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Abstract

Recommender systems are widely used in modern business. Most recommendation al-
gorithms are based on collaborative filtering. In this paper, we study different ways to
incorporate content information directly into the matrix completion approach of collabo-
rative filtering. These content-boosted matrix completion algorithms can achieve better
recommendation accuracy.
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Chapter 1

Introduction

Recommender systems are widely used to promote sales of products and services today.
For example, Netflix (www.netflix.com) will recommend movies that one may be interested
in based on his previously rated movies. In terms of underlying mathematical model,
collaborative filtering is a popular algorithm used in recommender systems. The main idea
of collaborative filtering is that users who have rated the same items closely are considered
to be "similar”. Then to a new user, the system recommends items that ”similar” users
have rated favorably before.

For a recent review and discussion of different collaborative filtering algorithms, we
refer readers to [7]. In practice, most collaborative filtering algorithms are either based
on matrix factorization or nearest neighbors [10]. However, the collaborative filtering
problem can also be formulated as a matriz completion problem. This approach used to be
considered as unattractive since typical formulation of matrix completion problem is NP-
hard. However, recent introduction of nuclear norm [3] relaxes this problem to a convex
one and solvable by semi-definite programming. Therefore, more attention has been paid
to matrix completion problem recently. Various algorithms have been proposed to solve
matrix completion problem and a recent review of those different algorithms can be found
at [11].

To improve the performance of collaborative filtering algorithms, one key idea is to
leverage supplemental information [1%]. In this paper, inspired by successful usage of item
content information in matrix factorization based collaborative-filtering [15], we focus on
a particular type of supplemental information - content information about the individual
items. Instead of directly solving matrix completion problem on original user-item matrix,
we try to use content information to ”pre-complete” part of user-item matrix. Then we



solve matrix completion problem on this pre-processed user-item matrix. And as shown in
experiment part, the incorporated content information indeed achieves better recommen-
dation accuracy.

The rest of the paper is organized as follows. In Chapter 2, we give some background
knowledge about matrix completion. In Chapter 3, we describe our approach to incorporate
content information into matrix completion. In Chapter 4, we describe the experiments we
conducted to evaluate our approach. Finally, we summarize this paper with some further
discussion in Chapter 5.



Chapter 2

Matrix Completion

Firstly, we will briefly review the matrix completion problem.

2.1 Notation

Given a set of users U = {uq,...,un}, and a set of items I = {iy,...,ip}, let r,; denote
the rating given by user u to item i. Then these ratings form a user-item rating matrix,

R = [Tui]NxM-
In practice, since users can only rate a small fractions of all items, the user-item rating
matrix R is highly sparse with lots of unknown entries. Therefore we denote
Q= {(u,i) : 7y is known}
as the set of indices for known ratings and

Q = {(u,i) : ry; is unknown}

as the set of indices for unknown ratings.

Then given any user-item pair (u, ), the purpose of recommender systems is to predict
the corresponding rating, which we denote by 7,;. Similarly, these predictions form a
user-item prediction matrix R = [P v



2.2 Problem Formulation

The matrix completion problem [3] is typically formulated as
minimize rank(R)
R (2.1)
subject to 7y = T, (u,1) € Q.

That is, we want to fill in all unknown entries of R while keeping the rank of completed
matrix R as low as possible. This formulation is quite intuitive since usually user ratings is
mainly explained by several key features. And the value of rank corresponds to the number
of features. To be distinguished from other formulations, we will use rank minimization
matriz completion problem to denote Problem (2.1).

Now Suppose a1(R) > 09(R) > ... > Um,;n(]w’N)(R) > 0 are singular values of R, and

A

let 0 = (01(R),02(R), ... ,amm(M,N)(l%))T. Then we will have
min(M,N)
rank(R) = Y I(oi(R) # 0)
i=1
= llollo.

Therefore the rank minimization matrix completion problem can be considered as a [y-
norm minimization problem of vector o. Then like other [j-norm minimization problems,
it is NP-hard [15]. In addition, all known algorithms which provide exact solutions to rank
minimization matrix completion problem require time doubly exponential in the dimension
n of the matrix in both theory and practice [3] [5]. These facts drive people to seek convex
relaxations of this problem.

Generally speaking, it has been well established [1] [0] that [;-norm minimization is
a good convex relaxation of lp-norm minimization. Therefore we want to apply [;-norm
relaxation to rank minimization matrix completion problem. In particular, we can define
min(M,N)
IRl = Y ouk)
i=1
as the nuclear-norm of R. Then according to our assumption, all entries of vector o is
non-negative, so we have
min(M,N)
1Rl =D ouB)
i=1
= el



Now instead of rank minimization matrix completion problem, we formulate the nuclear-
norm minimaization matriz completion problem

minimize || R]|,
R (2.2)
subject to 7y = 1y, (u,1) € Q.

Nuclear-norm minimization matrix completion problem is a /;-norm minimization problem
of vector o and therefore can be seen as a convex relaxation of rank minimization matrix
completion problem.

Like other [;-norm minimization problems, the nuclear-norm matrix completion prob-
lem is convex and can be solved by semi-definite programming [3]. In general, nuclear-
norm matrix completion may not produce the same solution to rank minimization matrix
completion problem. However, it has been proven that, under certain conditions (e.g. re-
stricted isometry property), the nuclear norm minimization can be guaranteed to produce
the rank minimization solution [16]. That is, the solutions of matrix completion problem
and nuclear-norm matrix completion problem can be exactly the same. This may be the
key point that the research of nuclear-norm minimization is gaining intensive attention
recently.

In our project we will use nuclear-norm minimization formulation as our optimization
problem.

2.3 Algorithms

Although there is no efficient algorithm to solve rank minimization matrix completion
problem, various algorithms have been proposed to solve nuclear-norm minimization matrix
completion problem. Those algorithms can be classified as two categories: direct ones and
approximation ones. Direct algorithms solve exactly the nuclear-norm minimization matrix
completion problem while approximation algorithms usually make reasonable modification
to the formulation of nuclear-norm minimization matrix completion problem. A review of
different algorithms can be found at [1].

2.3.1 Direct Algorithms

The nuclear-norm minimization matrix completion problem can be solved directly by some
convex programming packages such as SDPT3 [20], cvx [8][9] and TFOCS][1].
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SDPT3 is capable to solve most convex optimization and very reliable. However, the
implementations of optimization problems are not easy in practice, especially for uncom-
mon problems. People need to follow a long user guide before they can use SDPT3 with
proficiency.

CVX is more like a programming language than a solver. It supports different solvers
as its computational engines including SPDT3. It works more like a wrapper and makes
implementations of optimization problems easy to use and understand. For example, using
cvx, nuclear-norm minimization matrix completion problem can be implemented as

ind = find(R);
cvx_begin
variable R_hat (size(R));

N O o s W N =

minimize ( norm_nuc (R_hat) );
subject to
R_hat (ind) == R(ind);
cvx_end

which almost remains the same with its mathematical formulation.

TFOCS provides a set of Matlab templates that can be used to construct solvers for
many convex problems. A demo of matrix completion problem implementation can be
found at [17]. The advantage of TFOCS is that in practice it is very efficient in both time
and space.

2.3.2 Approximation Algorithms

It is useful to have some definitions before we proceed. Let us define a projector Pq(-) :
Rnl Xng — Rnlan as

A, if (4,5) € Q.

0 otherwise.

(Pa(A))iy = {

Now nuclear-norm minimization matrix completion problem can be rewrite as

minimize || R,
R R (2.3)
subject to Pqo(R — R) = 0.




Singular Value Thresholding Algorithm

For X € R™"*" of rank r, consider its singular value decomposition
X =U¥V", ¥ =diag({oi}1<i<r) € R7", U € R™ V€ R,
For each 7 > 0, define soft-thresholding operator Dq(-) as
D-(X) :=UD-(5)V*, D(%) =diag({(0i — 7)+ }1<i<r),

where ¢, = max(0,¢). The authors of [2] proved that for all 7 >0
1
D;(X) = argmin{ S [[Y = X|[7 + 7V}

Now the singular value thresholding algorithm is the following iterations starting with X°

RF = D (XF 1)
Xk = X*1 4 5, Po(R — RF)

until the stopping criterion is reached.

It can be shown that under certain conditions the sequence Ry, above converges to the
solution of the following problem

A 1, -
minimize 7| R, + = || R||%
I3 2
subject to Po(R — R) = 0.

Intuitively, if 7 is large enough, the term %HX |% is negligible. Therefore the above problem
is a good approximation of the nuclear-norm minimization matrix completion problem. [2]

Accelerated Proximal Gradient Algorithm

Accelerated proximal gradient algorithm introduced in [21] solves the problem

R TR )
min | A(R) = b5 + ul| ]

RGRnl Xng

Let A be Pq and b be Pq(R), then the above problem becomes

. o1 .
min gl Rl + S [[Pal ~ R)|l3.

RERnl Xng
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The rational of this approximation is as follows. The data for (2.3) may be contaminated
with noise, and thus there may not be any low-rank matrices that satisfy the constraints
in (2.3) [21]. Therefore we drop the constraint in (2.3) and add it as a penalty term
into objective function. When g is large, the objective function is still dominated by
nuclear norm term. Therefore this formulation is a good approximation of the nuclear-
norm minimization matrix completion problem.

Other Algorithms

Other algorithms includes:

e Fixed point continuation with approximate SVD [13].

e The alternating splitting augmented Lagrangian method [19].

2.3.3 Choice of Algorithm

Although approximation algorithms claim to be more efficient (at least in scenarios de-
scribed in the corresponding papers), it is not guaranteed that they are better in all cases
(in particular, for our experiment settings). In addition, nuclear-norm minimization ma-
trix completion problem itself is already an modification of the original rank minimization
matrix completion problem. Using approximation algorithms may be a bit far away from
our original question. Therefore, we choose to use direct algorithms in our experiments.
And among those direct algorithms, the TFOCS package turns out to be most efficient and
hereby becomes our choice.



Chapter 3

Content Boosted Matrix Completion

In this chapter, we will describe our approach to incorporate content information into
matrix completion problem.

Suppose that, for each item i, we have a content information vector a; = (a;1, a0 . .., a; D)T

of D attributes. These vectors form a content information matrix A = [a;;|p«p. For sim-
plicity, we further assume that A is a binary matrix. That is, a;y € {0,1}, indicating
that whether item i has attribute d or not. Now our goal is to incorporate this content
information matrix A into our nuclear-norm minimization matrix completion problem.

From the formulation of nuclear-norm minimization matrix completion problem, adding
content information related penalty term to objective function seems to be an obvious
choice. However, existing algorithms do not admit modification to problem formulations.
If we want to add penalty term, current algorithms will fail and we need to propose a new
algorithm.

Another way to incorporate content information is to consider the set Q (i.e. the set of
indices for known ratings). It is reasonable to believe that when €2 is larger, the predictions
R should be more accurate (A confirmation experiment is described in Section 4.5). That
is, the more ratings we know, the more accurate the predictions will be. Using incomplete
rating matrix R and content information matrix A, it is not difficult to predict part of
the unknown ratings. Then we will have a new set of indices for known ratings €2’ with
€] > 14

Now consider problem

minimize || R||,
R (3.1)
subject to Ty = rui, (u,1) € .

9



Note that the only change is €)' while the formulation remains the same. Then we can use

existing algorithms to solve this problem. Therefore, our goal now is to increase size of {2
based on R and A.

In the following part, we present two approaches. One is based on sampling, and the
other is based on regression model.

3.1 Sampling Method

Firstly from matrix A we calculate an item similarity matrix S. For ¢,5 € [,

A A
1 if 4t >c
Sij = [ANA; = (3.2)
0 otherwise,

where A; is the i-th row of A. Then S = [s;;]axa. That is, if the cosine similarity between
content information vectors of item i and j exceeds a threshold, then item i and j are
considered as similar. Note that S € RM*M ig a binary, symmetric matrix.

Now for each (u,i) € €, we define the similar rating vector z € R™. For k € [

oy — rue  if (u, k;) € Qand sy =1 (3.3)
—o0 otherwise.
Then we define a truncated related rating vector z as
T ={xg : xp # —o0}. (3.4)

This vector is the set of ratings that user u gives to items that are similar to i. Note that
dimension of Z varies with different (u,7). For a set of items that are considered as similar,
it is reasonable to assume one certain user’s ratings to those items are highly related. In
particular, we can use Gaussian distribution to capture this relativity. Let m be mean of
entries of vector  and v be variance of entries of vector z. Now we can estimate mean
and variance of this Gaussian distribution based on vector z as follows

rwi ~ N(m,v).

We can sample from this distribution and thus predict ;.

10



In this way, we can predict almost all unknown ratings. However, quality is more
important than quantity. We should fill in unknown rating with accurate predictions. It
is natural to assume that predictions from a larger size of related vector is more accurate.
Therefore, we will only predict r,; when the dimension of corresponding z exceeds some
threshold ¢. After predicting we will have some ratings besides 2, they together forms €2'.
Then using TFOCS to solve problem (3.1), we are done with our problem.

We conclude the above processes with Algorithm 1.

Algorithm 1: Sampling based method
Input: R, A, ¢, ¢

Output: R
begin
A - A
1 if iy > ¢
Sij FAA = for 4,5 € I;

0 otherwise.

for (u,i) € Q do

o {ruk if (u, k:) € Qand s =1 for k € I
—o0  otherwise.

T < Truncateln finity(z);

if length(z) > t then

sample r,; from N(mean(z),var(z));
end

end
Y < all known entries in R;

R « solve problem (3.1) using TFOCS;
end

3.2 Regression Method

In the above section, let us consider one pair of (u,i) € . The item that corresponds to
each entry of ¥ always has similarity 1 with regard to item i. This is because similarity
is truncated to be binary in (3.2). However, truncation may cause lost of information. In
fact, using original similarities as predictor and ratings as response variable, we can build

11



measure s(a,b) range

cosine similarity ! ||g||||%|| 0, 1]
Jaccard index ? }Z % Z} 0, 1]
Sgrensen-Dice coefficient ‘QCJ’CL_E |l;)|| 0, 1]
Overlap coefficient 2 mi2n|?|TU|,b|lb|) 0, 1]

Table 3.1: Different similarity measures

L Apply to vectors
2 Apply to sets and binary vectors. For binary vectors, | - | is number of non-zero entries.

a regression model and predict unknown ratings. In what follows, we will describe the
details.

3.2.1 Naive Regression Method
Firstly we compute item similarity matrix S” without truncation. For i,j € I,
s;; = similarity between A; and A;, (3.5)

where A; is the i-th column of A. Then S” = [s};]ax - Note that the similarity is not limited
to cosine similarity, various similarity measure of vectors can be used in this situation. Some

of them are listed in Table 3.1.

Now for each (u,i) € Q, we define the similar rating vector 2/ € RM. For k € T

o = )Tk if (u, k) € Qand s, #0
"7 ) - otherwise.

12



Meanwhile we define a corresponding similarity vector y' € RM. For k € I

/ _{5;:/« if (u,k) € Qand s, #0
Y = i
—o00 otherwise.

Then we truncate x’ and v like before
CE/: {x;C : x;f # _00}7
Y ={uk Y # —o0}.
Note that 2’ and 7/’ take on —oo value at the same set of indices, therefore 2/ and y’ are
of the same length. For some index j, 2’; is the rating that user u gives to this item while
y'; 1s the similarity between this item and item i.

Now we can consider the following regression model
rating = « X similarity + 5 + €. (3.8)

We train this model with data rating = 2’ and similarity = y'. Remember that now we
want to predict the rating that user u gives to item i (i.e. ;). The similarity between
item i and itself, is exact s},. Then we can predict r,; using trained regression model and
new data s,.

Note that the above linear regression model may not be sufficient. The reason that
we use linear regression model is for simplicity. It is actually a start point. Based on
simple linear regression, we can use different optimizations and get better models. The
improvement introduced in the next part is an example. Other non-linear transformation
is also applicable.

Using the same strategy as above section, we only predict entries with dimension of 2/
exceeding some threshold ¢. That is, we exclude those with small data size. Because we
believe that usually data of small size will incur uncertainty and inaccurate predictions.
Now we will have some ratings besides §2, they together forms 2. Then using TFOCS to
solve problem (3.1), we are done with our problem.

We conclude the above processes with Algorithm 2.

The content attributes are binary, and the similarity measures we used (including co-
sine) are basically based on counting how many content features two items have in common.
As a result, we will have many ”zero” similarities. However the ratings with ”zero” simi-
larities are more like random numbers. Including those data will significantly decrease the
performance of regression model. Figure 3.1 is an example of illustration. Therefore, we
exclude those ”zero” similarities as defined in (3.5) and (3.6).

13



Algorithm 2: Regression based method

Input: R, A, SimilarityMeasure, t
Output: R

begin

s;; < similarity between A; and A; using SimilarityMeasure for i,j € I;
for (u,i) € Q2 do

rue  if (u, k) € Q and s, # 0

—o0 otherwise.
e {3;,C if (u,k) € Q and s}, #0 for k € I

Xy — for k € I

—o0o otherwise.
1’ < Truncateln finity(x');
v« Truncatelnfinity(y');
if length(z') >t then
RegressionModel < TrainRegressionModel(x',y') ;
rui < predict(RegressionModel, s},);

end

end
V' < all known entries in R;

R + solve problem (3.1) using TFOCS;
end

14
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Figure 3.1: The effect of removing 0-similarity items.

In Figure 3.1, we use cosine similarity and self-similarity is 1 in this case. Therefore,
the predicted rating is the value regression line at similarity = 1. Clearly, the regression
line without ”zero” similarities is a better prediction.

3.2.2 Improved Regression Method

Some improvements can be applied to Algorithm 2. An obvious one is as follows. It is
natural that for one certain item, most items are not similar to it while only a small fraction
have high similarity. This means most points will be in left part of the scatter plot (you
can observe this if you remove all 0-similarity points in Figure 3.1). That is, the data
are unbalanced. We can resolve this by taking log value of similarity. Since we exclude
items 0 similarity, this modification is well defined. The improved algorithm is described
in Algorithm 3. Figure 3.2 illustrates the improvement.
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Algorithm 3: Improved regression based method

Input: R, A, SimilarityMeasure, t
Output: R

begin

s;; < similarity between A; and A; using SimilarityMeasure for i,j € I;
for (u,i) € Q2 do

rue  if (u,k) € Q and s, # 0

—oo otherwise.
e {3;,C if (u,k) € Qand s}, #0 for k € I

Xy — for k € I

—o0o otherwise.
1’ < Truncateln finity(x');
v« Truncatelnfinity(y');
if length(z') >t then
RegressionModel + TrainRegressionModel(x',log(y')) ;
rui < predict(RegressionModel, si,);

end

end
Y < all known entries in R;

R + solve problem (3.1) using TFOCS;
end

16
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Figure 3.2: The effect of taking log of similarity.
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In Figure 3.2, we use cosine similarity and self-similarity is 1 in this case. Therefore, in
top part the predicted rating is the value regression line at similarity = 1 while in bottom
part the predicted rating is the value regression line at similarity = 0 (= log(1)). Clearly,
the regression line using log similarity is a better prediction.

18



Chapter 4

Experiments

In this chapter, we will show the performance of our algorithms.

4.1 Data

We used data set "Movies’, which is the MovieLens100K data set from GroupLens. The
statistics of Movies data set is listed in Table 4.1. The item content information is an
binary vector of whether movie i belongs to genre d. Notice that we have D genres in total
and one movie can belong to multiple genres.

Statistics Value
Number of users N 943
Number of items M 1682

Value of ratings r,; {1,2,3,4,5}
Number of attributes D 19

Number of known ratings |2 | 100000
Density ratio |Q2|/(MN) 6.3%

Table 4.1: Statistics of "Movies’ data set

19



4.2 Evaluation

To evaluate our algorithms, we repeated each same experiment 10 times. Each time, we
sampled 30% of the user-item pairs (u,i) € Q as test set, denoted by Qr. Using the
remaining 70% as the known ratings (€2), we recovered the user-item rating matrix R.
Ratings for all (u,i) € Qr were predicted by 7/, which is a truncation of 7,; when 7; fell
outside [1,5]. That is

1 ifr, <1

P = Pui f1<7; <5
5 if7,;>5

Finally, we use root mean square error (RMSE) to evaluate our prediction:

1
RMSE =  [— Tui — 71)2
¢ o] 2 ()

,i) eQr

4.3 Normalization

Before we proceed, we briefly talk about normalization. In collaborative-filtering algorithm,
the ANOVA-type of model is often a simple but significantly useful method [7] [L1]. The
simplest ANOVA-type model is

Tui:N+au+ﬂi+6ui;

where €,; is white noise, p is the overall mean, «,, represents a user-effect, and 3; represents
an item-effect. It is common to normalize the user-item rating matrix R by removing such
an ANOVA-type model before applying any algorithm. In all of our experiments, all
algorithms were applied to 7, — it — @, — Bi, and the prediction was 7; + [t + v, + Bi,
where ry; is the prediction of our algorithms, and /i, av,, BZ were the MLEs of pu, ay, ;. In
order not to further complicate our notation, however, this detail will be suppressed and
the notations, r,; and R, is unchanged[15].

4.4 Parameter Setting

We used cross validation technique to set parameters. Our choice of parameter is listed in
Table 4.2. For similarity measure, we used cosine similarity, Serensen-Dice coefficient and

20



Similarity Measure t &
Sampling Method cosine similarity 70 105
Naive Regression Method Sgrensen-Dice coefficient | 100
Improved Regression Method | Sgrensen-Dice coefficient | 80

Table 4.2: Choice of parameters

Jaccard index. Note that Algorithm 1 always use cosine similarity and c is not needed for
Algorithm 2 and 3.

4.5 Size of ()

In the beginning of Chapter 3, we have a key assumption that larger size of {2 implies more
accurate prediction. We will illustrate this assumption in this section.

Firstly we randomly sampled 10000 known ratings as test set. Then each time, we
random sampled different number of known rating from the rest 90000 entries as training
set. And we ran matrix completion algorithm on training set and evaluated RMSE on test
set. The results are in Figure 4.1. As we can see, if the number of known rating is large,
then we will have more accurate prediction. This confirms our idea proposed in Chapter
3.

Also, the || should not be significantly larger than |€2|. Because our goal is in whether
filling in ”some” entries first by sampling/regression based on content similarity can boost
matrix completion. But we still want overwhelming majority of the predictions still come
from matrix completion. Therefore in our experiment, we restricted that || < 2|Q| by
choosing proper parameters.

4.6 Results

Figure 4.2 summarize the results of our algorithms. ”Baseline” applied matrix completion
without any content information. For each algorithms, we used the optimal parameters
in Table 4.2. Although Algorithm is the most simple one, the performance is best in our
experiment. The Naive Regression Method (Algorithm 2) is worst, its accuracy is almost
the same as original matrix completion algorithm. The effect of improvement in regression
method is significant, result a 5% decrease in RMSE.

21
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10000 30000 50000 70000 90000
number of known ratings

Figure 4.1: The effect of ||

In Figure 4.3, we are interested in the comparison of Algorithm 2 and 3. As for param-
eter, we set t = 80. The result is that Algorithm 3 has better prediction accuracy than
Algorithm 2.

From Figure 4.2 and 4.3, we notice that the variance of RMSE is rather large in all our
experiments. The reason is that the matrix completion algorithm we used (TFOCS) is not
stable. This is a potential drawback of our method.
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Figure 4.2: Performance of content boosted algorithms. On each box, the central mark is
the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers (maximum and minimum), and
outliers are plotted individually (red cross mark).
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Figure 4.3: Comparison of Algorithm 2 and 3. Explanation for the box plot can be found
at caption of Figure 4.2
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Chapter 5

Summary

To sum up, we have proposed a novel approach to incorporate content information into
the matrix completion approach for collaborative filtering. Our methodology focuses on
increasing the size of know ratings before applying matrix completion. Experiments have
shown that these content-boosted algorithms can achieve better recommendation accuracy.

Our approach include sampling method and regression method. However, other method
that can increase the size of know ratings may also be helpful. Here we list some potential
ideas:

e Improve the estimation of mean and variance of Normal distribution in sampling
method.

e Usc other distributions in sampling method.
e Optimize regression model in regression method

e Use other prediction algorithms instead of regression model in regression method.

The matrix completion approach for collaborative filtering is a research problem with
various opportunities for further research. We hope that our project can inspire researchers
to think about this problem in a more systematic way and contribute more to this problem.
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