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Abstract

Transaction cost function minimization is an important problem in finance. In this
essay, we develop and apply a simulated annealing and smoothing method to this particular
problem. We illustrate that this method is an improvement over using the trust-region
method or simulated annealing algorithm alone. We will provide examples in different
dimensions and using different parameter settings to illustrate the advantage of using a
new approach that combines simulated annealing and smoothing.
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Chapter 1

Introduction

The Mean-Variance (M-V) portfolio selection problem can be solved by quadratic program-
ming and parametric quadratic programming (PQP) method as discussed, for example, in
[5]. The problem can be formulated as:

1
min {—tu’x + §x’C’x Nr=1Az < b} (1.1)

where p is an n-vectors of expected returns, C' is an n X n positive semi-definite covariance
matrix, x is an asset holdings to be determined, [ is an n-vector of 1’s, A is an m X n
matrix, b is an m-vector, and ¢ is non-negative. The constraint I’z = 1 is called the budget
constraint, which requires the asset holdings to sum to unity. The constraints Az < b
represent general linear constraints such as non-negative constraints, upper bounds or lower
bounds on asset holdings, sector constraints, and other linear constraints the investor may
wish to impose.

In problem (1.1), the quantities i, = p'z and o7 = 2’Cx are defined as the expected
return and variance of the portfolio return respectively. The parameter t represents a
particular investor’s aversion to risk.

Transaction costs can arise when an asset is sold or bought, and practical portfolio
optimization requires this transaction costs be included as part of the problem. There are
two common types of transaction cost: piecewise linear concave and piecewise constant,
illustrated in figure 1. Transaction costs are often relatively large when the amount of trans-
action is smaller and increase with a small rate. Therefore the transaction cost function
is concave. Piecewise linear concave transaction costs are popular in many mathematical
models so we use this particular type in our model.
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Figure 1.1: 2 Types of Transaction Cost.

Now we can restate the problem (1.1) as

1 n
min{—tu'x+§x'0x+ZTri(xi) e =1,Az < b} (1.2)
i=1

where > "  Tr;(x;) represents the transaction costs. Since in most cases, we only care
about the boundary constraints instead of other equality or inequality constraints. There-
fore in this essay, we simplify the problem as:

1 n
min {ésc’Qx +gr + ZT’/’i(Ii) h<z< ub} (1.3)

i=1

where () represents the covariance matrix and g represents vector —ty’ in problem (1.2).
We define this equation as the transaction cost function.

We first consider two standard methods that can be applied to this particular optimiza-
tion problem: Trust-Region Method and Simulated Anncaling Method.

A trust-region method defines a region around the current point within which the model
is trusted to be an adequate representation of the objective function, and then solve the
minimization problem of the model in this region. If the step is not acceptable, which
means the objective function value becomes higher than before, the trust-region method
reduces the region size and then resolves the minimization problem. If the step reaches the
boundary and the result is good, the trust-region method increases the region size for a



possible larger step in the next iteration. Therefore, the step size is critical for trust-region
method. This method has been proved to be a powerful approach to optimization because
it requires fewer iterations than other methods and also has relatively strong convergence
properties. Previous trust-region experiments and results can be found in [10] [20] and

[21].

The simulated annealing method is designed to deal with the problems that have many
local optima. Compared to the traditional iteration algorithms for optimization problem
which can only accept a downhill move (i.e., accept the point if the objective function value
becoming smaller), simulated annealing algorithm can accept an uphill move (i.e., accept
the point which makes objective function value greater) with a probability that depends on
a “temperature” parameter. A trust-region method is such a downhill method. Therefore,
the simulated annealing method can escape from local optima in its attempt to get closer
to the global optima. Theoretically, simulated annealing can find the global optimum if we
set up the parameters properly (statistically speaking, in infinite time). Discussion about
simulated annealing and its parameters can be found in [1], [17] [24] and [26]. More details
are in chapter 3.

In this essay, we illustrate the disadvantages of these two methods when dealing with
transaction cost function minimization problem. We add a smoothing technique, which
depends on a single parameter, to handle the transaction costs in a simulated annealing
framework. The new method is called “Simulated Annealing with Smoothing”. It is
efficient and effective to solve the transaction cost function optimization problem by our
new method.



Chapter 2

Transaction Cost Function
Minimization

In this chapter, we first give a description of the transaction cost function and some basic
definitions. Then we show how we handle the transaction cost function’s kink points, at
which the function is not differentiable. Last, we state why it is hard to minimize the
transaction cost function using existing continuous optimization software, such as fmincon
and fminunc in MATLAB.

2.1 Problem Description

In this essay, the problem we solve is:

1 n
min {éx'Qx + gz + ZTTi(xi) b<z< ub} (2.1)

=1

where () is positive definite matrix represents the covariance matrix. b is the lower bound
and ub is the upper bound for . Y"1  Tr;(x;) is the piecewise transaction costs defined
as following:

There are two sets of interest: the set of the kink points and the set of slopes between
the kink points.

e knega,, < knega,,_1 < ... < knega; < 0 < kposi; < ... < kposi;_1 < kpost; are kink
points.



e mnega; < mnegas < ... < mnega,, < 0 < mposi; < ... < mposiay < mposi, are the
slope, notice that mnega; is the slope of the line between knega; and knega;,; and
mposiy, is the slope of the line between kposi, and kposiy. .

e The transaction costs is a straight line with the slope of mnega,, after knega,, as x
goes to —oo and a straight line with the slope of mposi; after kposi; as x goes to oo

Here we give the graph of transaction costs in one dimension to illustrate the definition.

100

Transaction Cost

aw & 5 4 240
knega1x

Figure 2.1: Transaction Costs for One Dimension.

It is reasonable for transaction costs to have this shape because often in the real market,
the more you buy a product, the lower it’s unit price will be. It is also true for the sale
situation. That is the reason why the slope of transaction costs for each dimension has the
property: mnega; < mnegas < ... < mnega,, < 0 < mposi; < ... < mposis < MPoSty.

Note: the introduction of the transaction costs have changed an (easy) convex mini-
mization problem into a (hard) nonconvex problem with many local minima.
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The transaction cost function is not differentiable at the kink points and is piecewise
continuous. We need a way to approximate the first and second derivative to use trust-
region method to minimize transaction cost function. We will discuss this in section (2.2).

Here we give the graph of function (2.1) for n=2.

Figure 2.2: 2 Dimensions Transaction Cost Function.

As shown in the graph, we see there is a plat in this small region which includes several
local minima and the graph looks very nasty. After we smooth the kink points at 2.2, we
may have many local minima in the feasible region. Therefore, it is difficult to minimize
such a problem using the trust-region approach. Trust-region finds a local minimum which
may be far away from the global minima. However, if we want to try a trust-region
approach, the first thing is to find a way to get the gradient and Hessian matrix of the
transaction cost function.



2.2 Smoothing Around the Kink Point

A popular way to solve problem (2.1) is using a trust-region method. This method needs
the first and sccond derivative of the objective function, i.c., the gradient and Hessian
matrix. Since the kink points of the transaction cost function are not differentiable, the
trust-region approach is not directly applicable. Therefore we need a way to smooth the
transaction function around the kink points.

We can smooth the kink points as follows. We define 7r5;(x) to be the smooth function
for transaction costs T'r;(z). For each dimension, given the parameter e.

o If v ¢ [k; — e, k; + €], where k; is the kink point, then TrS;(z) = Tr;(x).

e At k; — € and k; + € two points, the TrS;(z) has the same function value and first
derivative value as T'r;(x).

o If v € [k; — €, ki + €] where k; is the kink point, T7S;(z) is a smooth curvature which
can approximate the original transaction cost function’s value. The curvature can be
generated from previous work.

In this way, we can get the approximation of the first and second derivative of the
transaction cost function everywhere. After that, we can use the MATLAB’s tool-box
fmincon to minimize the transaction cost function with trust-region algorithm.

Figure 2.2 show how we smooth around the kink point.
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Figure 2.3: Smoothing Around the Kink Points.

2.3 The Problem of Minimizing the Transaction Cost
Function

Since the modified transaction cost function is nasty and has many local minima, it is
hard to find a sufficiently good solution using the standard local minimization software
(such as MATLAB’s fmincon or fminunc by trust-region method) because such methods
will probably stop at some local minimum which is far away from the global minimum.

Now, we consider tools and methods to improve on an arbitrary local solution.



Chapter 3

Simulated Annealing and Smoothing

In this chapter, we will first give a description of the simulated annealing algorithm and
then describe how we smooth the transaction cost function. After adding the smoothing
part to the traditional simulated annealing algorithm, it becomes efficient to solve the
optimization problem of (2.1). Then, we give numerical results to illustrate that simulated
annealing with smoothing can do a better job than fmincon in MATLAB (i.e., the trust-
region method).

3.1 Simulated Annealing Algorithm

Simulated annealing is a global search algorithm which can escape from local optima. This
algorithm is easy to implement and has a probability to accept the uphill move (i.e., accept
the point even it makes objective function value higher). These features make simulated
annealing algorithm possible to find the global optima, ideally, in infinite time! It becomes
a popular technique over past two decades. It can be used for discrete and continuous
optimization problems.

Simulated annealing algorithm is typically designed to solve non-convex problems or
problems that have many local optima. It can give us a better solution than purely local
techniques. Unlike the traditional iteration algorithm which only accept the downhill move,
simulated annealing allows perturbation to move uphill in a certain way. The advantage
to accept uphill move is we may escape from the local optima and find a better answer.
Traditional algorithms for solving optimization problems may be trapped in the region
near the start point and can not escape from it.



Simulated Annealing

>

Target Function

Figure 3.1: Simulated Annealing Jump Example.

There are several key parameters in simulated annealing: temperature sequence, trials
for each temperature and so on. Temperature sequence contains a number of temperature
from high to low, and it is used to control the probability of moving uphill. For higher
temperature, the probability of large uphill move is large. For lower temperature, the
probability of uphill move is small. For each temperature, we always accept the downhill
move. Trials for each temperature is the number of neighbourhood points we try at each
temperature, the way to choose the neighbourhood point can be modified depends on the
problem we solve.

Simulated annealing algorithm can be described as this: give the temperature sequence
and trials and the way to find the neighbourhood point. Then for each temperature, try
different neighbourhood point for number of trials times. If the objective function value
is lowered, accept it. If the objective function value is raised, accept it with a probability
depends on the temperature. Details of the simulated annealing algorithm will be given
later.

There are several ways to decide the rule of accepting uphill move and the neighbour-
hood point. Most of the uphill accept rules are based on the difference between the new
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value and old value of the objective function A f. We use the rule called Metropolis distri-
A

bution: the probability of an uphill move of size A f at temperature 7" is: Prlaccept] = ot

and the way to find the neighbourhood point is: Z,e, = Tog + (2 - rand) - sr — sr where sr

is defined by users based on the problem.

It is clear that for the high temperature, the probability of accepting uphill move is
large. As temperature cools down, the probability of allowing uphill move is becomes
smaller and smaller. We stop the search when the objective function value is flat enough
for several temperatures.

Notice that the choice of temperature sequence and trials for each temperature and
the way to choose neighbourhood point can be modified based on the problem. Different
problems may have different parameters. We should also consider the time cost for each
parameter since we want the simulated annealing algorithm provides the final result in a
reasonable time. It is worth noting that the probability of accepting the uphill move is
based on the temperature for each trial, the final answer may not be the same even if we
solve for the same problem.

At each temperature, the structure is shown in algorithm 1.

Algorithm 1 Simulated Annealing at Temperature T
M = number of moves to attempt, T= current temperature, C' is a constant.
for m=1to M do
Generate a new neighbouring solution, evaluate f,¢.
if fnew < fold then
(downhill move: accept it)
Accept this new solution, and update the solution.
else
(uphill move: accept maybe)
Accept with probability P(T') < e
Update the solution if accepted.
end if
end for

—(fnew— fold)
C-T .

The whole simulated annealing algorithm can be described as follow:

11
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Figure 3.2: Simulated Annealing Algorithm.
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Figure 3.3: Simulated Annealing Tracking Plot.

We give an example on how simulated annealing works on our problem. The vertical
bars show the objective function value we have reached at each temperature and the
horizontal lines are the global minimum we have stored.

After introducing the simulated annealing algorithm, we find it is efficient to use this
method to minimize a problem which has many local minima. It has a probability of
“jumping” out of the local minimum zone near the initial point to get a better solution.
Previous work and examples described in [I] [3] [¢] [19] and [23] show that simulated
annealing is a good method to optimize the problems that have many local minima. Also,
simulated annealing can be combined into many other algorithm to make the algorithm
more efficient for particular problems.

13



3.2 Smoothing Sequence

Simulated annealing alone is not enough to minimize the transaction cost function effi-
ciently. After doing several experiments at 2 dimensions and 10 dimensions, we find that
it takes an unacceptably long time to get the final answer because we have to set the
parameters (such as temperature and trials for each temperature) large enough to get a
satisfactory result. For 2 dimensions and 10 dimensions problems, simulated annealing
can cost 10 minutes to get the final result while trust-region method takes a few seconds.
So it would take several hours to get the results if we want to solve 30 or 40 dimensions
problems. Therefore, traditional simulated annealing method may not be suitable for
transaction problems. So we seek to find another way to make simulated annealing more
efficient.

Our purpose is to add some technique to let the simulated annealing get a satisfactory
result in a reasonable time under the same parameters. It may take a bit more time after
we add the technique but we think it is worth to do it.

Notice that in problem (2.1), matrix @) is a positive definite quadratic. Considering
it is easy and efficient to solve an optimization problem for a convex function, we add
a smoothing part in simulated annealing method. First, we approximate our objective
function by a convex function and solve the optimization problem. Then we made the
function closer to the original transaction cost function and solve the optimization problem
using the information we get from the last step. Finally, we solve the original function using
the information obtained from the previous step.

A key observation is that the degree of smoothing can be controlled by adjusting a single
parameter.

Recall that for transaction cost part, we have two sets of interests:

e knega,, < knega,,_1 < ... < knega, < 0 < kposi; < ... < kposi;_1 < kposi; are kink
points.

e mnega; < mnegas < ... < mnega,, < 0 < mposi; < ... < mposias < mposi, are the
slope, notice that mnega; is the slope of the line between knega; and knega;; and
mposiy is the slope of the line between kposi, and kposiyy.

e The transaction costs is a straight line with the slope of mnega,, after knega,, as x
goes to —oo and a straight line with the slope of mposi; after kposi; as x goes to oo

14



Given the value of elements of these two sets. We can define an unique transaction
costs.

The smoothing part includes a parameter 6, which controls the degree of smoothing
part and we called the smoothing function for transaction costs as “f function”. Given the
value of 6, 6 function is defined as following:

e If § = 0, the # function of each dimension should be two straight lines with the slope
of mposiy with the beginning point at kposi; for positive part and mnega; with the
beginning point at knega, for negative part.

o [f 0 =1, the # function of each dimension should be the original transaction costs.

e [f 0 < A < 1, for each dimension, ¢ function is defined similar to the transaction
costs with: mposi; = mposiy + 6 - (mposi; — mposiy), and mnega; = mnega; + 0 -
(mnega; — mnegay )

Notice that the smoothing part only works for the slope of each segment, the kink
points remain the same. To state the idea clearly, we draw the plot of § function as below.

Theta Function

40 T T T T T T T T T
35 L theta=1[Criginal) 4
—#—theta=0
—z—"theta=0.4
—&—theta=0.8
5 4
Z
Q0 A
5 e
= P4
= s A
i
o
.'/
[ i
L4 5 -
,
\.

Figure 3.4: 6 function.
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The main idea of simulated annealing with smoothing is that we have a sequence of 6
which is 0 = 6, < 0y < ... < 6,, = 1 defined by user.

e First, we use 6 function for § = #; = 0 and x( to minimize the modified transaction
cost function, then the modified transaction cost function becomes a convex function,
which means we can solve the minimization problem using simulated anncaling more
quickly and get a better answer: x;

e Then, we use 6 function for § = #y and z; to minimize the modified transaction cost
function using simulated annealing and get x5. Repeat that until § = 6,, = 1 and
the final answer z,,

The advantage of using smoothing part in simulated annealing is that we changed the
function into a convex function when 6 is 0 so that simulated annealing has a much higher
probability to get a better answer in fewer trials and temperature sequence. Then we make
the smoothing part, which means the 6 function become closer to the original transaction
cost function. We use the solution comes from the last step which means we use the
information from last step. The numerical results also show that the simulated annealing
with smoothing does a much better job than trust-region method while it takes less time
than simulated annealing alone.

3.3 Numerical Results

Here we present the numerical results for n = 2,10, 20, 30 and 40 where n is the number of
dimensions. For each dimension we choose, we do 20 different experiments and draw the
final results. Results come from using simulated annealing with smoothing and using the
fmincon in MATLAB’s tool-box with trust-region method. We use the way discussed in
section (2.2) to get the gradient and Hessian matrix of transaction cost function.

The problem we solve is (2.1) and with condition number is equal 10000 of ). The g
and @ is generated randomly. For transaction costs, we also generated it randomly but
control the slope value in a certain interval.

For simulated annealing parameter 7' and Trials. We use T = 10 % 0.9C199) and
Trials = 50 for each temperature. The upperbound is [1000,...,1000] and lowerbound is -
1000,...,-1000]. For fmincon, we choose trust-region method and user supplies the gradient
and Hessian matrix.

16
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Figure 3.5: Final Results of Simulated Annealing with Smoothing Compared with Trust-
Region Method.
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3.4 Conclusion

Based on the numerical results, we can conclude that simulated annealing with smoothing
is much better in minimizing the transaction cost function than just using the trust-region
method. As shown in the graphs, simulated annealing with smoothing will appear to give
the global optimum while trust-region can only find a local optimum near the start point.
This result emphasizes one of our main points: the traditional algorithm for optimization
will probably be trapped in the region near the start point and could not escape from it.
But simulated annealing with smoothing can easily escape from local optima and get a
much better solution.

If the number of dimensions is higher than 40, we can still get a better answer after ad-
justing the parameters of temperature sequence and trials properly in simulated annealing
with smoothing part.

18



Chapter 4

Further Comparison

In this chapter, we do some further comparisons between simulated annealing with smooth-
ing and traditional simulated annealing and trust-region. We also investigate the effect of
different parameters in simulated annealing on the final results.

4.1 Simulated Annealing with and without Smooth-
ing

For some dimensions we draw the plots of the final results of traditional simulated annealing
and simulated annealing with smoothing under the same parameters (same temperature
and same trials for each temperature). We want to see if the smoothing part has effect
on the traditional simulated annealing method. We use the same parameters for simu-
lated annealing with smoothing and traditional simulated annealing, and solve the same
optimization problems.

In this section, the problem we solve is the same as before. The parameters for both
methods is 7 = 10 % 0.9199) and Trials = 50 for each temperature. The upperbound is
(1000, ..., 1000] and lowerbound is [—1000, ..., —1000].

For each dimension we choose, we do 20 cases and draw the final objective function
value we get from simulated annealing with smoothing and traditional simulated annealing.
We also draw the time for both method to see the difference.
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Figure 4.1: Final Results of Simulated Annealing with Smoothing Compared with Tradi-
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From the results we can see that under the same parameters, simulated annealing with
smoothing does a better job than traditional simulated annealing algorithm. However,
the simulated annealing with smoothing takes a longer time to get the final results, but
it is worth to take this time cause the results are much better. We believe if we compare
these two methods in minimizing the transaction cost function in the same time, simulated
annealing and smoothing can do a better job. As we can see, the final objective function’s
value we get from simulated annealing with smoothing is much lower than the final result
of using traditional simulated annealing.

4.2 Simulated Annealing Compared with Trust-Region

In this section we want to see whether the traditional simulated annealing method can do
a better job than fmincon (i.e., trust-region method). We choose n = 2 and 10 to do the
experiments and compare the final results. We use the methods discussed in section (2.2)
to get gradient and Hessian matrix of (2.1). As for the simulated annealing method, we
adjust the parameter for temperature sequence and trials for each temperature.

The parameter we use for simulated annealing is: 7' = 10 * 0.9(3%) and Trials = 400
for each temperature. The upperbound is [1000,...,1000] and lowerbound is [-1000,...,-1000].
For fmincon, we choose trust-region method and user supplies the gradient and Hessian
matrix.
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Figure 4.3: Final Results of Traditional Simulated Annealing Compared with Trust-Region
Method.

After adjusting the parameters for simulated annealing we can find that it can do a
better job than trust-region method, but needs more time. Also, we should notice that for
each dimension, there is a probability that simulated annealing does worse than trust-region
method but the probability is very small. It is reasonable because simulated annealing is
a “random” algorithm since the accept rule depends on a random function. So there is a
chance that simulated annealing can not find a better answer than trust-region method.

After all, we can see that as long as the parameters adjusted properly, simulated an-
nealing without smoothing also can do a better job than trust-region method with a high
probability.
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4.3 Different Parameters Comparison

In this section we do the experiments to find whether the parameters can affect the final
results. Here we do 3 different comparison:

1. We compare the final results and time of two different temperature sequence: T} =
10 % 0.90199) and T, = 10 % 0.90399) Notice that we change the number of sequence.

2. We compare the final results and time of two different number of trials: Trials = 50
and T'rials = 200.

3. We compare the final results of two different Ty: 77 = 10 % 0.9C19) and T, =
finitial 0.9%19)  We know the time for this two different parameters should be the
same so we don’t compare the time this time.

The problem we solve is (2.1) and for each certain dimension we choose, we do 20
different cases and draw the final objective function value and time.
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The results clearly show that the number of trials for each temperature and the initial
temperature Tj in temperature sequence affect the final results. The number of elements in
temperature sequence doesn’t have a significant effect for the results. However, the conclu-
sion should be applied for this particular problem. For different problems the conclusion
may not be the same.

4.4 Conclusion

We conclude that our smoothing idea can play an important and efficient role in a simu-
lated annealing framework for transaction cost function minimization. Simulated annealing
combines with progressive smoothing can be considerable more effective than the straight-
forward application of simulated annealing. Both simulated annealing and simulated an-
nealing with smoothing outperform a local trust-region method with respect to the quality
of the solution found.

We see that some parameters for certain problem also can have effect for the final
results. Users should consider the cost for each parameter and determine them properly
for each problem. Further work can be applied to determine the parameters properly
depends on the problem.
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Chapter 5

Summary

Transaction cost function minimization is an important problem in portfolio selection in
finance. In this essay, we develop and apply a new method for this problem.

Since the transaction cost function is not differentiable at kink points and has many
local optima, it is difficult to get a satisfactory result when minimized by trust-region
algorithm. Another way to deal with this situation is to use a global minimization approach
such as the simulated annecaling algorithm, which is a global search meta-heuristic used to
continuous optimization problems. However, when we use simulated annealing to minimize
the transaction problem, it takes too much time to get a satisfactory result. Even though
the previous work and examples show that simulated annealing can be efficient dealing
with the problems that have many local optima, it is not suitable for transaction cost
function.

Our new approach is to add a smoothing technique in the simulated annealing method-
ology where we can approximately convert the objective function to a convex function and
solve the optimization problem. We change the function to make it closer to the original
transaction cost function while solving the optimization problem using the result we get
from the previous step. Numerical results show that simulated annealing with smooth-
ing is an ideal way to optimize transaction cost function since it is more efficient than
trust-region algorithm and traditional simulated annealing algorithm. The final objective
function value is much lower when we use simulated annealing with smoothing.

We note that the degree of smoothing can be controlled in this problem by adjusting a
single parameter.

As shown in section (3.3), simulated annealing with smoothing can get a much lower
value than trust-region algorithm in minimizing the transaction cost function and it takes
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a reasonable time to reach the final result. From the graphs in section (4.1), we conclude
that simulated annealing with smoothing can get a lower value than traditional simulated
annealing under the same parameters, which means smoothing part makes the simulated
annealing more effective. In section (4.2) and (4.3), we know traditional simulated an-
nealing can do better than trust-region if we set up the parameters properly and different
parameters may affect the final results.

28



References

1]

2]

[6]

[7]

[9]

E.H.L. Aarts and P.J.M van Laarhoven. Statistical cooling: A general approach to
combinatorial optimization problems. Phillips Journal of Research, 40:193-226, 1985.

H. Akaike. On a successive transformation of probability distribution and its appli-
cation to the analysis of the optimum gradient method. Annals of the Institute of
Statistical Mathematics, 11:1-17, 1959.

M.H. Alrefaei and S. Andradottir. A simulated annealing algorithm with constant
temperature for discrete stochastic optimization. Management Science, 45:748-764,
1999.

S. Anily and A. Federgruen. Simulated annealing methods with general acceptance
probabilities. Journal of Applied Probability, 24:657-667, 1987.

M.J. Best and R.R. Grauer. The efficient set mathematics when mean-variance prob-

lems are subject to general lincar constraints. Journal of Economics and Business,
42:105-120, 1990.

M.J. Best and J. Hlouskova. Portfolio selection and transaction cost. Computational
Optimization and Applications, 24:95-116, 2003.

G. Corliss C. Bischof and A. Griewank. Structured second-and higher-order derivatives
through univariate taylor series. Optimization Methods and Software, 2:211-232, 1993.

[. Charon and O. Hudry. The noising methods-a generalization of some metaheuristics.
FEuropean journal of Operational Research, 135:86-101, 2001.

M.A. Fleischer and S.H. Jacobson. Information theory and the finite-time behavior
of the simulated annealing algorithm: experimental results. INFORMS Journal on
Computing, 11:35-43, 1999.

29



[10]

[11]

[19]

[20]

[21]

22]

R.B. Schnabel G.A. Schultz and R.H. Byrd. A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties. SIAM
Journal on Numerical Analysis, 22:47-67, 1985.

FCE Frankfurt Consulting Engineers GmbH.  Optimization.  www.frankfurt-
consulting.de/English /optimierung_us.htm, 2014.

S.J. Wright J. Nocedal. Numerical Optimization. Second edition, 2004.

A.L. Tits J.F. Bonnans, E.R. Panier and J.L.. Zhou. Avoiding the maratos effect
by means of a nonmonotone line search. ii. inequality constrained problems feasible
iterates. STAM Journal on Numerical Analysis, 29:1187-1202, 1992.

A. D. Yucekaya K. Haridass, J. Valenzuela and T. Mcdonald. Scheduling a log trans-
port system using simulated annealing. Information Sciences, 264:302-316, 2014.

O.L. Mangasarian. Nonlinear programming. McGraw-Hill: New York, 1969.

H. Markowitz. The optimization of a quadratic function subject to linear constraints.
Naval Research Logistics Quarterly, March-June:111-133, 1956.

R.L. Salcedo M.F. Cardoso and S.F. de Azevedo. Nonequilibrium simulated annealing:
a faster approach to combinatorial minimization. Industrial Engineering and Chemical
Research, 33:1908-1918, 1994.

M.K. Nadeem, L.K. Sandip, and W.K. Shiv. Simulated annealing technique to design
minimum cost exchanger. Chemical Industry and Chemical Engineering Quarterly,
17(4):409, 2011.

J. Ma P. Tian and D.M. Zhang. Application of the simulated annealing algorithm to
the combinatorial optimization problem with permutation theory: an investigation of
generation mechanism. Furopean Journal of Operational Research, 1999.

J.C. Gilbert R.H. Byrd and J.Nocedal. A trust-region method based on interior point
techniques for nonlinear programming. Mathematical Programming, 89:149-185, 2000.

R.B. Schnabel R.H. Byrd and G.A. Shultz. A trust-region algorithm for nonlinearly
constrained optimization. SIAM Journal on Numerical Analysis, 24:1152—1170, 1987.

K. Ritter. A method for solving nonlinear maximum-problems depending on param-
eters. Naval Research Logistics Quarterly, 14:147-162, 1967.

30



23]

[24]

[25]

[26]

T.C. Martins R.S. Tavares and M.S.G Tsuzuki. Simulated annealing with adaptive
neighbourhood: A case study in off-line robot path planning. Ezpert Systems with
Applications, 38(4):2951-2965, 2011.

R. A Rutenbar. Simulated annealing algorithms: An overview. [FEE Circuits and
Devices Magazine, 26, 1989.

Y.Q. Sheng and A. Takahashi. A simulated annealing based approach to integrated
circuit layout design, simulated annealing - single and multiple objective problems.
Sitmulated Annealing - Single and Multiple Objective Problems, 12, 2012.

A. Solonen. Proposal adaptation in simulated annealing for continuous optimization
problems. Computational Statistics, pages 1-17, 2013.

31



