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Abstract

The difference map algorithm (DMA) is originally designed to find the global optimal
solution to nonconvex problems. The main feature of DMA is that it can avoid the stagnation,
(which always occurs when applying the alternating projection method (APM) on nonconvex
problems so that APM is trapped at local minimized point and fail to find the global optimal
solution.) and converge to the global solution directly. We show that DMA is not only a
better algorithm to solve nonconvex problems but also is better to solve convex problems.
We using the nearest correlation matriz to show this statement. The nearest correlation
matriz (NCM) problem is to find the nearest point to a given symmetric matrix A in the
intersection of positive semi-definite cone and the unit diagonal space. This is a very typical
example of convex problems. Currently, three popular ways to solve this problem are: the
alternating projection method; (quadratic) Newton’s method; and the primal-dual interior-
exterior-point approach. The least expensive of these methods is the alternating projection
method. However, this method can only achicve a linear rate of convergence and may cause
a huge computational cost when we are looking for a highly accurate solution. Because of
the similarity of DMA and APM, we are going to compare the best results obtained by
both algorithms and the computational cost with different desired accuracies of the final
solution. Numerical experiments show that DMA with £ value equals to 1 can obtain the
best solution and it is identical to the one obtained by APM. However, when A is large sized
and ill-conditioned, or we are seeking a highly accurate solution, DMA can find the optimal
solution with less computational cost.

Keywords: correlation matrix; alternating projection method; weighted Frobenius norm:;
difference map method; phase retrieval problem, nonconvex problems.
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Chapter 1

Introduction

A correlation matriz of order n, X € C C S, is a symmetric n x n positive semi-definite
matrix such that all elements on the diagonal are 1. Correlation matrices have wide appli-
cations in the financial industry. For example, according to one of the most famous theories
of investment, Markowitz’s modern portfolio theory (MPT), to find the so-called efficient
frontier we first need to build up the correlation matrix for the assets in the portfolio, then
we use the corresponding quadratic function with Hessian X to balance off maximizing the
expected return while minimizing the corresponding risk level, e.g., [16, 17, 18]. Also in the
process of finding the so-called Sharpe ratio, the correlation matrix plays a key role [23].

However, in reality we might not have a complete collection of the data we need. For
example, among a stock’s last 10 years daily returns, there is a large possibility that we
might not know many data elements in the matrix and/or some of the data elements are
noisy (are in error). Thus, to build up the correlation matrix, we have to approximate the
missing correlations and/or find an approximate correlation matrix. Moreover, one missing
data element does not only affect the corresponding entry in the correlation matrix, but also
the whole corresponding row and column in that matrix [15]. Since some of the entries in
the correlation matrix are specified and others are not, this kind of matrix is called a partial
symmetric matriz . To apply the MPT or calculate the Sharpe ratio, we have to solve
the corresponding (approximate) matrix completion problem [10]. Moreover, to minimize
the error in future calculations, we need to complete the correlation matrix such that the
distance between the original partial matrix and the completed matrix is a minimum. This
completed matrix is called the Nearest Correlation Matriz (NCM).

Currently, there are three methods used to solve the NCM problem. alternating projection
method(APM), quadratically convergent Newton method and primal-dual interior-exterior-
point(p-d i-e-p). p-d i-e-p can find the nearest correlation matrix with the highest Either of
them has both advantages and drawbacks. we compare them in Section 1.2

In this thesis, we introduce a new algorithm to solve NCM problem. It is called the
difference map algorithm(DMA), which is popularized by Veit Elser. Similar to APM, DMA
involves only the projection operations plus a simple real parameter 5. DMA is designed
initially to find the global optimal solution to the nonconvex problems. General results show
that DMA is a very useful algorithm to solve nonconvex problems [22]. It can easily avoid



the local traps and directly converge to the global optimal points with a relatively small
number of iterations. (We use the example in [22] to illustrate that statement in Chapter 4.)
However, DMA with different 5 values may lead us to different results for the same starting
point. In Section 3.1, we run several test to determine the S value that gives us the best
solution, and the test results show that the best solution obtained by DMA when (3 is 1, and
it is actually the same point obtained by APM. Because of the similarity of DMA and APM,
we mainly compare how efficiently that DMA can find the optimal solution comparing to
APM. Numerical experiments in Section 3.2 show that even though the best results obtained
by DMA has the same distance between the solution and the original matrix as APM, but
DMA can achieve the higher accuracy (i.e higher tolerance) solution than APM more quickly,
and has higher performance When the original matrix is large and ill-conditioned.

1.1 Nearest Correlation Matrix

The NCM problem with the Frobenius norm is: given an arbitrary n x n symmetric matrix
A € 8", find a nearest correlation matrix, i.e, solve the program

min g4 - X[|;
s.t. diag X =e (1.1)
X=0,Xes.

Here e is a vector of all ones; S is the convex cone of n xn positive semi-definite symmetric
matrices in the space of symmetric matrices, &”, equipped with the trace inner-product
(A, B) = trace AB; and, we have the corresponding Frobenius norm is ||A||% = /(4, A) .
We let diag X denote the vector formed with the elements from the diagonal of X. Choosing
the Frobenius norm in (1.1) because that it is the easiest norm to work [12]. Often in these
nearest approximation problems, we use a weighted Frobenius norm for scaling purpose. The
two most common norms are W-norm and H-norm. The NCM problem 1.1 in W-norm is
defined as

min  L[|WY2(A - X)W,

s.t. diag X =e (1.2)

X=0,Xest.

where W € 8™ is a positive definite matrix, and the NCM problem 1.1 in H-norm

min %HHo(A—X)Hfp
s.t. diag X =e¢ (1.3)
X=0,Xes.

Here, o denotes the Hadamard product, i.e, Ao B = (a;;b;;) , and all elements in H € S"
are positive. The motivation for using weighted norms during the computation is to reduce
the error coming from the estimation of the missing entries and make the prediction more
precise. Note that both W and H arc not any random matrix. The choice of the weights
depends on the noise model we used for solving the NCM problems. The two most popular
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models are multiplicative or additive noise model. The details about how the noise model
affects the choice of the weight are in e.g., [13]. Briefly, we can assign a weight to a single
entry in A when using (1.3), and the magnitude that we assign usually depends on how
accurately we know the corresponding entry a;; in A. The expression inside the norm in
(1.2) is a congruence and preserves inertia, see e.g. [12]. However, this means that we
cannot directly (simply) put specific weights on individual elements in A. Generally, (1.2)
is easier to work with during the computation of projections in the algorithms, because we
can apply spectral decompositions (See Section 2.2.1). In this thesis we mainly discuss the
NCM problem in form (1.2).

1.2 Three Current Algorithms for solving NCM prob-
lems

Currently, there are three main algorithms to find the NCM. The first one is using the
Alternating Projection Method (APM), which is described by Higham [12]. Based on Dyk-
stra’s work, Higham applied APM to find the solution to the NCM problem 1.1 in 2001.
His algorithm guarantees the convergence to the optimal solution and the result obtained
by him makes it possible to deal with NCM problems in practice. However, the maximum
convergence rate we can get from APM is linear [12], and the speed of convergence depends
on the angle between the two constraint sets [7]. To reach a high accuracy of the solution,
APM may take a long time and have a huge computational cost if the angle between the
two sets is very small.

The second approach uses the quadratically convergent Newton’s method, which is de-
veloped by Qi and Sun in 2005 [20]. Since the dual of the object function involves the
projection onto the semidefinite cone, it is not twice continuously differentiable. They use
the strong semi-smoothness of the metric projector in order to apply Newton’s method [20].
This method increases the speed of convergence up to the quadratical rate, which is much
higher than the rate for APM. On the other hand, if we require the accuracy of solution to
be high (e.g., error &~ 1 x 107%), this method may fail to converge to the optimal points [20].
Moreover, applying the Newton’s algorithm is relatively more complicated. It may be easier
to use APM to solve NCM problem in practise.

Anjos et al, [1] treat the NCM problem as a semi-definite programming problem and use a
primal-dual interior-exterior-point (p-d i-e-p) approach to solve the problem. This approach
can always converge to a optimal point in the intersection of contraints [1, Thm 3.2], and the
accuracy of the solution that p-d i-e-p can achieve is the highest among all three methods,
even when the original matrix is highly degenerate[1]. However, although this algorithm can
work efficiently when A has a large dimension and sparse, the computational cost is still very
expensive.

Also, quadratically convergent Newton’s method and p-d i-e-p are specially designed to
solve NCM problems. APM can be applied to other problems, but can only achieve local
convergence if the problem is nonconvex. Comparing to those three methods, DMA can



be applied to solve much more problems. DMA is originally developed to find the global
optimal solution to nonconvex problems. However, we show that DMA can also be applied
to solve convex problems and its performance is even better.



Chapter 2

Theory

DMA is a Metaheuristic algorithm, which has two basic meanings. The first one is that it is a
computational iterative algorithm that searching for the optimal solution by performing the
projections onto both constraints. The second one is that it requires few or no assumptions
when we apply it to solve problems. Thus, there is some similarities between DMA and APM.
(Both involve the projections onto the constraint sets, both requires few assumptions.) To
understand how DMA works, we first start by considering APM.

2.1 Alternating Projection, APM, Type Methods

The idea of using alternating projection method to find a point in the intersection of closed
subspaces was introduced by von Neumann in 1933, see e.g., the survey [3, Thm. 13.7]
and the paper [24]. In this section we consider APM with the corrction by Dijkstra [8] and
Higham [12].

For our NCM problem, we define APM as:

Xy Py(Ps(Xp-1)), (2.1)

where S and U are the two closed convex constraint sets. .S is the positive semi-definite cone

which is defined as:
S={XesS": X >0} (2.2)

Here X is a symmetric matrix. The other constraint set U is the set of matrices with
diagonals all ones:

U={X €S8": diag(X) = e}. (2.3)

where e € R” is a vector of all ones.

It is shown that if the two sets are closed subspaces of a Hilbert space, then APM is
convergent to the nearest point in the intersection of these two constraint sets [5]. However,
our two sets are closed convex sets instead of closed subspaces. Although it is known that
APM in the form of formula (2.1) can definitely reach one point in the intersection if the
constraints are closed convex, the algorithm may not converge to the optimal point X, which



is the nearest point in the intersection space to the original matrix A, see e.g., [11]. To ensure
that the APM converges to the optimal point, i.e, the nearest correlation matrix. Dykstra
adds a small correction on formula (2.1):

Xi = Py(Ps(Xp—1 — Lmod,_,)), (2.4)

where [,,,04,_, is the correction to the current projection in the £—1 iteration . It is calculated
as a normal vector to the corresponding convex set [12]. APM defined in formula (2.4) is
guaranteed to converge to the optimal solution.

Theorem 2.1.1. [8, Thm 3.1] Suppose U and S are closed convex sets, then the matriz Xy
defined in (2.4) converges to the true solution X* of problem 1.1 as k — oo.

The detailed proof of this theorem is listed in the appendix in [8], also it is mentioned
in [6] and [4, Thm. 2]. APM algorithm based on Definition 2.4 is described in Algorithm
2.1.1 The stopping condition is either that the iteration step k has reached the upper limit

Algorithm 2.1.1: APM algorithm [12]
input : Symmetric A in S§”
output: The nearest correlation matrix, X

begin
Initialization: Xog = A,k =1, Lnoq, = 0, A = 1;
while A > tol, or k < maxit do
R, = Xi—1 — Imody_ys %0 Imoa,_, is Dykstra’s correction;

Xj, = Ps(Ry);
Xy, = Py(X});
end

end

(denoted as mazxit), or the error A < tolerance(denoted as tol). The error A is defined as
[12]:

B XXl Xl
A = max{ Pl P Zial il (2.5)
Note that tolerance determines the accuracy of final solution.

From the definition 2.4, we see that in every iteration of APM, the output is a projection
onto the constraint U. Thus the final optimal solution obtained from APM is also in the
subspace U. APM is a simple iterative algorithm (i.e, no assumptions, only few projection
operations involved), so it is easy to apply in practice. However, the drawback of APM
is also obvious: that is, the rate of convergence. Deutsch and Hundal [7] state that the
convergent speed of APM is related to the angle between the closed subspaces. (Let’s define
this angle as «.) Since there are only two closed convex constraint sets, to see how the rate



of convergence is related to «, we first define the upper bound of the global error of APM
as:
E = ||(PuPs)*(A) — Puns(A), (2.6)

where n is the numbers of iteration. Then according to Aronszajn’s result[2, Corollary 2.9],
the upper bound F in (2.6) is less than or equal to the cosine of the angle between the two
constraints U and S

Corollary 2.1.1. [2, Corollary 2.9], For the pair of closed convex sets U and S, the upper
bound of the global error of APM is ||(PyPs)k(A) — Pyns(A)|| < (U, S)?k7L, for all k > 1,
where ¢(U, S) is the cosine of the angle a between the two constraint sets U and S.

The detailed proof is in [2]. From the Corollary 2.1.1, we can see that if « is small, then
cosine of « is close to 1. There is a possibility that APM takes sufficiently large number of
iterations to converge to the optimal point, if we require the solution to be highly accurate.

2.2 Difference Map Algorithm, DMA

In this section, we show how DMA is defined and its convergence. Also, to build up DMA
algorithm that we are using in numerical experiments, we first develop the algorithms used
to find the projections onto both constraints.

For any k > 1, one iteration of DMA can be seen as [9, Equation 16]:

X = X1+ 3, (2.7)
where the direction 3 is defined as:

d = B{Ps[(1+ ") Py(Xg-1) = B Xpa] — Py [(1 = B Ps(Xpo1) + 7' X 1]} ( |

2.8

Here g can be any real number excluding 0, (Studies show that DMA with the 8 value may
still converge to a fixed point but with a huge number of iterations and the solution is not
optimal [9].) X} is the current point at the beginning of the iteration, Ps and Py are two
projections of X onto the constraints S and U, respectively. These two projections are the
same as the projections we used in APM. (details will be discussed later). The solution X

is obtained when 3 = 0. The algorithm for one iteration of DMA is stated in Algorithm
2.2.3.

Theorem 2.2.1. [9, Section 4], suppose U and S are closed convex sets, and there exists a
minimum local separation 0., of constraints U and S, then the matrix X which is defined
in (2.7) is convergent to a point in the intersection of U and S, say Xyns as k — 00.

The details of proof are in [9]. Since there is barely no assumption for DMA to achieve
convergence, and it iterations only involves projections and one real parameter, DMA is a
very simple method to apply in practice, compare to the Newton’s method and p-d i-e-p



method described in Section 1.2. Based on Theorem 2.2.1, we can only conclude that DMA
is able to converge to the point in the intersection of both constraints. This point may or
may not be the optimal one, i.e, the nearest correlation matrix to A. In fact, with different
B values, DMA may converge to different points in the intersection. Therefore, we need
to find which £ value gives us the point that is nearest to the original matrix A before we
compare the efficiency and accuracy of DMA and APM. We use numerical experiments to
determine the best § values, and the details and results are in Section 3.1. To make the
numerical experiments run, we first describe the algorithms used to find projections onto
both constraints and the DMA algorithm.

2.2.1 Projections

Now let us talk about the algorithms using to find the two projections onto U and S.
Remember that we work with the NCM problem in the weighted norm, which is defined in
(1.2). The following results are based on Higham’s work [12], since the set of problems and
constraints are the same.

First of all, we need to define several notations. For any two matrices A and B, their
weighted inner product is defined as

(A, B)y = trace(ATW BW). (2.9)
For any convex set C' C 8", the normal cone at X* € C is
Ne(X*)={VeS": (VX -X") <0, forall X € C}. (2.10)
From the Definition 2.9 and 2.10, we have the following two results:

Lemma 2.2.1. [12, lemmaZ2.1], for A€ U,
Ny (A) = {W~ diag(6;)W ' : 0; arbitrary} (2.11)

Lemma 2.2.2. [12, lemma?2.2], for A € S,
Ng(A)={VeS" :<V,A>=0,V <0} (2.12)

The proofs are in [12].
We can use the normal cone to find the projections onto the set U and S. Let us denote
the projection onto U as Py .

Theorem 2.2.2. [12, Thm 3.1]. For the W-norm, the projection of A onto set U is
Nu(A) = A — W~ diag(6;) W (2.13)
and the 6 = [01, ...,0,)" is the solution to the linear system

W=ow =t = diag(A — I). (2.14)



Algorithm 2.2.1: Projection onto Constraint U in MATLAB
input : Symmetric A in S"
output: The projection of A onto the constraint set U, Py

begin
PU = A;
if i = j then
| PUij = ]_7
else
| Pu,; = Puy;
end
end

In MATLAB, we can follow the algorithm 2.2.1 to find the projection onto U.

It is more difficult to find the projection onto constraint S. Higham developed the closed
formula only for W-norm [12]. There is no such one for H-norm, because we can not apply
the spectral decomposition on H-norm. In the later research, Qi and Sun introduced an
augmented Lagrangian dual approach to solve the H-norm NCM problem [21]. To show the
formula, we need to denote several notations first.

Let D = diag();). Then the spectral decomposition of A € 8™ is

A=QDQT (2.15)
where () is orthogonal. Then we denote that
Ay = Qdiag(maz();,0))QT (2.16)
Then, we have the projection onto constraint S in the W-norm.
Theorem 2.2.3. [12, Thm 3.2], for NCM problem in the weighted norm defined in 1.2,
Pg(A) = WL2(WY2AWY2) YW —1/2 (2.17)

Moreover,
diag(Ps(A)) = diag(A). (2.18)

The detail of proof is in [12]. Based on the equation (2.17), we can derive the computa-
tional algorithm for the projection onto S.

2.2.2 The DMA Pseudocode

Now we have found all the elements which we need to solve the NCM problem (1.1) by DMA.
We list the steps in algorithm (2.2.3) that we code in MATLAB. Assume that the  value is



Algorithm 2.2.2: Projection onto Constraint S in MATLAB
input : Symmetric A in S"
output: The projection of A onto the constraint set S, Pg

begin
[V, A] = eig(A);
if \; > 0 then
| A=
else
| A = 0;
end
Ps =V\VT;
Pg < 3(P& 4 Ps) (to ensure symmetry)
end

determined already.
Algorithm 2.2.3: the Difference Map Algorithm
input : Symmetric A in ", B € R ;
output: a estimated nearest correlation matrix X ;

begin

while A > tol and k < mazit do
[s(Xy) = Ps(Xy) — (Ps(Xy) — Xi)/B;
fo(Xy) = Pu(Xi) + (Pr(Xi) — Xi)/5;
X1 = Xi + B[Py (fs(Xi)) = Ps(fu(Xi))];
k=k+1,;

end

end

Here the projections Py and Pg can be found from Algorithms (2.2.1) and (2.2.2) and the
stopping condition is either that the iteration step k has reached the upper limit (denoted
as mazit), or the distance between these two projections A < tolerance (denoted as tol),
where

A = ||Py(fs(Xy)) = Ps(fu(Xi))|lr < tol. (2.19)

Note that tolerance determines the accuracy of final solution.
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Chapter 3

Computations

3.1 The best 5 value

Numerical results show that DMA with different 5 values may converge to different points
in the intersection. (Figures of results are in Chapter 6.) It means that DMA can always
converge to a correlation matrix of A but that matrix may not be the nearest correlation
matrix. Therefore, to solve NCM problem 1.1, we need to find out the g value with which
DMA can give us the nearest correlation matrix. Solving this problem contains two steps,
we first find the minimized distance among all distances obtained by DMA with different £
values, and its corresponding [ value. Then we compare this minimized distance given by
DMA with the solutin obtained by APM. According to Theorem 2.1.1, We recall that the
APM Algorithm 2.1.1 is always convergent to the nearest correlation matrix to A. Thus,
if the minimized distance obtained by DMA is equal to that obtained by APM, we can
conclude that DMA is able to find the nearest correlation matrix of A as well.

We run the numerical experiments using MATLAB R2009a. The unit roundoff is approx-
imately u ~ 1.1 % 1076, The computer we use to run the program is equipped with a Intel
I5 2.8GHZ CPU and 4GB DDR3 RAM. For those numerical experiments in this section, we
set the tolerance (tol) to be 1 x 107® and the maximum numbers of iteration (maxit) to be
100. For the simplicity, we set the weighted matrix W to be the unit diagonal matrix.

In numerical experiments, we first need to do is to create a random symmetric ma-
trix A. This matrix does not need to be positive semi-definite. We use the command
sprandsym(n,density,rc), which generates a n X n symmetric random sparse matrix with
elements between -1 and 1. We choose the dimension n of A from 10 to 100 to cover most
of the cases in reality. The value of variabledensity is between 0 and 1. It determines the
number of nonzero entries in the sparse matrix by the formula [19]

# of nonzero elements in A = density x n x n. (3.1)

The closer to 0 the density is, the more zero elements the matrix has, and conversely, there is
more non-zero elements generated in A as density is closer to 1. The variable rc is short for
reciprocal condition number of the matrix, or 1/(condition number). Therefore the range of
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variable rc¢ € (0, 1]. However, only the unit diagonal matrix (i.e, identity matrix) can have the
condition number equal to 1. Having a correlation matrix which is a identity matrix means
that all stocks in the portfolio are uncorrelated. That is impossible to happen in practice.
Moreover, we should expect the condition number of the correlation matrix in practice to
be large, i.e, rc is small(e.g., r¢ < 0.5). Based on the help documents in MATLAB, using
of rc can generate a random symmetric matrix A with elements between —1 and 1, and the
condition number of A is equal to 1/rc [19].

Next, We need to find out which § value can let DMA converge to the nearest point in
the intersection to A. The testing range of [ values is set to be between —2 and 2. We
run the test for few cases with different input variables n, density and rc. For each case, we
run the numerical experiment 100 times based on Algorithm 2.2.3 with every (8 value in the
range, and record only the one that gives us the minimized distance. In case that more than
one [ values make DMA converge to the nearest point, we take the largest § value to record.
Therefore, there are total 100 results in ecach case and we show all the results in histograms
in Figures from 3.1 to 3.4.

Range of Beta,n =10, density =1 rc =0.01
100 T T T T T T T
a0 - I .
0
beta
Range of Beta,n =50, density =1 rc =0.01
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Range of Beta,n =100, density =1 rc =0.01

frequency

frequency

frequency
=]
(] [} _
X T J
oo

Figure 3.1: 8 values which give us the minimized distance, density = 1, rc = .01

Clearly, the nearest point is obtained when 3 is equal to 1 for all cases. Therefore, we
would like to set 3 value to be 1 to run later numerical experiments. Also note that when (3
is 1, we can reduce the equation (2.8) to a simpler form which has less projection operations
involved in each iteration:

d = Ps(2Py(Xy-1) — Xj—1) — Pu(Xg-1). (3.2)

Because of the reduction of projection operations involved, the time that one iteration of
DMA algorithm takes in the form of Equations (3.2) is expected to be less when solving the

12



Range of Beta,n =10, density =1 rc =0.2

frequency

-2 -1.4 -1 -0.a 0 0a 1 15 2
heta
Range of Beta,n =50, density =1 rc =0.2

=
(&)
{ro
2h)
]
o
E
-2 -1.4 -1 -0.5 0 0.5 1 15 2
heta

Range of Beta,n =100, density =1 rc =0.2

ow
o
o

frequency
o
_

o
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NCM problem (1.1). The rounding errors which occur during the searching process is also
deducted.

The next test we need to do is to determine if the optimal point obtained by DMA with
£ =1 is the nearest correlation matrix. Same as precious test, we test for several cases. For
each cases, we run numerical experiments 100 times and record the average of the minimized
distances obtained by both algorithms. The results are shown in Tables from 3.1 to 3.4.

n |DMA, 3=1] ADPM

10 3.0990 3.0990
50 7.0903 7.0903
100 | 10.1586 | 10.1586

Table 3.1: Minimized distances obtained by DMA and APM, density = 1,rc = 0.01

n |DMA, 3=1] APM

10 3.2030 3.2030
50 7.3449 7.3449
100 | 104252 | 10.4252

Table 3.2: Minimized distances obtained by DMA and APM, density = 1,rc = 0.2

Table 3.1 to 3.4 show that both algorithms converge to the same optimal point for a
given symmetric matrix A. For all cases, the minimized distance obtained by both DMA
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n |DMA, B=1] APM

10 3.3032 3.3032
50 7.4549 74549
100 | 10.7306 | 10.7306

Table 3.3: Minimized distances obtained by DMA and APM, density = .5,rc = 0.2

n |DMA, B=1] APM
10 3.4050 3.4050
50 7.7511 7.7511
100 | 10.9304 | 10.9303

Table 3.4: Minimized distances obtained by DMA and APM, density = .5,rc = 0.4

and APM are exactly identical. Therefore, we conclude that DMA is able to converge to the
nearest correlation matrix, with g value equal to 1.

3.2 Efficiency comparison of DMA and APM

Results in Section 3.1 show that both DMA and APM converge to the same optimal point.
Therefore, both solutions have the same accuracy. Thus in this section, we test how fast
DMA and APM can converge to the optimal points, and we test that with different levels
of accuracy. For each example, we run the numerical experiment 100 times based on APM
Algorithm 2.1.1 and DMA Algorithm 2.2.3. Then we record the average numbers of iteration
and CPU times of both algorithms.

In this numerical experiment, we set the tolerance (tol, i.e the accuracy of solution) to
start from 1 x 1078 up to 1 x 1072 | and the maximum numbers of iteration (maxit) is 100.
For the simplicity, we set the weighted matrix W to be the unit diagonal matrix.

Accuracy | DMA, iteration | DMA, CPU time | APM, iterations | APM, CPU time
1x10°® 2.12 3.9503e-004 4.97 5.4747e-004
1x 107 2 3.7062e-004 4.56 4.9418e-004
1 x 10710 2.04 3.7836e-004 4.65 5.0547e-004
1x 1071 2.04 3.7859e-004 4.79 5.2206e-004
1x 10712 2.12 3.8943e-004 5.14 5.6112e-004

Table 3.5: Efficiency of DMA and APM with different accuracies, n = 10, density = 1,rc =
0.4

From Table 3.5 to 3.8, we can see that as the accuracy of solution required increases, APM
uses more iterations and cpu time to converge to the optimal point, but the computational
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Accuracy | DMA, iteration | DMA, CPU time | APM, iterations | APM, CPU time
1x1078 2.10 1.9673 5.23 2.0011
1x 107 2.23 2.0825 5.66 2.2087
1x 10710 2.20 2.1081 5.63 2.2963
1 x 1071 2.22 2.3248 5.60 2.4869
1x 10712 2.20 2.4258 5.84 2.4801

Table 3.6: Efficiency of DMA and APM with different accuracies, n = 50, density = 1,rc =
0.4

Accuracy | DMA, iteration | DMA, CPU time | APM, iterations | APM, CPU time
1x10°® 3.83 0.0399 10.34 0.0489
1x 1077 3.99 0.0427 11.00 0.0584
1x 1071 4.05 0.0447 12.99 0.0678
1 x 1071 3.87 0.0414 13.11 0.0624
1x 1071 3.88 0.0406 14.34 0.0692

Table 3.7: Efficiency of DMA and APM with different accuracies, n = 100, density = .5,rc =
0.01

Accuracy | DMA, iteration | DMA, CPU time | APM, iterations | APM, CPU time
1x1078 2 1.3400 5.21 1.3437
1x107° 2.86 1.86 7.87 2.3025
1x 1071 3.53 2.26 9.86 3.0494
1x 1071 2.90 2.021 8.83 2.8655
1x 10712 3.60 2.28 12.10 3.6029

Table 3.8: Efficiency of DMA and APM with different accuracies, n = 500, density = .4,rc =
0.01

cost of DMA remains in the same level. Thus, when the accuracy of solution increases, the
computational cost saved by DMA is more significant, especially when the original matrix A
is having large size and ill-conditioned. Also we observe that DMA only take few iteration
steps to find the optimal solution. This is because of the free movements of points in DMA.
The optimal point obtained in one iteration during the DMA searching process do not need
to be in the constraint sets, so it can move to the optimal solution following a short path.
However, even though DMA can take much fewer iteration steps to find the optimal solution,
the CPU time reduced by DMA is not very significant. The reason is that DMA need more
time to find the optimal solution for one iteration. Even when S value 1, with which the
direction equation 2.8 is in the simplest form 3.2, it still need to project three times and also
involve few operations between those projections to finish one iteration, but APM only takes
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two projections and there is no any addition or deduction between those projections in one
iteration. Therefore, we see that even though the difference of iteration steps between DMA
and APM is large, the cpu times taken by both algorithms does not have the same big gap
as iteration steps.

Actually, DMA is more popular to be applied on solving the nonconvex problems, es-
pecially when we are secking global optimal solutions. For those problems, APM is often
trapped by the local minimum and fail to converge to the global solution, but DMA is able
to escape those traps. We use a simple example to illustrate the advantage of using DMA
to solve nonconvex problems in Chapter 4.
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Chapter 4

Global Convergence of DMA for
Nonconvex Problems

We have shown that DMA has a higher performance than APM when we look for a high
accurate solution to the NCM problem, which is a particular example of convex problems.
However, The ability of finding global optimal solutions to nonconvex problems is a even
bigger improvement provided by DMA.

It is shown that for nonconvex problems, original APM, which is defined in (2.1), can
only achieve a local convergence at a linear rate [14]. Because of the existence of local
minimums between nonconvex constraints, APM may move the point from one constraint
set to another, and back to the starting point of the current iteration at the local minimum.
This phenomenon is called stagnation [9]. (e.g. APM searching process stagnates at point
X, in Figure 4.1.) Stagnation occurs very often when we apply APM to nonconvex problems
and thus, APM generally fail to converge to global optimal solutions. (e.g. In Figure 4.1,
APM starts from Aj stagnates at the local minimized point X5, and fail to find the global
optimal solution.)

Unlike APM, DMA can avoid the stagnation if we set 8 value to be 1 [22]. (Numerical
experiments show that if g value is too small, DMA may be trapped and fail to converge to
the global optimal point [9, Chapter 8].) The reason is that every iteration of DMA moves
the point in a specific direction, rather than projecting the point in one constraint onto the
other one. The movement of the points is no longer confined by constraints. Thus, DMA
has a bigger searching space, which makes it easily escape from the traps [22]. Also, because
of the free movement of the point, it may converge to the optimal points following a short
cut to reduce the number of iterations. For a same original matrix A, DMA may take much
less iterations to reach the optimal solution than APM. (Numerical experiments in Section
3.2 show that DMA only take few iteration steps to reach the solution whereas APM takes
much more iterations to find the same point.) We use a example in 2D graph to illustrate
the different abilities of finding solutions to nonconvex problems between DMA and APM.

This example is a protein structure prediction problem, which is described in the paper
22]. The setting of this problem is to find the atom configuration which satisfies both
constraints G and F simultaneously, Where G and E are the constraint sets. G is the space of
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atomic configuration that have a valid peptide geometry. This space contains all information
about the atoms and bond connecting them. E' is the space of atomic configurations whose
non-bonded energy is less than a predefined target energy, £y [22]. Thus, G is a nonconvex set
and F is affine space. The projection onto G is has a valid peptide geometry constraint, but
the non-bouded energy may be larger than the predefined target energy, and the projection
onto F has a non-bond energy less than Ey but the configuration might not be peptide
geometry [22]. The functions about these two constraints are defined in the appendix of [22].
The APM for this problem is defined similarly to (2.1) except the constraint sets [22]:

The iteration process stops at the point X* such that Pg(X*) = Pp(X™).
For DMA, the f8 value is chosen to be 1 and the formulas are defined as [22]:

Xp =X+ d, (4.2)

where

d= Pg(2Pq(Xk—1) — Xp—1) — Po(Xk-1). (4.3)

The solution is obtained at X* when d = 0, or Pp(2Pg(X*) — X*) = Po(X™) [22].

Figure 4.1 shows how DMA and APM searching iterations move. In Figure 4.1, constraint
set G is indicated by two red circles and E is the space located on the left side of the blue
line. (Thus, a point on the blue line indicated the precondition target energy FEp.) The
grey dashed line shows the location of the intersection of constraints G and E, so the global
solution to this protein structure prediction problem is any point on this dashed line. We
have two starting points A; and A,, and for each starting point, we apply both algorithms
to find the optimal points. APM is shown by the lighter grey path and the optimal point
of each APM iteration is colored by yellow; DMA is following the darker grey path, and the
optimal point of each DMA iteration is in green.

From Figure 4.1 we can see that the APM searching iterations are confined by the
constraints. Each APM iteration is moving in the direction to one of constraints and the
optimal solution in every iteration has to be located in either of the constraints. Conversely,
DMA moves the point directly towards to the intersection immediately at the starting point,
and we can see that instead of being restricted in the small space between two constraints G
and E, DMA can move the point anywhere in the entire space, and the optimal point obtained
in each DMA iteration does not need to be in the constraint sets anymore. This property
gives DMA the ability to find the shortest path to the solution. Therefore, even though both
algorithms achieve the final solution starting from A;, DMA takes fewer iteration steps than
APM. For staring point Ay, APM fails to converge to the global optimal point by stagnating
at the point X5, where the distance between constraint G and F is locally minimized. DMA
escaped from this local trap by moving the point into a bigger space and eventually find
the actual solution [22]. Also, note that at X, since the stopping condition of APM is not
satisfied (i.e, Po(X2) # Pr(Xs2)), APM keeps doing the searching iteration perpetually.
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Figure 4.1: Protein structure predicted in the intersection of ' and G

In Figure 4.1, we see that if APM starts from A;, it may still converge to the global
optimal solution X . However, we know that in general, the atomic structure of a protein is
not as simple as shown in Figure 4.1. If we add another red circle on top of constraint G, (the
position of this circle is shown in Figure 4.2)) such that there are two local minimums (X;
and X) between constraint G and E, then we can see from Figure 4.2 that APM fails to find
the global optimal solution from both starting points. APM searching process starting from
A; stagnates at the local minimum X, and it stagnates at X, if starts from As. However,
DMA can always converge to the point in the intersection of both constraints, either starting
from Ay or Ay. In reality, the atomic structure is much more complicated than what we draw
in Figure 4.1 and 4.2. Several pictures can be seen in [22; Figure 4 and 5]. In fact there
are many local minimums between constraint G and E. Those local traps can force APM
to stagnate and fail to find the global optimal solution, but DMA can avoid them and reach
the final solution. If we want to find a local minimum, APM is a useful algorithm to be
applied. But if we are seeking the global optimal solution, DMA is a better algorithm to
choose. Also, the numerical results in [22, Chapter 4] show that DMA is a very efficient
algorithm for solving this protein structure prediction problems.
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Figure 4.2: Protein structure predicted in the intersection of F and G

21



Chapter 5

Conclusion

In this thesis we introduce a new search algorithm called difference map algorithm (DMA)
to solve the nearest correlation matrix problem. We find out that DMA may converge to
different points in the intersection with different 8 values. We use numerical test to find the
B value that can let DMA converge to the optimal solution, which is the nearest correlation
matrix. Numerical experiments show that DMA is more efficient to find the optimal solution
than APM when the high accuracy of optimal solution is required. Also when the original
matrix A of the NCM problem is having large size and ill-conditioned, DMA presents a
higher performance on finding the optimal solution than APM. Although, comparing to
nonconvex problems, the improvement provided by DMA for convex problems is not very
significant. For nonconvex problems, DMA can easily avoid the stagnation and find the
global optimal points, whereas APM only can achieve the local minimized point; But for
convex problems, the best solution obtained by DMA is the same as the APM, (both can
find the global optimal solution,) and even though it can achieve the optimal solution in few
iteration steps, the total CPU time saved by DMA is not very much because DMA needs
more time to finish one iteration. However, we can still apply DMA to find the optimal
solution to convex problems. especially when we are seeking the highly accurate solutions.
We hope that this new algorithm can help us to minimized the errors when solving convex
problems in practice.
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Chapter 6
Appendix

Figures from 6.1 to 6.4 show that given a symmetric matrix A, DMA may converge to
different optimal points in the intersection of the constraints if the g values are different.
Only one of the points are the optimal solution (i.e, nearest correlation matrix) to A. Thus
,we need to determine the g value that give us the minimized one among all distances.
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Figure 6.1: minimized distances obtained with different g, n = 10, density = 1, rc = .2
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Figure 6.2: minimized distances obtained with different g, n = 50, density = 1, rc = .2
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Minimized distance obtained by different beta valuesn =100, density =1 rc =02
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Figure 6.3: minimized distances obtained with different 3, n = 100, density = 1, rc = .2

hlinimized distance obtained by different beta valuesn =100, density =0.5 rc =02
12 T T T T T T T

minirmized distance

105 L L L 1 L 1 1
-2 -1, ; :

Figure 6.4: minimized distances obtained with different 3, n = 100, density = .5, rc = .2
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