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Abstract

The estimation errors problem is very important for portfolio selection models. It has been
shown that estimation errors in the asset returns can have a surprisingly big impact in
the Mean Variance portfolio selection model (MV model). However, the issue has not yet
been explored in the CVaR portfolio optimization model (CVaR model). The CVaR risk
measure has attractive mathematical properties and is suitable for non-normal portfolio
loss distribution. The CVaR model can be solved using a simple linear programming al-
gorithm. Therefore, it is crucial to understand the sensitivity of the CVaR model. This
research report investigates the estimation errors in the underlying mean returns in the
CVaR model using a simulation example. This shows that the effects of estimation errors in
the underlying mean returns can be large. The variation of the estimated portfolio’s actual
performance increases steadily as the relative error parameter increases. The magnitude of
the variation decreases as the transaction cost increases and increase as the instruments’
bounds increase. Moreover the estimated portfolio’s performances are optimistically biased
compared to the actual performance and thus can lead to a more aggressive investment
strategy than it is advisable.

Keyword: CVaR, CVaR optimization model, estimation errors, estimated portfolio, ac-
tual portfolio, true portfolio, efficient frontier.
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1 Introduction

Parameter estimation errors for portfolio selection model have an impact on the resulting
optimal portfolio and risk measures. It has been studied extensively in the framework of
the Mean Variance Portfolio Selection Model (MV model). Optimal portfolios and efficient
frontiers in MV model are very sensitive to the estimation errors, especially in the estima-
tion errors in asset mean returns [3]. However, the MV model is very restrictive in the sense
that it relies heavily on the assumption of a normal distribution in expected asset returns
and uses variance as a risk measure which is misleading for nonnormal distributions.

The impacts of estimation errors in the CVaR portfolio optimization model has not
been addressed. CVaR portfolio optimization model can have very broad applications in
risk management and portfolio optimization. CVaR risk measure has very attractive math-
ematical properties and is suitable for general loss distributions. It is appropriate for a
portfolio of derivatives. But the issue of estimation errors in the parameters still exists.
In order to make use of this model in practice, it is crucial to investigate the sensitivity of
the CVaR optimization model.

There are different sources of estimation errors. In this research report, we focus on
the estimation errors in underlying mean returns as a first step to analyze the sensitivity
of CVaR optimization models to estimation errors. The sensitivity of CVaR optimization
model is investigated computationally. This study shows that the CVaR risk measure, the
portfolio mean return and the CVaR optimal portfolio are quite sensitive to the estimation
errors in the underlying mean returns. The efficient frontiers are quite sensitive as well.

In section 2, a description of the CVaR optimization model is summarized and a short
comparison with Mean-Variance portfolio selection model is given. In section 3, the sensi-
tivity of the CVaR optimization model is investigated through simulation examples. Sec-
tion 4 is a conclusion.

2 CVaR Risk Measure and CVaR Portfolio Optimiza-
tion Model

This section provides the background knowledge for this research report. It starts with
the formal definition of the CVaR risk measure. Then the mathematical formulation of
the CVaR optimization model is presented. Finally we compare the CVaR model with
Mean-Variance model and shortly discuss the various techniques proposed in the research
to analyze the sensitivity of Mean Variance portfolio selection model.



2.1 Conditional Value-at-risk

Conditional Value-at-risk (CVaR) is built on the concept of Value-at-Risk (VaR). VaR
answers the following question: what is the minimum loss value that the loss does not
exceed over a given time horizon with a certain confidence level. CVaR considers about
the conditional left tail of the loss distribution, the expected loss that exceeds VaR.

Formally, let L(z,S;) denote the portfolio loss variable for a given portfolio z € RN
and a vector of random variables S; € R? which represents the sources of uncertainties.
The subscript ¢ indicates that the loss is calculated over a given time horizon ¢. Assume
S, follows a density function p(S;). A cumulative loss distribution function for the loss of
a given portfolio not exceeding a threshold « is then given by [5]

Bz, ) = /L R

The VaR associated with a portfolio z, for a specified confidence level 5 and a time horizon
tis

VaRg(z) = min{a € R, (z, o) > [}

CVaR, the conditional expectation of the loss that is equal and greater than VaR,, for
loss distribution which has no jumps is

CVaRg(x) = (1— ﬁ)_l/ L(z, S)p(S)dS

L(z,8)>VaRyg
CVaR for a general loss distribution is defined as [5],
CVaRy(z) = inf (a+ (1=B)"E[(L(z,9) — a)t])
where
(L(x,8) — )" = max (L(z, S) — a,0)

CVaR is a consistent risk measure since it is sub-additive.[5].

2.2 CVaR Portfolio Optimization Model

CVaR portfolio optimization model minimizes CVaR risk measure for a portfolio. That is

min CVaRs(x)

rzeX



where z € RY, denotes the portfolio holding vectors.
Define the augmented function as in [5]

Fs(z,0)=a+ (1-08)"'E [(L(x, S) — oz)ﬂ

Rockafellar & Uryasev [8] showed that Fj(z, o) is convex and continuously differentiable
with respect to a and CVaRg(z) is convex with respect to . They also showed that VaR
minimizes F(z, «). Moreover, minimizing the CVaR over x € X, where X is a subset of
RN is equivalent to minimizing Fs(z, ) over (z,a) € (X x R),

min CVaRs(z) = min  Fs(x, o)

rxeX (z,a)e(X xR)

For a given portfolio of N instruments, the portfolio holdings are represented by an N-
dimension vector z = [z1, .., zy|". The instrument value vector is V; = {V4(S;,1), ..., Vi (S, 1)}
The portfolio loss over a time horizon ¢ is:

L(z,8) = -2 (Vs = V) = —(6V) "z

Adding the budget,return constraints and bounds for instrument holdings, the CVaR
optimization problem is formed as

min (o + (1 = £)7 B [(=(0V)"z — 2)"]) (1)
subject to:
(V) =1 2)
(V) 'z =, (3)
<z <u (4)

The CVaR optimization problem was proposed by Rockafellar and Uryasev [8]. Uryasev
further explored the algorithms and applications [9] of this problem. Alexander, Coleman
and Li [1] add transaction cost to the standard CVaR optimization model.

2.3 A Linear Programming Approach

There is usually no analytical formula for the loss distribution of a portfolio of derivatives.
The CVaR optimization problem is solved by a Monte-Carlo simulation approach. It has
been shown that, it can be optimized using linear programming (LP) and nonsmooth op-
timization algorithm [5].



Assume that there are M scenarios for the realization of underlying stock prices. There-
fore there are M derivative prices for each instrument. Fp(x,«) can be approximated as
following,

M
1
Fs(x,a) >a+ ———— L(z,S); —a)"
i) = o i 3 (£l 8 =)
where i is the ith scenario. The objective function becomes:

. 1 . T +
min (oz + MA=3) Z [—(6V); = — a] )

(@,0) i—1

Let y; = [—(6V)Tx — a]". The CVaR optimization problem becomes

M
1
min « + ———— 5 5
(@y0)  M(1—=p) ;y @)
subject to:
y > —(0V)x —a,i=1,...M (6)
Yi > 07 ? 17 = M (7)
(V) z = 8)
(V) x =7, 9)
[<z<u (10)

2.4 A Comparison with Mean Variance Portfolio Selection Model

The CVaR portfolio optimization model is very different from the classic Mean-Variance
portfolio sclection model. CVaR measures the risk of extreme loss while variance measures
expected deviation from the mean loss. It therefore applies for a general loss distributions
and is much less restritive than the MV model.

MV Model relies heavily on normal distribution assumption of expected returns for
the assets. This model, developed by Markowtiz, uses variance as the risk meansure for
the portfolio. It assumes that risk averse investors only care about expected return and
volatility of the portfolio. The other charateristics of the distribution does not matter.
This assumption is appropriate as long as the distribution of portfolio returns is normal.
With a covariance matrix and returns of the assets as inputs, we can either maximize
the expected return subject to certain variance constraint or minimize portfolio variance



subject to portfolio return higher than certain level[3]. However, The characteristics of the
loss distributions for derivative portfolios are usually asymetric with large kurtosis. There
is extensive evidence of asymetric loss distribution with fat tail.

The CVaR optimization model and MV model both have the problem of estimation
errors in input parameters. The inputs for MV model are asset expected returns and a
covariance matrix for assets. Estimation of these paremeters are usually inaccurate. The
true parameter values are unknown. There has been mass studies in the literature that
discuss the estimation error problem for the MV model. Stein(1995) shows that traditional
sample statistics are not appropriate for multivariate problems. Barry(1974) and Michaud
(1989) describe the problem in detail. It has been shown that MV portfolios are very
sensitive the changes in the parameters, especially the mean returns. Chopra and Ziemba
(1993)[3] examinethe relative impacts of estimation errors in means, variances and covari-
ances in the mean-variance portfolio optimization. They conclude that errors in means are
more important than those in variances and covariances. Jorion (1992) [4] and Broadie
(1993) [2]Juse Monte Carlo simulations to estimate the magnitude of the problem. Similar
estimation errors problem exists for the CVaR optimization problem. However, it has not
been explored yet.

3 Investigating Estimation Errors Using Simulation

In this section, we investigate the effects of estimation errors in underlying mean returns
on CVaR optimization problem. In this section, estimation errors is used instead of es-
timation errors in underlying mean returns in this chapter. This chapter starts with a
simple description of the algorithm and the simulation example.! Then it illustrates the
senstivity of CVaR and portfolio-mean-return profiles ( denote as (CVaR,7) ) and the es-
timated optimal portfolios graphically. In section 3.3, we measure the estimation errors
quantitatively. In the last section, the sensitivity of efficient frontiers is analyzed.

3.1 The Simulation Example

Consider an investor who holds a portfolio of N instruments. For each of the four corre-
lated underlying stocks, there are 12 standard calls, 12 standard puts, 12 digital calls and
12 digital puts and the strike and expiry are all possible combinations of 3 strikes [0.8,
1.025, 1.25]Sy and 4 expiries [2,4,6,8]¢ where ¢ is 10 days (assuming 250 trading days in a
year). Therefore there are N = 196 investment instruments including 192 options plus the

LA detailed description of the simulation example is provided in the appendix A.1.



4 underlying assets. The required portfolio return 7 is twice the risk freee rate over the
time horizon [0,f] with the annual risk free rate » = 5%. The initial value of the portfolio
is $1. The lower bound of the instrument holdings is -0.3 and the upper bound of the
instrument holdings is 0.4.

Let p and i denote the four dimensional underlying mean return vector without esti-
mation errors and with estimation errors respectively. Assume that the estimated errors
have independent normal distributions. Specifically,

Where i is the ith underlying.¢ is a four elements random vector whose elements are inde-
pendent with standard normal random variables. We use randn in MATLAB to generate
¢. The parameter § € [0,1], indicates the size of the relative errors. We use the linear
programming solver in the software package MOSEK version 5.0.0.127 to compute the op-
timal portfolios and CVaR & VaR.

« is equal to 0.1, 0.3 and 0.5 in our simulation. To see the effects of «, we conduct 50
simulations for each a. A 50 x 4 random number matrix, denoted as C'is used to represent
the simulation errors. This C' matrix is used repeatedly. Let M denote the number of
simulations and M = 30000. The 4 underlying stock prices are generated by Monte-Carlo
simulation. Let n denote the number of steps in Monte-Carlo simulation. We use randn
in MATLAB to generate a M x 4n random number matrix, denoted as (). This matrix
is used repeatedly under different underlying mean returns vector as well. In this way,
we control the simulation errors for better illustration of the effects of estimated errors in
mean returns.

Besides different a, we also conduct experiments under different confidence levels 3 and
different weighted cost parameter w?. The purpose of this experimental group setting is to
see how the effects of estimation errors may change with 5 and w. Let § = 0.95 and w =0
be the benchmark experimental group. First we leave  unchanged and set w = 0.005 and
0.5. Then we leave w unchanged and set § = 0.85 and 0.99. Thus we have 5 experimental
goups in total and for each of the experimental groups, we need to investigate the effects
of each of the 3 « values by 50 simulations.

The Crank-Nicholson method with Rannacher Smoothing (CN Rannacher method)is
used to approximate the derivatives’ values at t. This method has quadratic truncation
errors O(At?, AS?). The derivative prices for simulated underlying stock prices are calcu-
lated by linear interpolation from derivative values on the fixed grid of stock price.

The true portfolio return, CVaR and VaR are given in table 1. The true CVaR & VaR

for the benchmark group are given in the row 1 and row 4 as a reference. The first 3 rows

ZWeighted cost is of the form: ¢; = w x CVaR' [1]for 1 < i < 196. CVaR' denotes the optimal CVaR
with no transaction cost.



show that the CVaR & VaR increase as w increases and the last 3 rows show that the
CVaR & VaR increase as 3 increases. It seems that § has very small impact on CVaR &
VaR.

Table 1: True VaR & CVaR with #=0.004
I} w CVaR VaR

0.95 0 0.01252 0.01244
0.95 0.005 0.01298 0.01292
0.95 0.5 0.02600 0.02586

0.95 0 0.01252 0.01244
0.85 0 0.01235 0.01205
0.99 0 0.01259 0.01257

3.2 The Sensitivity of CVaR and CVaR Optimal Portfolios

The effects of estimation errors on CVaR optimal portfolios are reflected in (CVaR,7) profile
and the optimal portfolio holdings. This section presents the computational experiments
from the above two aspects graphically.

Figure 1(a) plots the (CVaR,r) profiles for & = 0.1, w = 0 and 5 = 0.95. There are
three kinds of (CVaR,7) profiles: actual, esitmated and true (CVaR,7) profiles in the fig-
ure. The true and estimated (CVaR,7) profile are the (CVaR,7) pairs calculated under the
true underlying mean return parameters p and under the underlying mean returns with
estimation errors i respectively. The estimated optimal portfolio is solved under estimated
parameters /i at the same time as well. The concept of actual (CVaR,7) profile is a little
more complicated. It is true (CVaR,r) profile for estimated optimal porfolio. FEstimated
optimal portfolio together with y to generate a simulated porfolio loss distribution and the
(CVaR, 7) is calculated with this loss distrbution.



Table 2: Algorithm: calculation of the actual CVaR and actual portfolio mean return

Actual portfolio mean return

1. Compute the estimated portfolio & by solve the CVaR portfolio optimization problem
with

2. Calculated the actual portfolio mean returns by 7 = —(ﬁ/Ta?, where 6V is a N x 1
vector of simulated average changes under pu.

Actual CVaR

1. Calculated the correponding actual portfolio losses by L = —6V7#, where 6V is a
N x M matrix for changes in n instruments values over ¢ for M simulation.

2. Get the CVaR & VaR of the simulated losses distribution by the procedure described
in Rockafellar & Uryasev (2002).

To summarize, the true (CVaR,7) is unosbervable to investors since the true parameter
values are unknown. The estimated (CVaR,7) profile is the profile that investors calculate
based on their knowledge of parameter values. Therefore estimated (CVaR,r) profile is
used by investors to evaluate a portfolio performance and the estimated optimal portfolio
is used to guide investors’ investment strategy. The actual (CVaR,7) profile is unobservable
to the investors as well. It is the true perfomance of the estimated optimal portfolio. It is
useful here as a tool to see how large the impacts of estimation errors are. Table 2 describes
the algorithm used to calculate actual (CVaR,7).

In Figure 1(a), using the true underlying mean returns, the true (CVaR,7) is plotted.
Next using the underlying mean returns with estimation errors, the estimated (CVaR,T)
profile for 50 simulations are plotted. Finally, the actual (CVaR,r) profiles for 50 simu-
lations are plotted. Since the CVaR optimization problem is solved with the same target
portfolio mean return constraint, the true and estimated (CVaR,7) profiles are located on
the line 7 = 0.004. Figure 1(c) and 1(e) plot three kinds of (CVaR,7) profiles for o = 0.3
and a = 0.5 with the same w and . The actual (CVaR,7) profiles show larger and larger
variation as « increases and almost all of them lie below target portfolio return 7 = 0.004.
Notice that the estimated (CVaR,7) profiles mostly have smaller CVaR value and all of
them achieve target returns. This suggests that the the estimated (CVaR,r) profiles are
mostly optimistically biased compared to its actual performance.

How sensitive are the actual (CVaR,7) to the estimation errors relative to the true
(CVaR,7)? Let’s define the following relative difference measures for CVaR and 7 for all



the simulations,

CVaRewel — CVaRIre

RelDif(CVaR) = VR :
ractual __ mtrue
RelDif(F) = " —

)

Figure 1(b),1(d) and 1(f) show the relative differences. The ReDif(CVaR) is in the range
of [-30%, 15%] for o = 0.1, [-60%, 30%] for a = 0.3, [-80%, 60%] for « = 0.5 and the
ReDif(7) is in the range of [-22%, -2%] for a = 0.1, [-30%, 5%] for a = 0.3, [-35%, 5%]
for a = 0.5. The range of ReDif(CVaR) increases quite fast. The range for RelDif(7) are
mostly negative, again indicating lower mean returns for estimated optimal portfolios. The
results for the other three experimental groups are shown in Figure 2, 3, 4 and 5. They
have the similar patterns as in Figure 1.

Figure 1, 2 and 3 together suggest that the transaction cost parameter w have a big
impact on the variation in the actual (CVaR,7) profiles. In contrast with Figure 1, without
transaction cost (i.e. w = 0), Figure 2 shows that the variation in the actual (CVaR,7)
profiles reduces with a very small transaction parameter, w = 0.005. When w increases
to 0.5, the variation is largely reduced. Some of (CVaR,7) profiles, which used to be very
close to each other, overlap with each other and most of them line up straight. Although
actual (CVaR,7) profiles are very different from the true (CVaR,7) profiles, their variations
are largely reduced.

There is no clear pattern from Figure 4 and 5 to show the effects of 3 on the variation.
Figure 6 shows a comparison of instrument holdings for a = 0 (i.e. no estimation errors),
a = 0.1, «a = 0.3 and a = 0.5. For each of the subgraph, there are 4 groups (i.e. four
instruments) and each group has 4 bars, their length representing instrument holdings for
4 different «. It shows that the instrument holding varies drastically as a changes.
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Figure 6: A comparison of instrument holdingsw = 0, § = 0.95

3.3 Quantitative Measures of Estimation Errors

In order to see how sensitive CVaR portfolio optimization model is to the estimation errors,
it is useful to have a quantitative measure of the error casued by using paramecters with
estimation errors. The distance between a actual and true (CVaR,7) profile is one way
to measure the error [2]. However absolute distance value can be misleading, a relative
distance measure is introduced next. Let (CVaR" ¢(«),7"¢(«)) denote the true profile for
a given a. Let (CVaR™a(q) rectual(q)) represent the sth simulated actual profile (where

range from 1 to S). Then the relative-root-mean-squared (RRMS) CVaR-error, denoted
fevar(a) and the RRMS 7-error, denoted fr(«v) are given by

1 K

CVaRga! — CVaRy\*
fCVaR(a) - \ X ( CVCLRZ,TW ’

1 K f](éctual _ erue 2
F(a) - ? ptrue .
k=1 k




Table 3: RRMS-error measures

A ‘a Afr
s w a  foven Seen g Sk

0.95 0 0.1 0.1267 0.1620
0.3 0.2314 0.8262 0.1738 0.0727
0.5 0.3254 0.4058 0.2011 0.1574

0.95 0.005 0.1 0.1282 0.1721
0.3 0.2314 0.8054 0.1824 0.0594
0.5 0.3250 0.4044 0.2085 0.1432

095 05 0.1 0.2996 0.1593
0.3 0.3584 0.1964 0.1884 0.1829
0.5 0.4427 0.2354 0.2351 0.2477

0.85 0 0.1 0.1409 0.1694
0.3 0.2547 0.8080 0.1855 0.0951
0.5 0.3544 0.3915 0.2133 0.1500

0.99 0 0.1 0.1061 0.1618
0.3 0.2205 1.0784 0.1735 0.0721
0.5 0.3190 0.4466 0.2007 0.1569

Table 3 column 4 and 6 show how the RRMS increases steadily as « increases for each
of the four experimental groups. For instance, fov.r(«) increases from 0.1267 for o = 0.1
to 0.33254 for o = 0.5 and f7(«) increases from 0.1620 to 0.2011, for = 0.95 and w = 0
group.

There are some other interesting observations as well. First, for a = 0.1, the foyqr is
generally smaller than fr for four experimental groups. For example, in the first group,
that is § = 0.95 and w = 0, fover = 0.1267 while f; = 0.1620 for a« = 0.1. However,
fovaris larger than f- for larger . This indicates foy,.g increases faster than fr as «
increase. fovar = 0.2314, fr = 0.1738 for a = 0.3 and foy.r = 0.3254, fr = 0.2011 for
a = 0.5. There is a similar trend in the other three experimental groups. The relative
changes in fover and fr are shown in column 5 and 7. The formula are given by

Afovar _ Jevare — fovary Afr _ fra — fra
fevar fevarp " fr fra

where 2 represents the very next higher o than 1. These number verifies that the changes
in fovar is larger that that in f; as a increase. It brings to the conclusion that CVaR is
more sensitive to the estimation errors in current CVaR optimization model.

The second observation is that foy.r is less sensitive for large o than for small .. The



changes in f- is larger for large o than for small . More specifically, in the first experiment

group, % for « = 0.3 is 0.8492 but this number is 0.4023,less than half, for a = 0.5.

At the same time, Aff is 0.1037 for a = 0.3 and 0.1473 for a = 0.5.

To further verify the above two obeservations, table 3.4 shows how fovur, Af”;cv"jf, fr
Afr '

7 change with a more carefully. RRMS error meaures increase as relative error «
T

increases. foyqg 18 in general more sensitive to changes in a. —Afé CVV‘;R
Afr cie . . . .. .

f—f However, fov.r’s sensitivity is decreasing as « is increasing.

and

is always larger than

Table 4: 8 =0.95, w =0

Q foevar % fr Af—f
0.04 0.1024 0.1659

0.08 0.1244 0.2139 0.1663 0.0025
0.10 0.1369 0.1010 0.1665 0.0013
0.16 0.1751 0.2789 0.1687 0.0130
0.20 0.1997 0.1408 0.1716 0.0174
0.24 0.2214 0.1083 0.1760 0.0254
0.28 0.2428 0.0969 0.1810 0.0289
0.30 0.2532 0.0426 0.1838 0.0150
0.32 0.2635 0.0408 0.1863 0.0136
0.36 0.2843 0.0789 0.1916 0.0286
0.40 0.3050 0.0728 0.1968 0.0274
0.44 0.3253 0.0667 0.2023 0.0278
0.48 0.3452 0.0611 0.2080 0.0282
0.50 0.3550 0.0285 0.2108 0.0135

Table 4 also shows that results in experimental group 8 = 0.95, w = 0.5 have large
CVaR estimation errors foy,r while 7 estimation errors f; are almost the same as the group
without transaction cost i.e.f = 0.95, w = 0. Moreover, the changes in foyar, Afécvi‘;f is
much smaller than group § = 0.95, w = 0. This together with previous observation sug-
gests that transaction cost reduces the variations in actual (CVaR,r7) profiles but increases

the estimation errors.




3.4 The Sensitivity of Efficient Frontiers

This section illustrates the effects of estimation errors on the efficient frontiers. The defini-
tion of efficient frontier is similar as in the Modern Porfolio Theory. Points on the efficient
frontier represents portfolios (explicitly excluding the risk-free alternative) for which there
is lowest risk for a given level of return. Conversely, for a given amount of risk, the portfolio
lying on the efficient frontier represents the combination offering the best possible return.
Similar concepts are used here as in section 3.2 to compute the following three efficient
frontiers for CVaR portfolio optimization models:

o The true efficient frontier is the curve for (CVaR,7) pairs computed from different
portfolio target mean returns constraints under the true underlying mean return
parameters p.

e The estimated efficient frontier is the curve for (CVaR,7) pairs computed from differ-
ent portfolio target mean returns constraints under the estimated underlying mean
return parameters, i = p + Apu.

e The actual efficient frontier is the curve for actual (CVaR,7) pairs that are computed
with the estimated portfolio holdings and the true underlying mean return parame-
ters. The computation procedure is the same as one described in table 2. The actual
efficient frontier depicts the true performance of the estimated frontier.

In Figure 9(a), onc simulation of estimation efficient frontier and its corresponding actual
efficient frontier are graphed with the true efficient frontier. The points on estimated ef-
ficient frontier representing very small expected portfolio returns, 7 < 0.08, are very close
to those on the actual efficient frontier. They are also very close the points of true efficient
frontier. The distances between three kinds of efficient frontiers are larger for larger ex-
pected portfolio returns. There seems to be a subtle tendency that this difference between
actual efficient frontier and estimated frontier (or between actual efficient frontier and true
efficient frontier)is becoming larger. Notice that although short selling is allowed here,
the bound for instrument holdings is « € [-0.3, 0.4]. To sce if there is such an increasing
difference between estimated efficient frontier and actual efficient frontier as the expected
portfolio return increases, Figure 9(b) graphs a comparsion for three kinds of efficient fron-
tiers for x € [-3, 4]. It shows that as larger instrument holdings are allowed, the distance
between estimated efficient frontier and actual efficient frontier are increasing.
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This observation suggests that the CVaR optimization problem with estimation errors
can be solved more accurately when the target portfolio return is low. When the target
portfolio is high, the estimation errors have a big impact on the resulting optimal portfo-
lios.

The figure 7 are two typical examples for all the simulations. They also show that the
estimated efficient frontier generally over-performance and the actual efficient frontier usus-
lly under-performance compared to true efficient frontier. Figure 8 graph all the simulated
actual efficient frontiers and the true efficient frontier. Figure 9 graph all the simulated
estimated efficient frontiers and the true efficient frontier. They verify this observation. It
is very dangerous for investors to use estimated optimal portfolio to guide their investment
strategies because it leads to a more aggressive investment strategies than the true optimal
portfolio does. The actual performance of the estimated optimal portfolio is much lower
than the investors’ expectations.

The CVaR optimization problem with large admissible on holdings is more sensitive to
the the estimation errors. It attains better performance in the sense that it reached the
same target returns with smaller CVaR values. Notice that the CVaR-axis for z € [-3,4] is
[0, 1] while it is [0, 2] for = € [-0.3,0.4]. This is explained by the large freedom to choose
the instrument holdings. If there is no constrains on instrument holdings at all, estimation
errors problem can be very servere.
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Figure 10 and 11 graph efficient frontiers for ¢ = 0.3. Notice that the instrument
holdings lie between -0.3 and 0.4. The observation that the differences between estimated
efficient frontier and actual efficient frontier are larger as the target returns increase is
even more obvious for & = 0.3. The variations of estimated efficient frontiers and actual
frontiers are much larger as well.



efficient frontiers, oo =103 Efficient Frontiers, o= 0.3

0.09 T T T T T T T T T 0.09 T T T T T T T T T
008 - q 008+ q
0.07 - = 0.07 - —
0.06 - q 0.06 - q
2 2
S oosp E S oosp 1
= =
5 omar 1 foml ]
E! E!
003+ q 003+ q
nmr 4 Dozt 1
v true efficient frontier true efficient frontier
om F 7 — — — actual efficient frontier H omr — — —actual efficient frontier |
estimated efficient frantier
0o L I 1 L I I T T T T 0o I I I Il L 1 L 1 1
] 02 04 06 08 1 12 14 16 18 2 0 0z 04 0B 0B 1 12 14 16 18 2
CvaR CvaR
(a) z €(-0.3, 0.4) (b) z €(-3, 4)

Figure 10: Actual and true efficient frontier for « = 0.3,w = 0,8 = 0.95

Efficient Frontiers, 0. =03
0.09 T T T T T T T T T

mean return

0.01 -4 ‘ true efficient frantier "

estimated efficient frantier

0 ) I 1 L I I T T T T
0 02 04 06 0B 1 12 14 15 18
CvaR

8]

(a) x €(-0.3, 0.4)
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Actual efficient frontiers are usually below estimated efficient frontiers. This again
indicates that estimated results are optimistically biased. It is very dangerous to use an
estimated optimal portfolio to guidance investors’ investment strategy. The corresponding
estimated CVaR and portfolio mean return 7 either underestimate the risk inherent to
achieve certain return target or overestimate its ability to achieve a return target with a
certain risk constraint.



4 Conclusion

Esitmation of the underlying mean returns in the CVaR optimization model inevitably
has errors. It is very important to analyze how sensitive the CVaR risk measure, portfolio
mean returns, CVaR optimal portfolio and efficient frontiers are to these estimation errors.
In this research report, we consider the independent estimation errors in underlying mean
returns and study their effects on the CVaR optimization problem.

The report first shows that the optimal CVaR risk measure and portfolio mean returns
profile are very sensitive to the relative estimation errors for different confidence levels and
transaction cost parameters graphically. A comparison of corresponding CVaR optimal
portfolio is also presented. The estimated optimal portfolio is very different from the true
optimal portfolio without estimation errors. Some evidence is presented showing that, in
this context, the CVaR risk measure is more sensitive to the estimation errors than is the
portfolio mean returns measure. The optimization problem solved under higher confidence
levels is generally less sensitive to the estimation errors. Finally, the sensitivity of efficient
frontiers to estimation error is analyzed. It is shown that with larger instrument holding
bounds, the efficient frontiers are more sensitive to estimation errors. Also, the part of ef-
ficient frontier representing higher mean portfolio returns and higher CVaR risk measures
have more severe estimation errors than the lower mean portfolio returns and lower CVaR
risk measures.

In addition to the above efforts to show how sensitive the CVaR optimization model to
the estimation errors, this research report considers a performance evaluation of estimated
CVaR optimal portfolios. In general, estimation errors can be very dangerous for investors
because estimated CVaR optimal portfolios usually have much higher estimated perfor-
mance than actual performance. The computational results indicate that the estimation
errors in underlying mean returns can result in big estimation errors in CVaR optimal
portfolios.

APPENDICES

A Description of the Computational Example

This section provides a detail description of the computational example. In this exam-

ple, we construct a portfolio of derivatives. Assume that there are four correlated assets

following the CEV model assumptions
i ' 4

= idt+ —dZ' i =1,2,3, 4. 11

o S Hd+ (11)




where the correlation matrix of dZ%,dZ? dZ3,dZ* is Qdt with

1.0000 0.3769
~ | 0.3769 1.0000
@= 0.1003 0.3959
0.4596 0.6372

¢t = 53.7587, % = 17.0294, ¢® = 4.4497, ¢* = 28.1069

The annual expected returns are

1'=0.1091, 4* = 0.0619, 1 = 0.0279, u* = 0.0649

and the initial prices are

Se =100, 87 = 50,95 = 30,95 = 100

0.1003
0.3959
1.0000
0.3138

0.4596
0.6372
0.3138
1.0000

(13)

(14)

(15)

For each asset, we consider 12 standard calls, 12 standard puts, 12 digital calls and 12
digital puts. Here the strike and expiry are all possible combinations of 3 strikes [0.8,
1.025, 1.25]Sy and 4 expiries [2,4,6,8]t where ¢ is 10 days (assuming 250 trading days in
a year). Therefore there are 196 investment instruments including 192 options plus the 4
underlying assets. The required portfolio return 7 is twice the risk freee rate over the time
horizon [0,f] with the annual risk free rate r = 5%.[9]
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