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Abstract

In the financial area, researchers are interested in the asset allocation for a long time period.
However, this allocation is based on limited historical observations. Thus, researchers try
to enlarge the data set where bootstrap resampling, especially block bootstrap resampling,
is the main method for samples with high correlation.

In this research, we derive the continuous form of two asset price models and test
the performance of the stationary block bootstrap resampling in estimating the total log
return in a given time horizon. Since we use the monthly log return along a sample path,
we additionally analyse the bootstrap resampled results of the monthly return for reference.
We find that the block bootstrap resampling performs well in estimating the statistics of
the monthly return for both two models, however, the estimation for the total log return
is less satisfactory. Since the log return of the Customized AR(1) model has significant
auto-correlation, we also test the bootstrap resampled estimation of variance ratio in the
continuous form of the Customized AR(1) model, compare it with that in the discrete form
in [0] and find a same result that the bootstrap resampled bias is significant.

In [20], since we use the monthly return along a sample path, the distribution statistics
such as mean, variance and the total log return is defined as the level-1 parameter, and
the distribution statistics for level-1 parameter is called the level-2 parameter. Based
on our computation, it is found that the block bootstrap resampling performs well in
approximating the level-1 parameters, and it requires an optimal block size for distribution
estimation of the level-1 parameters, which are the level-2 parameters.
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Chapter 1

Introduction

An interesting topic in the financial area is asset allocation for a long time horizon, e.g. 30
consecutive years. To solve this problem, we need to forecast the asset price in a given time
horizon based on the historical data. This means that it is necessary to obtain information
about the distribution of the stock price and its log return from a limited number of
historical data. To tackle this problem, researchers try to enlarge the size of data set to
analyse the distribution of statistics of interest by resampling. The resampled data set
should maintain the property of the original distribution, from which a sample is obtained.

To achieve this purpose, bootstrap and other resampling methods are introduced to
solve this problem. Since the previous tests [10, 23] show that the stock price has serial
correlation, block bootstrap resampling is widely used to enlarge the data set. In financial
research, we often conduct distribution analysis to estimate the asset log returns. Thus,
the performance of block bootstrap resampling in estimating the distribution of log return,
especially the total log return in a given time period, is considered. In this research,
we discuss the performance of block bootstrap resampling for estimating the bootstrapped
monthly return and the total return in a given time horizon. The stationary block bootstrap
resampling is the main method used for resampling.

In this research, we use a Geometric Brownian Motion (GBM) and a Customized AR(1)
model first introduced in [25] as the stock price model. For the Customized AR(1) model,
we derive the continuous form and use it for further analysis. We follow the similar boot-
strap procedure in [7] to conduct block bootstrap resampling from a sample path of 100-year
monthly log returns obtained from Monte Carlo simulation. We use the path to generate
30-year monthly log return paths. We then compare the statistics of monthly and total log
return (summation of each monthly return path) with the theoretical values derived from
the continuous form of the stock price model. For the Customized AR(1) model, before the
analysis of bootstrapped distribution, we compare the bias of stationary block bootstrap
resampling in estimating the variance ratio V R(k) (ratio of variance between m-period and
1-period variance), as is done in a discrete form in [5, 0].

For the monthly log return, we find that the block bootstrap resampling performs well
in predicting the distribution statistics (e.g. mean and variance) for these two models, no
matter how large the block size is.



For the total log return, which is the summation of monthly returns for each path, we
find that for Geometric Brownian Motion, the bootstrapped estimation with block size of
one month outperforms other block sizes. This is because the log return of GBM follows a
standard Brownian motion. Thus, there exists no correlation between monthly log returns.
When using a large block size, the resampling triggers high similarity among resampling
paths, and thus the distribution estimation of total log return becomes poor.

For the Customized AR(1) model, before the analysis of the total return distribution,
we test the bootstrap performance of the variance ratio estimation in the continuous form
with that in the discrete form in [5, 6]. It is found that the results are similar, and the
continuous form even provides a smaller estimation bias when the volatility ratio is larger
than one. We further analyse bootstrap resampled results with different model parameters
and different volatility ratios of the noise term in the permanent and transitory component
in the model. For the bootstrap resampling for the total log return, we choose block sizes
from one month to 150 months. We find the bootstrapped distribution to be significantly
poor with chosen block sizes. This is due to the high autocorrelation between log returns
for the Customized AR(1) model. Unlike the GBM, the small block size destroys the serial
dependence between monthly return along the sample path. In this case, the method does
not perform well in the estimation of distribution.

Based on the definition in [20], since we use monthly returns as a sample path, the
distribution statistics (e.g. mean F(X), variance Var(X) and total log return) for monthly
return is the level-1 parameter, while distribution statistics of the level-1 parameter is
called the level-2 parameter (e.g., statistics of total log return). The definition of level-1
and higher-level parameters is included in Chapter 2 in detail. In this research, we find
that the block bootstrap resampling results has trivial differences in estimating level-1
parameters, no matter how large the correlation within the sample paths. However, for
estimating level-2 parameters, there exists estimation bias among different block sizes. To
mitigate this bias, as [18, 14] mention, an optimal block size should be selected during the
block bootstrap resampling for estimation accuracy.

The rest of the presentation is organized as follows. In Chapter 2, the background
information for block bootstrap resampling and the estimation bias of block bootstrap
resampling in theoretical analysis are briefly summarized. Chapter 3 derives the formations
for log return and the continuous form of two stock price models. Chapter 4 includes the
Monte Carlo algorithms for monthly and total log return. Chapter 5 describes the bootstrap
resampling procedure with a mean-shifting method for bootstrapped distribution, and
Chapter 6 provides the bootstrapped analysis for two stock price models. Chapter 7
concludes the research and propose the further work on this topic.



Chapter 2

Background

In this chapter, we introduce the background information about bootstrap resampling.
First we review the development of bootstrap resampling and some block bootstrap re-
sampling methods which are widely used at the present time. Then we provide a brief
introduction about the estimation bias of block bootstrap resampling.

2.1 Bootstrap resampling

According to [20], the bootstrap is a computer-intensive resampling method for solving
statistical estimation problems. The sampling is done with replacement. In addition,
there is no prerequisites of samples and models. The standard bootstrap resampling is
first introduced in [9]. It is designed for samples that are independent and identically
distributed (i.i.d). Every data point is selected randomly from the sample path with equal
probability. Bootstrap resampling has been proved to be robust and consistent [2, 15, 31]
for mean and variance estimation. It has been widely used for many statistical inference
problems. Recently, it has been further developed and classified depending on whether the
sampling path is a set of independent or dependent data.

2.1.1 Block bootstrap resampling

As mentioned before, the standard bootstrap resampling in [9] is for i.i.d samples. However,
the data from the financial market typically has serial correlation (for example, [16, 23]
determined that asset prices do not follow a pure random walk). In order to maintain the
correlation in resampling data set, block bootstrap resampling is proposed as an extension
of standard bootstrap resampling. Instead of resampling every data point independently,
the algorithm introduces block size b and select the current and the following b — 1 data
points simultaneously as a "block”, which helps to maintain the serial correlation between
the original sample.

Assume X = {X;, Xo,..., Xy} is the sample path. Before the block bootstrap resam-
pling, a block size b is determined. In addition, the number of ”blocks” | which is required
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Figure 2.1: Process of Moving Block bootstrap resampling from [13] (up: sample path,
down: resampling path)

in a sample path is determined. We can treat the standard bootstrap resampling as block
bootstrap resampling with b =1 and [ = N.

There are mainly three block bootstrap methods widely used, which are the mov-
ing block bootstrap resampling (MBB), the non-overlapping block bootstrap resampling
(NBB) and the stationary block bootstrap resampling (SB). The moving block bootstrap
resampling was independently developed in [18, 22]. As shown in Figure 2.1), it allows over-
lapping in sampling blocks and each block is represented as B; = {X;, Xji1,. .., Xitp-1}
and the number of blocks in sample path [ = N — b+ 1. The non-overlapping block boot-
strap resampling was introduced in [1]. The blocks in sample path are not overlapping,
ie., B; = {X(u-1)xb1, X(i—1)xb+1, - - - » Xixp} and the number of blocks [ = N/b. These two
methods share the property that the block size b is fixed for each block (In Figure 2.1,
the block size is fixed at 3). However, to eliminate the bias of using a fixed block size,
[28] introduced the stationary block bootstrap resampling. In this method, the block size
used in resampling varies from block to block, and the number of blocks [ changes with
the resampling path.

Following the definition in [20], suppose the sample path X = {X;, X5,..., Xx} has a
joint distribution J. Let 8 = 6(.J) be a point estimator of X, which is also the parameter of
interest that is based on the joint distribution J. We call # as the level-1 parameter (e.g.,
mean F(X) and variance Var(X)). Statistics which depend on the sampling distribution of
6 are called level-2 parameters (e.g., mean square error M SE(E(X)),Var(E(X))). Based
on this definition, we have level-3 and higher-level parameters. The bootstrap resampling
is considered as a suitable method for solving the statistical inference problem for level-2
parameters.

2.1.2 Estimation bias of block bootstrap resampling
Although block bootstrap resampling helps to increase the size of data sets without any

assumptions, as a resampling method with random selection, there exists estimation bias
which should be analysed.

Theoretically, it is proved in [19] that the estimation bias for bootstrap resampled

4



variance of resampling data is proportional to 1/(nb) where n is the resampling size of data
and b is the block size, where those three resampling methods mentioned above (MBB, NBB
and SB) share the same magnitude of estimation error. In practice, according to [5, 0], the
estimation bias of variance ratio using moving and stationary block bootstrap resampling
is significant and increasing with the increase of the time horizon and the volatility ratio.
In [20], several bootstrap resampled results, such as the sampling distribution of sample
mean and covariance of bootstrap resampled data, show that the estimation bias varies
among different block sizes.

According to [1], a too-large and too-small block size will decrease the accuracy of boot-
strap resampled estimation, so to mitigate this effect, researchers have developed methods
to determine the optimal block size for block bootstrap resampling. In [27, 29], an au-
tomatic selection of block size is introduced for minimizing the long-run variance of the
resampling path. Following up on this work, [I, 5, 6] apply a data-driven method for
selecting the optimal block size that minimizes the estimation bias of statistics with inter-
est. Both these two methods are widely applied in the research related to block bootstrap
resampling.



Chapter 3

Models for log return and stock price

In this chapter, we set up the definition of log return and describe models based on the
assumption that the stock price follows a Geometric Brownian Motion (GBM) or a Cus-
tomized AR(1) model introduced in [25]. For the Customized AR(1) model, we convert the
discrete form into a continuous form with a combination of a Standard Brownian Motion
and an Ornstein-Uhlenbeck Process (OU Process). In the rest of this research, we use the
continuous form of both models for further analysis and computation. Finally, we derive
the statistics of log return for a given time horizon.

3.1 Log return

Let the initial time ty = 0 and time horizon txy = T. Let At = t,, —t,_1 represents the time
step, N = T/At is the total number of time steps within 7', n € [1, N]. S;, denotes the
spot asset price at time ¢, and R(t,) is the log return in the period [t,—1,t,), n € [1,T].
Then R(t,) is

R(t,) = Zog(Sf::). (3.1a)

The total log return for the time horizon 7', Ry, is the summation of log return for each
single period, i.e.,

Rp = i R(t,) = zog<%:). (3.1b)

If we define Xy, as the log of stock price S, , i.e., Xy, = log(St,). Then

RT :XtN —Xf

0

(3.1c)

3.2 Geometric Brownian Motion

In this section, suppose the stock price S;, follows GBM, and we derive the formations of
X;, and Ry, and calculate the statistics of Ryp.

6



3.2.1 Continuous form of X,

If we assume that stock price .S; follows a GBM, the stochastic differential equation for S; is

dSt = ,UStdt + O'Stth, (32)

where ¢ and o are the mean and volatility of the asset price S;, and dW can be written as

AW, = Vdt = N'(0, 1)VAL, (3.3)
where 1 is a random variable following a standard normal distribution, i.e., ¥ ~ N(0, 1).

Based on Ito’s Lemma, the continuous form of X; = log(S;) is
2

dX, = (1 — %)dt + odWy, (3.4)

Hence the discretization of X;, can be set as

2
Xy =X, + (u— %)At +oVALN(0,1), (3.5)

3.2.2 Statistics for R

Based on (3.5), we derive

2 2
R(t,) = (u — %)At +oVALN(0,1) = (p — %)At + N(0,0%At) (3.6)
then from (3.1b), we have
N 2
Rr = R(t.) = (n— %) T + N(0, 02T), (3.7)
n=1

then the statistics for Ry are easily determined.

For mean E(Rr), variance Var(Rr) and standard deviation std(Rr):

E(Rr) = (u— %2) T, Var(Ry) =0T, std(Ry)=oVT, (3.82)

For skewness skewness(Rr):

E((Rr - B(Rr))*)
(std(Rr))?
E((ovT N0, 1)*)
(std(Rr))? (3.8b)
(VTPE((W(0, 1))
(td(Rr))?

skewness(Rr) =

=0



For kurtosis kurtosis(Rr) :

E((Rr - B(Bp)")
(std(Rr))*
E((ovT N0, 1))
(std(Rr))*
(v (W0, 1)) (3:5¢)
(std(Rr)?
3 (ovV/T)*
(std(Rr))*
= 3.

kurtosis(Rr) =

3.3 Customized AR(1) model

In this section, assuming the asset price follows a Customized AR(1) discrete model, we
derive the continuous form of X;, and the statistics of Rt based on X;. Also, we introduce
two indicators related to the serial dependence for the continuous model of the Customized
AR(1) for further analysis.

3.3.1 Discrete form

The customized AR(1) model was first introduced in [25] and widely applied in research
as a simple model for an asset price. According to [0, 10], the log of stock price X;,
could be generally divided into two components: a permanent component D, which is a
random walk representing the fundamental increment of the asset price, and a transitory
component V; which is a zero-mean stationary process as an AR(1) model representing
the volatility from D, . Specifically,

Xy, = log(Sy,),

Xy, = Dy, + V4,

Dy, = Dy, | + uAt + ¢,
Vi, = oVi,_, +wy,

(3.9)

where p is the expected drift, ¢ is the model parameter where ¢ < 1, and ¢, w;, are white
noises where cov(e, , wy,) = 0.



3.3.2 Continuous form

In this section, we introduce two continuous processes, Standard Brownian Motion and
Ornstein-Uhlenbeck Process, and transfer the customized AR(1) model into its continuous
form based on these two processes.

Standard Brownian Motion

We assume that Y;_ follows a Standard Brownian Motion, and the stochastic differential
equation of Y; is

dY}/ = uldt + UldVVt, (310)
where p7, 07 are constants and dWW; follows the process
AW, = P Vdt (3.11)

where 1, follows a standard normal distribution, ¢; ~ N;(0,1). The discretization of Y},
is

Y;,n - Y;/n_l +/L1At+0’1VAt ./\fl((),l), (312)
where At > 0,01 > 0, p1 is a constant.

Ornstein-Uhlenbeck Process (OU Process)

We assume Z; follows an Ornstein-Uhlenbeck process, which is a stationary process. The
stochastic differential equation of Z; is

dZt = 62(#2 — Zt)dt + O'Qth, (313)
where 65 > 0,09 > 0, uo is a constant, and dW; can be written as
AW, = o\ dt, (3.14)

where 15 follows standard normal distribution, i.e., ¥y ~ AN5(0,1). The discretization of
Zt is

n

Zy, = O At + (1 — A1) Zy,_, + o2V AL N3(0,1), (3.15)
where 0y > 0, At > 0,09 > 0, and puy is a constant.

Continuous form of Customized AR(1) discrete model (3.9)

Since Dy, follows a random walk and V;, follows an AR(1) process, we show in the following
that the continuous-time analogue of D; and V;, are a Standard Brownian Motion and an
Ornstein-Uhlenbeck process.

For D, comparing (3.9) and (3.12), it is found that if we set p; = p, €, ~ N7(0, 012At),
then we can write D, as the discretization of Standard Brownian Motion that

Dy, = Dy, | + At + o1 VAING (0, 1). (3.16a)

9



The continuous form of D;, can be expressed as

dD; = pdt + oy Vdt. (3.16b)

where p is a constant, ¢, ~ N7(0, 1).

For V;, comparing (3.9) and (3.15), it is found that OouAt = 0, 1 — O.A = ¢, wy, ~
N5(0, 022At). To maintain Z;, is a stationary process, we have ¢ < 1, so it is derived that
po =0, At =1— ¢, wy, ~ No(0, 022At). Then we can write V;, as the discretization of
an OU Process that

V;n = (1 — egAt)V;"_l + o9V AtNQ(O, 1), (317&)
so the continuous form of V,  is expressed as
AV, = —0,V,dt + 109V dt. (3.17b)

where 65 is a constant, 19 ~ Ny(0, 1).
The Customized AR(1) model (3.9) can be regarded as the following continuous model:

dX, = dD, + dV, (3.18a)

where
dD; = pdt + oVt (3.18b)
AV, = —0,V,dt + a0V dt (3.18c¢)

where p is a constant, o3 > 0,09 > 0, 11,9, follows standard normal distribution where
cov()1,1h9) = 0. 0, is a model parameter in the continuous form. In addition, the following
relationship holds

O:AL =1 — ¢. (3.18d)

The discretization of the continuous form of customized AR(1) model is (3.16a) and
(3.17a).

3.3.3 Statistics of Ry

In this section, we derive the mean and variance of log return Ry, assuming the contin-
uous model (3.18). First, we would like to derive the statistics for X;. Since in (3.18),
cov(11,1h9) = 0, cov(dDy, dV;) = 0, we have

E(dX;) = E(dDy) + E(dV;),

3.19
Var(dX;) = Var(dD;) + Var(dV;). (8.19)
We derive the mean and variance of dD; and dV;.
For dD;, based on (3.18b),
E(dDy) = pdt, Var(dD;) = oidt. (3.20a)

10



In addition,

E(DtN - Dto) = pd,

3.20b
Var(Dyy, — Dy,) = oiT. ( )

For dV, let V,, = E(V;,), Vi, = 0,V,, = E(V},) = 0,
AV, = dE(V;) = B(AV;) = E(—8:V;dt + »05V/dt) = —65V;dt, (3.21a)

E(WN) = ‘/;N = ‘/_;061']?(—9275) = 07

Let G(V,t) = V2 then Gy = 2V, Gyy = 2, Gy = 0 (here G is the partial differential of
G with respect to t), then according to Ito’s lemma and (3.18¢), let a = —60,V4, b= o9,

b2
dG = ((IGV + Gy + EGVV) dt +b GydW,

(3.21b)
= (—202V2 —+ Ug)dt -+ 20'2Vth.
Let G = E(G) = E(V?),
dG = dE(V?) = E(dV?)
= B((=20,V? + 03) dt + 20,V dW,
2(< 2V ?) + 20,V W) (3.21¢)
= o5dt — 20, E(V=dt)
= oydt — 20,Gdt,
which is a first-order ordinary differential equation. Let y = G, then
d
Yy 2y = 02, (3.21d)
dt
We multiply by an integrating factor efo 262ds — 202t iy (3.21d),
6292t% + 2026292ty — 6292t0'§
d(€292ty) — 6292t0_§
202ty — /t 22525 — o3(e?t — 1) (3.21e)
0 20,
_o3(1—e )
Yy = 292 9
so we have 2 a0,y
1 —e
BVE)="2 3.21f
( tN) 202 ) ( )
so the variance of V; is derived as
2 1— —20>T
Var(vi,) = B(V2) - (B(,)* = 200 (3.214)

20, ’

11



Hence, based on (3.1¢), (3.19), (3.20b), (3.21a), (3.21) and V;, =0,

E(Ry) = BE(X,, — X3
= E(Dyy — Dy) + E(Viy — Vi) = piT,
Var(Rr) = Var(X:, — X4)
=Var(Dyy, — Dy,) + Var(Vy, — Vi) (3.22a)
=Var(Dy, — Dy,) + Var(Vy,)

2 —205T

2 05(1 —e72%27)

= g4 T .
ol + 20,

3.3.4 Serial dependence indicators

Since the log return defined by the Customized AR(1) model is serially dependent, we
introduce two indicators, the variance ratio V R(k) and the first order auto-correlation
AC1(k), to quantify the correlation in terms of the model parameter 6, and the volatility
ratio for white noises in D;, and V,, .

Variance ratio

The variance ratio was first introduced in [23] which tests whether a sample series follows
random walk or not. As in [0], it is formulated as
Var(R;;
VR(E) = L0 Biis) (3.23)

~ kVar(R(t;))’

where R;4p = Zle R(tivj—1), Var(R(t;)) and Var(R;4x) are the 1— and k—period
variance of the sample series. If the log return R(¢;) is a series following a random walk,
which means that there is no correlation between R(t;) and R(t;1x), then Var(R;1x) =
Var(R(t;)+ -+ R(tixk_1)) = EVar(R(t;)). Hence, VR(k) = 1. Otherwise, the value will

diverge from one.

Based on [6], with respect to the continuous model parameter 6y of the Customized
AR(1) model, the variance ratio V R(k) is derived as

k(1 — (1 —09)%) 7% +2(1 — (1 — 65)™)
k(1 — (1= 62)%) 2 + 2kb, !

VR(k) = (3.24)

where 1 = 01 /05 is the volatility ratio for white noises in D;, and V; . Figure 3.1 shows how
V R(k) decays as the time period, the volatility ratio and the model parameter increases.
It is also found that the decreasing speed of V R(k) slows down with the increases of these
variables. This means when the white noise in D, dominates the variation of the whole
model, the auto-correlation between samples decreases faster in the long run. At the same
time, V R(k) decays slower which is shown in Figure 3.1.

12



VR(k) with different ratios VR(k) with different theta2
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Figure 3.1: Variance ratio V R(k) for different volatility ratios and different model param-
eters (Left: 6, = 0.1,r = 0.0, 0.5, 1.0, 1.5; Right: » = 1,6, = 0.001, 0.1, 0.3, 0.5, 0.7,
0.9)

First order auto-correlation

The first order auto-correlation AC1(k) is designed to measure the correlation between
compounded k—period log return. In [5], it is formulated as

At (k) = o0 Xiiw Xiwd) (3.25)
\/V@T(XiyiJrk)V&?"(Xi,k’i)

and with respect to 65, it is derived as

_ (1—6)"2—(1-6)") -1
ACHE) = = A= 09 2 1201 — (1= )" (3:26)

where r = o7/09 is the volatility ratio for the white noise in D, and V; . Figure 3.2
shows the first order auto-correlation of k—period return with the change of 6, and ratio
r. It is found that the log returns of the Customized AR(1) model are generally negatively
correlated, and with the increase of r and 6,, the absolute value of auto-correlation for
k—period return generally decreases. This trend is explained from the continuous model
(3.18) that under this two conditions, the variance of the model mainly stems from the
white noise in D,, and the model tends to a random walk, and the absolute value of
auto-correlation converges to zero. This result also matches the proof in [10] that the
auto-correlation AC1(k) of the customized AR(1) model is negative, and if 5 tends to
zero, it approaches —0.5 for large values of k.
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AC1(k) with different ratios AC1(k) with different theta2
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Figure 3.2: First order auto-correlation for different volatility ratios and different model
parameters (Left: 6, = 0.1,7 = 0.0, 0.5, 1.0, 1.5; Right: r = 1,6, =0.001, 0.1, 0.3, 0.5, 0.7,
0.9)
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Chapter 4

Algorithms

In this chapter, we introduce the Monte Carlo simulation algorithms for the total log
return and the sample path in a given time horizon for each stock price model. To verify
the correctness of those algorithms, we not only compare the simulation results with the
theoretical values derived in the previous chapter, but also among different simulation
times for the total log return, and different time horizons for the sample path of monthly
return. For the total log return, it is expected that the distribution statistics of the total
log return converges to the theoretical value with an increasing number of simulations. For
the sample path monthly log return, when the time horizons increases, the sample size
increases. In this case, the sampled distribution statistics will experience the same change
as simply increasing of number of simulations. In this testing, we focus on the estimates
of mean and variance (Var).

4.1 Algorithms

4.1.1 Simulation for Ry under the Geometric Brownian Motion
According to (3.5), the simulation for Ry under the Geometric Brownian Motion is de-

scribed in Algorithm 1. In simulation, we set the time step to be sufficiently small to
imitate the log of stock price in the continuous model (3.4). Thus, we set At = 1/252 year.

4.1.2 Simulation for Ry under the Customized AR(1) model
According to (3.1c) and (3.9), the simulation for Ry under the Customized AR(1) is de-

scribed in Algorithm 2. Following the same setting in the previous algorithm, we set
At = 1/252 year.
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Algorithm 1 Log return under the Geometric Brownian Motion

Input: Time horizon 7' years; Initial asset price S;,; Mean rate of return p; Volatility
o

Initialize: Time step At = 1/252 year; Number of steps N = T'/At; X, = log(Sy,)

Output: Ry

1: for:=1,2,...,N do

2 Xy =Xy, + (n— S)AL+ oVAEN(0, 1)
3: end for

4: Ry = XtN — Xto

Algorithm 2 Log return of Customized AR(1) model
Input: Time horizon T years; Mean rate of return p; Volatility of ¢;, oq; Volatility of
wy, 02; Model parameter 0,
Initialize: Time step At = 1/252 year; Number of steps N = T/At; D, = 1; V;,; =0
Output: Rr
:fori=1,2,...,N do
Dy, = Dy, , + pAt + oV/At N (0, 1)
Vi, = (1 = 0,00V, + 0oV AL N3(0, 1)
end for
: RT:XtN _Xto = (DtN+‘/tN)_1

AR N e

4.2 Simulation results

4.2.1 Simulation results for Ry

Tables 4.1 and 4.2 present the parameter for the simulation of Ry under the Geometric
Brownian Motion and the Customized AR(1) model. We set T' = 30 years and N, =
10000, 50000, 100000, 200000, and we simulate the total log return Ry based on Algorithm 1
and 2. Table 4.3 and 4.4 show that with the number of simulations increases, the statistics
converges to the theoretical values, which is consistent with our expected results.

So

i

g

100

0.01

0.2

Table 4.1: Inputs for simulation of Ry of the Geometric Brownian Motion

1

01

02

0>

0.01

0.2

0.2

0.1

Table 4.2: Inputs for simulation of Ry of the Customized AR(1)
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Number of simulations
10,000 50,000 100,000 200,000
Mean -0.300000  -0.308797 -0.302403 -0.297940 -0.302028
Var 1.200000 1.167504  1.196725 1.206749  1.199948
SD 1.095445 1.080511 1.093949 1.098521 1.095422

Statistics Theoretical

Table 4.3: Statistics for Ry of the Geometric Brownian Motion with number of simulations
Nyim = 10000, 50000, 100000, 200000.

Number of simulations
10,000 50,000 100,000 200,000
Mean 0.300000  0.321020 0.296936 0.296795 0.302166
Var 1.399504  1.443520 1.402751 1.402336 1.399742
SD 1.183006  1.201466 1.184378 1.184203 1.183107

Statistics Theoretical

Table 4.4: Statistics for Ry of the Customized AR(1) model with number of simulations
Ny, = 10000, 50000, 100000, 200000.

4.2.2 Sample path simulations

In this research, we denote the time horizon of a sample path as 7', N; represents the
number of months in the time horizon 7", i.e., Ny = 127". Then, a sample path of monthly
returns using block bootstrap resampling as

Rsample = {Rsample,h Rsample,2> cey Rsample,Nl}a

We use the same inputs in Table 4.1 and 4.2, and set the number of simulations
Ngim, = 200, 000, time horizon 77 = 100, 200, 500, 1000, 2000, and sample the Monte Carlo
simulation monthly. Table 4.5 and 4.6 show that, with the increase of time horizon, the
simulated estimations converge to the theoretical values.

Time horizon (years)
100 200 200 1000 2000

Statistics Theoretical

Mean -0.0008 -0.0028 -0.0024 -0.0013 -0.0007 -0.0009
Var 0.0033 0.0034 0.0033 0.0033 0.0034 0.0033
SD 0.0577 0.0580  0.0572 0.0573 0.0580 0.0579

Table 4.5: Statistics for sampled monthly log return under the Geometric Brownian Motion
with time horizon 7" = 100, 200, 500, 1000, 2000 years.
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e : Time horizon (years)
Statistics Theoretical 100 500 00 1000 5000

Mean 0.0008 0.0022 0.0004 0.0013 0.0005 0.0009
Var 0.0066 0.0069 0.0065 0.0066 0.0066 0.0066
SD 0.0815 0.0832 0.0809 0.0811 0.0815 0.0815

Table 4.6: Statistics for sampled monthly log return under the Customized AR(1) model
with time horizon 7" = 100, 200, 500, 1000, 2000 years.
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Chapter 5

Block bootstrap resampling

In the financial market, the historical data of an asset price for a long time horizon is
insufficient for further research, especially when we desire to study its distribution where
a large sample size is a fundamental requirement for accurate estimations. To solve this
problem, we try to enlarge the data set for distribution analysis. For example, bootstrap
resampling is widely used. There is good evidence that stock prices have some serial

dependence, i.e., [16, 23]. To retain this dependence in the resampled data set, block
bootstrap resampling, especially stationary block bootstrap resampling where the actual
block size varies for each block, has been used, e.g. [12, 7, 11]. In this research, we

bootstrap resample the log return.

Before implementing bootstrap resampling, we use Monte Carlo simulation to obtain
the distribution of total log return Ry for a given time horizon 7". Then we conduct block
bootstrap resampling for the bootstrap resampled distribution of total log return Ryootstrap
with the same horizon.

The process of resampling is as follows. First, for each block bootstrap resampling
distribution, we generate a single sample path of monthly return Rq,,pi using Monte Carlo
simulation where the time horizon 7" is larger than the given investment horizon 7. Those
sample paths are determined using the optimal block size for long-run variance estimation.
After that, we conduct stationary block bootstrap resampling based on these sample paths,
sum up the monthly return in each resampling path for the bootstrap resampled total log
return Rpoostrap. Finally, we investigate differences between the true and the bootstrap
resampled distribution.

5.1 Stationary block bootstrapping

As mentioned before, stationary block bootstrapping was first introduced in [28] to avoid
the impact of using a fixed block size. Let p = ﬁ where b, is the expected block size,
and the actual block size b,. used for each block bootstrap resampling is generated by a

geometric distribution that

Pr(Y =b,) = (1—- p)leep. (5.1)
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We choose different expected block sizes be,,. We implement the process of bootstrapping
in [27, 29] to resample each block and concatenate them to form a full path of monthly log
returns for the given time horizon T'. The algorithm is sketched in Algorithm 3.

Algorithm 3 Stationary block bootstrapping

Input: sample path Ryumpie, length of bootstrap resampled sample N, expected block
size begp

Initialize: n = number of period (monthly) returns in Rgumpre, sub_block_total = n,
total_sample = 1, actual block size b,. = 0

OUtPUt: Rbootst'rap,month

1: while total sample < N do

2:  if sub_block_total > b,. then

3: Generate a random starting index in sample path to bootstrap, and round the
index to the nearest integer i.e. index = round(1 4+ rand(1,1) x (n — 1))
Generate actual block size from the geometric distribution, i.e. by = geo(bezp)
sub_block_total = 1

end if

if index > n then
index = index - n

end if

10: Rbootstrap(t) = Rsample(bac)

11:  index = index + 1

12:  sub_block_total = sub_block_total + 1

13:  total_sample = total_sample + 1

14: end while

b

© oo

After bootstrap resampling Ng;,, times, we obtain the bootstrap resampled monthly
return Rpyootstrapmontn, and sum it up for each path, i.e.,

N
Rbootstrap,T (Z) = Z Rbootstrap,month(i7j>7 (NS {17 stm] (52)

j=1

to obtain bootstrap resampled log return Rpootstrap,r for the given time horizon T'.

5.2 Distribution shifting

When studying the distribution of Rggmpre of the two models discussed in the previous
chapter, it is found that when performing Monte Carlo simulation to the model directly,
the estimation of variance converges quickly to the true value, while the convergence of
mean takes place only when the time horizon of the sample path 7" is sufficiently large.
Table 5.1 shows the mean estimation of total log return for different sample paths under
the Geometric Brownian Motion. It is found that the block bootstrap is less satisfactory
in approximating the mean of total log return for all block sizes. What is more, for all
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these examples, the gap between the theoretical and resampled value is significant and path
dependent. The reason is that we only use one sample path with a limited time horizon
in each block bootstrap resampling, where the monthly return along the sample path is
randomly simulated. This is not supposing, since the total log return only depends on the
initial and final asset price.

This poor estimation of the mean indicates that if the time horizon 7" of sample path for
block bootstrap resampling is not sufficiently long, there exists a significant path dependent
distance between the true and bootstrap resampled distribution of total log return. For
that of the Customized AR(1) model, the resampled means show similar results.

Block size
1 bop 5 10 20
1.7934 -0.3000 0.5670 0.5702 0.5784 0.5806 0.5792
2.3485 -0.3000 0.2645 0.2634 0.2581 0.2612 0.2626
3.4183 -0.3000 -0.1796 -0.1820 -0.1854 -0.1889 -0.1852
4.0068 -0.3000 1.0844 1.0872 1.0864 1.0936 1.0969

bop Theoretical

Table 5.1: Mean estimation for bootstrap resampled resampled total log return Rpootstrap 1
before shifting for different sample paths under the Geometric Brownian Motion, yielding
bop = 1.7934,2.3485, 3.4183, 4.0068.

To mitigate the effect on mean but keep the shape of distribution consistent, we in-
troduce a shift distance of return d,, which is the optimal shift distance where the true
and shifted distribution experience the largest similarity. Then, we shift the bootstrap
resampled distribution towards the true distribution along the x-axis with distance d,,
and obtain the new bootstrap resampled distribution of return Rgpip. After that, we will
compare the true and shifted distribution.

First, we analyze the distribution of Rpeetstrapr I the range [Tpin, Fmaz). We set Ny,
as the number of bins, and define

Ar = (Tmaa: - 7nmz"rz)/]\/vbiﬂu

T = Tmin, Tit1 = Ti + Ar,

and the bin edge r as
r = {Ti, 1€ {LNbin + 1}}

We define the probability density function for one distribution, X, as

where X; is the probability of X falling in the i bin. Similarly, let Y be the probability
of another distribution for the same definition of bins.

To calculate the distance between X and Y, we introduce the correlation function C(d)

as
C(d):{z?;dximd d>0

C(—d) d<0 (5:3)
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to measure the cross-correlation, which could also treated as the similarity, between X and
shifted Y as a function of the shift d. The optimal shift d* is defined as

d* = argmax C(d), (5.4)
d

which is the distance to achieve the largest overlapped area between the true and bootstrap
resampled distribution. Figure 5.1 shows the plot of cross-correlation C'(d) for bootstrap

resampled distribution based on a sample path of a Geometric Brownian Motion whose
bop = 1.7934, and for other situations the plots are in the same shape.

25 V.

correlation
s
o

05+

-1 . -0.5 E] - 0.‘5 1

lags %10
Figure 5.1: Plot of correlation C(d) with lag d for a bootstrap resampled distribution of a
sample path of a Geometric Brownian Motion whose b,, = 1.7934

In this case, the optimal lag d* is the number of bins to be shifted. To eliminate its
effect on d*, the number of bins Ny, in the range [Tmin, Tmaz] 1S chosen to be sufficiently
large. In addition, the value should be proportional to the number of simulation N,
to ensure that there is enough data to calculate the cross-correlation for each interval on
average.

Finally, to obtain the shifting distance in terms of returns, we define
d, =d* x Ar,

Rshift = Rbootstrap + dra

and we get the bootstrap resampled distribution after shifting Yju;s simultaneously. It
will be shown in the further computation that the resampled distributions before and after
shifting share the distribution statistics such as variance, skewness and kurtosis that are
related to the shape of distribution.
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Chapter 6

Bootstrap resampling analysis

In this research, we conduct computation for total log return under the Geometric Brown-
ian Motion and the Customized AR(1) model, and evaluate the performance of bootstrap
resampled distributions in comparison to the true distribution. We set the target time hori-
zon T = 30 years, time horizon for a sample observation path 7" = 100 years, At = 1/252
year and the number of simulations N, = 200,000. We simulate the true distribution
based on the discretized stochastic processes, as discribed in Algorithm 1 and 2 for each
model. We generate multiple sample paths of the monthly log returns, yielding different
optimal block sizes b,,, and choose expected block sizes for block bootstrap resampling
following the procedure in Algorithm 3. When computing the distance of distribution of
return, we choose the range [rmin, "maz] = [—5, 5], Npin = 10,000, and Ar = 0.001.

For the Geometric Brownian Motion, we focus on the performance of block bootstrap
in the estimation of the distribution for monthly and total log return. For the Customized
AR(1) model, in addition to the bootstrap resampled distribution, we also discuss the
performance of bootstrap resampling estimation for variance ratio V R(k).

6.1 Performance under the Geometric Brownian Mo-
tion

For the Geometric Brownian Motion, we use the inputs in Table 4.1. We choose 4 sample

paths yielding an optimal block size b,, = 1.7934, 2.3485, 3.4183, 4.0668. For each sample

path, we obtain a 200,000 x 360 matrix after block bootstrap resampling, where every
resampling path represents a series of 30-year monthly log return.

6.1.1 Distributions of monthly log returns
In this section, we discuss the bootstrap resampled monthly return Rpotstrap,month With

the stationary block bootstrap resampling. Table 6.1 shows the mean and variance of
bootstrap resampled monthly return from the four sample paths above. It is found that
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the difference of estimations using different block sizes is not significant. Compared with
the theoretical value, the variance estimation is within the error tolerance of 5%. On the
other hand, the accuracy in the mean estimator is poor. This is consistent with the test
in the previous chapter. We need to further correct the mean estimator.

(bop = 1.7934)

L . Block size
Statistics Theoretical i by 5 0 50
Mean -0.0008 0.0016 0.0016 0.0016 0.0016 0.0016
Var 0.0033 0.0035 0.0035 0.0035 0.0035 0.0035
(bop = 2.3485)
e . Block size
Statistics Theoretical T b 5 10 50
Mean -0.0008 0.0007 0.0007 0.0007 0.0007 0.0007
Var 0.0033 0.0032 0.0032 0.0032 0.0032 0.0032
(bop = 3.4183)
. ) Block size
Statistics Theoretical 1 b z 10 50
Mean -0.0008 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005
Var 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033
(bop = 4.0068)
_ . Block size
Statistics Theoretical i b z m 50
Mean -0.0008 0.0030 0.0030 0.0030 0.0030 0.0030
Var 0.0033 0.0032 0.0032 0.0032 0.0032 0.0032

Table 6.1: Statistics for bootstrap resampled monthly log return Rpootstrap,montn for different
sample paths under the Geometric Brownian Motion, yielding b,, = 1.7934, 2.3485, 3.4183,
4.0668.

6.1.2 Distributions of total log returns

Standard bootstrap resampling

Based on (3.7), the log return of the Geometric Brownian Motion follows a standard Brown-
ian motion (SBM) which indicates that in the sample path Rgampie, COU(Rsampie,i» Rsample,j) =

0,4,j € [1, N], where N is the length of resampling paths. Since SBM is i.i.d, the optimal
block size for block bootstrap resampling should be one. Thus, we first conduct block
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bootstrap resampling with a fixed block size of one month, which is the standard boot-
strap resampling. We compare the distribution results for total log return Rpootstrapr for
different sample paths.

Table 6.2 shows the statistics of block bootstrap resampled distributions before and
after shifting for different sample paths. It is found that variance, skewness and kurtosis
arc consistent before and after shifting, while mean is corrected within the estimation
error of 5% compared with the theoretical values. In addition, all statistics are sensitive
to the sample path. These phenomena are also expected with stationary block bootstrap
resampling.

Sample paths
1.7934  2.3485 3.4183  4.0668
Before shifting

Total return Theoretical

Mean -0.3000 0.5702 0.2601 -0.1770 1.0856
Var 1.2000 1.2549 1.1516 1.1965 1.1592
Skewness 0.0000 -0.0057 -0.0053 -0.0009 -0.0050
Kurtosis 3.0000 29851 3.0063 3.0009 3.0158
d, - -0.8740 -0.5630 -0.1260 -1.3880
After shifting
Mean -0.3000 -0.3038 -0.3029 -0.3030 -0.3024
Var 1.2000 1.2549 1.1516 1.1965 1.1592
Skewness 0.0000 -0.0057 -0.0053 -0.0009 -0.0050
Kurtosis 3.0000 29851 3.0063 3.0009 3.0158

Table 6.2: Statistics for bootstrap resampled total log return Rpyoossirap,r for different sample
paths under the Geometric Brownian Motion, yielding b,, = 1.7934, 2.3485, 3.4183, 4.0668.
The block size is fixed as one month.

Stationary block bootstrap resampling

In this section, we conduct stationary block bootstrap resampling and compare the differ-
ence between true and bootstrap resampled distributions under the Geometric Brownian
Motion. We select the same sample paths in the previous section and the expected block
sizes begp = 1, b4p,9,10,20. We use the inputs displayed in Table 4.1. Figure 6.1 to 6.2
and Table 6.3 to 6.4 display the plots and statistics of bootstrap resampled distributions
before and after shifting, with the comparison of theoretical values and these of the true
distribution. From the plots and statistics, it is found that the bootstrap resampled re-
sults are block size dependent and path dependent. Since some statistics will be corrected
after shifting, we compare the shifted distribution with the true distribution. We set the
tolerance of estimation error as 5%.

Within the same sample path, the mean of Ry, s is within an error of 4.22%, 2.21%,
3.31%, 3.29% compared with the true value of Ry. For the median, the errors are 2.77%,
2.17%, 2.61%, 2.17%. We conclude that the distribution after shifting performs well in the
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estimation of mean and median. For standard deviation, with the increase of the expected
block size, the value decreases significantly. In general, skewness and kurtosis move in the
opposite direction of the theoretical values. Since these three indicators remain consistent
before and after shifting, the decreasing trend shows that the bootstrap resampled distri-
bution changes away from a normal distribution when the block size increases. Meanwhile,
it is found that the tails of bootstrap resampled distribution with larger block sizes are
thinner than that with smaller block sizes. Also from the distribution plots, we find that
the peak of bootstrap resampled distribution increases when block size increases.

We show that this decreasing trend is due to the property of block bootstrap resampling.
We start with the block bootstrap resampling with fixed block size. We set the size of
sample path as N, the block size as b, the number of blocks in each simulation path [, and
the size of each resampling path n where n = b x [. For block bootstrap resampling, each
time we randomly choose a starting point in the sample path as the start of block, so the
block bootstrap resampling could be treated as selecting [ starting points from the sample
path where the number of starting points is N. Then, since the same starting point could
be selected repeatedly, the number of combinations for selecting starting points for one
sample path is N!. Since we know that the optimal block size for log return of Geometric
Brownian Motion is one, so if block size b; > by > 1, then [} < I, < n, Nb < N2 < N™,
hence using a block size larger than one will trigger the simulation paths of log return with
higher similarity:.

Since for stationary block bootstrap resampling, E(bs.) = besp, we could link it with
block bootstrap resampling with fixed block size, so this similar-sampling problem will
also occur. As a result, when block size is larger, the sums of log return for different
paths are more clustered around mean, hence the variance tends to be smaller, skewness
and kurtosis diverges from the true value, and then the bootstrap resampled distribution
becomes non-normal and the peak of distribution in the plots becomes steeper.

6.2 Performance under the Customized AR(1) model

In this section, we discuss the performance of the block bootstrap resampling in estimating
the variance ratio and distribution of total log return under the Customized AR(1) model.
In these two tests, we conduct the stationary block bootstrap resampling assuming different
volatility ratios or different model parameters. We explore the trend of estimation with
the variable changes. For the estimation of variance ratio, we also compare the estimation
bias of different volatility ratios between continuous and discrete form in [0].

6.2.1 Estimation of variance ratio V R(k)

As showned in (3.24), the variance ratio V R(k) is only related to the time horizon m,
volatility ratio r = o7/0,, and model parameter 6,. The estimation bias is defined as

E(Y//]\%(k:)) — VR(k), where X//T%(k‘) and V R(k) are the corresponding estimated and the-
oretical value of variance ratio. In [0], the bootstrap resampled estimation bias of the
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Figure 6.1: Bootstrap resampled distribution for total log return Rysotstrap,r for different
sample paths under the Geometric Brownian Motion, yielding b,, = 1.7934, 2.3485 (Left:
before shifting; Right: after shifting).

variance ratio using the moving and stationary block bootstrap resampling was conducted.
In this section, we conduct the same computation for the continuous form by stationary
block bootstrap resampling. We compare the results with that in the previous research.

We simulate 5000 series of annual log returns and obtain the variance of single period
log return Var(X;) for each simulation. After that we use block sizes b to implement
stationary block bootstrap resampling for 1000 blocks, where the resampling series is a
matrix with size (1000b) x 1. We calculate the variance of k-period log return Var(X; k)
as a moving sum and the estimation of variance ratio VR(k). After the simulation, we
obtain the mean of the bootstrap resampled V R(k) for the specific time horizon and block
size. In the computation, we select a series of k£ and b to determine the trend of estimation
bias as the time horizon and block size change.

Following the same inputs of the test in the discrete form (3.9), we set model parameter
0y = 0.1 (¢ = 0.9 in the discrete form), the volatility ratio » € {0.0,0.5,1.0,1.5}, and
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Figure 6.2: Bootstrap resampled distribution for total log return Rysotstrap,r for different
sample paths under the Geometric Brownian Motion, yielding b,, = 3.4183, 4.0068 (Left:
before shifting; Right: after shifting).

the sample length n € {63,120}. We estimate the variance ratio with the time horizon
m € {2,4,...,20} years, and the expected block size used in stationary block bootstrap
resampling b, = k for each value of time horizon.

Table 6.5 shows the estimation bias of the variance ratio under the continuous model
(3.18). It is found that, similar to the resampling result under the discrete model (3.9),
these is an significant increasing trend of estimation bias in V R(k) with increases of time
horizon. This shows the existence of estimation error of block bootstrap resampling, which
is consistent with that for the discrete form. This motivates the selection of the optimal
block size to minimize the estimation bias in VR(k) in [0]. Also, it is found that when
01/09 tends to zero, the bias in the continuous form is slightly larger than that in the
discrete form. When o7 dominates, the continuous form outperforms generally. According
to [0], the reason to both positive and negative bias is due to the extra negative correlation
induced by overlapped blocks (explained in [241, 26]), which is related to the volatility ratio.
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(bop = 1.7934)

_ . Block size
Statistics Theoretical T b z 10 50
Before shifting
Mean -0.3000 0.5670 0.5702 0.5784 0.5806 0.5792
Var 1.2000 1.2544  1.2166 1.1890 1.2018 1.1774
Skewness 0.0000 -0.0030 -0.0035 -0.0197 -0.0183 -0.0069
Kurtosis 3.0000 2.9941 3.0108 2.9852 2.9828 2.9514
d, - -0.8700 -0.8730 -0.8860 -0.8890 -0.8830
After shifting
Mean -0.3000 -0.3030 -0.3028 -0.3076 -0.3084 -0.3038
Var 1.2000 1.2544  1.2166 1.1890 1.2018 1.1774
Skewness 0.0000 -0.0030 -0.0035 -0.0197 -0.0183 -0.0069
Kurtosis 3.0000 2.9941 3.0108 2.9852 2.9828 2.9514
(bop = 2.3485) S
L . ock size
Statistics Theoretical i by 5 0 50
Before shifting
Mean -0.3000 0.2645 0.2634 0.2581 0.2612  0.2626
Var 1.2000 1.1439 1.0300 0.9512 0.9056 0.8795
Skewness 0.0000 -0.0097 0.0075 0.0074 0.0201  0.0436
Kurtosis 3.0000 3.0039 29893 2.9896 2.9819 29724
d, - -0.5690 -0.5630 -0.5600 -0.5590 -0.5550
After shifting
Mean -0.3000 -0.3045 -0.2996 -0.3019 -0.2978 -0.2924
Var 1.2000 1.1439 1.0300 0.9512 0.9056 0.8795
Skewness 0.0000 -0.0097 0.0075 0.0074 0.0201  0.0436
Kurtosis 3.0000 3.0039 29893 2.9896 2.9819 2.9724
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6.2.2 Distribution of monthly log return

Table 6.3: Statistics for bootstrapped resampled total log return Rpoptstrap,r for different
sample paths under the Geometric Brownian Motion, yielding b,, = 1.7934, 2.3485.

The positive bias is due to the random block size generated by a geometric distribution
during the stationary block bootstrap resampling, and this randomness destroys the serial
dependence in the original data. Thus, the bias is the mitigation of two kinds of errors
which might be positive or negative.

In this section, we focus on the block bootstrap resampled monthly return Ryootstrap,month
with the stationary block bootstrap resampling. We use the inputs in Table 4.2 set ratio
r=20,15,60,=0.1andr =1, 6, =0.1,0.9. Table 6.6 shows the block bootstrap resampled



(bop = 3.4183)

Statistics Theoretical T b Bloclg S1e 10 50
Before shifting
Mean -0.3000 -0.1796 -0.1820 -0.1854 -0.1889 -0.1852
Var 1.2000 1.1945 1.0157 0.9611 0.8495 0.7555
Skewness 0.0000 -0.0056 -0.0068 0.0026 -0.0055 -0.0208
Kurtosis 3.0000 3.0161 3.0028 3.0134 3.0055 2.9946
d, - -0.1230 -0.1210 -0.1160 -0.1140 -0.1200
After shifting
Mean -0.3000 -0.3026 -0.3030 -0.3014 -0.3029 -0.3052
Var 1.2000 1.1945 1.0157 0.9611 0.8495 0.7555
Skewness 0.0000 -0.0056 -0.0068 0.0026 -0.0055 -0.0208
Kurtosis 3.0000 3.0161 3.0028 3.0134 3.0055 2.9946
(bop = 4.0068) .
Statistics Theoretical i by Bloclg S12e 0 50
Before shifting
Mean -0.3000 1.0844 1.0872 1.0864 1.0936 1.0969
Var 1.2000 1.1532  0.9618 0.9507 0.9166 0.9070
Skewness 0.0000 -0.0150 -0.0020 0.0071 -0.0093 0.0120
Kurtosis 3.0000 2.9913 29913 3.0027 29914 2.9297
d, - -1.3900 -1.3900 -1.3870 -1.3970 -1.3960
After shifting
Mean -0.3000 -0.3056 -0.3028 -0.3006 -0.3034 -0.2991
Var 1.2000 1.1532  0.9618 0.9507 0.9166 0.9070
Skewness 0.0000 -0.0150 -0.0020 0.0071 -0.0093 0.0120
Kurtosis 3.0000 2.9913 29913 3.0027 29914 2.9297

Table 6.4: Statistics for bootstrapped resampled total log return Rpoptstrap,r for different
sample paths under the Geometric Brownian Motion, yielding b,, = 3.4183, 4.0068.

statistics of monthly return for these settings above. It is found that the block bootstrap
resampling performs well in estimating the distribution statistics for monthly return, and
the estimations for distribution statistics among different block sizes are the same within
four decimal places.
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Time horizon (ycars)
2 4 6 8 10 12 14 16 18 20
0.0 001 0.03 0.04 0.06 0.07 008 0.08 0.09 010 0.10
0.5 0.00 0.02 0.03 0.03 003 0.04 0.04 004 004 0.04

n ratio

63 1.0 -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.03 -0.04 -0.05
1.5 -0.01 -0.03 -0.03 -0.05 -0.06 -0.07 -0.09 -0.10 -0.11 -0.13
0.0 0.02 0.05 0.07 0.08 010 0.11 012 013 0.13 0.13
120 0.5 0.01 004 005 0.06 007 0.07 0.08 008 0.09 0.09

1.0 001 0.02 0.02 003 0.03 003 002 0.02 0.02 0.01
1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -001 -0.02 -0.02

Table 6.5: Estimation bias for the variance ratio, where Bias = F (Y//]\%(k)) —VR(k), where
V R(k) is the theoretical value.

6.2.3 Distribution of total log return
Different volatility ratios

In this section we focus on the performance of the stationary block bootstrap resampling in
the distribution estimation of the total log return with different volatility ratios r. We follow
the same inputs in Table 4.2 and set ratio » = 0.0, 0.5, 1.0, 1.5, 85 = 0.1. Following the same
procedure for GBM, we simulate one sample path for each parameter with expected block
size besy = {1, 10,20, 50, 100, 150} and compare the difference in distribution statistics of
different block sizes.

Table 6.7 and Figure 6.3 show the bootstrap resampled distribution with different r. It
is found that, when r tends to zero, the peak of true distribution for Ry becomes higher
and the performance of bootstrap resampled distribution is poorer. The difference from
plots and variance in the table becomes significant. However, when the ratio r increases
and tends to 1.5, although the statistics still differ significantly, we could observe from the
plot that the bootstrap resampled distribution tends to the true distribution in shape.

We explain this phenomena from the auto-correlation of the log return with the change
of the volatility ratio. When the model parameter 6, is fixed, based on Figure 3.2, as
the volatility ratio decreases and even tends to zero, the white noise in the temporary
component V; dominates. The absolute value of the first order auto-correlation AC1(k)
increases with the increase of the time horizon k. It is significant compared with that of
other ratios. To maintain the large correlation, it is required to use a large block size for
the stationary block bootstrap resampling. A small block size will destroy this dependence,
which triggers a large variance and the bootstrap resampled distribution in plots may not
be treated as an estimation of the true distribution. When 7 increases and the white noise
in the incremental component D; dominates the variance, the auto-correlation recedes.
From Figure 6.3, it is found that the bootstrap resampled performance is better than
before. Thus, it is expected that when r tends to infinity, the log return follows a Standard
Brownian Motion and the optimal block size tends to one.
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(T = 00, 92 = 01)

. . Block size
Statistics Theoretical 1 10 50 = 100 50
Mean 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008
Var 0.0033 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036
(r=15, 6, =0.1)
. . Block size
Statistics Theoretical i 10 50 =0 100 50
Mean 0.0008 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001
Var 0.0108 0.0107 0.0107 0.0107 0.0107 0.0107 o0.0107
(r=1.0, 6, =0.1)
. . Block size
Statistics Theoretical i 10 50 =0 100 50
Mean 0.0008 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001
Var 0.0108 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107
(T = 10, 92 = 09)
. . Block size
Statistics Theoretical i 0 50 50 100 50
Mean 0.0008 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001
Var 0.0108 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107

Table 6.6: Statistics for bootstrap resampled monthly log return Rpyootstrapmontn] for different
sample paths under the Customized AR(1) mode, where r = 0,1.5,0; = 0.1andr = 1,6, =
0.1,0.9.

Different model parameters

In this section we focus on the performance of the stationary block bootstrap resampling in
the distribution estimation of the total log return with different volatility ratios r. We follow
the same inputs in Table 4.2 and set 6, = 0.0,0.1,0.3,0.5,0.7,0.9, » = 1. Following the
same procedure for GBM, we simulate one sample path for each parameter with expected
block size be,, = {1, 10,20, 50, 100, 150} and compare the difference in distribution statistics
of different block sizes.

Figure 6.4 to 6.5 and Table 6.8 to 6.9 show the plots and statistics of the bootstrap
resampled distributions for different values of 6. It is found that with 6, = 0, the bootstrap
resampled estimation is the similar to the Geometric Brownian Motion and the optimal
block size is one month. However, when 6, > 0 the estimation bias is much larger than
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tolerance 5% which indicates the bootstrap resampled distribution is poor in approximating
the trend of the true distribuion. However, we still find the decreasing trend of the variance
as the block size increases. From Table 6.9 it is found that for those two sample paths
when 6y = 0.7 and 6, = 0.9, the optimal block sizes for variance estimation are within the
range (50, 100) months. Outside this range, the variance diverges.

We believe that the phenomena are due to the dependence of the log return on with the
change of model parameter. When 6, = 0, based on (3.7) Ry becomes a Standard Brownian
Motion with finite variance. The bootstrap resampled result is the same as that of GBM.
However, when 6y > 0, according to Figure 3.2, there exists correlation between the log
returns. We find that the estimation of the bootstrap resampled distribution requires a
larger block size to satisfy the estimation of true distribution. It is found that, in the long
run, the absolute value of correlation converges to zero as 0 increases. Therefore, it is
expected that the optimal block size decreases when 6, tends to zero and one.

6.3 Optimal block size

Based on the computation results for these two models, it is found that the block size
influences the bootstrap resampled distribution of the total log return, no matter how large
the serial correlation between sample set is. According to [1], the tradeoff of selecting a
block size is described as follows. A small block size destroys the serial dependence between
log returns. When the block size is too large, the bootstrap resampled paths become too
similar. These two situations trigger a too-large and too-small variance, which verifies the
trend of divergence for #, = 0.7 and 6, = 0.9 in Table 6.9. More importantly, these results
remind us the importance of selecting an optimal block size for block bootstrap resampling
where serial correlation exists. This is also emphasized in [18, 14].
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Figure 6.3: Bootstrap resampled distribution for total log return Ryootstrap,r for different
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(r =0.0)

. . Block size
Statistics Theoretical 1 10 50 =0 00 0
Before shifting
Mean 0.3009 0.1995 0.1996 0.2003 0.2011  0.1999 0.2019
Variance 0.1995 1.1846 1.1368 1.1328 0.9736 0.7962 0.7012
d, - 0.0930 0.1020 0.1160 0.1270 0.1370  0.1240
After shifting
Mean 0.3009 0.2925 0.3016 0.3163 0.3281 0.3369 0.3259

Variance 0.1995 1.1846  1.1368 1.1328 0.9736 0.7962  0.7012

(r=0.5)
.. . Block size
Statistics Theoretical 1 0 50 50 100 50
Before shifting
Mean 0.3012 -0.0804 -0.0960 -0.1025 -0.0965 -0.1042 -0.1007
Variance 0.4995 1.3853 1.1719 1.0935 0.9605 0.8261 0.7417
d, - 0.3790 0.3710 0.3700 0.3870 0.4430 0.4540
After shifting
Mean 0.3012 0.2986  0.2750 0.2675 0.2905 0.3388  0.3533

Variance 0.4995 1.3853 1.1719 1.0935 0.9605 0.8261  0.7417

(r=1.0)
. . Block size
Statistics Theoretical i 0 50 50 100 150
Before shifting
Mean 0.3000 0.2692 0.2712 0.2781 0.2804 0.2748 0.2708
Variance 1.3995 2.2651 2.2248 2.2169 2.2176 2.1707 2.0969
d, - 0.0260 0.0230 0.0210 0.0790 0.1540 0.1770
After shifting
Mean 0.3000 0.2952  0.2942 0.2991 0.3594 0.4288 0.4478

Variance 1.3995 2.2651 22248 2.2169 2.2176 2.1707  2.0969

(r=1.5)
.. . Block size
Statistics Theoretical 1 0 50 =0 00 =0
Before shifting
Mean 0.3009 0.3711 0.3803 0.3784 0.3715 0.3661 0.3720
Variance 2.8995 4.0756  3.7906 3.7875 4.0612 4.0275 3.8350
d, - 0.0670 0.0880 0.0870 0.0890 0.1250 0.1580
After shifting
Mean 0.3009 0.3041 0.2923 0.2914 0.2825 0.2411 0.2140

Variance 2.8995 4.0756  3.7906  3.7875 4.0612  4.0275 3.8350

Table 6.7: Statistics for bootstrap resampled total log return Rpyoozstrap,r for different sample
paths under the Customized AR(1) model, where r = 0.0,0.5,1.0, 1.5.
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(65 = 0.0)

.. . Block size
Statistics Theoretical 7 10 50 =0 100 50
Before shifting
Mean 0.3000 0.4044 0.4256 0.4174 0.4187 0.4195 0.4181
Variance 2.4000 2.4030 2.0240 1.8091 1.4848 1.2824 1.1835
d, - -0.0990 -0.1020 -0.0890 -0.0710 -0.0560 -0.0470
After shifting
Mean 0.3000 0.3054 0.3236 0.3284 0.3477 0.3635 0.3711

Variance 2.4000 24030  2.0240 1.8091 1.4848 1.2824 1.1835

(A2 =0.1)
_y . Block size
Statistics Theoretical i 10 50 =0 100 50
Before shifting
Mean 0.3000 -0.9601 -0.9912 -0.9984 -0.9965 -0.9962 -0.9962
Variance 1.3995 2.3190 1.7094 1.6091 1.5782 1.5343 1.4774
d, - 1.2670 1.3050 1.3300 1.3770 1.4010 1.4060
After shifting
Mean 0.3000 0.3069 0.3138 0.3316 0.3805 0.4048 0.4098

Variance 1.3995 23190  1.7094 1.6091 1.5782 1.5343 1.4774

(62 = 0.3)
.y ) Block size
Statistics Theoretical i 10 50 50 00 50
Before shifting
Mean 0.3000 0.5669 0.5644 0.5723 0.5728 0.5706 0.5688
Variance 1.2667 2.2992  2.0846 1.9126 1.8418 1.9114 1.9362
d, - -0.2700 -0.2540 -0.2590 -0.2940 -0.3650 -0.4170
After shifting
Mean 0.3000 0.2969 0.3104 0.3133 0.2788 0.2056 0.1518

Variance 1.2667 22992 2.0846 19126 1.8418 1.9114 1.9362

Table 6.8: Statistics for bootstrapped resampled total log return Rpysotstrap,r for different
sample paths under the Customized AR(1) model where 65 = 0.0,0.1,0.3.
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(6 = 0.5)

.. . Block size
Statistics Theoretical 7 10 50 = 100 50
Before shifting
Mean 0.3000 -0.0195 -0.0274 -0.0198 -0.0193 -0.0135 -0.0121
Variance 1.2400 2.5660 2.1524 1.7821 1.4186 1.1878 1.0890
d, - 0.3230 0.3260 0.3250 0.3620 0.3650 0.3570
After shifting
Mean 0.3000 0.3035 0.2986 0.3052 0.3427 0.3515 0.3449
Variance 1.2400 2.5660 2.1524 1.7821 1.4186 1.1878 1.0890
(02 =0.7)
.. . Block size
Statistics Theoretical i 10 50 =0 100 50
Before shifting
Mean 0.3000 -0.2348 -0.2615 -0.2580 -0.2472 -0.2543 -0.2539
Variance 1.2286 2.4183 2.0321 1.8537 1.3885 1.0008  0.8257
d, - 0.5380  0.5460 0.5430 0.5540 0.5670  0.5700
After shifting
Mean 0.3000 0.3032 0.2845 0.2850 0.3068 0.3127 0.3161
Variance 1.2286 24183 2.0321 1.8537 1.3885 1.0008  0.8257
(62 =0.9)
_y ) Block size
Statistics Theoretical 1 10 50 = 100 50
Before shifting
Mean 0.3000 0.9578 0.9654 0.9668 0.9617 0.9601 0.9591
Variance 1.2222 2.3725 22006 2.0128 1.6342 1.3078 1.1513
d, - -0.6610 -0.6840 -0.7140 -0.7020 -0.6700 -0.6460
After shifting
Mean 0.3000 0.2968 0.2814 0.2528 0.2597 0.2901 0.3131
Variance 1.2222 2.3725  2.2006 2.0128 1.6342 1.3078 1.1513

Table 6.9: Statistics for bootstrap resampled total log return Ryootstrap,r for different sample
paths under the Customized AR(1) model where 6, = 0.5,0.7,0.9.
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Chapter 7

Conclusions

In this research, we evaluate the performance of the block bootstrap resampling, especially
stationary block bootstrap resampling in the estimation of total log return for a given
time horizon. We use two models for the asset price, the Geometric Brownian Motion and
the Customized AR(1) model. We derive the continuous form for the Customized AR(1)
model, and calculate distribution statistics of the log return based on the continuous form
of these two models. After simulating a sample path of monthly return, we implement the
stationary block bootstrap resampling to obtain the total log return for the target time
horizon.

We find that for the Geometric Brownian Motion, since its log return follows a random
walk, the optimal block size is one. The increase of the block size will trigger high similarity
of simulation paths and incur a small bootstrap variance. For the Customized AR(1)
model, significant auto-correlation explains that the small block size could not satisfy the
estimation requirement to approximate the true distribution of total log return. Based
on the definition in [20], we conclude that the block bootstrap resampling performs well
in approximating level-1 parameters, however for level-2 and high-level parameters, it is
important to choose an optimal block size for estimating the statistics of interest.

There are some directions for future works. One potential aspect is to find the optimal
block size directly based on the purpose of minimizing the variance or other distribution
statistics which could represent the bootstrapped distribution of the total log return. An-
other aspect is that we could calculate the distance of distributions such as the Wasserstein
distance introduce in [32], which is the minimal cost to transfer the bootstrapped distribu-
tion to the true distribution. Both these two methods are non plug-in data-driven methods.
What is more, since we correct the bootstrapped distribution with the shifting distance, it
is possible to test the performance of block bootstrap resampling return in further analysis
such as asset allocation and risk forecasting.
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