
Solution of Algebraic Riccati
Equations using Schur Method and

Newton-Kleinman Method

by

Xuanrui Li

A research paper
presented to the University of Waterloo

in fulfillment of the requirement for the degree of
Master of Mathematics

in
Computational Mathematics

Supervisor: Professor Kirsten Morris

Waterloo, Ontario, Canada, 2019

c© Xuanrui Li 2019

I hereby declare that I am the sole author of this research paper. This is a true copy of
the research paper, including any required final revisions, as accepted by my examiners.

I understand that my research paper may be made electronically available to the public.

ii

Abstract

Algebraic Riccati equations determine the solution of infinite-horizon optimal control
problems: Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG).
These problems are fundamental problems in control theory. In this research paper, two
main methods to solve the algebraic Riccati equations, the Schur method, and
Newton-Kleinman method are discussed. The Schur method is for small order models as
a direct solution method. In the Schur method, the computation of the basis that spans
the stable invariant subspace of the Hamiltonian matrix is needed for the solution of the
algebraic Riccati equations. However, this method fails for large dimension problems. An
example is given to illustrate that the Schur method fails to give accurate solutions for
problem order over 200. The Newton-Kleinman method uses an iterative scheme to get
the solutions for the algebraic Riccati equations. The Alternating Direction Implicit
(ADI) method and Cholesky-factor ADI method in solving Lyapunov equations are
discussed. In these two methods, proper choice of the parameters can improve the
convergence of the iterations [16]. In the simply supported beam example, we use
MATLAB built-in function care() for the Schur method, and we use lyap() in solving
Lyapunov equations in Newton-Kleinman method. An analysis of some numerical results
is provided in the end.

iii

Table of Contents

List of Tables v

List of Figures vi

1 Algebraic Riccati Equations 2

2 Schur Method 4

2.1 Solution to ARE . 5

2.2 Implementation of the Schur method . 9

2.2.1 Balancing and Scaling . 12

2.2.2 Numerical Issues . 12

3 Newton-Kleinman Method 13

3.1 Solution to ARE . 14

3.2 Solution of Lyapunov Equation . 15

3.2.1 Numerical Issues . 21

4 Example: Simply Supported Beam 23

5 Comparisons and Observations 30

5.1 Observations . 30

References 32

iv

List of Tables

3.1 ADI and Cholesky-factor ADI method complexity comparison in solving
Lyapunov equations . 22

4.1 Time per order n for Schur method with Q = I, R = 1 25

4.2 The Frobenius norm relative residual calculated using ||Ric(P)||F
||P ||F

for Schur

method. P is the solution to ARE obtained from care() 27

4.3 The iteration numbers, timing and the Frobenius norm relative residual
calculated using ||Ric(P)||F

||P ||F
for Newton-Kleinman method at different problem

order with Q = I, R = 1, K0 = 0. P is the solution to ARE approximated
using Newton-Kleinman method . 28

4.4 Feedback Gain using 2-norm at each Newton-Kleinman iteration on problem
order 24 with Q = I, R = 1, K0 = 0 . 29

v

List of Figures

4.1 The relative error calculated using
||P−Pj ||2
||P ||2 in each Newton-Kleinman it-

eration at problem order 24. Pj is the solution at jth Newton-Kleinman
iteration. P is the solution to ARE approximated by Newton-Kleinman
method . 26

4.2 The Frobenius norm relative residual calculated using ||Ric(P)||F
||P ||F

for Schur

method per order n. P is the solution to ARE obtained from care(). 28

vi

1

Chapter 1

Algebraic Riccati Equations

Algebraic Riccati equations (AREs) determine the solutions of Linear-Quadratic
Regulators (LQR) and Linear-Quadratic Gaussian (LQG) control problems. Assume R to
be a positive definite matrix. Let (·)ᵀ denote the transpose of a matrix. The objective is
to find a feedback control u(t) = Kp(t) which solves the problem

Min J(u(t)) =

∫ +∞

0

1

2
[pᵀ(t)Qp(t) + 2pᵀ(t)Su(t) + uᵀ(t)Ru(t)]dt (1.1)

subject to: Eṗ(t) = Ap(t) +Bu(t), p(t) ∈ Rn, u(t) ∈ Rm (1.2)

y(t) = Cp(t), y(t) ∈ Rp (1.3)

where the function p(t) is the state, y(t) is the controlled output, and u(t) is the input.
Matrix A describes the internal dynamics in Rn×n, B is the effect of the controlled input
on the state in Rn×m, and E,C describe the sensors. E is assumed to be non-singular
and C is in Rp×n. The number of state variables is n, namely the order of the system.
The number of inputs of the system is m, and the number of outputs is p. Often
Q = CᵀC. The feedback gain is −K. The matrix Q in Rn×n penalizes the state variable
p(t) and Q is positive semi-definite. Matrix R is a symmetric matrix, which penalizes the
control signal [13].

Equation (1.1) is defined to be the cost of the controlled system. The non-negative
solution P to the ARE (1.4) yields the optimal cost. The optimal control is determined
by this P [13].

2

The basic ARE arising in continuous-time problems takes the form [1]

AᵀPE + EᵀPA− (EᵀPB + S)R−1(BᵀPE + Sᵀ) + CᵀC = 0 (1.4)

or
ÂᵀPE + EᵀPÂ− EᵀPBR−1BᵀPE + CᵀC − SR−1Sᵀ = 0 (1.5)

where
Â := A−BR−1Sᵀ

The more familiar form of the generalized version occurs when S = 0 and E = I. Also
with Q = CᵀC, we have

AᵀP + PA− PBR−1BᵀP +Q = 0 (1.6)

for continuous-time case.

In this research paper, we will focus on talking about the continuous-time ARE. Two
methods are introduced regarding how to solve the AREs. We will discuss these two
methods with details, including the theories behind and how to implement in practice.
Numerical issues are considered. An example of simply supported beam of
Euler-Bernoulli Beam is given to illustrate the applications.

3

Chapter 2

Schur Method

Let us start by stating some definitions and theorems before the detailed discussion
about the Schur method.

Definition 2.0.1 A skew-symmetric matrix A is a square matrix whose transpose
equals its negative. That is, Aᵀ = −A, where A is of size n× n in R.

Definition 2.0.2 A Hamiltonian matrix A is 2n× 2n such that JA is symmetric,
where J is the skew-symmetric matrix

J =

[
0 In
−In 0

]
and In is the n× n identity matrix. In other words, A is Hamiltonian if and only if
(JA)ᵀ = JA or equivalently, J−1AᵀJ = −A

Definition 2.0.3 A symplectic matrix A of size 2n× 2n if J−1AᵀJ = A−1 or
equivalently, AᵀJA = J where J is skew-symmetric.

Definition 2.0.4 A matrix A of size n× n in R is unitary if Aᵀ = A−1.

Definition 2.0.5 A matrix A of size n× n R is orthogonal if AᵀA = I or equivalently,
Aᵀ = A−1.

4

Theorem 2.0.1 (Lemma B.4 [13]) The spectrum Λ of the Hamiltonian matrix

Z =

[
A −BR−1Bᵀ
−Q −Aᵀ

]
is symmetric with respect to the imaginary axis.

Theorem 2.0.2 (Theorem B.5 [13]) Let A and B be n×n real matrices. The equation

BX +XA = 0 (2.1)

has only the solution X = 0 if λi(A) + λj(B) 6= 0 for all i, j = 1...n.

Theorem 2.0.3 (Theorem 2.5 [13]) The pair (A,B) is controllable if and only if
the n× np controllability matrix such that[

B AB A2B ... An−1B
]

has full row rank n.

Theorem 2.0.4 (Theorem 2.11 [13]) The pair (C,A) is observable if and only if the
p× pn observability matrix such that

C
CA
CA2

...
CAn−1

has full column rank n.

Theorem 2.0.5 (Theorem 5.16 [13]) Assume the pair (A,B) is controllable and the
pair (C,A) is observable in system (1.2)-(1.3), then the ARE has unique non-negative
definite solution.

2.1 Solution to ARE

Assumptions:

5

Assume (A,B) is controllable and (C,A) is observable.

By Theorem (2.0.5), the ARE has a unique, non-negative definite solution to the system
(1.2)-(1.3).

The connection of the Hamiltonian matrix and ARE is established if we rewrite the ARE
in the following equivalent form[

A −BR−1Bᵀ
−Q −Aᵀ

] [
I
P

]
=

[
I
P

]
(A−BR−1BᵀP) (2.2)

We claim P is the solution to the ARE.

Definition 2.1.1 If max1≤i≤nRe(λi(A)) < 0 , A is Hurwitz.

Theorem 2.1.1 (Theorem 8.4 [13]) Let Q and R be real symmetric matrices and let
A and B be real matrices. Suppose that the Hamiltonian matrix

Z =

[
A −BR−1Bᵀ
−Q −Aᵀ

]

has no eigenvalues on the imaginary axis. For matrices X, Y define the matrix

[
X
Y

]
whose columns are the eigenvectors associated with the negative real eigenvalues of Z.

If

Range

[
X
Y

]
∩ Range

[
0
I

]
= {0} (2.3)

then the ARE

AᵀP + PA− PBR−1BᵀP +Q = 0 (2.4)

has the solution P = Y X−1 with the property that A−BR−1BᵀP is Hurwitz.

Conversely, if the ARE has a unique, non-negative definite solution P so that
A−BR−1BᵀP is Hurwitz, then (2.3) holds and the Hamiltonian matrix has no
imaginary axis eigenvalues.

If a solution P does exist, P is real and symmetric and it is the only solution with the
property that A−BR−1BᵀP is Hurwitz.

6

Proof:

By equation (2.2), we say P is a solution of the ARE if and only if

Range

[
I
P

]

is an n-dimensional invariant subspace of Z. Also, A−BR−1BᵀP characterize the
restriction of Z to this subspace.

First assume that Z has no imaginary axis eigenvalues and that (2.3) holds. Since the
eigenvalues of Z are symmetric about the imaginary axis by Theorem 2.0.1, this means

that Z has an n-dimensional invariant subspace ν where ν:= Range

[
X
Y

]
on which the

restriction of Z has all eigenvalues with negative real parts. The statement (2.3) implies
that X is non-singular. So

ν = Range

[
X
Y

]
= Range

[
XX−1

Y X−1

]
= Range

[
I

Y X−1

]
(2.5)

Define P = Y X−1. Then equation (2.2) implies that P solves the ARE.

Since ν is the invariant subspace of Z associated with its negative eigenvalues, equation
(2.2) implies that A−BR−1BᵀP is Hurwitz.

Now, we prove if the ARE has a unique, non-negative definite solution P such that
A−BR−1BᵀP is Hurwitz, then (2.3) holds and Z has no imaginary axis eigenvalues:

Assume that a solution P to the ARE exists such that A−BR−1BᵀP is Hurwitz. Then,
from equation (2.2),

Range

[
I
P

]
is an n-dimensional invariant subspace of Z. Also, A−BR−1BᵀP characterized the
restriction of Z to this subspace. Thus, Z has an n-dimensional eigenspace associated
with eigenvalues with negative real values. Since the spectrum of Z is symmetric about
the imaginary axis (Theorem 2.0.1), this implies that Z has n eigenvalues with positive
real parts, n with negative real parts, and thus no imaginary eigenvalues. Clearly,

Range

[
I
P

]
∩ Range

[
0
I

]
= {0} (2.6)

7

Then it only remains to show that the solution P is real, symmetric, and unique.

First we show P is real, i.e. we need to prove P = Pc:

The column of

[
X
Y

]
can be chosen complex conjugate in pair so that if Xc, Yc are the

complex conjugates of X and Y , respectively, then[
Xc

Yc

]
M =

[
X
Y

]
where M is a permutation matrix. Then

P = Y X−1 = YcMM−1X−1c = YcX
−1
c = Pc

and so P = Pc. The matrix P is real.

Then we show P is symmetric.

We multiply equation (2.2) on the left by[
I P ᵀ

]
J

where J is the skew-symmetric matrix such that J =

[
0 I
−I 0

]
where I is a identity

matrix of size n× n. We obtain[
I P ᵀ

]
JZ

[
I
P

]
= (P ᵀ − P)(A−BR−1BᵀP) (2.7)

and we the take transpose of the left hand side of equation (2.7), we get[
I P ᵀ

]
ZᵀJᵀ

[
I
P

]
. Since Z is Hamiltonian, i.e. JZ = ZᵀJᵀ, we get

(P ᵀ − P)(A−BR−1BᵀP) = (A−BR−1BᵀP)ᵀ(P ᵀ − P)ᵀ

so that
(P ᵀ − P)(A−BR−1BᵀP) + (A−BR−1BᵀP)ᵀ(P ᵀ − P) = 0.

By Theorem 2.0.2 and the fact that A−BR−1BᵀP is Hurwitz, the only solution is
P ᵀ − P = 0. Thus, P is symmetric.

Finally, we prove uniqueness.

8

Suppose that an ARE has non-negative definite solutions, P1 and P2, then

AᵀP1 + P1A− P1BR
−1BᵀP1 +Q = 0 (2.8)

AᵀP2 + P2A− P2BR
−1BᵀP2 +Q = 0. (2.9)

Subtracting the second equation from the first and re-arranging,

(P1 − P2)(A−BR−1BᵀP) + (A−BR−1BᵀP)ᵀ(P1 − P2) = 0 (2.10)

then we use Theorem (2.0.2) again and get P1 − P2 = 0, proving that the non-negative
definite solution is unique[13]. �

Equation (1.6) can be solved by finding an orthogonal transformation matrix U of size
2n× 2n in R such that

UᵀZU = S (2.11)

where

U =

[
U11 U12

U21 U22

]
, Uij ∈ Rn×n

Z =

[
A −BR−1Bᵀ
−Q −Aᵀ

]
is a Hamiltonian matrix

and S =

[
S11 S12

0 S22

]
is a quasi-upper-triangular (see Definition 2.2.1) matrix with all

eigenvalues of S11 in the strict left-half-plane. The n column vectors comprising

[
U11

U21

]
span the stable invariant subspace and the solution of equation (1.6) is given by
P = U21U

−1
11 . This is so-called Schur method for solving ARE [1].

2.2 Implementation of the Schur method

There are two main steps for the Schur method:

1. The reduction of S in UᵀZU = S to an ordered real Schur form, which is the most
difficult step in this algorithm.

9

2. The solution of an nth order linear matrix equation, i.e. PU11 = U21[9].

1. Step one

Our objective in this step is to find an orthogonal matrix U of size 2n× 2n with

matrix

[
U11

U21

]
whose columns are the eigenvectors correspond to the negative real

eigenvalues of Hamiltonian matrix Z. The order of eigenvalues of S matters since
S11 has to be in the strict left-half-plane.

One approach is presented here to achieve step one.

Let’s discuss these two theorems from classical similarity theory first:

Theorem 2.2.1 (Schur canonical form) [Theorem 3 [9]]: Let A ∈ Rn×n has n
eigenvalues λ1, ..., λn of this order. Then there exists a unitary similarity
transformations U that is uniquely determined such that UHAU is upper triangular
with diagonal elements λ1, ..., λn of that order.

Definition 2.2.1 A quasi upper triangular matrix is a block upper triangular
matrix where the blocks on the diagonal are 1× 1 or 2× 2.

It is possible to work over R since we can reduce Schur canonical form to a matrix
of form quasi-upper-triangular with 2× 2 and 1× 1 blocks. The 2× 2 blocks
correspond to complex conjugate eigenvalues of Hamiltonian matrix Z and 1× 1
blocks correspond to the real eigenvalues of Hamiltonian matrix Z. We refer to this
canonical form as the real Schur form (RSF) [9].

Theorem 2.2.2 (real Schur form) [Theorem 4 [9]] Let A ∈ Rn×n, then there
exists an orthogonal similarity transformation U such that UᵀAU is
quasi-upper-triangular. Moreover, U can be chosen so that the 1× 1 and 2× 2
diagonal blocks appear in any desired order.

Definition 2.2.2 If in the above theorem, we partition S := UᵀAU into

[
S11 S12

0 S22

]
where S11 ∈ Rn×k, 0 < k ≤ n, we shall refer to the first k columns of U as the
Schur vectors corresponding to Λ(S11) ⊆ Λ(A)

10

In MATLAB, the Schur decomposition has syntax

[U, S] = schur(Z, ...)

which returns a unitary matrix U so that Z = USUH . The matrix S is the Schur
canonical form and

UHU = eye(size(Z))

To re-order eigenvalues in Schur factorization, another syntax is used:

[US, ZS] = ordschur(U,Z, keyword)

This syntax sets the selected cluster of eigenvalues appears in the region specified
by the eigenvalue region keyword.

The eigenvalue region keywords can be:

Keyword Selected Region
‘lhp’ Left-half plane (real(e) < 0)
‘rhp’ Right-half plane (real(e) ≥ 0)
‘udi’ Interior of unit disk (abs(e) < 1)
‘udo’ Exterior of unit disk (abs(e) ≥ 1)

where e represents the eigenvalues of S. In our case, ‘lhp’ is what we want to use.

2. Step two

Consider n-th order linear matrix equation

PU11 = U21

we solve for P = U21U
−1
11 . There are some linear equation solvers that we can use in

MATLAB such as decomposition() and solve() or linsolve() in one step.

We will briefly summarize the algorithm as follows:

Consider the system PU11 = U21, we take transpose so it is in the form of
Uᵀ11P

ᵀ = Uᵀ21 with Uᵀ11 = LU ,

Two-step Solution Procedures

(a) Let UP ᵀ = y, solve the lower triangular system Ly = Uᵀ21 for y by forward
substitution.

11

(b) Solve the upper triangular system UP ᵀ = y for P ᵀ by backward substitution
as desired solution since P is symmetric.

2.2.1 Balancing and Scaling

In Schur method, proper balancing and scaling for the Hamiltonian matrix Z can
increase the computational efficiency. There are several ways to do balancing and scaling
in our case. Two methods are presented here:

1. Use balancing matrix PD to reduce Z to Zb where P is a permutation matrix, D is
a diagonal matrix such that

D−1PZPD = Zb

Then find orthogonal matrix U which reduces Zb to real Schur form. Combine all of
the above, we get

UᵀZbU = S

where PDU is non-singular with the first n columns to be the eigenvectors
correspond to the negative real eigenvalues of the Hamiltonian matrix Z [9].

2. The other way is to use a transformation matrix. Suppose T0 is a non-singular

transformation such as

[
T 0
0 T−T

]
. Since Zw is symplectically similar to Z such that

Zw =

[
T 0
0 T−ᵀ

]−1
Z

[
T 0
0 T−ᵀ

]
Here Zw is Hamiltonian (or symplectic in the discrete time case). We will use Zw
instead of Z during our calculations [9].

2.2.2 Numerical Issues

Operation Counts:

The approximated operation counts are given for the solution of nth order ARE of form
(1.6). Assume the size of the Hamiltonian matrix is 2n× 2n. However, the actual
operation counts depend on the specific cases. Sometimes, the reduction might need more
operation counts when ordering of real Schur form is required. So the approximated
operation counts for Schur method is order n3 [9].

12

Chapter 3

Newton-Kleinman Method

In the last chapter, we introduced the Schur method to solve ARE directly based on
calculating the basis that spans the stable invariant subspace of the Hamiltonian matrix.
However, for example, if the structure of the Hamiltonian matrix cannot be preserved
during computation, the Schur method will be inaccurate in computing the solutions. In
this chapter, we introduced an iterative scheme - Newton-Kleinman method to solve
ARE.

Let us discuss some more definitions and theorems before we talk about the
Newton-Kleinman method.

Definition 3.0.1 A Hermitian matrix (or self-adjoint matrix) is a complex square
matrix that is equal to its own conjugate transpose.

Definition 3.0.2 The equation of form

AX +XAH +M = 0 (3.1)

where M is a Hermitian matrix and AH is the conjugate transpose of A is continuous
Lyapunov equation.

We also state a theorem about stability for continuous-time case:

Theorem 3.0.1 Given any positive definite matrix M , there exists a unique P that is
positive definite satisfying AX +XAH +M = 0 if and only if the linear system ẋ = Ax is
globally asymptotically stable.

13

Definition 3.0.3 (Definition 3.18 [13]) The pair (A,B) is stabilizable if there exists
K such that A+BK is Hurwitz.

Definition 3.0.4 (Definition 3.20 [13]) The pair (A,C) is detectable if there exists
F such that A+ FC is Hurwitz.

3.1 Solution to ARE

Assumptions:

Assume (A,B) is stabilizable and (C,A) is detectable.

For convenience, we restate the ARE

AᵀP + PA− PBR−1BᵀP +Q = 0

then rewrite the above equation as

(A+BK)ᵀP + P (A+BK) = −Q−KᵀRK (3.2)

with K = −R−1BᵀP . Recall that a matrix A0 is Hurwitz if σ(A0) ⊂ C− where σ(·)
denotes the singular value of a real matrix. If A+BK is Hurwitz, then the above
equation is a Lyapunov equation [11].

Theorem 3.1.1 (Theorem 1.1 [15]) Consider a stabilizable pair (A,B) with a feedback
K0 so that A+BK0 is Hurwitz. Define Si = A+BKi, and solve the Lyapunov equation

Sᵀi Pi + PiSi = −Q−Kᵀi RKi

for Pi and then update the feedback as Ki+1 = −R−1BᵀPi. Then

lim
i→∞

Pi = P

with quadratic convergence. The solution P is the stabilizing solution to the ARE.

To iteratively solve the Lyapunov equations, first choose an initial feedback K0 that
makes A+BK0 to be Hurwitz. Denote Si = A+BKi. By Theorem (3.1.1), we solve for
Pi in each iteration, then the sequence of solutions converge to P quadratically.

14

The algorithm can be summarized as follows:

Algorithm 1. Newton-Kleinman Algorithm

Given A,B,K0, Q,R, tol1, tol2
Initialization S0 = A+BK0, i = 0, P = 0n×n
Solve Sᵀ0P0 + P0S0 = −Q−Kᵀ0RK0 for P0

while ||Pi − P ||F > tol1 or ||Pi − P ||2 > tol2 do
P ← Pi
i← i+ 1
Update Ki = −R−1BᵀP
Update Si = A+BKi

Solve Sᵀi Pi + PiSi = −Q−Kᵀi RKi for Pi
end while
return Pi

In this paper, three methods are discussed to solve Lyapunov equations, and two of them
are used for implementation. We will introduce Smith’s method, the Alternating
Direction Implicit (ADI) method, and Cholesky-factor ADI method to solve large scale
Lyapunov equations.

3.2 Solution of Lyapunov Equation

1. Method 1: Smith’s method

Consider the Lyapunov equation

XA0 + Aᵀ0X = −DDᵀ (3.3)

where A0 = A+BKi is Hurwitz of n× n in R and D is a n× r matrix in R with r
satisfying r = m(observations) + p(controls). X is the solution to this Lyapunov
equation. Since A0 is stable, there exist a unique, symmetric positive semi-definite
solution to the above equation.

15

The idea of Smith’s method is that we rewrite the equation (3.3) as

(Aᵀ0 + qI)X(A0 + qI)− (Aᵀ0 − qI)X(A0 − qI) = −2qDDᵀ

pre-multiply by (Aᵀ0 + qI) and post-multiply by (A0 + qI). Rearrange the term to
get the update formula for Xi with X0 = 0 such that for any q in C−, we have

Xi = UᵀXi−1U + V (3.4)

where U = (A0 − qI)(A0 + qI)−1 and V = −2q(Aᵀ0 + qI)−1DDᵀ(A0 + qI)−1 with
q < 0 [16].

The sequence of solutions converges to X. A formal solution [12] to (3.4) is

X =
∞∑
k=0

UkV Uᵀk (3.5)

Smith’s method is unconditionally linear convergent for any q < 0. In each iteration,
the value of q does not change. Proper choice of q can improve the convergence of
the iterations [16]. The detailed parameter selection process is discussed in [12].

2. Method 2: ADI method

The ADI method is based on Smith’s method. It is improved by selecting different
qi’s in each iteration.

Instead, we have two alternating linear systems with initial guess X0 = 0n×n for any
qi in C− such that

(Aᵀ0 + qiI)Xi− 1
2

= −DDᵀ −Xi−1(A0 − qiI) (3.6)

(Aᵀ0 + qiI)Xᵀi = −DDᵀ −Xᵀ
i− 1

2

(A0 − qiI) (3.7)

for j = 1, 2, 3.... The matrix A0 = A+BKi is Hurwitz of n× n in R and D is a
n× r matrix in R with r satisfying r = m+ p [16].

The updated Xj in jth iteration is

Xj = −2qi(A
ᵀ
0 + qiI)−1DDᵀ(A0 + qiI)−1

+ (Aᵀ0 + qiI)−1(Aᵀ0 − qiI)Xj−1(A0 − qiI)(A0 + qiI)−1

Here is the algorithm that describes the ADI iterations:

16

Algorithm 2. Alternating Direction Implicit Algorithm [11]

Given A0, D
Initialization j = 0, X0 = 0n×n
Choose ADI parameters, {q1, q2, ..., qJ},Re{qi} < 0
for j = 1,2, ...,J , do

Update (Aᵀ0 + qiI)Xi− 1
2

= −DDᵀ −Xi−1(A0 − qiI)

Update (Aᵀ0 + qiI)Xᵀi = −DDᵀ −Xᵀ
i− 1

2

(A0 − qiI)

end for
return XJ

Proper choice of qi can improve the convergence of the iterations, say J iterations
where J � n. The parameters selection in ADI method is discussed as follows.

ADI Parameter Selection

We solve the min-max problem to find the optimal ADI parameters

{q1, q2, ..., qJ} = arg min
qi

max
λj∈σ(A0)

|
J∏
j

qi − λ
qi + λ

|

where J represents the max iteration number and the min-max problem is a
function of J .

The solution is completely determined by the eigenvalues of A0. If A0 has strictly
real eigenvalues, the solution is easily calculated [12]. If the eigenvalues of A0 are in
the open left half plane, the optimal parameters can be approximated by several
ways. We will discuss one way here [12].

Define the spectral bounds a, b and a sector angle α for the matrix A0 [2]

a = min
i

(Re(λi)

b = max
i

(Re(λi))

α = tan−1max
i
|Im(λi)

Re(λi)
|

17

where λi are the the eigenvalues of A0. The parameter α is the maximum angle
from the real axis to the eigenvalue. Define

cos2β =
2

1 + 1
2
(a
b

+ b
a
)
, m =

2cos2α

cos2β
− 1 (3.8)

If α < β, then m ≥ 1, it is equivalent to the parameters pj are real. Let

k′ =
1

m+
√
m2 − 1

, k =
√

1− k′2

and k′ = a
b

if the eigenvalues of A0 are real.

Define the elliptic integrals K and v as

F [ψ, k] =

∫ ψ

0

1√
1− k2sin2x

dx

K = K(k) = F [
π

2
, k], v = F [sin−1

√
a

bk′
, k′]

where K is the incomplete elliptic integral of the first kind, k is its modulus, and ψ
is its amplitude.

Definition 3.2.1 ([19]) The elliptic function region corresponding to A0 is defined
as

D(r) = {p = dn(zK, k)|z = x+ iy, 0 ≤ x ≤ 1and |y| ≤ r} ⊂ C

where r = α/K, k, K = K(k) are as above, and dn is the Jacobi elliptic function.

The maximum number of iterations is

J = d K
2vπ

log
4

ε1
e (3.9)

with ADI parameters

pj = −
√
ab

k′
dn[

(2j − 1)K

2J
, k], j = 1, 2, ..., J (3.10)

where dn(u, k) is the Jacobi elliptic function[12].

18

If m < 1, the parameters pj are complex. We define the dual elliptic spectrum, a′, b′

and m′ such that

a′ = tan(π/4− α/2)

b′ = 1/a′

m′ =
2cos2β

cos2α
− 1

by construction, m′ must be greater than 1 now so that we can get the optimum
real parameters p′j for the dual problem. Substituting a′ in (3.8), we get

β′ = α, m′ =
2cos2β

cos2α
− 1

The complex parameters pj can be obtained from

cosαj =
2

p′j + 1
p′j

so that

p2j−1 =
√
abeiαj , p2j =

√
abe−iαj , j = 1, 2, ..., d1 + J

2
e[2].

3. Method 3: Cholesky-factor ADI method

Definition 3.2.2 A matrix Z of size n× p in R is a Cholesky factor of the
self-adjoint matrix X if it satisfies

X = ZZᵀ.

where X is a real, symmetric matrix of size n× n.

Based on ADI method, only the Cholesky factor Z is calculated during the
iterations in the Cholesky-factor ADI method. Therefore, if the matrices are sparse
or structured, we can take advantage of this properties and be more
computationally efficient [11].

Instead of iteratively solving Xi, we solve Zi such that Xi := ZiZ
ᵀ
i where Zi is the

Cholesky factor of Xi.

19

The iterations for Zi are as follows:

Z1 =
√
−2q1(A

ᵀ
0 + q1I)−1D, Z1 ∈ Rn×r (3.11)

Zi = [
√
−2qi(A

ᵀ
0 + qiI)−1D, (Aᵀ0 + qiI)−1(Aᵀ0 − qiI)Zi−1] (3.12)

with Zi of size n× ir in R for all i. The matrix A0 = A+BKi is Hurwitz of n× n
in R and D is a n× r matrix in R.

Observe from the above formulation, at jth iteration, multiply the previous
Cholesky factor Zj−1 on the left by (Aᵀ0 + qiI)−1(Aᵀ0 − qiI), the column size of
Cholesky factor is increased by r at a time[11].

Explicitly write the Cholesky factor out at J ’s iteration as

ZJ = [zJ , QJ−1zJ , QJ−2QJ−1zJ , ..., Q1Q2...QJ−1zJ] (3.13)

where

zJ :=
√
−2qJ(Aᵀ0 + qJI)−1D

Qm := (

√
−2qm√
−2qm+1

)(Aᵀ0 + qmI)−1(Aᵀ0 − qm+1I)

then the solution is X = ZiZ
ᵀ
i for any i ≤ J .

Here is the algorithm that describes the Cholesky-factor ADI iterations:

20

Algorithm 3. Cholesky-factor Alternating Direction Implicit Algorithm [11]

Given A0, D, tol
Initialization j = 0, X0 = 0n×n
Choose ADI parameters, {q1, q2, ..., qJ},Re{qi} < 0
Define z1 =

√
−2q1(A0 + q1I)−1

Define Z1 = [z1]
for j = 2, 3, ...,J , do

Update Pj−1 = (

√
−2qj√
−2qj−1

)[I − (qj + qj−1)(A
ᵀ + qjI)−1]

Update zj = Pj−1zj−1
if ||zj||2 > tol & j ≤ J then
Zj = [Zj−1, zj]

else
Stop

end if
end for
return X ≈ XJ = ZJZ

ᵀ
J

This algorithm requires proper selection of the parameters qj when A0 has complex
spectra [12] [16] [3].

3.2.1 Numerical Issues

Operation Counts and Timing in Solving Lyapunov equations:

1. ADI method: The tridiagonalization of matrix A0 that is not sparse or structured,
and the transformation to get back to ADI approximation takes O(n3). Combining
the system of equations (3.7) for each iteration takes O(n2 + n) ≈ O(n2), and J
iterations take O(Jn2). So the work for ADI algorithm is typically O(n3) +O(Jn2).

If A0 is spares, the total work is O(Jn2) [11].

2. Cholesky-factor ADI method: By equation (3.13), the work to obtain ZJ of r
columns is about O((2n− 1)nr) ≈ O(n2r). And the total work for J ’s iteration is
about O(n2Jr).

21

If A0 is sparse or structured, the Cholesky-factor ADI always results in substantial
savings, the total work is reduced from O(n2Jr) to O(nJr) [11].

Table 3.1 summarizes the complexity of these two methods in solving Lyapunov
equations where J is the maximum number of iterations, r is the increased column size of
the Cholesky factor in each iteration [16] .

Cholesky-factor ADI ADI
Sparse A0 O(nJr) O(Jn2)

Full A0 O(n2Jr) O(n3) +O(Jn2)

Table 3.1: ADI and Cholesky-factor ADI method complexity comparison in solving Lya-
punov equations

22

Chapter 4

Example: Simply Supported Beam

We will use MATLAB to generate the computational results with 1.4 GHz Quad-Core
Intel Core i5 processor. We will compare how Schur method and Newton-Kleinman
method perform in controller design for approximated simply supported beam.

Consider a simply supported Euler-Bernoulli beam. The deflection of the beam from its
rigid body motion is denoted by w(x, t), where t is time and x is the position. We apply
a control (force) at position r = 0.55 with width ε1 = 0.01. We normalize the variables,
also include a viscous damping ξ = 1 and the stiffness ε = 40. The governing partial
differential equation is

∂2

∂t2
w(x, t) + ξ

∂

∂t
w(x, t) + ε

∂4

∂x4
w(x, t) = b.55(x)u(t), 0 < x < 1

b.55 =

{
1
ε1
|.55− x| < ε1

2

0 |.55− x| ≥ ε1
2

with boundary conditions

w(0, t) = 0,
∂2

∂t2
w(0, t) = 0, w(1, t) = 0,

∂2

∂t2
w(1, t) = 0

Consider the linear Quadrature Regulator (LQR) problem. The objective is to minimize

23

the cost functional

J(u(r)) =
1

2

∫ +∞

0

< Q1/2w(r), Q1/2w(r) > +uᵀ(r)Ru(r)dr

subject to this partial differential equation with viscous damping and the boundary
conditions. We will choose R = 1 and Q = I in the computer simulations.

Since the closed form solution of this partial differential equation is not available, an
approximation scheme in a finite-dimensional space is used for the controller design [6].
We will approximate the problem with a system of ordinary differential equations
(ODEs).

Define the operator L(·) = ∂4

∂x4
(·). Let λn and φn(x) be the eigenvalues and the

eigenfunctions associated to the operator L: Lφn(x) = λnφn(x) with boundary
conditions. Also convert the problem to the following ODE:

εLw + ẅ + ξẇ = 0 (4.1)

the solution can be written as w(x; t) = Σ∞n=1φn(x)wn(t) where φn(x) is the nth order
beam eigenfunction. Substitution of this into equation (4.1) yields

εL(Σ∞n=1φn(x)wn) = −(Σ∞n=1φn(x)ẅn)− ξ(Σ∞n=1φn(x)ẇn)

We have the following ODE for each n such that

ελnwn = −ẅn − ξẇn

Define
∂4

∂x4
φn = λnφn := r4nφn

The solution to this differential equation with boundary conditions is

φn(x) =
√

2sin(nπx)

and rn = nπ so that λn = r4n = (nπ)4.

In this simulations, the tol in the Newton-Kleinman method is set to 10−3. The built-in
function care() is used to implement the Schur method. The built-in function lyap() is

24

used to solve the Lyapunov equations in the Newton-Kleinman method. Here are some
results generated using MATLAB simulations:

n Schur method Time in seconds
24 0.001821
48 0.005281
72 0.018509
80 0.020112
96 0.026565
120 0.033545
144 0.041117
192 0.072092
200 –
250 –

Table 4.1: Time per order n for Schur method with Q = I, R = 1

Table 4.1 shows the computation time in seconds per order n for Schur method to get the
solutions to ARE. The Schur method care() fails for problem order over 200. MATLAB
reported that the solution may be inaccurate due to poor scaling or eigenvalues near the
stability boundary when the problem order n is above 200.

In Table 4.2, we computed the Frobenius norm relative residual for Schur method. As the
problem order gets larger, the relative residual gets larger. The Schur method fails for
problem order over 200.

Table 4.3 shows the number of Newton-Kleinman iterations, the computation time and
the Frobenius norm relative residual for Newton-Kleinman method per order n. There
are more Newton-Kleinman iterations required for problem order n over 80. It is
observed that it required more than 7 hours. Due to the hardware limitation, the exact
iteration numbers, timing and relative residual are not observed. It is also observed that
the Frobenius norm relative residual stays around e-8, which is much smaller than the
relative residual generated using the Schur method for the same problem order n.

Figure 4.1 shows the relative 2-norm error calculated using
||P−Pj ||2
||P ||2 for each Lyapunov

iteration at problem order 24. The relative error in the last Newton-Kleinman iteration is
4.2603e-10, which is close to machine epsilon.

Table 4.4 shows the approximated optimal feedback gain at each Newton-Kleinman
iteration for problem order 24. The approximated feedback gain stabilizes at a number in

25

Figure 4.1: The relative error calculated using
||P−Pj ||2
||P ||2 in each Newton-Kleinman iteration

at problem order 24. Pj is the solution at jth Newton-Kleinman iteration. P is the solution
to ARE approximated by Newton-Kleinman method

26

n Schur method error
24 3.8176e-11
48 2.4194e-08
72 5.9503e-07
80 5.6398e-06
96 6.7965e-06
120 1.0576e-04
144 2.0665e-04
192 6.5597e-04
200 0.0029
250 0.0104

Table 4.2: The Frobenius norm relative residual calculated using ||Ric(P)||F
||P ||F

for Schur

method. P is the solution to ARE obtained from care()

the last three iterations.

Figure 4.2 shows the Frobenius norm relative residual ||Ric(P)||F
||P ||F

per order n when

substituting the solution P into the ARE. Here Ric(P) = AᵀP + PA− PBR−1BᵀP +Q.
P is the solution to ARE approximated by Schur method. It is observed that the relative
residuals are increasing as problem order gets larger.

27

n Newton-Kleinman Itn’s Time in seconds N-K error
24 26 0.016150 4.0461e-8
48 37 0.049841 5.7367e-10
72 96 0.203994 2.4613e-8
76 140 0.520008 3.1225e-8
78 810 3.473147 6.7848e-8
80 57166 327.581468 1.2437e-8
82 - > 7 hours -

Table 4.3: The iteration numbers, timing and the Frobenius norm relative residual
calculated using ||Ric(P)||F

||P ||F
for Newton-Kleinman method at different problem order with

Q = I, R = 1, K0 = 0. P is the solution to ARE approximated using Newton-Kleinman
method

Figure 4.2: The Frobenius norm relative residual calculated using ||Ric(P)||F
||P ||F

for Schur

method per order n. P is the solution to ARE obtained from care().

28

Newton-Kleinman Itn’s Optimal Feedback Gain
1 0
2 1.0970e+06
3 5.4850e+05
4 2.7425e+05
5 1.3713e+05
6 6.8563e+04
7 3.4282e+04
8 1.7147e+04
9 8.6170e+03
10 4.6397e+03
11 4.0199e+03
12 5.9684e+03
13 8.5923e+03
14 1.1034e+04
15 1.2989e+04
16 1.4190e+04
17 1.4822e+04
18 1.5134e+04
19 1.5234e+04
20 1.5055e+04
21 1.4247e+04
22 1.2525e+04
23 1.1034e+04
24 1.0593e+04
25 1.0566e+04
26 1.0566e+04

Table 4.4: Feedback Gain using 2-norm at each Newton-Kleinman iteration on problem
order 24 with Q = I, R = 1, K0 = 0

29

Chapter 5

Comparisons and Observations

In Schur vector approach, explicitly computing the eigenvalues and the eigenvectors is not
needed. The computation of eigenvalues and eigenvectors suffers from severe numerical
issues especially when the problem orders become large. All we need to compute is just a
basis that spans the stable invariant subspace of the Hamiltonian matrix Z [9].

However, Schur method can have problems if the Hamiltonian matrix has eigenvalues
that are near imaginary axis. The Schur method even gives wrong results sometimes if it
fails to accurately isolate the stable invariant subspace of the corresponding Hamiltonian
matrix. There are some algorithms that can preserve the structure of the Hamiltonian
matrix to guarantee the accuracy of the solutions, but these methods are very expansive
in practice [6]. In simply supported beam example, the Schur method yields inaccurate
results for problem order over 200 by MATLAB results.

Compared with the Schur method, the advantage of the Newton-Kleinman method is the
reliability of the solution. Numerically speaking, the solution is more reliable in
computation to reach the limiting accuracy. Once the initial condition is chosen and
some necessary assumptions hold, a series of Lyapunov equations can be recursively
constructed at each iteration. The feedback gain stabilizes to a number. The positive
semi-definite solutions are preserved and converge to the stabilizing solution [8].

5.1 Observations

It is observed from the simply supported beam example that the Schur method fails for
problem order over 200. For Newton-Kleinman method, it requires 57166 iterations with

30

the problem order 80.

It is also observed that with the increasing model orders, the relative residuals from the
Schur method are increasing. Inaccurate solutions are obtained along with large relative
residuals for problem order over 200.

The Frobenius norm relative residual for Newton-Kleinman method stays around e-8 for
problem order up to 80. Compared with the Schur method for the same problem order,
the solution approximated by Newton-Kleinman method is more reliable in computation
to reach the limiting accuracy.

The Schur method is very fast with accurate solutions when the problem orders are under
200 while Newton-Kleinman method is more accurate but requires more time.

31

References

[1] W. F. Arnold and A. J. Laub. “Generalized Eigenproblem Algorithms and Software
for Algebraic Riccati Equations”. Proceedings of the IEEE, 72(12):1746–1754, 1984.

[2] P. Benner, H. Mena, and J. Saak. “On the Parameter Selection Problem in the
Newton-ADI Iteration for Large-scale Riccati Equations”. ETNA. Electronic Trans-
actions on Numerical Analysis [electronic only], 29:136–149, 2007.

[3] N. S. Ellner and E. L. Wachspress. “Alternating Direction Implicit Iteration for
Systems with Complex Spectra”. SIAM Journal on Numerical Analysis, 28(3):859–
870, 1991.

[4] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical
Computations. Prentice Hall Professional Technical Reference, 1977.

[5] G. H. Golub and J. H. Wilkinson. “Ill-conditioned Eigensystems and the Computation
of the Jordan Canonical Form”. SIAM Rev., 18(4):578–619, 1976.

[6] D. Kasinathan, K. A. Morris, and S. Yang. “Solution of Large Descriptor H∞ Alge-
braic Riccati Equations”. Journal of Computational Science, 5:517–526, 2012.

[7] D. Kleinman. “On an Iterative Technique for Riccati Equation Computations”. IEEE
Transactions on Automatic Control, 13(1):114–115, 1968.

[8] A. Lanzon, Y. Feng, B. Anderson, and M. Rotkowitz. “Computing the Positive Stabi-
lizing Solution to Algebraic Riccati Equations with an Indefinite Quadratic Term via
a Recursive Method”. IEEE Transactions on Automatic Control, 53(10):2280 – 2291,
2008.

[9] A. Laub. “A Schur Method for Solving Algebraic Riccati Equations”. IEEE Trans-
actions on Automatic Control, 24(6):913–921, 1979.

32

[10] A. J. Laub. “Schur Techniques in Invariant Imbedding Methods for Solving Two-point
Boundary Value Problems”. In 1982 21st IEEE Conference on Decision and Control,
pages 56–61. IEEE, 1982.

[11] J. R. Li and J. White. “Low-Rank Solution of Lyapunov Equations”. SIAM J. Matrix
Anal. Appl., 24(1):260–280, 2002.

[12] A. Lu and E. L. Wachspress. “Solution of Lyapunov Equations by Alternating Direc-
tion Implicit Iteration”. Computers & Mathematics with Applications, 21(9):43 – 58,
1991.

[13] K. A. Morris. Introduction to Feedback Control. Harcourt-Brace Academic Press,
2000.

[14] K. A. Morris. “Control of Systems Governed by Partial Differential Equation”. In
W. S. Levine, editor, The IEEE Control Theory Handbook. CRC Press, 2010.

[15] K. A. Morris and C. Navasca. “Iterative Solution of Algebraic Riccati Equations for
Damped Systems”. Proceedings of the IEEE Conference on Decision and Control,
pages 2436 – 2440, 2007.

[16] K. A. Morris and C. Navasca. “Solution of Algebraic Riccati Equations Arising in
Control of Partial Differential Equations”. Control and Boundary Analysis, 240, 2007.

[17] R. A. Smith. “Matrix Equation XA + BX = C”. SIAM Journal of Applied Mathe-
matics, 16(1):198–201, 1968.

[18] G. W. Stewart. “Algorithm 506: HQR3 and EXCHNG: Fortran Subroutines for
Calculating and Ordering the Eigenvalues of A Real Upper Hessenberg Matrix [F2]”.
ACM Trans. Math. Softw., 2(3):275–280, 1976.

[19] E. L. Wachspress. The ADI model problem. Springer, 2013.

33

	List of Tables
	List of Figures
	Algebraic Riccati Equations
	Schur Method
	Solution to ARE
	Implementation of the Schur method
	Balancing and Scaling
	Numerical Issues

	Newton-Kleinman Method
	Solution to ARE
	Solution of Lyapunov Equation
	Numerical Issues

	Example: Simply Supported Beam
	Comparisons and Observations
	Observations

	References

