC| = |OiA| sin(✓i) = |OjA| sin(✓j). Sec-
ondly, volume bij can be separated by a circle plane, with centre C and radius |AC| (|BC|),
into two parts, SphereCapleft and SphereCapright:

SphereCapleft =

⇡(|OjA|�|OjC|)
6

(3 |AC|2 + (|OjA|� |OjC|)2)

SphereCapright =

⇡(|OiA|�|OiC|)
6

(3 |AC|2 + (|OiA|� |OiC|)2)

where |OiA| = |OiB| = ⇢i, |OjA| = |OjB| = ⇢j, |AC| = |BC| = ⇢i sin(✓i), |OiC| =

⇢i cos(✓i) and |OjC| = ⇢j cos(✓j); SphereCapleft and SphereCapright can be expressed as

SphereCapleft =

⇡(⇢j�⇢j cos(✓j))
6

(3⇢j sin(✓j)2 + (⇢j � ⇢j cos(✓j))2),

SphereCapright =

⇡(⇢i�⇢i cos(✓i))
6

(3⇢i sin(✓i)2 + (⇢i � ⇢i cos(✓i))2).

Then, we can add them up to get bij; after simplifying, ✓i and ✓j can be found by solving
the following equations:

0 =

⇡
3

⇢3i (1� cos(✓i))2(2 + cos(✓i))

+

⇡
3

⇢3j(1� cos(✓j))2(2 + cos(✓j)) � bij

0 = ⇢isin(✓i)� ⇢jsin(✓j)

The Newton-Raphson method can be applied for b✓i, b✓j, and hence dij.

If the Venn diagrams are illustrated as three dimensional balls, we can also use Wilkin-
son’s method [48] to compute volumes but expand a 100 ⇥ 100 bit-squares plane to a 100 ⇥
100 ⇥ 100 bit box. Each “pixel” has either value 1 or 0. Then go through all the pixels and
sum them up to get each part’s volume. Figure 4.2 shows the three-dimensional layout.

29



(a.1) (a.2)

(e) (f)

Figure 4.2: (a.1) and (a.2) are the same layout but observed by different angles of data set
Figure 1.4 (a); (e) and (f) are the corresponding 3D layout of Figure 1.6 (e) and (f)

We can find that the 3D fit is better. Especially for the four circle one, the four way
intersection can be observed. Most of the time, three dimensional Venn diagrams could fit
better: first, when we choose the Gram matrix as initial configuration, we could extract
the first three columns of ⇤ 1

2 ; second, when we minimize L(C,�), the gradient have two
radians to move, thus, circles have more directions to move and they are more likely to
reach the minimum.

30



Chapter 5

Unspecified intersections

In this section, we will discuss a “special case”: some intersections are unspecified, but their
higher order intersections exist. Furthermore, we are just interested in the fit of the input
set I(S), instead of P(S).

Suppose we have a set S = {S
1

, S
2

, S
3

}, the input given disjoint subsets I(S)?
2

=

{S?
1

, S?
2

, S?
3

, S?
123

} with size

s?I = [s?
1

= 20, s?
2

= 20, s?
3

= 20, s?
123

= 1]

5.0.1 Common case

In a “common” case, any sets in P(S)
2

\ I(S)
2

are ?. We have

sI = [s
1

= 21, s
2

= 21, s
3

= 21s
12

= 1, s
13

= 1, s
23

= 1, s
123

= 1].

Figure 5.1 shows the layout of venneuler() and venn.js() with input I(S)?
2

. Neither of
these two diagrams show the three way intersection.

5.0.2 Special case

The highest order of I(S)?
2

is three and all the two way disjoint intersections are unspec-
ified. If we simply set all sets in the complement set of I(S)?

2

to ?, it will be hard to

31



(a) (b)

Figure 5.1: (a) venneuler() (b) venn.js()

capture the three way intersection. Thus, from I(S)?
2

, assume all unspecified are ? to
construct I(S)

2

. For example,

s?I = [s?
1

= 20, s?
2

= 20, s?
3

= 20, s?
123

= 1]

! sI = [s
1

= 21, s
2

= 21, s
3

= 21, s
123

= 1]

Then, assume all unspecified sij···` are to be estimated and constrain unspecified k�way
intersections. E.g. for two way intersections:

8
>>>>>><

>>>>>>:

s
123

 bs
12

 min(s
1

, s
2

),

s
123

 bs
13

 min(s
1

, s
3

),

s
123

 bs
23

 min(s
2

, s
3

),

A simple solution can be had by noticing that the following would hold in general:

s
12

/ s
123

s
123

/ s
1234

32



and so on, with constant of proportionality � 1 in each case. Hence, bs
12

= µ
1

s
123

, bs
13

=

µ
2

s
123

and bs
23

= µ
3

s
123

and the constraints are
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

µ
1

 min(s1,s2)
s123

,

µ
2

 min(s1,s3)
s123

,

µ
3

 min(s2,s3)
s123

,

µi � 1 i = {1, 2, 3}.

If the order increases, the number of µ will increase exponentially. For simplicity, we choose
to set µ = µ

1

= µ
2

= µ
3

. In this way, we can shorten three parameters to just one and we
have

bs
12

=

bs
13

=

bs
23

= µs
123

.

where 1  µ  min(s1,s2,s3)
s123

. Since dij is a function of ⇢i, ⇢j, sij or bsij, and we can use [

bdij]

to represent geometric distance matrix, where [

bdij] is determined by µ.

We need to mention that if any two way disjoint intersections are given, for example,
s?
12

= 2 and s
12

= 2 + 1 = 3, then s
12

is determined and will not be generated.

Model redefinition

The model is the same as before but we replace [dij] to by [

bdij]. Hence, we add a parameter
µ to our model.

L(C,�;µ) =
mX

i=1

`(ci,�;µ) =
mX

i=1

mX

j=1

l(ci, cj,�;µ).

Minimize L(C,�;µ) to get centre C and compute area b?
I . Then,

W
1
2b?

I(�) = W
1
2 s?I� +W

1
2 r.

Weighted RSS and stress can be expressed as

RSS(�,�;µ) = (b?
I(�)� �s?I)

TW(b?
I(�)� �s?I),

stress(�;µ) =
RSS(�,�;µ)

b?
I(�)

TWb?
I(�)

.

33



Here, we have two parameters µ and �. We will start with parameter µ, then �, because
it is meaningless to shrink or expand with a poor geometric distance.

Due to µ � 1, one can apply the following algorithm for finding a good centre C:

1. Initialization:
the initial point configuration

C(0)  [c
(0)

1

, . . . , c(0)m ]

T

the initial µ
µ(1)  1 and µ(1) ) [

bd(1)ij ]

the initial �
�(1)  1

and the initial count
n 1

2. Fix �(1), update µ(n) until stress reaches minimum, then return

[

bdij] = [

bd(n)ij ]

3. Fix [

bdij] and shrinking or stretching � to find the minimum stress, then return C.

For step 2, we recommend Line Search [6]:

• Loop over n:

1. Fix �(1) and µ(n)

C(n)  argmin

C
L(C;�(1), µ(n)

)

2. Compute area b?
I(�

(1), µ(n)
) and

b�(n)  argmin

�
RSS(�;�(1), µ(n)

)

get corresponding

stress(�(1);µ(n)
) RSS( b�(n),�(1), µ(n)

)

b?T
I(�

(1), µ(n)
)Wb?

I(�
(1), µ(n)

)

34



3. Update Loop
µ(n+1)  µ(n)

+�

n n+ 1

4. Loop ends when stress(�(1);µ(n�1)

)  stress(�(1);µ(n)
)

• Return µ µ(n�1) and get corresponding [

bdij] [

bd(n�1)

ij ]

Nelder Mead Algorithm [31] can also help to find µ and corresponding [

bdij]. However, in
practice, Line Search performs better and faster.

Figure 5.2 shows the Venn diagram of I(S)?
2

.

Figure 5.2: vennplot(twoWayGenerate = TRUE)

In general

If any two way intersections are missing, such as Si \ Sj, but there are some higher than
two way intersection sets {S

1

\ S
2

\ · · · \ SM , S
1

\ S
2

\ · · · \ SL, . . .} ✓ Si \ Sj and
s
1

\s
2

\ · · ·\sM = max({s
1

\s
2

\ · · ·\sM , s
1

\s
2

\ · · ·\sL, . . .}). Based on the generation
we mentioned before, we can use s

1

\ s
2

\ · · ·\ sM to estimate si \ sj, bsij = s
12···M ⇥ µM�2

35



5.0.3 Weight

We can also give the three way intersection very high weight to realize its layout. For ex-
ample: vennplot(s?I, weight = c(1,1,1,10)) and Figure 5.3 shows the layout. Com-
paring with the “Special case” algorithm, this way is a bit tricky, since we just give higher
weight to some intersections we want to see. In Figure 5.3, the three way intersection is
larger than the one in Figure 5.2. In the scatter plot in Figure 5.4, for blue dots, the three
intersection one is better with sacrificing other disjoint pieces.

Figure 5.3: vennplot() with high weight on three way intersection

36



Figure 5.4: scatter plot with high weight on three way intersection, red dots represent
venneuler, blue ones represent vennplot(), purple ones represent venn.js

37



Chapter 6

Undirected connected components

Suppose we have a complicated data set S = {S
1

, S
2

, . . . , S
12

}, the input given disjoint
subsets I(S)?

1

I(S)?
3

= {S?
1

, S?
2

, S?
3

, S?
5

, S?
23

, S?
24

, S?
45

, S?
56

,

S?
126

, S?
234

, S?
7

, S?
8

, S?
9

, S?
10

, S?
11

, S?
12

,

S?
78

, S?
7,10, S

?
9,12, S

?
8,11, S

?
10,12, S

?
9,11}

with its size s?I :

s?I = [s?
1

= 200, s?
2

= 100, s?
3

= 100, s?
5

= 550,

s?
2,3 = 100, s?

2,4 = 100, s?
4,5 = 50, s?

5,6 = 100, s?
1,2,6 = 200, s?

2,3,4 = 100,

s?
7

= 232, s?
8

= 378, s?
9

= 296, s?
10

= 423, s?
11

= 698, s?
12

= 337,

s?
7,8 = 133, s?

7,10 = 165, s?
9,12 = 151, s?

8,11 = 89, s?
10,12 = 212, s?

9,11 = 113]

P(S)?
3

is the corresponding power set, any sets in P(S)?
3

\ I(S)?
3

are ? and s?P =

[s?I , 0, . . . , 0]. Figure 6.1 shows the layout of venneuler() and venn.js().

38



(a) (b)

Figure 6.1: (a) venneuler() (b) venn.js()

Neither of these two seems perfect. If we look at I(S)?
3

, we can find {S
1

, S
2

, . . . , S
6

}
are connected by some intersections, {S

7

, S
8

, . . . , S
12

} are connected by some intersections.
However, {S

1

, S
2

, . . . , S
6

} and {S
7

, S
8

, . . . , S
12

} are totally two groups without any con-
nection, like Figure 6.2. Hence, for any set, we can divide, conquer each group and then
unite.

39



Figure 6.2: vennplot()

Let higher disjoint set H(S) = I(S)\S = {H
1

, . . . HN} be the higher order intersection
set (the order is larger than 1) with size N , where N = N �m.

Undirected connected components G = {V,E}, where V is a set whose elements are
called nodes and E is the undirected edges connecting nodes. In the given set I(S), any
order k intersections, where k � 2, can be treated as

Ä
k
2

ä
edges ; such as S

1

\S
2

\S
3

implies
S
1

, S
2

and S
3

must be connected thus E = {S
1

\ S
2

\ S
3

} and V = {S
1

, S
2

, S
3

}
Suppose we have ⌘ groups, let G

1

= {V
1

,E
1

}, . . . ,G⌘ = {V⌘,E⌘}, where 1  ⌘  m.
In each Vi, any two sets can be connected by edges Ei and we have:

V
1

[V
2

[ . . . [V⌘ = S = {S
1

, S
2

, . . . , Sm}

E
1

[ E
2

[ . . . [ E⌘ = H(S)

For any Gi and Gj

Vi \Vj = ?

Ei \ Ej = ?
where i 6= j

40



6.1 Divide G

Assume we have a data set S = {S
1

, S
2

, ..., Sm}, a size N input set I(S) and a size N
higher order set H(S). We can use the following algorithm to divide groups. Before we
start, let us introduce some functions which can help us better understand this algorithm:

• separate function: input is a high order disjoint intersection; output is each set. e.g.
separate(S

1

\ S
2

\ S
3

) = {S
1

, S
2

, S
3

}

• unique function: returns a vector but with duplicate elements removed. e.g. unique(S
1

, S
2

, S
3

, S
1

) =

{S
1

, S
2

, S
3

}

• any function: give a set of logical vectors, is at least one of the values true. e.g. z =

{A,B,C}, Z = {A,D,E}, then any(z 2 Z) = TRUE; z = {A,B,C}, Z = {D,E},
then any(z 2 Z) = FALSE; z = {TRUE, FALSE}, then any(z = TRUE) =

TRUE.

• which function: give the true index of a logical object. e.g. z = {TRUE, FALSE, TRUE};which(z =

TRUE) = {1, 3}

• length function: get the length of vectors. e.g. z = {TRUE, FALSE, TRUE};
length(z) = 3.

The following procedure can help us find the Gs

1. if N = 2

m �m� 1 then

⌘ = 1; V
1

= S and E
1

= H(S)

2. else if N = 1 then

Where H(S) = {H
1

}, assume H
1

is the order k intersection, thus separate(H
1

) is a
k size set and ⌘ = m� k + 1. S \ separate(H

1

) = {�
1

, �
2

, . . . , �m�k}. Hence Vi = �i,
Ei = ?, where 1  i  m� k and V⌘ = seperate(H

1

), E⌘ = H
1

.

3. else

(a) H(S) = {H
1

, H
2

, . . . HN}
(b) Outer loop: i = 1, . . . ,N :

i. Boolean
1

= {bool
1

, . . . , boolN} and boolu = FALSE, where 1  u  N ;
ii. Inner loop: for j = i, . . . ,N :

41



• boolj = any(separate(Hi) 2 separate(Hj))
iii. A = which(Boolean

1

= TRUE); length(A) = a and A = {A
1

, . . . , Aa}
iv. Vi = unique(separate(HA1), . . . , separate(HAa)) and Ei = {HA1 , . . . , HAa}
v. if i > 1 then

Boolean(2)

= {bool
1

, . . . , booli�1

} and boolu = FALSE, where 1  u  i�1
A. Inner loop: for j = 1, . . . , i� 1:

• boolj = any(Vj 2 Vi)
B. ⌧ = which(Boolean(2)

= TRUE); length(⌧) = 0 or 1
C. if(length(⌧) = 1) then

• V⌧ = unique(V⌧ ,Vi) and E⌧ = unique(E⌧ ,Ei)

• Vi = Ei = ?
(c) Get rid of all the emptysets and reduce N to ⌫, where 1  ⌫  N . 8 i, Vi 6= ?

and Ei 6= ?, where 1  i  ⌫

(d) if(V
1

[ . . . [V⌫ = S) then

• ⌫ = ⌘

else

• S \ (V
1

[ . . . [V⌫) = {�
1

, . . . �⌘�⌫}
• V⌫+j = �j and E⌫+j = ?, where 1  j  ⌘ � ⌫

4. Gi = {Vi,Ei}, where 1  i  ⌘ and return G = {G
1

, . . . ,G⌘}

6.2 Detect case

If I(S) 6= P(S), but any sets in P(S) \ I(S) are ?. Then, we could just set µ = 1 and
say Gi is “common case”; else, we could use the following procedure to detect which “case”
(“common” or “special”) Gi belongs to.

A function order can be defined as:

• order : give the order of an intersection. e.g. order(S
1

\ S
2

\ S
3

) = 3

For each Gi = {Vi,Ei}, where 1  i  ⌘ and Ei = {e
1

, . . . , e} with length , ej means
edges (intersections) belonging to undirected connected component Gi, where 1  j  . L
is the two way intersection index and defined as: L = which(order(Ei) = 2); length(L) = l.

42



1. if(l = ) then Gi belongs to “common case”

2. else

• L = {L
1

, . . . , Ll}, where 1  L
1

 Ll  

• O
2

= {eL1 , . . . , eLl
}

• T = which(order(Ei) > 2) and length(T) = t

– t+ l = 

• T = {T
1

, . . . , Tt}
• Or = {eT1 , . . . , eTt}

– O
2

[Or = Ei

(a) Outer Loop: j = 1, . . . , t

i. Assuming eTj is the order k intersection, where order(eTj) = O > 2 and
it implies

Ä
O
2

ä
edges. Set q =

Ä
O
2

ä
and Q is an order two intersections list

which eTj connotes.
Q = {Q

1

, . . . , Qq}
ii. Boolean = {bool

1

, . . . , boolq} and boolu = FALSE, where 1  u  Q
iii. Inner Loop: u = 1, . . . q

• boolu = any(Qu 2 O
2

)

iv. If (any(Boolean = FALSE)) then

• Gi belongs to “special case”
• break Outer Loop

else Gi to be determined
(b) If Gi still to be determined then

Gi belongs to “common case”

6.3 Unite G
G = {G

1

, . . . ,G⌘} and Gi = {Vi,Ei}. Vi is the size mi data set and Bi is the corresponding
balls with radiuses Ri. Hence, Ri is a size mi⇥ 1 vector. After Detect case, conquer one
by one and get [C

1

, . . . ,C⌘]
T. Thus Ci is a mi ⇥ p matrix and p = 2 or 3.

⌘X

i=1

mi = m

43



The following procedures can help us to lay out Ci together but with reasonable distances.

1. Initialization:

• Put C
1

in a rectangle box, which can load all these balls.
• if (⌘ = 1) return Ci

else go to next Outer Loop

2. Outer Loop: i = 2, . . . , ⌘

(a) Randomly select one point x in this box. Then pick one coordinate (row) cj in
Ci (with its radius ⇢j), where 1  j  mi. This coordinate cj must have either
the largest (x or y or z) or smallest (x or y or z).

Figure 6.3: The choice of cj and x

In Figure 6.3, the imaginary line is a rectangular box and x is the point we
randomly generate. cj we choose is the centre ball E, which has the largest x
(smallest y).

44



(b) Translate Ci to C0
i:

C0
i = Ci + 1mix� 1micj

where 1mi = [1, 1, . . . , 1]T with size mi

• All the distances {d
1x, d2x, ..., dmix} between x and Ci�1

are larger than
Ri�1

+ 1Tmi�1
⇢j, where 1mi�1 = [1, 1, . . . , 1]T with size mi�1

.
• At least one of distances {d

1x, d2x, ..., dmix} is smaller than Ri�1

+1Tmi�1
⇢j+

1Tmi�1
�, where � 2 <+

If any of these conditions does not match, then go back to first step of Outer
Loop and get another random point x.

Figure 6.4: Translation cj

(c) Rotate C0
i until Ci�1

and C0
i are totally separated.

i. Define a mi�1

⇥mi matrix D

D =

Pp
k=1

Ä
Ci�1

ek1
T
mi
� 1mi�1e

T
kC

T
i

ä
�
Ä
Ci�1

ek1
T
mi
� 1mi�1e

T
kC

T
i

ä

�
Ä
Ri�1

1Tmi
+ 1mi�1R

T
i

ä
�
Ä
Ri�1

1Tmi
+ 1mi�1R

T
i

ä

45



where ek is a p-dimension standard basis, ek = [0, . . . , 1, . . . , 0]T only the k
th element is 1.

ii. if (all elements in D are equale or larger than 0)
Return C0

i

Figure 6.5: Translation

In Figure 6.5, not all elements in D are equale or larger than 0. Hence, we
need to do rotation until they are totally separated.

iii. else

• Inner Loop: ✓ = ⇡
18

, 2⇡
18

, . . . , 2⇡

• – C0
i  C0

i ⇥R
⇤ for p = 2

R =

ñ
cos(✓) � sin(✓)
sin(✓) cos(✓)

ô

46



⇤ for p =3

R =

2

64
1 0 0

0 cos(✓
1

) � sin(✓
1

)

0 sin(✓
1

) cos(✓
1

)

3

75

2

64
cos(✓

2

) 0 sin(✓
2

)

0 1 0

� sin(✓
1

) 0 cos(✓
2

)

3

75

2

64
cos(✓

3

) � sin(✓
3

) 0

sin(✓
3

) cos(✓
3

) 0

0 0 1

3

75

✓
1

, ✓
2

and ✓
3

are not necessarily equal. For simplify, we can set
✓
1

= ✓
2

= ✓
3

= ✓

– Caculate D
– if (all elements in D are equale or larger than 0) then break the

Inner Loop and return C0
i

else ✓  ✓ + ⇡
18

and repeat the Inner Loop
• If ✓ = 2⇡ and D still doesn’t meet the conditions, then go back to

random point selection and pick a new x

47



Figure 6.6: Rotation

(d) Ci = [CT
i�1

,C0
i
T
]

T

(e) i i+ 1

3. Return C = C⌘ and C is final layout with all united groups.

48



Chapter 7

Examples

Figure 7.1 is an example of factor data on human encountering with great white sharks.
The data is collected by Doctor Pierre-Jerome Bergeron [5]. In this example, it shows the
relationship among nationality, time and fatality.

Figure 7.1: sharks data frame

Here, the supplementary sets of “AM”, “Australia and USA”, “Fatality” are “PM”, “oth-

49



ers”, “Survive”, respectively. So, any disjoint parts either fall into sets or supplementary
sets. The stress of this example is 0.06922327.

Fifteen-ring data set with multiple groups S
5

= {SA, SB, . . . , SP}, the input given
disjoint subsets I(S)?

4

with size s?I :

s?I = [s?A = 80, s?B = 50, s?C = 100, s?D = 100, s?E = 100, s?F = 40,

s?A,C = 30, s?A,D = 30, s?B,E = 30, s?A,E = 40, s?B,F = 10,

s?G = 60, s?H = 50, s?I = 100, s?J = 40, s?K = 50, s?L = 100,

s?M = 30, s?O = 50, s?P = 60, s?G,H = 20, s?K,L = 20, s?L,M = 20, s?O,P = 30]

P(S)?
4

is the corresponding power set, any sets in the complement of I(S)?
4

are ?. Figure
7.2 shows the layout with stress 0.00014.

Figure 7.2: Multiple groups in one data set

50



However, not all data are suitable to be illustrated by area proportional Venn diagrams.
For example, Figure 7.3 shows the size proportional Venn diagram of the data set in Figure
1.4 (b).

Figure 7.3: Figure 1.4 (b) data set

The stress is 0.021 which should indicate a good quality Venn diagram. Nevertheless,
we can only tell these five species share a large number of genes.

51



Chapter 8

Comparison with other Venn algorithms

We compare vennplot() with other popular approaches to the circular area-proportional
Venn algorithms venneuler() and venn.js().

We generate 100 instances of SP = {S
1

, . . . , Sm} for each value of m = 3, 4, . . . , 8.
For each SP generates its disjoint set s?P independently from U(0, 10). Compare results of
vennplot() with venneuler() and venn.js() on two criteria.

abs =
NX

i

|b?i � s?i | stress =
RSS

TSS

For each criterion will look at differences in results venneuler()�vennplot(), venn.js()�
vennplot(). The larger this difference the more favoured is vennplot(). Figure 8.1 illus-
trates the comparison with venneuler().

Figure 8.1: venneuler()- vennplot(), abs and stress

52



The abs of vennplot() is better after four circles, the stress is worse but comparable.
We may also interested in how well the fit of each way intersection.

stress(k) =
P

i2k�way br2iP
i2k�way s2i

m is the highest order and 1  k  m � 1 (when k = m, s?
1...m = s

1...m); stress(k) is the
corresponding stress and comparison is shown in Figure 8.2.

Figure 8.2: venneuler() - vennplot(), stress(k), where 1  k  m� 1

We can find vennplot() does better on the fit of stress(k), from three circles to eight
circles. However, if vennplot() did well on all intersections but bad in stress, which
should indicate we fit really poor on s

1...m and the poor s
1...m explodes up the stress.

Figure 8.3 illustrates the comparison of stress(m).

53



Figure 8.3: venneuler()- vennplot(), stress(m)

However, sometimes, people may also interested in the fit of total size, rather than
disjoint part. This can be captured by fitting the linear model:

bP = sP� + r

criteria stress is defined as � and the boxplot shows the comparison with venneuler(),
given the random generation data set.

� =

brTbr

bP
TbP

54



Figure 8.4: venneuler()- vennplot(), �

Since we cannot grab the centres and radii from javascript, we implement Frederick-
son’s algorithm in R (suppose venn.js() is totally based on his algorithm on his website
[18]), use random initial configuration as he did. Figure 8.5 shows the comparison on two
criteria with random generated data sets (the same as before).

Figure 8.5: venn.js() - vennplot(), abs and stress

The boxplot of abs are roughly symmetric around zero, which means they should be
very similar based on this criteria; stress is slightly better (that is because after mini-
mizing 2.5, we import � to minimize stress). Frederickson did improve performance on

55



possible configurations, however, based on some impossible point configurations (like what
we randomly generated), it may not surpass venneuler().

However, if there are multiple groups in one data set, the “three step rule” of vennplot(),
divide, conquer and unite could really improve the performance. For example, Figure 8.6
shows the layout of I(S)?

4

by venneuler() with stress 0.37. We can also generate each
data set 100 times which contains two to five groups. In each group, circles vary from one
to five (if the maximum circle is over five, after four groups, venneuler() is more likely to
terminate). Figure 8.7 illustrates the comparison.

Figure 8.6: For set I(S)?
4

56



Figure 8.7: venneuler()- vennplot(), stress multiple groups

For venn.js(), if the stress of vennplot() is smaller in a single group, it would not
perform worse in multiple groups.

For Wilkinson’s algorithm, the steepest descent, equation 2.3 has a problem: if the
initial configurations of balls (for example, bi and bj) are totally overlaid with each other,
then, this steepest descent for ci and cj would be zero, thus bi and bj could be hard
to separate. An example is S

5

= {SA, SB, SC , SD}, the disjoint subsets I(S)?
5

with size
s?I = [s?A = 3, s?B = 3, s?C = 10, s?D = 10, s?AB = 2], P(S)?

5

is the corresponding power set
and any sets in P(S)?

5

\ I(S)?
5

are ?. Figure 8.8 shows the initial configuration and final
layout of venneuler().

57



(a) (b)

Figure 8.8: (a) is the initial configuration and (b) is the final one

For “Constrained MDS” (Frederickson’s algorithm), the main problem is that equation
2.7 only focuses on the two way intersection but does not consider higher way intersections.
Thus, he priorities to one way and two way intersections.

Except venneuler() and venn.js(), there is another good R function eulerr() with
similar generalized Venn algorithms. The function is also based on Wilkinson and Fred-
erickson’s algorithm, but with different optimizers. Also worth noting, in eulerr(), radii
are not fixed and taken as an optimizer. This behavior can largely decrease the abs and
stress, Figure 8.9.

Figure 8.9: eulerr() - vennplot()

However, it will sacrifice the fit of other intersections, shown in Figure 8.10 and Fig-

58



ure 8.11. Sometimes, too many parameters can lead the program to fail providing Venn
diagrams (like I(S)?

4

) [26].

Figure 8.10: eulerr() - vennplot(), �

59



Figure 8.11: eulerr() - vennplot(), stress(k) where 1  k  m� 1

60



Figure 8.12: eulerr() - vennplot(), stress(m)

The experiment of multiple groups comparison is much more likely to terminate by
eulerr(), hence we do not show the comparison.

61



Chapter 9

Discussion

Wilkinson’s algorithm tends to give disjoint areas the same weight. Hold radii fixed and
move centres. Frederickson’s algorithm starts from distances with noticing the subsets and
disjoint circles, and then, turns this problem (area proportional Venn diagram fit) into a
multiple dimensional scaling minimizing problem. Our algorithm tries to balance two of
them, seeking the minimum “MDS” and capturing a fine structure. Moreover, our model
is the first one with noting groups automatically. The layout is impressive when there are
multiple groups in one Venn diagram. The three-dimensional Venn diagrams can provide
a nice visualization in case two dimensional Venn diagrams fail (like Figure 1.4 (a) ).

For these three criteria ( , abs and stress), they can be taken as a reference, but
not truth. The criteria  may be good for some configurations, but for real data, all
tests may fail to reconstruct (  10%). And this criteria is not bounded, if any disjoint
areas overlay a tiny bit,  can go to 1. abs and stress are bounded criteria, however,
sometimes, they are not trustworthy either. There is an example on Frederickson’s website,
where S

6

= {SA, SB}, the power set P(S)?
6

with size s?P = [s?A = 98, s?B = 48, s?AB = 0].
Figure 9.1 shows the layout of venneuler(). The abs and stress are 0.0137, 7.3 ⇥ 10

�5,
which should indicate a good fit. However, we can find the there is an intersection between
SA and SB, very small but noteworthy [19]. So, this gives us a warning, a good Venn
diagram must have a very small criteria, but a small criteria does not indicate a good Venn
diagram.

62



Figure 9.1: small stress but fit bad

63



Chapter 10

Appendix

• Line Search [6] for finding �:

�(n)
+

 �(n) +�

�(n)�  �(n) ��

where � 2 <+, a small step size. Fixing �(n)
+

and �(n)� to compute stress(�(n)
+

) and
stress(�(n)� ).

– if(min(stress(�
+

), stress(��), stress(�(n))) = stress(�(n)))
Return C C(n)

– else

1. if (min(stress(�
+

), stress(��), stress(�(n))) = stress(�
+

)) which means
shrinkage can decrease stress. Thus,

�(n)  �
+

and stress(�(n)) stress(�
+

)

(a) update �
�(n+1)  �(n) +�

(b) update count n
n n+ 1

(c) Fixing �(n) and compute stress(�(n))

(d) Repeat i to iii until stress(�(n�1)

)  stress(�(n))

64



(e) Return C C(n�1) and stress = stress(�(n�1)

)

2. else which means expansion can decrease stress. Thus,

�(n)  ��

And � can be updated as follows:

�(n+1)  �(n) ��

The rest procedure is similar with (a). ii to v.

• Nelder Mead Algorithm [31] for finding µ:

1. Set
µ(n)
+

 µ(n)
+�

µ(n)
++

 �(n) + 2�

where � 2 <+ and µ can be defined as:

µ(n)  [µ(n), µ(n)
+

, µ(n)
++

]

Thus we can get corresponding estimated distance matrix. Fixing �(1), stress
is:

stress(n) = [stress(�(1);µ(n)
), stress(�(1);µ(n)

+

), stress(�(1);µ(n)
++

)]

2. The rest procedure is similar with “Nelder Mead Algorithm [31] for finding �”:
fix �(1), do Loop but replace �(n) to µ(n)

3. Return
µ =

P
(µ(n)

)

3

and corresponding distance [

bdij]

65



Bibliography

[1] Pax6 gene, July 2014.

[2] D. Ashlock, E.Y. Kim, and L. Guo. Multi-clustering: Avoiding the natural shape of
underlying metrics. Smart Engineering System Design: Neural Networks, Evolution-
ary Programming, and Artificial Life, 15:453–461, 2005.

[3] Vic Barnett, editor. Interpreting multivariate data. John Wiley & Sons, 1981.

[4] Margaret E. Baron. A Note on the Historical Development of Logic Diagrams: Leibniz,
Euler and Venn. The Mathematical Gazette, 1969.

[5] Pierre Jerome Bergeron. sharkattackinfo.com, 2017.

[6] M. J Box, D Davies, and W. H Swann. Non-linear optimization techniques. Edinburgh:
Published for Imperial Chemical Industries Ltd by Oliver Boyd, 1969, 1969.

[7] Allyson L. Byrd, Clay Deming, Sara K. B. Cassidy, Oliver J. Harrison, Weng-Ian
Ng, Sean Conlan, NISC Comparative Sequencing Program, Yasmine Belkaid, Julia A.
Segre, and Heidi H. Kong. Staphylococcus aureus and Staphylococcus epidermidis
strain diversity underlying pediatric atopic dermatitis. Science, 2017.

[8] Hanbo Chen and Paul C Boutros. Venndiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 2011.

[9] W.H. Cherry and R.W. Oldford. Picturing Probability: the poverty of venn diagrams,
the richness of Eikosograms. (unpublished manuscript), 2003.

[10] S. Chow and P. Rodgers. Constructing area-proportional Venn and Euler diagrams
with three circles. Euler Diagrams Workshop, 2005.

66



[11] S. Chow and F. Ruskey. Drawing Area-Proportional Venn and Euler Diagrams. Graph
Drawing, 2003.

[12] William S. Cleveland and Robert McGill. Graphical Perception: Theory, Experi-
mentation, and Application to the Development of Graphical Methods . American
Statistical Association, 1984.

[13] William S. Cleveland and Robert McGill. Graphical Perception and Graphical Meth-
ods for Analyzing Scientific Data. Science, 1985.

[14] William S. Cleveland and Robert McGill. Graphical Perception : The Visual Decoding
of Quantitative Information on Graphical Displays of Data . Royal Statistical Society,
1987.

[15] L. Euler. Lettres a Une Princesse d’Allemagne, volume 2. Charpentier, 1843.

[16] Leonhard Euler. Letters cii through cviii. In D. Brewster, editor, Letters of Euler on
different subjects in Natural Philosophy addressed to a German Princess. (Translated
from Lettres à une Princesse d’Allemagne), volume I, pages 337–366. Harper and
Brothers, New York, 1840 (1761 original).

[17] Ben Frederickson. Calculating the intersection area of 3+ circles, 2013.

[18] Ben Frederickson. A better algorithm for area proportional Venn and Euler diagrams,
2015.

[19] Ben Frederickson. Comparison with venneuler, 2015.

[20] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 1973.

[21] Catherine Q. Howe and Dale Purves. Natural-scene geometry predicts the perception
of angles and line orientation. Proceedings of the National Academy of Sciences of the
United States of America, 102(4):1228–1233, 2005.

[22] C.B. Hurley and R.W. Oldford. PairViz: Visualization using Eulerian tours and
Hamiltonian decompositions, 2011. R package version 1.2.1.

[23] Paul Jaccard. Distribution de la Flore Alpine dans le Bassin des Dranses et dans
quelques regions voisines. Bulletin de la Socieete vaudoise des sciences naturelles,
1901.

67



[24] H. A. Kestler, A. Muller, J. M. Kraus, M. Buchholz, T. M. Gress, H. Liu, D. W. Kane,
B. Zeeberg, and J. N. Weinstein. VennMaster: Area proportional euler diagrams for
functional GO analysis of microarrays. BMC Bioinformatics, 2008.

[25] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins. Structure
and evolution of blogspace. Structure and evolution of blogspace, 2004.

[26] Johan Larsson. An introduction to eulerr, 2017.

[27] Daniel P. LePage, Jason A. Metcalf, Sarah R. Bordenstein, Jungmin On, Jessamyn I.
Perlmutter, J. Dylan Shropshire, Emily M. Layton, Lisa J. Funkhouser-Jones, John F.
Beckmann, and Seth R. Bordenstein. Prophage WO genes recapitulate and enhance
Wolbachia-induced cytoplasmic incompatibility. Nature, 2017.

[28] R Beau Lotto and Dale Purves. The empirical basis of color perception. Consciousness
and Cognition, 11(4):609 – 629, 2002.

[29] Luana Micallef and Peter Rodgers. (eulerape: Drawing area-proportional 3-venn dia-
grams using ellipses. PLOS.

[30] B. Minaei-bidgoli, A. Topchy, and W. F. Punch. A comparison of resampling methods
for clustering ensembles. In the International Conference on Artificial Intelligence,
pages 939 – 945, 2004.

[31] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 1969.

[32] R. Wayne Oldford. Constraint-oriented programming with application to statistical
graphics. In Bulletin of the International Statistical Institute, volume 54, pages IP–
21/3 1–18, Cairo, Egypt, 1991. International Statistical Institute.

[33] R. Wayne Oldford. Self-calibrating quantile–quantile plots. The American Statistician,
70(1):74–90, February 2016.

[34] Richmond Wayne Oldford. qqtest: Self calibrating quantile quantile plots for visual
testing, 2014. R package version 1.1.1.

[35] R.W. Oldford. Mental models and interactive statistics: Design principles. In Comput-
ing Science and Statistics, volume 31, pages 254–262. Interface Foundation of North
America, 1999.

68



[36] D.J. Parkhurst and E. Niebur. Scene content selected by active vision. Spatial Vision,
16:125–154, 2003.

[37] E Polak and G Ribiere. Note sur la convergence de méthodes de directions conjuguées.
Mathematical Modelling and Numerical Analysis, 1969.

[38] Adam Rahman and Wayne Oldford. Euclidean distance matrix completion and point
configurations from the minimal spanning tree. (unpublished manuscript), 2016.

[39] Frank Ruskey and Mark Weston. A survey of venn diagrams. THE ELECTRONIC
JOURNAL OF COMBINATORICSl, 2005.

[40] Jonathan R Shewchuk. Technical report. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain, 1994.

[41] Elizabeth S. A. Sollars, Andrea L. Harper, Laura J. Kelly, Christine M. Sambles,
Ricardo H. Ramirez-Gonzalez, David Swarbreck, Gemy Kaithakottil, Endymion D.
Cooper, Cristobal Uauy, Lenka Havlickova, Gemma Worswick, David J. Studholme,
Jasmin Zohren, Deborah L. Salmon, Bernardo J. Clavijo, Yi Li, Zhesi He, Alison
Fellgett, Lea Vig McKinney, Lene Rostgaard Nielsen, Gerry C. Douglas, Erik Dahl
Kjaer, J. Allan Downie, and David Boshier. Genome sequence and genetic diversity
of European ash trees. Nature, 2016.

[42] S.S. Stevens. On the psychophysical law. Psychological Review, 1957.

[43] W. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 1952.

[44] Antony Unwin, Martin Theus, and Heike Hofmann. Graphics of large datasets: visu-
alizing a million. Springer, 2006.

[45] John Venn. On the diagrammatic and mechanical representation of propositions and
reasonings. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, X(5):1–18, July 1880.

[46] A. Weingessel, E. Dimitriadou, and K. Hornik. An ensemble method for clustering.
In Conference of Directions in Statistical Computing, 2003.

[47] Wikipedia. List of alternative names for the human species.

[48] Leland Wilkinson. Exact and approximate area-proportional circular Venn and Euler
diagrams. IEEE Trans Vis Comput Graph, 2012.

69



[49] Dongsheng Zhang, Mengchao Yu, Peng Hu, Sihua Peng, Yimeng Liu, Weiwen Li,
Congcong Wang, Shunping He, Wanying Zhai, Qianghua Xu, and Liangbiao Chen.
Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai -
Tibetan Plateau. Genetics, 2017.

70


	List of Figures
	Introduction
	Venn and Euler diagrams
	Examples of Venn diagrams drawn from the scientific literatures

	Automated construction of Circular Venn diagrams
	Shrink or stretch
	Three dimension Venn diagram
	Unspecified intersections
	Common case
	Special case
	Weight


	Undirected connected components
	Divide bold0mu mumu GGlineSearchGGGG
	Detect case
	Unite bold0mu mumu GGlineSearchGGGG

	Examples
	Comparison with other Venn algorithms
	Discussion
	Appendix

