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Abstract

The goal of this report is to analyze various computational techniques applied to model
physical phenomena in the area of oceanography and atmospheric sciences. Cases are
discussed, wherein, mathematical models are developed using the programming language
MATLAB followed by implementing NCAR’s (National Center for Atmospheric Research)
WREF (Weather Research and Forecasting) model consisting of built in code and physics
modeling capabilities. Before numerical modelling is carried out, various problems of in-
terest, issues and generalized models regarding dynamics of coastal basins are put forth.
Shallow water equations (SWE) form a reasonable starting point as far as modelling of
physical, biological and chemical processes in lakes and coastal basins are concerned. Fi-
nite difference and Fourier methods along with various numerical schemes implemented
to model SWE’s are compared and analyzed. A small discussion on the implementation
of an advantageous MATLAB function profile is provided. Producing results of idealized
cases within the WRF model is carried out to test the modelling capabilities, especially, in
light of capturing the physics. Studying the boundary layer parametrizations of the WRF
model along with a brief description of the Large-Eddy Simulation (LES) configuration is
discussed.
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Chapter 1

Introduction & Background

The motivation of carrying out this research and constructing this report is to explore
mathematical models, created by, using the Mathworks language MATLAB and govern-
ment /industry codes, that provide insight into the understanding of dynamics of coastal
basins and environmental flows. Today, along with experiment and theory, numerical mod-
elling is the best tool available to humankind, to understand the dynamics of environmental
and geophysical flows. Once the governing equations have been chosen, the next decision
to be made is which numerical method must be used to best represent the equations.
Progression or extension of a single model, discussion of alternative models, making the
right choice of a model corresponding to the physics and trade-offs or disadvantages of
the model under scrutiny, is addressed. Various numerical methods/schemes applied sepa-
rately to each model, along with a brief discussion on the distribution of computing jobs to
various processors provides information about the computing time and cost. Understand-
ing the capability of government/industry codes that claim to capture various physical
phenomena has been the motive behind studying the Weather Research and Forecasting
(WRF) model.

To begin, Chapter 1, gives an insight into the various mathematical models of the
coastal ocean as discussed in section ??. Idealized models as well as problems of interest
are presented in this section. A summary of the hydrodynamics models, modelling tides in
coastal basins are discussed in this section. This is followed by a discussion on the shallow
water equations (SWE) and its dispersive extensions mentioned in section ?7. Finally,
a brief introduction to the Weather Research and Forecasting model (WRF) in its large
eddy simulation (LES) configuration along with a brief background on the physics schemes
available in WRF is provided in section ?7.



1.1 Models of the Coastal Ocean

The term coastal basins represent the myriad of different water bodies, that are found
in the region between the occan and the continental shelf. They carry names such as
estuary, bay, etc. A coastal basin is a shallow system i.e. typically less than 10m (although
possibly some tens of meters deep) forced mainly by wind, tide and river flow. This section
provides some background in the understanding and modelling of astronomical tides in
coastal basins [?]. The astronomical tides of the ocean are primarily due to changes in
the gravitational potential exerted on the large ocean basins by the Moon and Sun as
the Earth rotates in their gravitational fields. When waves arrive in the coastal zone, i.e.
the shallow continental shelf and coastal basins, they produce shallow water tides, which
arc quite different in magnitude from the deep ocean tides. Shallow water tides occur on
spatial scales that are too small to be directly affected by the gravitational forcing of the
Sun and Moon. The tides in the coastal basins are a direct consequence of the change in
the water level at their boundary with the deep ocean. Most places in the ocean usually
experience two high tides and two low tides each day (semidiurnal tide), but some locations
experience only one high and one low tide each day (diurnal tide) [?].

There is a separation between the deep ocean and the coastal region created by change
of depth. Tidal waves in the ocean and coastal regions have wavelengths much greater
than the water depth and hence, propagate as long waves. Hence, the long gravity wave
speed is given by 1/gh, where g is the acceleration due to gravity and h is the depth of
the water column. The notation M is used for tides predominantly due to the motion of
the moon and S is used for those due to the sun. The number after the letter is used
to denote either the approximate frequency per day i.e. diurnal 1 or semi diurnal 2. For
example, the dominant tidal component is denoted by M2. Mathematically, the frequencies
of astronomical gravitational forcing are denoted by a set of angular frequencies w. These
are called tidal harmonics [?]. Hence, the elevation 1 at any point in the ocean will have
the form,

n(t) = Z A, cos(wnt + dp) (1.1)

where A,, is the amplitude and ¢,, is the phase angle. Contours of constant phase, ¢, are
called co-tidal lines for the particular harmonic and represent points at which high and low
water occur at the same time. Of special interest is the location of amphidromic points,
defined as the point in which the particular harmonic has zero amplitude.

Let, the u velocity be defined along the X-axis, and the v velocity be defined along the
Y-axis. If we denote the pressure gradient by F1, stress by F2 and the Coriolis force by



F3, then using the law of conservation of momentum in two dimensions (here the constant
density has been absorbed in the F; terms),

%+u%+ug—Z—Fl+F2+F3. (1.2)

The hydrostatic approximation is a very basic assumption made in almost all models

of coastal basin. Its essence is to neglect vertical acceleration for large scale motions. Thus

according to this approximation apart from the pressure gradient, the most important force

that acts on a particle in the ocean is its weight. The hydrostatic equilibrium assuming
the pressure above or atmospheric pressure is zero, is given by,

op
9 ap (1.3)

where, p(z) is the pressure, ¢ is the acceleration due to gravity and p is the density of
water, i.e. the gravitational force, -gpdz, on an element of fluid from 2z to z+dz This is
balanced by the pressure difference p(z+dz)-p(z). The pressure profile that satisfies this
is called the hydrostatic pressure. The weight of water per unit area above a height z
produces a hydrostatic pressure. For the case of constant density,

p=ygn—=z). (1.4)

The non-linear terms, the stress and the Coriolis force are neglected in this research. Using
the hydrostatic approximation and the conservation of momentum equation,

du  0On
ot~ Jox
Mass conservation is one of the most important rules used in the development of models
of coastal models. The continuity equation in two dimensions is given by,

on Ohu  Ohv
o o oy (16)

where, h=H+n is the sum of the depth and the elevation. Only the one-dimensional form
of equation 7?7 is considered in this study. Adding the frictional term that accounts for
drag in the coastal basin, alters the equation for the continuity of momentum. Hence, from
[?], the complete set of equations of motion, that are solved in tandem, i.e. continuity of
momentum and continuity of volume are given by,

(1.5)

ou  dn
T —9% — Calulu, (1.7)
on  Ohu
E — _%. (1.8)



After discretizing, the above system of equations, can be represented in a matrix vector
multiplication format given by, Az=B. For a uniform grid and corresponding set of data
points, the matrices A and B can be represented in terms of a differentiation matrix.
Differentiation matrices can be represented as tridiagonal or pentadiagonal matrices having
an order of accuracy of two and four respectively. An alternate representation of the matrix
vector product Az=B, is in the form w; = p;(z;), where, p, represents a unique polynomial
of degree less than or equal to two and z; represents the grid point. The larger the number
of points incorporated in the stencil, higher the accuracy of the solution. Hence, the larger
the bandwidth of the matrices, the more accurate the solution is. These convergence
rates can be predicted using Taylor series and verified numerically. Consideration of sixth,
eighth and higher order schemes will lead to circulant matrices of increasing bandwidth
[?]. This method discussed above, is known as the finite difference method. Spectral
methods involve, at least in principle, working with a differentiation formula of full order
and infinite bandwidth. Trefethen, [?], compares the output between finite difference and
spectral methods. The errors in spectral methods decrease very rapidly until high precision
is achieved and rounding errors on the computer prevent any further improvement. The
governing equations of motion are transformed into their algebraic counterparts in order
to carry out computation. The Chebyshev differentiation matrix is used as an operator to
carry out the derivative on the operand. Using the leapfrog time scheme,

Ut = Ut — (2A1)[gD(n) + Calulu]™. (1.9)
Similarly, the continuity of volume equation is given by,
"t ="t — (2A1) D (hu)™. (1.10)

As previously stated, the non-linear terms have been dropped. D is the Chebyshev differ-
entiation matrix and h = H i.e. the height is assumed to be fixed to ignore the non-linear
effects and Cy is the drag coefficient. From a generalized perspective, the two physical
boundaries of a coastal basin. One is the mouth of the basin, where the water enters the
basin from the ocean and the other is the head i.e. where the water in the basin touches
the coastline or beach or land. Boundary conditions were imposed on the two parameters
viz., the velocity and the elevation. Two MATLAB scripts, that incorporate the velocity
and the elevation boundary condition, introduce a periodic forcing on the entire basin.
The boundary condition at the mouth is given by, u = sin(27t/T) m/s. At the dry end/-
head of the coastal basin a wall boundary condition, with no normal flow, (v = 0 m/s) is
imposed. Similarly, for the elevation, a periodic boundary condition was imposed at the
mouth of the basin. However, at the head, there is no condition that can be imposed on
the elevation. The velocity, u is solved for from the continuity of momentum equation.
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Throughout this research, MATLAB’s high-level commands have been used such as poly-
nomial interpolation, matrix inversion, and FFT. The MATLAB function cheb, returns a
vector x and a matrix D. This function, adopted from Trefethen [?] is called repeatedly
whenever the computation requires the use of Chebyshev grids and differentiation matri-
ces. The MATLAB script that incorporates the velocity boundary condition is provided
on the following page. The script that incorporates the elevation boundary conditions is
constructed in a similar manner to the one provided.



% cheb_tm.m - Tidal Model of a One Dimensional Basin with velocity BC‘s

% Setting the values of the constants
N=20; g=9.81; H=10;dt=0.01; constl=2xdt*g; const2=2x*dt;
bigt=3600; onekm=1e3; L=10*onekm; uamp=0.5; Cd=2.5e-4;
% Implmenting the cheb.m code to calculate the first derivative
[D,x]=cheb(N);
x=x*xL; D=(1/L)*D;
%» Initializing the vectors
u0=zeros(size(x)); up=ul0; un=u0; etalO=zeros(size(x));
t=0; numsteps=1000; numouts=500; etap=etal; etan=etal;
figure(1),clf
plot(x,un), axis([-1 1 -1 1])
% Starting the loop
for ii=1:numouts
for jj=1:numsteps
t=t+dt;
uf=up-constl*Dxetan- (2*dt*Cd.*abs (un) .*(un)) ;
h=H+etan;
flux=h.*un;
etaf=etap-const2xDxflux;
%» Boundary Conditions
uf (1)=0;
uf (end) =uamp*sin(2*pi*t/bigt);
% Leap frog time stepping + reassigning the vectors
etaf (end)=etap(end)-const2*D(end, : ) *H*un;
up=un; un=uf;
etap=etan; etan=etaf;
end
% Plotting the solution
subplot(2,1,1),plot(x,un), axis([-L L -2 2]),ylabel(‘u’)
subplot(2,1,2),plot(x,etan), axis([-L L -2 2]),ylabel(‘eta’)
drawnow
end

The operating conditions specified do not emulate or represent a real basin. However,
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Figure 1.1: Plot showing the variation of velocity & elevation along the length of a basin.

Operating parameters

Acceleration due to gravity (g) | 9.81 m/s*
Number of Points (N) 20

Height (H) 10 m
Length of Basin (L) 10 Km
Co-efficient of Drag (Cy) 2.5e-4
Time Period (T) 1 hour
Amplitude (A) 0.5

Table 1.1: Operating parameters of the 1D bathtub model

Variation of velocity & elevation along the length of the coastal basin

2 T T T T T T T T T
1 - -
0 -
_1 - -
_2 1 1 1 1 1 1 1 1 1
-1 -0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
Length =1 Km x 10
2 T T T T T T T T T
1 - -
0 -
_1 - -
_2 1 1 1 1 1 1 1 1 1
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
Length =1 Km x 10"



the author has taken approximate values that act as surrogates since there is no exact data
of a particular basin that was used in this research. This is because the focus was to test
the methods and not to investigate a particular basin.

When using 2D models, one of the disadvantages of using rectangular grids that rep-
resent coastal basins is that they do not optimize the speed at which the model is run
and also they compromise on the accuracy of the solution. The obvious answer in this
case would be implementing a finer mesh or grid that captures the physics well. However,
it would not be advisable to reduce the cell size throughout the computational domain.
Adopting this approach would lead to an increase in computing time and performing accu-
rate calculations in unimportant regions of the domain that leads to misuse of computing
power. There are various ways in which the grid can be altered to serve the specific pur-
pose of the computation. One of them is nesting in which we provide higher resolution in
certain parts of the computational domain. For example, we take a continuous rectangular
block of 810m cells and introduce nine of 270m cells inside each of the 810m cells in the
rectangle. This is called nesting. The non-linear terms, when incorporated in the above
specified idealized model, will take into account wave steepening and other effects. This
will change the discretized governing equations. For future research, the non-linear terms
when included, the continuity of momentum equation, given by, equation 7?7 is altered and
can be written as,

LU'VH-l _ LUn—l o 2At[UUL + Cd|U|U + gni]” (].].1)

where,
H2
L:JJF?D2 (1.12)

I represents the identity matrix and D represents the Chebyshev differentiation matrix.
The corresponding equation for continuity of volume, given by, 77, is further modified,

"t ="t — (2A¢) D(hu)" (1.13)

where, h = H + 1 is not fixed and varies with the length of the basin.

1.2 Shallow Water Equations

The derivation of the shallow water equations has been adopted from the book on Fluid
Mechanics by Kundu et al. [?]. Consider a layer of fluid over a flat horizontal bottom.



Let, 2, be measured upward from the bottom surface, and 7 be the displacement from the
top surface.

p=pg(H+n—2). (1.14)

The horizontal pressure gradients are therefore,

p on and @ = @

As these are independent of z, the resulting horizontal motion is also depth independent.
Consider the continuity equation,

ou Ov Ow
£+a—y+§—0. (1.16)

As % and g—: are independent of z, the continuity equation requires that w varies linearly
with z, from zero at the bottom to the maximum value at the free surface. Integrating
vertically across the water column from z = 0 to z = H + 7, and noting that u and v are
independent of the depth,

(H+n)%+(H+ n)g—Z+w(n)—w(0) =0, (1.17)

where w(n) is the vertical velocity at the surface and w(0) is the vertical velocity at the
bottom. The surface velocity is given by,

wn) = — = = + u—+ v—. (1.18)

The continuity equation (?7), then becomes,

ou dv 0On on on
H — + (H — 4+ — 4 u— +v— = 1.1
( +77)a$+( +n>8y+8t+u8m+v(‘3y 0, (1.19)

which can be written as,

o Olu(H +n)] | O[v(H+mn)

=0. 1.2
ot ox dy 0 (1.20)

For small amplitude waves, the quadratic nonlinear terms can be neglected in comparison
to the linear terms, so that the divergence term in equation (??) simplifies to HV -u. The



linearized continuity and momentum equations are given by,

@ H@u ov

o Ty T, =0
ou an
ov an

In the momentum equations of 7?7, the pressure gradient terms are written in the form
?? and the nonlinear advective terms have been neglected under the small amplitude
assumption. Equations 77, are called the linear shallow water equations and they govern
the motion of a layer of fluid in which the horizontal scale is much larger than the depth
of the layer.

The standard shallow-water equations with the Boussinesq approximation and with the
assumption of hydrostatic pressure can be derived for an n-layer stratification by vertically
integrating the full equations of motion between z = z;,1 to z = z;, where z is the vertical
coordinate, and z; 1 and z correspond to the bottom and upper interfaces that define the
ith layer, respectively [?]. The three governing equations for each layer can be written as,

ou; OF* OFY
! L = H,, 1.22
o o T oy (1.22)
where,
U, = [hi7uihiavihi]Ta (1-23)
Uz‘hi Uihz‘
Fix = ululhl F;-y = viuih,l-
uv; vvh;
and
0

7
_h. Oz 17 T4 .
H = hng&?]ax—f—po po + foih
i j=1

i , y
Ozj | 7} _ T
—h;g E 15‘7'8_1/ + 0 oo + fu;h;
J:

where p;, uw; and v; are the layer averaged density and velocities in z and y directions,
respectively, 7 and 7}, are the upper and bottom interfacial shear stresses in the z
direction, and pog; = (p; - pi—1) for i greater than 1 and ppe; = p; for ¢ = 1. The
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equations assume an inviscid fluid, i.e. the shear stresses are only considered at the water
surface, and at the side walls [?]. The above system was first proposed by Brandt et al.
[?] in their study of internal waves in the Strait of Messina. The weak nonhydrostatic
effetcs were proposed by Brandt et al. [?] who kept the terms of the order u? = h?/L?
but neglected the terms of the order ¢ = a/h, where a is the wave amplitude scale and h
and L are the layer thickness and basin scale, respectively. With this simplification, the
nonhydrostatic terms in the momentum equations for each layer can be included as follows,

9u;
Oh;

oV -Gihy), | <

= BV oA (1.24)

where,
Ut i=1
B = { R b
5 T+ 75 1=2
and A is the vector containing all the F; and H; terms. The above approximation includes
the assumption that h; and hy are constant in the conservation of volume calculations 77.

The governing equations used by de la Fuente et al. [?] in their study of internal waves in
a circular basin for a single layer fluid are,

oh =

Fn + V- (hu) =0,
ouh = B on H?0( V - 8(;;%
ovh - oy H2O(V - 2uhy

where u = (u(z,y,t), v(z,y,t)) is the velocity field, h(z,y,t) = H(z,y) + n(z,y,t) is the
total depth with H representing the undisturbed depth, and 7 is the free surface displace-
ment. The difference between the set of equations 7?7 and 77 is the introduction of the of
the dispersive terms %26 - (V - (uh),) found in the momentum equations ??. The extra
terms are an approximation of the nonhydrostatic pressure gradients and are derived from
perturbation theory in a rather lengthy calculation.

Many different dispersively modified sets of equations are available in the literature,
with well known examples being those due to Peregrine and Nwogu. The dispersive shallow
water equations represented by equations, 7?7, may not be able to capture dispersive prop-
erties in situations involving variable depth, H. Peregrine’s equations are a 2D dispersive
shallow water model for variable depth derived using Boussinesq’s idea of expanding the
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velocity potential in a Taylor series about the bottom, resulting in a dispersive evolution
equation for the depth averaged velocity. Nwogu’s Boussinesq system attempts to improve
the Boussinesq equations by evaluating the velocity at an arbitrary depth-level. This ar-
bitrary depth-level provides a free paramater that is then optimized for accuracy. To give
an example of the different dispersively modified sets of equations, consider Peregrine’s 2D
modified Boussinesq equations [?] where the depth-averaged velocity u satisfies,

ou ou H? ou

St (u V)u=—gVy+ %wv (HS) - V(v (5, (1.26)

and the fluid column height h satisfies ?77. In the case of flat bottom, the dispersive
terms can be grouped together as %QVV- u;. However, when the dispersion is compared
to the linear theory, it is observed that there are phase and group velocity errors for
depths over 2/10 to 3/10 the wavelength, respectively. For details, the reader can refer
to the analysis carried out by Walkey [?]. A more accurate set of equations are Nwogu’s
extended Boussinesq system [?] where the velocity is evaluated at an arbitrary depth z =

0 h:

% + V- (hu) + V- (BH?V(V - u) + B H*V(V - (Hu))) = 0, (1.27)
% +gVn+ (u-Vu+ A H*V(V - %) + A HV(V - (H%)) =0, (1.28)

where, A} = %, Ay =10,B; = % - 1/6 and By = 6 4+ 1/2. Given an optimal choice of 6
determined by Nwogu [?], Walkley [?] demonstrates that the errors in the group and phase
velocity are reduced considerably. The models developed by Nwogu and Peregrine capture
the physics more accurately, however, it makes the numerical solution highly complex. The
shallow water equations, given by, 7?7, are relatively simple to model numerically and can
be considered as a stepping stone to include some dispersion. The goal of this study is not
to give the most accurate description of dispersive waves in shallow water, but to have a
simple and perhaps more accurate representation of short wave dispersion.

Consider the 1D shallow water equations,
U=~y M= —Hug,, (1.29)

where, A A
n= ,)7062(]6.1’—0'75)7 u = uoez(ka:—at)‘ (130)

Substituting the corresponding expressions of v and 7 from equation ?? into equation, 77,
and after some algebraic simplification, we get,

% = \/gH. (1.31)
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Figure 1.2: Dispersion relation in 1D: Plot of phase speed (o/k) against the wavenumber
(k). Plot to the left is without dispersion while plot to the right displays the dispersive
behaviour.

Now, consider the 1D shallow water equations along with dispersive extensions,

2

Ut = — gz + ?uxxt; n = —H/U,x (132)

Once again, substituting the values from, 7?7, into, ??, and after simplifying,

o gH

— = 1.33)
\[ 1+ 2 (

k 14 k2

Figure 7?7, shows the 1D plot of phase speed ¢ as a function of & i.e. the wavenumber.
As observed from the plot on the left, the phase speed has a linear relationship as the
wavenumber increases for the 1D shallow water equations. However, for the plot on the
right, for the dispersively modified shallow water equations, the phase speed decreases as
k increases. However, as k reduces and approaches zero, the phase speed for both, the
linear and dispersively modified equations should be the same. This is not the case in the
figures, since different fields were plotted.
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1.3 Weather Research and Forecasting (WRF) Model

The Weather Research and Forecasting (WRF) model is a numerical weather prediction
(NWP) and atmospheric simulation system designed for both research and operational
applications. The WRF.v.3.1 model is a fully compressible, non-hydrostatic model with an
Eulerian mass dynamical core. Two dynamical cores are available: the Advanced Research
WRF (ARW) core, developed and supported by NCAR (National Center for Atmospheric
Research), and the Non-hydrostatic Mesoscale Model (NMM) core, whose development is
centered at NCEPs (National Center for Environmental Prediction) Environmental Mod-
eling Center (EMC) and support is provided by NCARs Development Testbed Center
(DTC). The WRF-NMM is designed to be a real - time forecast model so physics schemes
are preset. The WRF-ARW was chosen because it includes multiple physics options for
turbulence/diffusion, radiation (long and shortwave), land surface, surface layer, planetary
boundary layer, camulus, and microphysics [?].

Time integration is performed with a 3rd-order Runge-Kutta scheme. WREF has split
time integration, which uses smaller time steps used for fast processes like sound waves
or gravity waves. WRF was designed to conserve mass, momentum, entropy, and scalars
using flux form prognostic equations [?]. The grid format is Arakawa- C with all variables
in the center of the grid except for wind velocity which is defined on the edges of the grid,
and shared between adjacent grids. The WRF modeling system is divided into two main
components: the WRF Preprocessing System (WPS) and the WRF modeling core. WPS
helps define the WRF modeling domain, generate map, elevation/terrain, and land-use
data, and generate horizontally interpolated input meteorological fields to the WREF' grid.
The WRF modeling core interpolates the meteorological fields processed by WPS to the
WRF vertical levels and generates initial and lateral boundary conditions. The model solver
integrates the atmospheric equations and interfaces with the physics parametrizations to
generate forecasts of meteorological variables. WRE' uses physics sub-models to simulate
land surface, surface layer, and boundary layer dynamics, along with cumulus convection,
microphysics, and radiation. To make these choices, the modeler must know not only the
individual merits of each parameterization but also how it interacts with the other physics
sub-model options [?].

Since idealized cases have been the subject of study in this research, the need to use
the WPS did not arise. The WRF-ARW along with a MATLAB script that acts as a post-
processing system was used to analyse the output. The study examines WRF in its Large
Eddy Simulation (LES) configuration by running an idealized case provided with the WRF
model. In order to study the bottom boundary layer (BBL) parametrizations in WRF an
idealized case with a topography containing land and water was analysed along with the
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full physics options. One of the key points of focus was to include a mean wind across
the topography and to investigate how turbulence is represented in numerical models of
environmental flows.

15



Chapter 2

Methods

2.1 Time Stepping Schemes for the Shallow Water
Equations and Filtering

The non-rotating, conservative shallow water equations derived in section ?? and given by
equation 77 can be rewritten as,

ou

o = (- V)i— g5, (2.1)
o o O

) - ;

a—’t] = —V((H+n)a). (2.3)

The time derivatives (LHS) of the equations ?? to ?? can be discretized by a time
stepping scheme while the spatial derivatives (RHS) can be discretized by explicit numerical
schemes. In this study, there are two kinds of time stepping schemes that have been
implemented, the leapfrog and the Adams-Bashforth scheme. The first time stepping
scheme discussed is the frequently adopted multi-step method known as the leapfrog scheme
(also known as the midpoint method). It is an attractive method because it is simple
to implement, second order accurate but most of all because it has very good stability
for computing oscillatory solutions [?]. Consider U to be a grid variable representing a
parameter such as velocity, pressure, temperature, etc. and At be the time step. The
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leapfrog time stepping scheme can then be expressed as,

Un—l—l — U'n—l + 2Atf(Un) (24)

The grid variable U, is computed at the time level n+1 by extracting information about
the variable from the previous two time levels n and n-1. The leapfrog time stepping
scheme has a spurious mode, that needs to be taken care of. The leapfrog time stepping
scheme when implemented on the time derivatives in equation 7?7 to 77 can then be written
as,

TR T

it — " LAt — — T— — g— 2.
u u" " 4 20 Lo Uay g@x)’ (2.5)
_ o 0t On
ntl _  n—1 _ v ov o
" = 0" 4 2A¢ Uo v@y 8y), (2.6)
O[i(H+n)]  O[F(H+n)]

n"t=n"h 4 20— (2.7)
A MATLAB function, named rhseval.m was created to compute the spatial derivatives
(RHS) using the in built MATLAB function fft2. The function fft2, returns the two
dimensional discrete Fourier transform, computed using a fast Fourier transform (FFT)
algorithm. The input provided to the script rhseval.m includes the parameters u, v and
n, that arec matrices, along with & and [, that represent wave numbers along the X and Y
co-ordinate axis respectively.

The aforementioned, second time stepping scheme, Adams-Bashforth method, is dis-
cussed hereafter. Both the time stepping methods discussed in this section are members of
a class of methods called linear multi-step methods (LMM) [?]. In general an r-step LMM
has the form given by,

>0, U = ALY B (U ) 28)
=0 =0
The value U™/ is calculated from the previous values U™ =1 Un+i=2 U™ and f values

at these points. In equation, ?7? if the value of 3; = 0, then the method is explicit else it
is implicit. The Adams methods have the form,

yrtr = g1l At26jf(Un+j) (29)

J=0
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The (3; coefficients are chosen to maximize the order of accuracy. If we require 5, = 0
so the method is explicit then the ‘v’ coefficients 3y, 51, ..., B,—1 can be chosen so that
the method has order r. This gives the r-step Adams-Bashforth method [?]. The 3-step
Adams-Bashforth method is given by,

At

Un+3 — Un+2 ="
N 12

(5f(U™) —16f (U™ +23F(U™?)) (2.10)

The forward Euler method, denoted by equation ?7?, is used to calculate the previous
conditions at time levels n+1 and n+2 in the Adams-Bashforth method.

Uttt = U™ + Atf(U™) (2.11)

The 3-step Adams-Bashforth method when implemented in a similar fashion on the shallow
water equations, 77 to 7?7, can be written as,

u™ = ™ (5t 05y~ 95"

- 16(—17% - Ug—z - gZ)"“

+ 23(—6% - ﬁg—z - ggZ)"”), (2.12)
8 = 02 g (- 0 - gD

= 16(—62—2 = 172—5 = ggZ)"+1

+ 23(—62—: — 52—2 — gg—Z)““), (2.13)
P gt %5(5(_3[17(21; ml 3[?7(21; n)])n

o )] A )

ox oy
o U] DT+ .

A fundamental model equation in fluid mechanics, known as the Burgers equation, that
accounts for the viscosity v, and is given by,

Uy = —Uly + Vilgy (2.15)
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The above equation gained popularity when Hopf (1950) and Cole (1951) proved that the
general solution could be obtained explicitly [?]. Cole and Hopf noted that the equation
7?7 can be reduced to the linear heat equation by the nonlinear transformation,

7é$
u=—2uv—=. 2.16
( )

The transformation can be carried out in two steps. First introduce,

U =1y

so that 7?7 may be integrated to,

1
¢t + §¢§ = Vwmw

Then introduce,
Y = —2vlogy

to obtain,

The nonlinear transformation eliminates the nonlinear term. The general solution of the
heat equation 77 is well known and can be handled by a variety of methods [?]. This allows
one to solve a initial value problem given by,

c=F(z) at t=0.

This transforms through ?? into the initial value problem,

o =>o(z) = exp(—2i /Ox F(n)dn), t=0, (2.18)

14

for the heat equation. The solution for ¢ is,

2

[ ew exp(— Dy, (2.19)

dvt

1
e VAarut

Therefore, from 7?7, the solution for u can be written as,

By _ Ao e O
u(w,t) = ffooo e=G/2vdp

(2.20)
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where,
2

G(n,x,t) = /077 F(n)dn + % (2.21)

The behaviour of the solution, as ¥ — 0 leads to discontinuities and shocks. Fluid
flows spontaneously develop narrow regions of very large gradients. These regions are
known as ‘fronts’ in geophysics and ‘shocks’ in aerospace and plasma physics [?]. These
discontinuities or shocks are unresolvable since their scales are smaller /narrower than the
distance between two adjacent grid points, more commonly referred to as Az. Therefore,
it is necessary to apply either smoothing or filtering to avoid computational problems such
as instability. In Fourier analysis,

i = FY{AR)F(u™)). (2.22)

In practice, there are many filters that can be applied. Low pass filters passes leave low
frequency signals unchanged but attenuate signals with frequencies higher than the cutoff
frequency. High pass filters leave high frequencies well unchanged but attenuate signals
with frequencies lower than the cutoff frequency. The best choice of filter would be the
one that keeps the largest part of the solution unchanged. In two dimensional analysis,
isotropic filters, i.e. A(vVk? 4 [2) are used as opposed to the more general A(k,1).

When discretizing the Burgers equation 7?7, care is taken to discretize the non-linear
term explicitly and the diffusion term implicitly. This is because implicit diffusion acts as
a filter. Taking the Fourier transform of equation 77,

-

= \n . U2 n -\ N
(@) = —ik()" = k(i) (2.23)
2
(1+ k)it = —ik(%)", (2.24)
1 u_é
-n+1 s\
T = (iR ()" (2.25)

When comparing equation ?? to equation ??, the term A(k), is given by,

ik
Ak) = 7755 (2.26)

The Burgers equation also provides insight on how the nonlinear terms affect the so-
lution in the Fourier transformed domain. Consider the inviscid Burgers equation, with
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initial conditions given by,

i, + utl, = 0, (2.27)

u(0,z) = e™**
Using the Euler time stepping scheme to discretize the above equation,

" =" 4 At(—uug)", (2.28)
ut = u® + At(—e*ike*®), (2.29)
ut = ™ — Atike™M (2.30)
u? = u + At[—(e* — Ate2kx) (ike'ka — 2Atike 2k)] (2.31)

Thus, u? will have terms in e?** e??#* ¢®3k¥ and so on and so forth. Hence, as noticed,
as time increases higher and higher wavenumbers become part of the solution. For any
grid size, there are a finite number of wavenumbers that can be represented. Therefore,
for larger time, the part of the solution consisting of higher values of wavenumbers has
to be filtered. This acts as a low pass filter, filtering the part of the solution with higher
wavenumbers and allowing only those wavenumber that can be represented on the grid.

2.2 Time Stepping Schemes for Dispersively Modified
Shallow Water Equations using FFT

It is well known that dispersion can balance, and hence tame, the non linearity in a similar
manner as observed for diffusion. For example consider the model equation (sometimes
called the regularized longwave equation, or RLW),

Taking the Fourier transform of the above equation,

2
At + z‘k(’%) = —Bk*A,, (2.33)
A2
(1+E*B)A; = —zk;?, (2.34)
—ik  A?
A = TP 2 (2.35)
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where any explicit time stepper in Fourier space can be used to transform back into real
number space. Notice that as k increases, the right hand side of equation 7?7 reduces
and eventually tends to zero at a very high wave number. Hence, dispersion in that it
removes energy at the of highest wavenumbers. Consider, the dispersively modified shallow
water equations in equation ??. Neglecting the Coriolis force, the modified shallow water
equations can be written as,

Uy — ?(6 CU)y = —UUy — VUy — Mg, (2.36)
H? .
vy — ?(V SUp)y = —VVy — VUy — Gy, (2.37)

ne = —[(H +n)ule — [(H + n)v],. (2.38)

H? -
V¢ — ?(V ut)y = Fy, (2 40)

Carrying out a double Fourier transform (transformed variables are denoted by an over-
bar) it is observed that the conservation of mass (or 1 equation) can be time stepped
independently of the momentum equations. The momentum equations read,

(1+k*H?/6)u; + kIH? /60, = F,, (2.42)

(kLH?/6)u; + (1 + I*H?/6)v; = F,. (2.43)

Stepping forward in time is thus not as simple as the purely explicit time stepping schemes
of the shallow water equations. However, through the use Fourier methods, it is possible
to step forward provided a 2 x 2 system is solved for cach wave number pair (k,[). In

MATLAB this can be implemented by using component-wise operators like .x to construct
and store the inverse for all wave numbers.

2.3 Implementation

In this section, a few sample MATLAB codes developed to solve the dispersively modified
shallow water equations shall be presented and discussed in detail. An explicit ODE
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solver such as the 3-step Adams-Bashforth along with the MATLAB function fft2 has been
implemented to solve the spatial derivatives. The MATLAB function rhseval.m, evaluates
the right hand side of the dispersively modified shallow water equations, given by, 77 to
77, using the fast Fourier transform. The double Fourier transform MATLAB operator is
applied to evaluate the right hand side. The output produced by the function rhseval.m,
in Fourier space includes the terms, F_’x,Fy and Fn-

The 3-step Adams-Bashforth method solver, applied to solve the complete set of dis-
persively modified shallow water equations given by equation, ?? to 77, is given by the
program, absolver.m. The program calls the function rhseval.m within its subroutine mul-
tiple number of times.

/» rhseval.m - Evaluating the right hand side of equations

function [rhsil,rhs2,rhs3] = rhseval(k,l,u,v,eta)

H=10; g=9.81;

% derivative operators (in Fourier space)

Dx=sqrt (-1)*k; Dy=sqrt(-1)*1;

feta=fft2(eta);

% rhsl evaluated

rhsl = -0.5*%sqrt(-1)xk.*xfft2(u.*u)...

-fft2(v.*real (ifft(sqrt(-1)*1.xfft(u, [],1),[],1)))-g*sqrt(-1)*k.*feta;

% rhs2 evaluated
rhs2 = -fft2(u.*real (ifft(sqrt (- *k.xfft(v,[1,2),01,2)))...
-0.5%sqrt (-1)*1.*xfft2(v.*v)-g*sqrt (-1) *1.*feta;

% rhs3 evaluated
rhs3 = -sqrt(-1)*k.*fft2((H+eta) .*u)-sqrt (-1) *1.*fft2((H+eta) . *v) ;

RHS{, RHS> and RHS5 are calculated by calling the function rhseval.m. The equation
given by, 7?7, represents the 3-step Adams Bashforth method. The role that the function,
rhseval.m, plays within absolver.m, and how they work in tandem, is clarified from the
following description,

u J2e —k%u — lkv RHS,
v + - —klu—1? | = RHS,
7/, 0 . RHS;
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where, k,[ represent the wavenumber in the X and Y direction, respectively. Representing
the above expression in terms of matrices,

1- L2 k2 07 [a RHS,

2 g _
kI 112 g v | =| RHS;
0 0 1 7 RH S,

and denoting the matrix (comprising wavenumbers) on the left as matrix A, the entire
system can be written as,

U RHS;
7| =A"1' RHS,
i RHSs

% absolver.m - 3-step Adams-Bashforth solver

/» Declaring the constants
Nx=128; Ny=128; Nt=40; t=0; numouts=10;
Lx=1e3; Ly=1e3; H=10; g=9.81;

% Grid

x1=linspace(-1,1,Nx+1)*Lx; x=x1(1:end-1);
yl=linspace(-1,1,Ny+1)*Ly; y=y1(1l:end-1);
[xx,yy]l=meshgrid(x,y);

dx=abs (xx(2,2)-xx(1,1)); dy=abs(yy(2,2)-yy(1,1));
cfl=min(dx,dy)/sqrt(g*H); dt=0.2xcfl;

% Wavenumbers in Matlab’s order
dk=pi/Lx; dl=pi/Ly;
ksvec(1)=0; ksvec(Nx/2+1)=0;
1lsvec(1)=0; lsvec(Ny/2+1)=0;
for ii=2:(Nx/2)

ksvec(ii)=ii-1;

ksvec (Nx/2+ii)=-Nx/2 + ii -1;
end
for 1i=2: (Ny/2)

lsvec(ii)=ii-1;

lsvec(Ny/2+ii)=-Ny/2 + ii -1;
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end

ksvec=ksvec*dk; lsvec=lsvecx*dl;
[k,1]=meshgrid(ksvec,lsvec);
k2=k.xk; 12=1.*1; kl=k.*1,;

% Building the ‘radial’ filter
filtorder=8;

cutoff=0.65;

alphal=0.1;

alpha2=1.1;

kmax=max (k(:));
1max=max(1(:));
kcrit=kmax*cutoff;
lcrit=1lmax*cutoff;

kmag=sqrt (k.*xk+1.%1);
myfilter=exp(-alphal*(kmag/(alpha2*kcrit)) . filtorder);

% Matrix inverse by hand
dump1=(H*H)/6;
all=1+(dump1*k2) ;
al2=(dumpixkl);
a21=(dumpixkl) ;
a22=1+(dump1x*12) ;
mydet=all.*a22-al2.x*a21;

% Calculating the inverse matrix
bl1=a22./mydet;
b22=all./mydet;
b12=-al2./mydet;
b21=-a21./mydet;

% Set the initial conditions

r=sqrt (xx.*xx+yy.*yy) ;
eta0=0.4xH*exp(-r.*r/(0.1*%Lx*0.1*Lx)) ;

u0 = zeros(size(xx)); v0 = zeros(size(yy));
upp=u0; vpp=v0; etapp=etal;

% Forward Euler step for calculating the previous-previous conditions
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[rhs1 rhs2 rhs3]=rhseval(k,1,u0,v0,etal);

up = fft2(upp) + dt*(bll.xrhsl + bl2.*rhs2);
vp = fft2(vpp) + dt*(b21.*rhsl + b22.*rhs2);
etap = fft2(etapp) + dt*(rhs3);

up=real (ifft2(up.*myfilter));

vp=real (ifft2(vp.*myfilter));

etap=real (ifft2(etap.*myfilter));

% Forward Euler step for calculating the previous conditions
[rhsl rhs2 rhs3]=rhseval(k,1l,up,vp,etap);

un = fft2(up) + dtx(bll.*rhsl + bl2.*rhs2);

vn = fft2(vp) + dt*x(b21.*rhsl + b22.*rhs2);

etan = fft2(etap) + dt*(rhs3);

% Filtering after the time step
un=real (ifft2(un.*myfilter));
vn=real (ifft2(vn.*myfilter));
etan=real (ifft2(etan.*myfilter));

% 3 - step Adams Bashforth
for jj=1:numouts
for ii = 1:Nt
t = t+dt;
[rhsin rhs2n rhs3n]=rhseval(k,l,un,vn,etan);
[rhslp rhs2p rhs3pl=rhseval(k,1,up,vp,etap);
[rhslpp rhs2pp rhs3ppl=rhseval(k,1l,upp,vpp,etapp);

uf = £fft2(un)+ dt/12*(23*(bll.*rhsin + bl2.*rhs2n)...
-16%(b11.*rhslp + bl2.*rhs2p)...
+5% (b11.*rhslpp + bl2.*rhs2pp));

v = £ft2(vn)+ dt/12%(23*(b21.*rhsin + b22.*rhs2n)...
-16%(b21.*rhslp + b22.xrhs2p)...
+5%(b21.*rhslpp + b22.*rhs2pp));

etaf = fft2(etan) + dt/12*(23*rhs3n-16*rhs3p+5*rhs3pp);
% Filtering after the 3 - step Adams-Bashforth calculations
uf=real (ifft2(uf.*myfilter));
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vi=real (ifft2(vf.*myfilter));

etaf=real (ifft2(etaf.*myfilter));
%» Reassigning the new values

upp=up; up=un; un=uf;

vpp=vp; vp=vn; vn=vf;

etapp=etap; etap=etan; etan=etaf;

end
end
Leapfrog — 512x512 grid — Nt = 28 Leapfrog — 512x512 grid = Nt = 40
500 500
> 0 @ > 0
-500 -500
~-1000 -500 0 500 1000 500 0 500
Leapfrog - 512xg12 grid — Nt =52 Leapfrog - 512x;12 grid — Nt = 64
500 500
> 0 > 0
-500 -500
T10%0 500 0 500 T1P%00 500 0 500

Figure 2.1: Variation of elevation using the leapfrog time stepping scheme on a 512 x 512
grid
,’2
An initial surface elevation/disturbance 1y = 0.4He °012% | is allowed to generate radi-
ally propagating waves. r is the radius of the domain and L, is the length of the Fourier
domain in the X direction. Due to the high order of the scheme, symmetry is preserved
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even after wave-wave interactions take place. Figure 7?7 shows the variation of the eleva-
tion on a uniform Cartesian grid with 512 points in the X and Y directions. As observed
(from the top), the initial disturbance, propagates radially outwards, colliding with the
boundaries and returning back radially towards the center of the disturbance. The figure
shows the variation in the elevation for different time intervals. The colours indicate the
change in the value of the elevation, with the colour red indicating a higher value and blue
the lower value, as the wave propagates radially outwards.

Leapfrog — 512x512 grid = Nt = 28 Leapfrog — 512x512 grid = Nt =40

500 500
e
~500 ~500
~ 1000 -500 0 500 ~10%%00 -500 0 500
X X

Leapfrog — 512x512 grid — Nt = 52 Leapfrog — 512x512 grid — Nt = 64

500 500
> 0 > 0
~500 500
1000 -500 0 500 1000 500 0 500
X X

Figure 2.2: Variation of ‘n’, by altering the initial conditions for the ‘v’ velocity and
introducing an initial current using the leapfrog time stepping scheme on a 512 x 512 grid

Similarly, using the same initial 7, an initial velocity v = sin(7%), is set up to generate
radially propagating waves along with an initial current. Figure 7?7 shows the variation of
the elevation on a uniform Cartesian grid with 512 points in the X and Y directions. The
behaviour is not as symmetrical as the plot in figure ?7. The figure shows the variation in
elevation for different time intervals. Due to the initial current, from the ‘v’ velocity, there
is no symmetry observed as in figure ?77.
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2.4 Timing and Matlab Profiler

The profile function in MATLAB helps debug and optimize the code files by tracking their
execution time. MATLAB profiler records information about execution time, number of
calls, parent functions, child functions, code line hit count, and code line execution time of
functions and sub-functions within the code. There are two MATLAB code files, on which
the profile function was implemented to analyse the amount of time taken individually by
both scripts. The first code file, i.e. the M-file Ifrg_timing.m, uses the ‘Leapfrog’ time step-
ping scheme while the second code file, ab_solver.m uses the three step ‘Adams-Bashforth’
scheme to model the dispersively modified shallow water equations using FFT methods. It
is recommended to use profile without implementing any of the post processing functions
(such as plot, etc.) in the script. This is because, when analysing the functions or sub-
functions within the code, it helps to prioritize the analysis of sub routines. Sub routines
that play a significant role in the architecture of the code and consume a big chunk of CPU
time are given higher priority. One is curious to know about the CPU time taken by core
task performing functions rather than extracting information from functions that perform
trivial operations like plotting or displaying the output.

The figure 7?7 displays the output after implementing the profile function on the first
script (Ifrg_timing.m) that uses the leapfrog time stepping scheme. The dark band indicates
the self time spend by a function. Self time is the time spent in a function excluding the
time spent in its child functions. Self time also includes the overhead resulting from the
process of profiling. rhseval.m (that consists of a lot of fft routines) is a subroutine that
is called 601 times in the main code Ifrg_timing.m. The maximum amount of CPU time is
consumed by the MATLAB function fft2 is called by the main code Ifrg_timing.m and the
subroutine rhseval.m to a total of 6010 times.

The grid size was varied from a 64 x 64 sized grid, doubling the number of points all
the way to 2048 x 2048. Both the programs, i.e. the Ifrg_timing.m and absolver.m were
run on two workstations labelled ‘Belize’ and ‘Zambezi’ consisting of 16 and 4 processors
respectively. The most important parameter under observation is the percentage of CPU
memory used or the number of processors involved in running the job. Considering the
number of processors, it is obvious, that it took less amount of time to run the job on ‘Be-
lize’ as opposed to running it on ‘Zambezi’. On both workstations, for both the programs,
the MATLAB function fft, consumes a larger percentage of CPU memory. Essentially,
the fft function, i.e. the dominant command requiring maximum amount of time (refer
to figure ?7) in both the programs, also distributes its job among different processors in
order to achieve minimum computation time/processor. For example, for a grid size of
2048 x 2048, on the workstation ‘Belize’, the fft function uses 3 to 8 processors for the pro-
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Profile Summary
Generated 07-Jul-2011 13:51:16 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot
(dark band = self time)

Ifrg_timing 1 7.083 s 0.464 s E——
rhseval 601 1 4.889s 3.926 s I
ifft2 1803 1.650 s 1.650 s [ |

fft2 6010 1.043 s 1.043 s |

close 1 0s 0.000 s
close>safegetchildren | 1 0s 0.000 s

close>checkfigs 1 0s 0.000 s
close>request_close |1 0s 0.000 s

linspace 2 0s 0.000 s

meshgrid 2 0s 0.000 s

Self time is the time spent in a function excluding the time spent in its child
functions. Self time also includes overhead resulting from the process of profiling.

Figure 2.3: MATLAB profiler output, grid size of 1024 x 1024 points using the leapfrog
time stepping scheme

gram Ifrg_timing.m while it requires up to 11 processors for the program absolver.m. Hence,
when compared, the absolver.m required more processors because of the 3-step multi-stage
numerical method. As the grid size reduces, consequently, the amount of processors re-
quired reduce. As opposed to ‘Belize’, running jobs on the workstation ‘Zambezi’, required
more computational time/processor.
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Chapter 3

The Weather Research and
Forecasting Model (WRF)

3.1 WRF in its LES configuration

The governing equations of motion used to model turbulence are the widely used Navier-
Stokes equations. Modelling turbulence, is still considered as one of the challenges involved
in capturing complex physics. Various numerical methods have been used to study turbu-
lence, ranging from simple linear solvers to direct numerical simulations. Linear models
being easy to implement have limited accuracy. Complex models being more difficult to
compute, produce much more precise solutions. Different numerical methods used to study
turbulence models are: 1) Linearized flow models 2) Reynolds average modelling (RANS)
3) Direct numerical simulation (DNS) and 4) Large Eddy Simulation (LES).

Linearized models are best suited for uncomplicated geometries and contain simple
models for turbulence. The RANS are time averaged equations for fluid low whereby an
instantaneous quantity is split up into its time-averaged and fluctuating quantities. DNS
is a simulation in which the Navier-Stokes equations are numerically solved, without any
turbulence model. As a result, the entire range of the spatial and temporal scales of the
turbulence must be resolved. The smallest of the scales, ranging from the Kolmogorov
scale (further discussed) to the integral scale, associated with the motions containing most
of the kinetic energy, is resolved on the computational domain. Although it is a very useful
tool for turbulence research, DNS is highly computationally expensive.

This section examines the Large Eddy Simulation (LES) case provided within the
Weather Research and Forecasting (WRF) model. A brief discussion on the representation
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of turbulence in numerical models of environmental flows is provided. Many environmental
flows contain interesting behaviour on a variety of scales (particularly high Reynolds num-
ber turbulent flows). Even with the computational power available today, it is impossible
to represent all of these scales in a numerical simulation. For example, the convective
boundary layer simulations described in this report are in a domain 2km high, while the
Kolmogorov microscale for this type of atmospheric flow is about 107®m [?]. Thus, in
order to represent the dissipative eddies characterized by the Kolmogorov microscale, over
2 million grid cells would be needed in the vertical. Extending this to three dimensions
would be prohibitively expensive and computationally infeasible.

w velocity 8

Figure 3.1: Plot showing the variation of w velocity and the potential temperature for a
horizontal wind of 0 m/s (case 1)

In an LES model, variables are split into resolved and unresolved (or sub-filter scale)
parts. Large scales contain most of the energy and fluxes that are significantly affected by
the flow configuration. The turbulent sub-filter scale fluxes are parametrized by an eddy
viscosity model. An outline on the three ways of defining the eddy viscosity is provided: 1)
Constant eddy viscosity model, 2) Smagorinsky model, and 3) Turbulent Kinetic Energy
model. There are many other options for representing turbulence with the WRF model.
For instance, there are a variety of planetary boundary layer schemes and surface layer
parametrizations.

Like other LES models, WRF uses a eddy viscosity treatment of the sub-filter scale
stress tensor so that,
Tij = _,udK(h,v)Dija
where, 7;; is the stress tensor, D;; is the deformation tensor, jiq is the mass of dry air in a
column, and K, , represents that horizontal or vertical eddy viscosity [?]. WRF treats the
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horizontal (K}) and vertical (K,) eddy viscosities differently. In particular, K, is allowed
to vary along coordinate surfaces but K, is not.

Obviously, in the constant eddy viscosity model, the eddy viscosities are constant.
These values are set in the namelist.input file before the simulations begin. In this study,
K, = 1 and K, = 1 is chosen for each of the resolution runs. In hindsight, it may
have been more appropriate to choose a lower eddy viscosity for the better resolved cases.
Essentially, the eddy viscosity adds diffusion and helps keep the method stable, so a lower
eddy viscosity can be tolerated for better resolution.

w velocity i

(=1

T wﬂ‘”&.w' | .ww i

Figure 3.2: Plot showing the variation of w velocity and the potential temperature for a
horizontal wind of 10 m/s (case 2)

The three dimensional Smagorinsky scheme calculates the eddy viscosity using the
following formula in Skamarock et al. [?] given by,

Ky = C’fl?hw)max(O, (D? — Pr_lNZ)l/Q), (3.1)

where, N? is the squared squared buoyancy frequency, Pr is the Prandtl number, lihw)
is the horizontal or vertical mixing length and D? is a function of the deformation tensor
D jy. Csis a constant, which is typically set to a value of 0.25, however, in the simulations
carried out, Cs = 0.18. The mixing length is related to the grid size by two different options
i.e., isotropic mixing and anisotropic mixing. Az, Ay ~ Az the mixing length is set to
lhw) = (AzAyAz) /3 In this case, the horizontal and vertical eddy viscosities are equal.
For anisotropic mixing, Az < Az, Ay, the horizontal and vertical mixing lengths are [}, =
(AzAy)1/?) and I,=Az In the simulations carried out, the isotropic mixing option was
implemented since Az is about the same order of magnitude as Az and Ay. WRF offers
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another 2D Smagorinsky model, where the horizontal eddy viscosity is set by a Smagorinsky
equation similar to 7?7 above. The vertical eddy viscosity can then either be calculated
using a planetary boundary layer scheme, or is set to constant in the namelist file. This
option would be useful in simulations experimenting with different planetary boundary
layer schemes.

w velocity i
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1 ??" *‘ﬁ FN\LL a:,q k

Figure 3.3: Plot showing the variation of w velocity and the potential temperature for a
horizontal wind of 20 m/s (case 3)

The turbulent kinetic energy scheme calculates the eddy viscosities as a function of
the turbulent kinetic energy. This involves solving an evolution equation for the turbulent
kinetic energy, and so could be considered more expensive than the other schemes. The
formula for the eddy viscosities according to Skamarock et al. [?] is given by,

Khw) = CrlinVe, (3.2)

where e is the turbulent kinetic energy, C}, is a constant and [(;,) is the horizontal or
vertical mixing length. In the simulations, Cy = 0.10. The evolution equation for the
turbulent kinetic energy is outlined by Skamarock et al. [?]. The mixing length is again
set with two options; isotropic and anisotropic (for the TKE runs, the isotropic setting is
used). For the isotropic case, the mixing length is

I min((AzAyA2)(1/3) 0.76\/e/N) if N2 >0
() = (AzAyA2)/3) if N> <0

In the anisotropic case, the vertical mixing length is,

I min((Az)/?,0.76,/e/N) if N2 >0
ho) = Az if N2<0
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Z-coordinate

and the horizontal mixing length is I, = (AzAy)1/2).

The LES configuration/ideal case in WRF was set up to simulate a convective boundary
layer in three dimensions. The convective boundary layer simulations were performed on
a computational domain of 10km x 10km x 2km (X x Y x Z) with periodic boundary
conditions in the horizontal directions. The grid resolution was made finer by changing to
a typical LES resolution having, dx=dy=50m and dz=20m, as opposed to dx=dy=100m
and dz=50m in the default case. A finer grid provides an accurate LES flow field since it
resolves more turbulent scales. A temperature inversion is placed at a height of 1km and
the convection is driven by specifying a surface heat flux. Three cases were constructed to
study the effect of background wind on the convective boundary layer, viz., Case 1: Basic
case, no mean wind. Case 2: A mean wind of 10 m/s. Case 3: A mean wind of 20 m/s.
Each simulation was run for a computational time (time it takes to compute) of two hours
with a history interval that saves the results file every 15 minutes.

Temperature (zoomed in}) Temperature (zoomed in)

60

= 50

F30

Z-coordinate

X-coordinate X-coordinate

Figure 3.4: A comparison plot of the temperature (inversion), zoomed in on the bottom
boundary by cutting a slice at Y = 45 for casel - mean wind 0m/s (left) and case3 - mean
wind 20m/s (right)

Figure 7?7 displays the variation in the w velocity and the potential temperature for
Case 1, i.e. without any mean wind. The figure displays three slices of the computational
domain, cut along the x-y, x-z and y-z planes. A drawback being, the interior of the domain
is not visible which poses as a problem when one wants to analyze the physics inside the
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domain. The planetary boundary layer (PBL) is the lowest layer of the atmosphere and
extends from 100 to 3000 meters from the surface of the Earth. The boundary layer is
directly influenced by the presence of the Earth’s surface, responding to such forcings as
frictional drag, solar heating, mean wind, etc. Each of these forcings generates turbulence
of various-sized eddies, which can be as deep as the boundary layer itself, lying on top of
each other. Consider the case of solar heating: solar heating of the ground on a sunny
day creates thermals of warmer air that rise over colder air causing vertical mixing and
turbulence. As observed, there are patches of negative velocity, the lower limit being -2m /s
and positive velocity, the upper limit being 4m /s along the x-z and y-z planes. In spite of
there being no mean wind, this gives an indication of the mixing and turbulence, where the
air with a higher and lower velocity, transfers vertically along the domain. Vertical mixing
involves vertical distribution of three basic elements in the atmosphere, i.e., momentum,
mass and heat. From figure 77, beyond a height of 1km, the velocity as well as the
temperature remain approximately constant.

Thermally induced mixing is referred to as convection. The earth’s surface heats the
layer of air nearest the ground. A warm layer of air is now pinned beneath a cooler
layer, resulting in an unstable atmosphere. In order to stabilize, the atmosphere must
mix in the vertical and it does so by way of convection. Figures 7?7 and 7?7 depict a
better understanding of the physics in terms of turbulence and mixing in the PBL. As
observed from the figures, the turbulence and vertical mixing extend beyond 1000 meters
from the surface of the Earth. Thermally induced mixing in the convective boundary
layer is more evident in figure ??. When comparing Case 1 and Case 3, as the velocity
increases, there is an occurrence of temperature inversion. A temperature inversion is a
thin layer of the atmosphere where the normal decrease in temperature with height switches
to the temperature increasing with height. As observed from the figure on the right, the
temperature at the bottom of the computational domain is about 60 Kelvin, however,
as the height increases, the temperature reduces and reverts back to approximately 60
Kelvin or higher. This can cause several weather-related effects. One is the trapping of
pollutants below the inversion, allowing them to build up. Overall, the WRF-LES model
handles cases related to the modelling of turbulence quite well and using options such
as planetary boundary layer schemes can further improve the quality of the results. The
features incorporated in WREF suggest that the WRF-LES model could serve as a powerful
tool for turbulence modelling.
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3.2 Sea Breeze Model in WRF

This section investigates the physics capabilities of WREF by studying the idealized (full
physics) case known as the seabreeze model. A description of the physics models incor-
porated in WRF is provided as well. Modelling sea breezes remains a challenging task.
Additional complexities such as the effects of terrain, land use and synoptic flow still ensure
that sea breeze forecasting remains a challenging task. Presently, the majority of studies
focus on the landward advance as it may have a significant impact on air quality, aviation
and coastal city flow regimes.

A sea breeze is an example of a mesoscale front. It may extend across an entire coastline
but may move inland only a few miles. A sea breeze is a local effect that occurs due to
the temperature difference between land and water. The density of cooler air is greater
than that of warmer air. Hence, the air pressure will be lower at the surface in the warm
region due to the rising of this less dense air. During the day, the land is warmer than
the ocean which is when a sea breeze occurs. Denser air over the ocean flows toward the
less dense air over the land. The strength of the sea breeze is directly proportional to
the temperature difference between the land and the sea. If the air temperature over the
land sufficiently exceeds the air temperature over the sea, then a direct circulation results
within the boundary layer of the atmosphere.

The idealized case for the seabreeze model in WRF has a computational domain of
404km x 6km x 20km (X x Y x Z) with periodic boundary conditions in the horizontal
directions. Without altering the boundary conditions, the computational domain was
extended in the Y direction and adding more grid points in the Z direction along with
modifying the time step and introducing a mean wind. By adding more grid points along
the Y co-ordinate and increasing the resolution, this makes the idealized case in WRF,
originally a 2D case, a newly constructed 3D case. Land occupies 50 grid points in the
middle of the domain. For a brief overview of the case, the reader is referred to the
README.seabreeze file in the appendix. Two different cases are constructed by examining
three different domain sizes. This was done by increasing the number of points in the y and
z coordinates, i.e.: Case 1) Small domain size - 202pts x 202pts x 35pts, Case 2) Medium
domain size - 202pts x 202pts x 50pts. Each case was run for a computational time of
twelve hours. The different cases are compared using visualizations of the velocities.

There are various physics option available in WREF, each containing different choices
depending on the case to be modelled. The physic categories in WRF are: 1) microphysics,
2) cumulus parameterization, 3) planetary boundary layer, 4) land-surface model, and 5)
radiation. A short description of the schemes that were implemented in the sea breeze
simulation case, have been presented in the following paragraphs.
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Figure 3.5: Plot showing the variation of u velocity and the w velocity for a horizontal
wind of 0 m/s (case 1)

Microphysics includes explicitly resolved water vapour, cloud and precipitation pro-
cesses. The model also accommodates any number of mass mixing ratio variables, and
other quantities such as number concentrations [?]. Within the microphysics option, there
are various options available indicating whether mixed-phase physics are included. Mixed-
phase processes are those that result from the interaction of ice and water particles, such
as riming (frost formed on cold objects by the rapid freezing of water vapour in cloud or
fog) that produces graupel (soft hail or snow pellets) or hail. As per the documentation
in WREF, for grid sizes less than 10km, mixed-phase schemes should be used, particularly
in convective or icing situations. It is not worth it to implement these schemes for coarser
grids, since riming is not likely to be well resolved. As per the idealized seabreeze case, the
default scheme used to model the microphysics (mp_physics = 2) is the Purdue-Lin scheme
that includes six classes of hydrometeors (an atmospheric phenomenon or entity involving
water or water vapor, such as rain or a cloud). They are: water vapour, cloud water, rain,
cloud ice, snow, and graupel. This is a relatively sophisticated microphysics scheme in
WRF and is most suitable for use in research studies [?].

The radiation schemes provide atmospheric heating due to radiative flux divergence and
surface downward longwave and shortwave radiation for the ground heat budget. Long-
wave radiation includes infrared or thermal radiation absorbed and emitted by gases and
surfaces. Upward longwave radiative flux from the ground is determined by the surface
emissivity that in turn depends upon land-use type, as well as the ground (skin) tempera-
ture. Shortwave radiation includes visible and surrounding wavelengths that make up the
solar spectrum. Hence, the only source is the Sun, but processes include absorption, reflec-
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u velocity w velocity

Figure 3.6: Plot showing the variation of u velocity and the w velocity for a horizontal
wind of 10 m/s (case 2)

tion, and scattering in the atmosphere and at surfaces. All the radiation schemes in WRF
currently are column (one-dimensional) schemes, so each column is treated independently,
and the fluxes correspond to those in infinite horizontally uniform planes, which is a good
approximation if the vertical thickness of the model layers is much less than the horizontal
grid length [?].

The Rapid Radiative Transfer Model (RRTM) implemented to capture the longwave
radiation (ra_lw_physics = 1) uses pre-set tables to accurately represent longwave processes
due to water vapor, ozone, CO2, and trace gases (if present), as well as accounting for cloud
optical depth [?]. The molecular absorbers included are water vapor, carbon dioxide, ozone,
methane, nitrous oxide, oxygen, nitrogen, and the halocarbons. It includes extinction from
aerosols, clouds, and Rayleigh scattering [?].

The Dudhia shortwave radiation scheme (ra_sw_physics = 1) has a simple downward
integration of solar flux, accounting for clear-air scattering, water vapor absorption, and
cloud albedo and absorption [?]. It uses look-up tables for clouds. The WRF Version 3
scheme has an option to account for terrain slope and shadowing effects on the surface solar
flux. Sloping and shadowing effects are turned on for the 2007 runs. For more information
on this shortwave radiation scheme, see Dudhia (1989) [7].

From figure 77 and 7?7, one can observe the strip of land in the middle of the domain.
Figure 7?7, shows the variation of the u and w velocity, without any mean wind, along the
computational domain with slices cut along the x-y, y-z and z-x planes. Perceiving the w
velocity (on the right) the velocity is maximum along the strip of land and minimum on
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water. Along the z-x plane, the velocity does not show much variation and has a constant
value of approximately 0m/s. However, the x-y and y-z plane produce interesting results.
Along the horizontal x-y plane, there is negative velocity, approximately -2m/s on the left
(225-400 points on the y axis) of the strip and positive velocity approximately, 2m /s, on
the right (175-0 points on the y axis) of the strip. Along the vertical y-z plane, however,
there is a contradiction. There is positive velocity on the left (225-400 points on the y
axis) of the land and negative velocity on the right (175-0 points on the y axis) of the
land. This gives an indication of a circulation along the land boundary or along the coast,
inside the computational domain. Noticing the x-y plane, the v velocity from the ocean is

approaching one side of the land, while there is a negative velocity on the other side of the
land.

Figure 7?7 shows the variation of the u and w velocity, with a mean wind at 10m/s,
along the computational domain with slices cut along the x-y, y-z and z-x planes. There
is the distinctive strip of land along the x co-ordinate observed in the plots of the v and w
velocity. One cannot predict any sort of a circulation with the effect of a mean wind.
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Chapter 4

Conclusions

In this report, a basic understanding to the modelling of coastal basins is provided by
discussing some essential coastal models that take into account tidal forces. Various phys-
ical factors, for example, Coriolis forces, could be included to make the model capture the
physics accurately. However, a fundamental starting point, given in terms of the bathtub
model, conveys some essential information and insight into various models that can be
developed to account for different environmental phenomena. One would require accu-
rate experimental and geographical data to model a real life case, which is hard to attain.
There are many physical properties that are not represented by the system of shallow water
equations represented by equations ?7. These phenomena include: surface stresses, bot-
tom drag, wave-breaking and viscosity. This is highly important for practical applications.
Adding various extensions to the shallow water equations by keeping the numerical method
efficient is one of the many challenges involved in developing a model.

The finite difference method is applied to model the governing shallow water equations
using the leapfrog and Adams-Bashforth time stepping schemes. Filtering, in terms of
dispersion, discards higher wavenumbers and allows part of the solution comprising of lower
wavenumbers to be represented on the finite grid. The drawback using the standard set
of shallow water equations is that they completely neglect dispersion which is a real world
phenomenon observed in waves. The dispersion modified shallow water equations are a first
step towards a more physically correct model. Including terms like surface stress and wave
breaking would certainly contribute towards achieving a realistic solution. Alternative
numerical methods, such as the finite volume method, that can handle discontinuities
relatively well, can be implemented to resolve the physical features of the flow accurately.
Of course, advanced numerical schemes could be implemented to increase the accuracy
of the solution, however, there is a threshold beyond which every method would end up
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producing a similar solution. A brief discussion about the MATLAB function profiler,
provides the reader with some essential information about timing codes in MATLAB.
This is a handy tool when one is interested in detecting sections in scripts, that end up
consuming maximum time and acts as a guide to increase the efficiency of the program.
When implemented on the 3-step Adams-Bashforth and leapfrog scheme it was observed
that the 3-step Adams-Bashforth takes more amount of computational time compared to
the leapfrog method. Similar results were obtained using both methods, however, there
was no filtering applied to the leapfrog scheme. Due to a larger stencil size, the 3-step
Adams Bashforth is a more accurate method as opposed to the leapfrog.

The results obtained from chapter 77 provide valuable information about the modelling
capabilities of WRF'. The unique WRF large eddy simulation model focuses on investigating
turbulent structures inside the planetary boundary layer. The simulations indicate that
large turbulent eddies are very efficient in transporting momentum, heat, and moisture
within the boundary layer and between the planetary boundary layer and the layer above.
Different models to capture sub-grid or sub-filter scale eddies are presented. Plots of
energy spectra would be an effective technique to analyze the performance of different
turbulence models. There are various planetary boundary layer schemes available in WRF
that can be implemented and would be worth exploring. As far as the sea breeze model
in WRF is concerned, there were a few challenges involved. Various physics options,
numerical schemes implemented in the sea breeze case were discussed. There can be a few
modifications that can be made to the ideal case. The width of the land can be extended
by modifying the variables in the source code file, however, the entire case would have to
be re-compiled. Nevertheless, having a larger surface of land next to the ocean would help
analyze the physics. The temperature and densities of the land and ocean can be changed
to study the case well. Overall, WRF is a valuable tool for the study of macro and micro
scale weather related phenomena. Easily accessible data for real cases would be extremely
helpful in understanding and forecasting day to day weather related developments.
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Appendix A

WRF Input Files

A.1 LES case - namelist file

The README .les file on winisk, about the idealized LES simulation reads as follows:

This test case produces a large-eddy simulation (LES) of a free convective boundary
layer (CBL). The environmental wind (or the initial wind profile) is set to zero in this
default case. The turbulence of the free CBL is driven/maintained by the surface heat
flux, which is specified in the namelist file as ‘tke heat flux’=0.24 (in MKS units).

A random perturbation is imposed initially on the mean temperature field at the lowest
four grid levels to kick off the turbulent motion. Double periodic boundary condition is
used in X and Y. The default version uses a grid resolution of dx=dy=100m and dz=>50m,
which is considered to be rather coarse for an LES of the CBL. A typical grid mesh for an
LES of the CBL is dx=dy=50m and dz=20m. An LES flow field is more accurate when
the grid resolution is finer because it resolves more turbulent scales.

This LES version uses the Deardorft’s TKE scheme to compute the SGS eddy viscosity
and eddy diffusivity for turbulent mixing, that is ‘diff opt’=2 and ‘km opt’=2 in the
namelist. The Coriolis parameter is set to f=10"1/s. It takes at least 30 minutes of
simulation time to spin up the turbulent flow field; only after the spin-up, the turbulence
inside the CBL is considered well established. A sign of well-established turbulence is that
the total (i.e., the resolved-scale plus the subgrid-scale) heat flux profile should decrease
linearly with height within the CBL.

To simulate a CBL with a mean wind, change the initial wind profile in the input
sounding. When ‘pert coriolis’= true is set in the namelist, there is no need to include the
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geostrophic wind terms in the right-hand sides of the u and v equations for LES’s with
non zero geostrophic wind. Note, parameterization constants, ¢y and c¢; in this namelist
are different from the defaults and are the ones recommended to use with LES.

A sample of the namelist.input file in WRF for the LES configuration reads as follows:

&time_control

run_days =0,

run_hours = 2,

run_minutes = 00,

run_seconds = 00,

start_year = 0001, 0001, 0001,
start_month = 01, 01, 01,
start_day = 01, 01, 01,
start_hour = 00, 01, 00,
start_minute = 00, 30, 00,
start_second = 00, 00, 00,
end_year = 0001, 0001, 0001,
end_month = 01, 01, 01,
end_day = 01, 01, 01,
end_hour = 01, 02, 00,
end_minute = 00, 30, 00,
end_second = 00, 00, 00,
history_interval_m = 15, 10, 1,
history_interval_s = 00, 00, 1,
frames_per_outfile = 1000, 1000, 1000,
restart = .false.,
restart_interval_m = 60,
io_form_history =2

io_form_restart =2

io_form_input =2
io_form_boundary =2

debug_level =0

/

&domains

time_step =0,
time_step_fract_num = 3,




time_step_fract_den
max_dom

s_we

e_we

sS_sn

e_sn

s_vert

e_vert

dx

dy

ztop

grid_id
parent_id
i_parent_start
j_parent_start
parent_grid_ratio

parent_time_step_ratio

feedback
smooth_option

/

&physics
mp_physics
ra_lw_physics
ra_sw_physics
radt
sf_sfclay_physics
sf_surface_physics
bl_pbl_physics
bldt

cu_physics

cudt

isfflx

ifsnow

icloud
num_soil_layers
mp_zero_out

/

46

2000,

1,
0,
0,
0,
1,
1,
0

0

b

- - - - - -

-

- - - - - -

O 01l OO NOOOOO OO O Oo

-

1,
100,
1,
100,
1,
100,
50,
50,
2000,
2,
1,
10,
10,
3,
3,

- - - -

-

- - -
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-

1,

151,

1,

151,

1,

41,
16.6667,
16.6667,

2000,

- - - -

-

- - -

O O O OO OO O O

-




&fdda

&dynamics
rk_ord

diff_opt

km_opt

damp_opt

zdamp

dampcoef

khdif

kvdif

c_s

c_k
mix_isotropic
smdiv

emdiv

epssm
tke_heat_flux
time_step_sound
h_mom_adv_order
v_mom_adv_order
h_sca_adv_order
v_sca_adv_order
mix_full_fields
non_hydrostatic
pert_coriolis

/

&bdy_control
periodic_x
symmetric_xs
symmetric_xe
open_xs
open_xe
periodic_y
symmetric_ys

3
2
2
0

1

WO WOl o O O OO HrHrH OO +~=Oo

>
b
b

b

5000.,
.1,

*)

*)

.18
.10

.1,
.01,
.1,
.24,

.true.,

.true.,
.false.
.false.
.false.
.false.
.true.,

.false.,

5000.
0.2,

1.,

1

*

N = O
D . [RE

-

-

W oW oo OO O O

-

.true.
.true.
.true.

b

3

.false.
.false.
.false.
.false.
.false.
.false.
.false.

5000.,
0.2
.05,
.05,

N —» O -
D _

-

-

W o w ooy ©O OO O

-

.true.,
.true.,
.true.,

.false.
.false.
.false.
.false.
.false.
.false.
.false.




symmetric_ye = .false.,.false.,.false.,

open_ys = .false.,.false.,.false.,
open_ye = .false.,.false.,.false.,
nested = .false., .true., .true.,
/

&grib2

/

4namelist_quilt
nio_tasks_per_group = O,
nio_groups = 1,

/

A.2 Sea breeze case - namelist file

The README.seabreeze file on winisk, about the idealized seabreeze simulation seabreeze_2d_x
reads as follows:

The purpose of this case is to demonstrate how one can set up all land variables in order
to use a full-physics set-up in an idealized case. This test case is an attempt to produce
a two dimensional sea breeze simulation. Configuration needs tuning to produce desirable
results, as the current settings give a very shallow sea breeze.

The input sounding has no wind. There is no Coriolis [grid f(i,j)=0]. There is a diurnal
cycle and the latitude and longitude are set for radiation to work. The routine initializing
this case is dyn_em/module_initialize_seabreeze2d x.F. Note that since the longitude is set
to zero, start_hour in the namelist is the local time as well as the UTC time (5Z in the
namelist). For other longitudes the start_hour refers to UTC time. The land-surface fields
are filled so that the slab, Noah or RUC LSMs can be used.

This setup is for a 2D case with 202 grid points in x. The land occupies 50 grid points
in the middle of the domain. The width of the land can be changed by modifying variable
Im (half width for land points) in dyn_-em/module_initialize_seabreeze2d x.F.
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A sample of the namelist.input file in WRF for the seabreeze model reads as follows:

&time_control

run_days =0,
run_hours = 12,
run_minutes =0,
run_seconds =0,
start_year = 2007,
start_month = 06,
start_day =1,
start_hour =05,
start_minute = 00,
start_second = 00,
end_year = 2007,
end_month = 06,
end_day =2,
end_hour = 5,
end_minute = 00,
end_second = 00,
history_interval = 15,
frames_per_outfile = 1000,
restart = .false.,
restart_interval = 360,
io_form_history =2
io_form_restart =2
io_form_input =2
io_form_boundary =2
debug_level =0

/

&domains

time_step = 10,
time_step_fract_num =0,
time_step_fract_den =1,
max_dom =1,
s_we =1,
e_we = 202,
S_sn =1,




e_sn
s_vert
e_vert
dx

dy
ztop

/

&physics
mp_physics
ra_lw_physics
ra_sw_physics
radt
sf_sfclay_physics
sf_surface_physics
bl_pbl_physics
bldt

cu_physics

cudt

isfflx

ifsnow

icloud
num_soil_layers
mp_zero_out

/

&fdda

&dynamics
rk_ord
diff_opt
km_opt
damp_opt
dampcoef
zdamp
khdif
kvdif

202,

50,
2000,
2000,

20000.,

- - - - - -

-

O 01T OO OO0, P, F Ok, F~N

-

-

N R W

.003,
5000.
300,

b




smdiv =0.1,
emdiv = 0.01,
epssm =0.1,
time_step_sound =6,
h_mom_adv_order =5,
v_mom_adv_order = 3,
h_sca_adv_order =5,
v_sca_adv_order = 3,
mix_full_fields = .true.,
non_hydrostatic = .true.,
/

&bdy_control

periodic_x = .true.,
symmetric_xs = .false.,
symmetric_xe = .false.,
open_xs = .false.,
open_xe = .false.,
periodic_y = .true.,
symmetric_ys = .false.,
symmetric_ye = .false.,
open_ys = .false.,
open_ye = .false.,
/

&grib2

/

&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,

/

o1




