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Abstract

An implied volatility surface (IVS) is an important tool in finance that allows com-
parison between options with different strikes and maturities, and more importantly their
valuation. However, due to data scarcity or insufficient market transactions, there are miss-
ing points in the observable market IVS. In this research project, we propose employing
score-based generative models, a novel generative model originated from image generation,
to estimate the missing implied volatilities while simultaneously ensuring no-arbitrage con-
ditions. We demonstrate the plausibility of this approach by training score-based models on
synthetic Heston-model generated IVS and achieving an average relative error on missing
volatilities below 0.5%.
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Chapter 1

Introduction

The implied volatility surface is a widely used and valuable tool for pricing, hedging, and
comparing financial derivatives. A one-to-one correspondence between an implied volatility
surface and a call option price surface exists [6]. Consequently, the values and availability
of a (market) implied volatility surface depend on the market transactions of the associated
call options. When only a limited number of transactions have occurred in the market, we
can obtain only a few points in the implied volatility surface, necessitating estimations of
the missing implied volatilities. This problem is referred to as “the volatility completion
problem” [5]. Addressing the volatility completion problem enables more accurate pricing
of options, efficient evaluations of traders’ portfolios, and a better understanding of the
market’s expectations regarding the fluctuations of the underlying asset.

Traditional methods for solving the volatility completion problem involve modeling the
underlying asset price dynamics using stochastic differential equations. For example, the
Black-Scholes model [6] assumes that asset prices follow a geometric Brownian motion.
More complex models include stochastic volatility models [13], stochastic volatility with
jumps [4], local volatility models [9], rough volatility models [12], and others. The dynamics
of the asset price under these models are controlled by their model parameters. As a result,
these models require calibration, i.e., finding the optimal model parameters so that the
output option prices from these models are closest to the observed market option prices
under a specific distance metric.

With recent advancements in machine learning, many deep learning techniques have
been employed to address the volatility completion problem. For example, the authors of
[15, 21, 22] propose using neural networks, specifically feedforward multilayer neural net-
works, to approximate the pricing maps of traditional models. This approach significantly
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reduces calibration time, thereby enhancing the efficiency and applicability of traditional
methods. This line of thought is further extended in [3], where a neural network is used
to directly approximate the model parameters, bypassing calibration entirely. In contrast,
other efforts [5, 24] propose directly learning the implied volatility surface using variational
autoencoders, without making assumptions about asset price dynamics.

Although these data-driven methods can improve the efficiency of traditional model-
based approaches, as pointed out in [3], the option prices produced by artificial neural
networks by default do not guarantee no-arbitrage. In fact, completing the volatility surface
is not a simple estimation problem. There are specific mathematical constraints [23] that
an implied volatility surface must satisfy to be free of static arbitrage. As demonstrated
in [23], even methods not involving machine learning techniques, such as jump models and
parametric models like stochastic volatility inspired representation [11], may not ensure
no-arbitrage. Despite this common pitfall, the authors of [1] attempt to address it by
incorporating soft constraints into the training objective of the artificial neural network,
thereby ensuring that the output surface is arbitrage-free. However, their machine learning
framework remains model-dependent, requiring a choice of how to model the underlying
asset price dynamics.

In this research paper, we propose adopting the perspective of viewing each implied
volatility surface as an image and employing score-based generative models, a novel ma-
chine learning tool originally developed for image generation and inpainting, to address
the volatility completion problem. By leveraging the separated processes of training and
sampling in score-based generative models, we develop a modification to the sampling pro-
cess that ensures no arbitrage. Furthermore, we can provide a numerical estimation of the
deviation of an implied volatility surface from the no-arbitrage conditions, thus offering a
guarantee of the quality of the output implied volatility surface.

Another advantage of this approach is that it is model-free, i.e., it does not require
modeling the underlying asset price. In fact, we can train the score-based generative models
using purely historical data. Additionally, by incorporating implied volatility surfaces
produced by different option pricing models into the training dataset, our proposed method
allows an easy mixture of option pricing models. Moreover, since our method directly solves
the volatility completion problem without the need for calibration, once our score network
is trained, the volatility completion task can be performed quickly. Lastly, our proposed
method is flexible in the sense that it does not assume any patterns in the missing implied
volatilities. We have evaluated our method on synthetic datasets, achieving an average
relative percent error of order 10−4 in the interpolation setting and a maximum relative
error less than 0.5% in an extreme setting where 80% of volatilities are assumed to be
missing.
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The rest of this research paper is organized as follows. Chapter 2 covers the necessary
background, focusing on the definition of implied volatility, no-arbitrage conditions, and
most importantly, the fundamental concepts of score-based generative models. Chapter
3 formulates the volatility completion problem precisely and motivates our perspective
on viewing an implied volatility surface as an image. Moreover, it explains in detail the
inpainting algorithm and how we adapt it to ensure no arbitrage. It also provides the model
framework of our approach and briefly discusses how to tune our score network. Chapter
4 presents the synthetic datasets’ generation process and their details. Furthermore, it
presents the performance of our proposed method in solving the volatility completion
problem.
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Chapter 2

Background

In this chapter, we aim to cover the necessary background of this research project. We
will define what implied volatility is, and discuss no-arbitrage conditions on an implied
volatility surface. Next, we will describe in detail what score-based generative modeling
is, and how and why it could be employed to sample from the true data distribution via
Langevin dynamics. We will also discuss the training and inference process for the noise
conditional score network.

2.1 Definition of Implied Volatility

An option is a type of financial derivative that has been widely used for leveraging, market
speculation, or risk-management purpose. A call (put) option is a contract that gives
its owner the right, not the obligation, to buy (sell) 1 unit of the underlying asset, such
as stock, index, or commodity, at a specified price (strike) K ≥ 0 and at a specified
time (maturity) T > 01. The seller of a call (put) option can be viewed as an insurance
provider such that the option owner can benefit from the upside (downside) movement of
the underlying without bearing risk from the downside (upside) movement. Thus, a price
must be paid to the option seller for the buyer to acquire the purchasing/selling right. This
is the option price V . Finding the fair value of V is called option pricing.

1The definition given here refers to European options. The American options are similarly defined with
the difference that they can be exercised at any time on or before the maturity T . In this paper, we restrict
ourselves to European options.
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Different models have been proposed to solve the option pricing problem. The famous
Black-Scholes model [6] assumes the price of the underlying at time t, denoted by St,
follows the geometric Brownian motion under the risk-free measure:

dSt = rStdt+ σStdZt, (2.1)

where r is the interest rate, σ is a scalar parameter called volatility that needs to be
calibrated, and Zt is the standard Brownian motion. Note that volatility σ describes how
fluctuating the price path St will be

2. With some other additional assumptions, they then
derive that the call option price V should satisfy the following Black-Scholes equation with
the terminal condition representing the payoff:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2.2)

V (S, T ) = max(S −K, 0)

where V (S, t) refers to the option price at time t with the price of the underlying at time
t given by S, K is the strike price and T is the maturity of the call option. The only
unobservable parameter in the Black-Scholes model is the volatility σ and there is a one-
to-one correspondence between the option price and the volatility parameter σ. Implied
volatility refers to the choice of volatility parameter that is consistent with the market
option price. It is a critical tool in finance that can allow comparison between options with
different strikes and maturities and is more preferred by practitioners than the option price
V itself. Here we give its definition rigorously.

For simplicity, we consider a call option with strike K ≥ 0, and time to maturity
T > 0, on a fixed underlying with its current price denoted by S0. We also assume that
the risk-free interest rate r is constant throughout the option’s life and that the underlying
asset does not pay dividends. Let CBS denote the price of this option as calculated by the
Black-Scholes formula [6], a solution to (2.2). Let Cmkt(K,T ) be the observed market price
of the European call option. Then the implied volatility σBS(K,T ) of this option is defined
as the solution of the following equation3:

CBS(S0, K, T, r, σBS(K,T )) = Cmkt(K,T ). (2.3)

In particular, the Black-Scholes formula of this European call option is given by:

CBS(S0, K, T, r, σ) = S0Φ(d1)−Ke−rTΦ(d2),

2One naive way to choose the volatility parameter σ is to use the standard deviation of the historical
return of the underlying. The so-obtained value is called historical volatility.

3Note that the uniqueness and existence of σBS(K,T ) is guaranteed if Cmkt(K,T ) ∈ [max(0, S0 −
Ke−rT ), S0).
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where d1 = 1
σ
√
T

[
ln
(
S0

K

)
+
(
r + σ2

2

)
T
]
, d2 = d1 − σ

√
T and Φ is the c.d.f. of standard

normal. Given the value of CBS(S0, K, T, r, σ), there is no analytic formula that allows us
to recover σ from CBS, S0, K, T, r. Hence, root-finding methods like the bisection method,
Newton’s method, Brent’s method, and the recent machine-learning method [22] have been
employed to solve the equation (2.3) numerically.

In this paper, we assume the underlying asset is fixed, we also call the function (K,T ) 7→
σBS(K,T ) implied volatility surface. We can recover the market option prices Cmkt(K,T )
from the implied volatility surface σBS(K,T ). So implied volatility surface can be viewed
as a preferred metric that reflects the market option prices at a given time point.

2.2 No-arbitrage conditions

Historically, implied volatility surface has come in different shapes, leading to so-called
volatility skew or volatility smile. However, the implied volatility surface σBS(K,T ) does
not come in arbitrary shape. One constraint is that the market option prices Cmkt(K,T )
associated with it should not allow any arbitrage opportunities since in a rational market
such opportunities are assumed to be exploited right away and disappear. In fact, there
are mathematical conditions [1, 11, 23] that an implied volatility surface has to satisfy so
that there is no static arbitrage, i.e., a risk-free profit obtained by trading (without any
re-balancing) the options that are associated with σBS(K,T ).

There are different formulations of the no-arbitrage conditions. For implementation
convenience, we choose the one from [11], as summarized in [1]. We make an additional
assumption that the underlying asset of the options has no dividend. We define the log-
moneyness k of the option with strike K and maturity T to be

k = k(K,T ) = log(K/S0)− rT.

For a given option with maturity T , we can recover the strike K from the log-moneyness
k by K = S0e

k+rT . Log-moneyness k provides a measure of how deviant the strike K is
from the current price of underlying S0 that is independent of the value of S0. With the
correspondence between k and K in mind, from now on whenever we use k and K together,
we assume they are correlated as such. We also define the total implied variance w for the
option with the strike-maturity pair (K,T ) by

w(k, T ) = (σBS(S0e
k+rT , T ))2 · T = (σBS(K,T ))2 · T,

noting that w is a function of log-moneyness k and maturity T .
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Theorem 2.2.1 ([1, 11, 23]). For the total implied variance surface (k, T ) 7→ w(k, T ),
if the following conditions are satisfied, then there is no static arbitrage on the options
associated with w(k, T ):

1. w(k, T ) > 0

2. w(k, 0) = 0

3. w(·, T ) is twice-differentiable

4. ℓcal(k, T ) = ∂Tω(k, T ) ≥ 0.

5. ℓbut(k, T ) =
(
1− k∂kω(k,T )

2ω(k,T )

)2

− ∂kω(k,T )
4

(
1

ω(k,T )
+ 1

4

)
+

∂2
kkω(k,T )

2
≥ 0

6. w(k, T )/(T |k|) = σ2(k, T )/|k| < 2 as k → ±∞.

The first three conditions are basic conditions that any reasonable implied volatility
surface must satisfy. The fourth and fifth conditions are needed to ensure the absence of
calendar spread arbitrage and butterfly arbitrage, which are defined in Appendix A.1. The
sixth condition is a technical condition that is slightly stronger than necessary to make
the proof easier. Moreover, the sixth condition is concerned with the large log-moneyness
behavior of total implied variance, which is often impossible to measure or approximate
due to the finite amount of transactions in the market. In this paper, we will focus on
ensuring the fourth and fifth conditions are satisfied, i.e., to ensure no calendar spread
arbitrage and butterfly arbitrage for the implied volatility surface we constructed.

2.3 Score-Based Generative Modeling

In this research essay, we are going to compute the implied volatility surface using machine
learning techniques. In particular, we will consider a score-based generative model. In this
section, we will formulate the goal of generative modeling, define what is score and explain
why it could be useful in a generative model, define what is score-based generative model,
and describe its training process and inference process. According to [8], the score-based
generative model is one of the three types of diffusion models [25], whose formulation is
inspired by Langevin Dynamics. In our paper, we will focus solely on score-based generative
models. For alternative types of diffusion models, readers can find them in [7, 14, 26, 31].
The following treatment on score-based generative models are largely extracted from [27,
28].
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In generation problem, we are given a dataset of N samples D := {xi ∈ RD}Ni=1, where
each xi are i.i.d. D-dimensional samples from the unknown data distribution pdata(x). The
goal of generative modeling is to learn a model from the dataset D which allows us to
generate samples from pdata(x). We also define the (Stein) score of a probability density
p(x) to be ∇x log p(x), the gradient of the log-density at the data point x. The information
of the score function ∇x log p(x) can enable us to sample from p(x) via Langevin Dynamics.

2.3.1 Naive Langevin dynamics

Recall that our goal is to sample from the unknown data distribution pdata(x). The tra-
ditional approach is to build a statistical model pθ(x) ≈ pdata(x). We have to ensure the
normalization property is satisfied by pθ, i.e.,

∫
pθ(x)dx = 1. This is a big challenge since

the integration over x ∈ RD is particularly hard for large D. To sidestep this difficulty, [27]
proposed to model the score ∇x log p(x). In fact, the score is agnostic as to whether the
given probability density is normalized or not. Suppose p̃(x) is an unnormalized probability
density with normalization constant Z :=

∫
p̃(x)dx ̸= 1. The score is given by:

∇x log
p̃(x)

Z
= ∇x log p̃(x)−∇x logZ = ∇x log p̃(x).

We see that the score does not require the value of Z. In the next paragraph, we will
discuss the mathematical framework – Langevin dynamics, that allows us to sample from
a probability density p(x) given its score ∇x log p(x).

For a probability density p(x) where x ∈ RD, Langevin dynamics is an iterative method
to sample from p(x) using the score ∇x log p(x). We fix a small step size α > 0 and a step
number M . Suppose we have some initial sample point x̃0. Theoretically, the choice of x̃0

does not matter. In fact, we can sample x̃0 from any prior distribution π(x). A common
choice will be π(x) = N (0, ID), a multivariate normal distribution with mean vector 0 ∈ RD

and covariance matrix given by D × D identity matrix ID. Langevin dynamics provides
the following update rule for k = 0, 1, . . . ,M − 1:

x̃k+1 = x̃k + α∇x log p(x̃k) +
√
2αzk,where zk ∼ N (0, ID). (2.4)

The zk are i.i.d samples from N (0, ID), also independent from x̃0. Intuitively, we use the
score (gradient of the log-density) to drive the sample points toward regions with high
probability while adding noise zk to ensure there is an appropriate amount of exploration.
Under some technical conditions, Langevin dynamics tells us that we can recover the
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probability density p(x) by ρ∞(x): the stationary distribution of x̃M when M → ∞,
α → 0.

In reality, we can only approximate the case of T → ∞, α → 0. In the case of
T < ∞, α > 0, a Metropolis-Hastings update rule can be employed to reduce the error of
the sampling process (2.4), at the expense of requiring the information of the transition
probability density q(x′|x)4. We define β by

β := min

{
1,

π(x̃k+1)q(x̃k | x̃k+1)

π(x̃k)q(x̃k+1 | x̃k)

}
. (2.5)

We also generate u ∼ U [0, 1]. Thus, a Metropolis-Hastings update rule reads as: if β ≤ u,
then the proposal is accepted and we set x̃k+1 = x̃k + α∇x log p(x̃k) +

√
2αzk; else the

proposal is rejected and we set x̃k+1 = x̃k. The authors of [28] suggested that the error of
not employing the Metropolis-Hastings update rule is often negligible in practice. While we
follow this guide and assume the error of not employing it is negligible for our choice of α, T ,
we still describe the Metropolis-Hastings update rule here since it inspires our modified
sampling process from Langevin dynamics that can ensure no-arbitrage conditions. More
details can be found in Section 3.2.2.

We observe that the only quantity we need to know in the sampling process (2.4) is the
score function ∇x log p(x). To solve the generation problem, i.e., to learn a model from the
dataset D = {xi ∈ RD}Ni=1 so that we can sample from pdata(x), one approach is that we
train a score network sθ : RD → RD, parameterized by θ, such that sθ(x) ≈ ∇x log pdata(x).
This task is called score matching. Assuming such sθ can be trained successfully, then we
can sample from pdata(x) using the Langevin Dynamics (2.4), with ∇x log p(x̃k) replaced
by sθ(x̃k). In the next section, we will describe how score matching can be effectively done.

2.3.2 Score matching

Observant readers might notice that sθ should be a conservative vector field since the score
function ∇x log pdata(x) is a gradient of a scalar-valued function. Practically this constraint
can be lifted without affecting the performance of model training and sampling [27]. With-
out this constraint, we can directly approximate the score function ∇x log pdata(x), instead
of first approximating log pdata(x) and then taking the gradient of it. The naive objective

4Precisely, q(x′|x) means the probability density of obtaining x′ as a new update by (2.4) given that x

is the last sample point. In particular, we have q(x′|x) ∝ exp
(
− 1

4α ∥x′ − x− α∇ log p(x)∥22
)
.
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function to minimize is hence:

1

2
Epdata

[
∥sθ(x)−∇x log pdata(x)∥22

]
. (2.6)

However, we do not have access to ∇x log pdata(x). Fortunately, it has been shown [16] that
minimizing the objective function (2.6) is equivalent to minimizing the following:

Epdata

[
tr (∇xsθ(x)) +

1

2
∥sθ(x)∥22

]
, (2.7)

where ∇xsθ(x) denotes the Jacobian of sθ(x). However, the computation of tr(∇xsθ(x)) is
expensive and not scalable to higher dimension D.

There are two popular methods for large-scale score matching: denoising score matching
[33] and sliced score matching [30]. The former method perturbs the underlying data
distribution by adding noise and transforms the objective (2.7) so that the costly term
tr(∇xsθ(x)) is avoided, at the expense that it is actually estimating the score of the noise-
perturbed distribution. In contrast, the latter method employs random projections to
estimate the score of the unperturbed true data distribution pdata, at the expense of 4
times more computations [28]. While both methods are applicable to our training, our
experiments on the task of volatility surface completion show that denoising score matching
performs better. Moreover, as will be shown more clearly in Section 2.3.3, denoising score
matching fits naturally to how we motivate the construction of a noise conditional score
network. Hence, we adopt the denoising score matching and will only present it in this
paper.

Denoising score matching first adds noise to the true data distribution pdata(x). Then,
instead of approximating the score function of pdata(x), we now approximate the score func-
tion of the noise-perturbed distribution, where we could circumvent the expensive and un-
scalable calculation of tr(∇xsθ(x)) for reasons below. Specifically, given the datapoint x ∼
pdata(x), we define noise-perturbed distribution conditional on x by qφ(x̃|x) = N (x, φ2ID),
where φ is the noise level5. Hence the noise-perturbed distribution probability density is
given by qφ(x̃) =

∫
qφ(x̃|x)pdata(x)dx. Assuming φ is small enough that qφ(x) ≈ pdata(x)

and so that ∇x log qφ(x) ≈ ∇x log pdata(x), then we can employ score matching to estimate
the score of qφ(x̃) as a proxy of estimating ∇x log pdata(x). It is shown in [33] that the
objective of approximating the score of qφ(x̃) is equivalent to minimizing the following:

1

2
Eqφ(x̃|x)pdata(x)

[
∥sθ(x̃)−∇x̃ log qφ(x̃ | x)∥22

]
. (2.8)

5The usual notation for noise is σ. However, since σ has been used for volatility, we use φ to denote
noise instead.
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Moreover, the optimal network, denoted as sθ∗(x), that minimizes (2.8) satisfies sθ∗(x) =
∇x log qφ(x) ≈ ∇x log pdata(x) almost surely. Note that the objective (2.8) involves taking
the expectation first over x ∼ pdata(x) and then the conditional noise-perturbed distribution
x̃ ∼ qφ(x̃|x). Moreover, the term being considered is∇x̃ log qφ(x̃ | x) instead of∇x̃ log qφ(x̃)
so that we can exploit the analytical form of ∇x̃ log qφ(x̃ | x) to scale up score matching.
In fact, since we have chosen qφ(x̃|x) = N (x, φ2ID), ∇x̃ log qφ(x̃ | x) = −(x̃−x)/φ2, which
can be easily calculated for any dimension D. Thus, making use of the analytical form of
∇x̃ log qφ(x̃ | x) we can scale up score matching by solving (2.8).

2.3.3 Noise Conditional Score Network: Training

It is tempting to apply denoising score matching to train a score network for a sufficiently
small φ. However, in practice, using only one small noise level will suffer from the prob-
lem of inaccurate score estimation in the regions of low data density and slow mixing of
Langevin Dynamics in (2.4) [28]. Precisely, for multi-modal data distribution with low
density in between, the naive application of denoising score matching requires a very large
T and a very small α to correctly recover the relative weights of the modes. In contrast,
if a large noise level φ is employed, the low data density regions will be filled and these
concerns will be addressed. But in this case, we no longer have qφ(x) ≈ pdata(x). We see
that there is a trade-off between the sampling quality of x ∼ qφ(x) versus whether the
noise-perturbed distribution qφ(x) is close enough to the true data density pdata(x) when
we are choosing a single noise level φ.

To address this dilemma, [28] proposed to perturb the data using a sequence of de-
creasing noise levels, obtaining a sequence of noise-perturbed distribution that converges
to data distribution pdata, and to train a noise conditional score network (NCSN) that
keeps track of the scores of each noise level. Thus, we can use Langevin Dynamics (2.4)
to sample from a perturbed distribution with large noise, and gradually anneal down to a
lower noise level. Intuitively, we can make use of the intermediate perturbed distribution
and confer the benefits of score matching on large noise levels to smaller noise levels, hence
improving the efficiency of Langevin Dynamics in sampling an approximate pdata(x).

We will now describe the training objective of a noise conditional score network. We
consider a geometric sequence of decreasing noise levels: φ1 > φ2 > . . . > φL with φi+1

φi
=

γ < 1. The appropriate choices of hyperparameters: initial large noise φ1, final noise φL,
and the number of noise levels L are problem-dependent. More details can be found in
Section 3.4 on how to tune them. Note that these hyperparameters are not trained by the
gradient descent method, only θ is. We assume here that the choices of φ1, φL, L are good
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so that it allows accurate score matching and good sampling properties. For a given noise
φ, we denote the noise-perturbed data distribution by qφ(x) =

∫
pdata(t)N (x|t, φ2ID)dt.

Then a noise conditional score network sθ(·, ·)6 is trained so that ∀φ ∈ {φi}Li=1 : sθ(x, φ) ≈
∇x log qφ(x). We can then employ denoising score matching to each noise level φi and train
one single network sθ(·, ·) that minimizes a weighted average of denoising score matching
objectives of each noise level.

To be precise, we denote the denoising score matching objective of sθ(·, ·) for a given φ
by

ℓ(θ;φ) : =
1

2
Eqφ(x̃|x)pdata(x)

[
∥sθ(x̃, φ)−∇x̃ log qφ(x̃ | x)∥22

]
=

1

2
Epdata(x)Ex̃∼N (x,φ2ID)

[∥∥∥∥sθ(x̃, φ) + x̃− x

φ2

∥∥∥∥2

2

]
.

Thus, a noise conditional score network sθ(·, ·) is trained to minimize the following unified
objective for the whole sequence of noise levels {φi}Li=1:

L(θ; {φi}Li=1) : =
1

L

L∑
i=1

φ2
i ℓ(θ;φi) (2.9)

=
1

2L

L∑
i=1

φ2
iEqφi (x̃|x)pdata(x)

[
∥sθ(x̃, φi)−∇x̃ log qφi

(x̃ | x)∥22
]
. (2.10)

Note that the weights for each ℓ(θ;φi) are chosen to be φ2
i . This is motivated by the empiri-

cal observation [28] that such a choice can lead to the order of magnitude of φ2
i ℓ(θ;φi) being

independent of φi. When training the noise conditional score network, the expectations in
(2.9) are estimated using empirical averages.

2.3.4 Noise Conditional Score Network: Inference

After we used the given dataset D := {xi ∈ RD}Ni=1 to train a noise conditional score
network sθ(·, ·) that minimizes the unified objective (2.9), we can then use sθ(·, ·) to sample
from pdata via a procedure called annealed Langevin dynamics (ALD) [28], which addresses
the problem of inaccurate score estimation and slow mixing of naive Langevin dynamics.

6Note that there are two arguments to sθ(·, ·). The first argument is the usual input x and the second
argument is the noise level φ, which adds flexibility to the network to approximate the score on each noise
level.
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In general, the higher the noise φ, the better the mixing rate and score matching for the
noise-perturbed distribution qφ. The idea of annealed Langevin dynamics (Algorithm 1)
is to exploit the sampling advantage of a larger noise level φi, obtaining a good sample
x̃M from qφi

using simple Langevin dynamics with step size αi. This good sample x̃M will
likely be residing in the high-density region of qφi

. Then since the difference of successive
noises φi, φi+1 is small, the good sample x̃M from qφi

will also likely be residing in the
high-density region of qφi+1

. Since score estimation and the mixing of Lagenvin dynamics
work better in the high-density region, the good sample x̃M from qφi

will provide a good
initial sample point for sampling from qφi+1

using simple Langevin dynamics with a reduced
step size αi+1. Repeating this process for i = 1, 2, . . . , L, we obtain a good final sample
x̃M from qφL

≈ pdata. The choice of step size αi = ϵ · φ2
i /φ

2
L is motivated so that the ratio

between the terms αisθ(x̃t−1, φi) and
√
2αizt in Algorithm 1 does not depend on φi [28],

i.e., the signal (score) to noise ratio is roughly a constant across each noise level.

Algorithm 1 Annealed Langevin dynamics (ALD)

Input: {φi}Li=1,M, ϵ, sθ(·, ·)
▷ Noise Levels, number of sampling steps per noise scale, step size parameter, trained
NCSN

Output: x̃M ∼ qφL
≈ pdata ▷ Sample from qφL

≈ pdata
1: Initialize x̃0 ∼ N (0, ID) ▷ The prior distribution of x̃0 could also be U [0, 1]
2: for i = 1, 2, . . . , L do
3: αi = ϵ · φ2

i /φ
2
L ▷ αi is the step size for sampling qφi

4: for t = 1, 2, . . . ,M do
5: zt ∼ N (0, ID) ▷ Sample independently from all previous random samples
6: x̃t = x̃t−1 + αisθ(x̃t−1, φi) +

√
2αizt

7: end for
8: x̃0 = x̃M

▷ x̃M is a good sample from qφi
and is a good initial point for sampling qφi+1

9: end for

To provide a specific example, let us consider the dataset D as the MNIST dataset. In
this case, each element xi ∈ D is a 28× 28 matrix containing pixel values, which represent
grayscale images of digits ranging from 0 to 9. Then, the true data distribution, pdata over
x ∈ R28×28 represents images of handwritten digits between 0 and 9. The output x̃M from
Algorithm 1 will be a good and new sample from pdata, meaning that x̃M , when represented
as an image, just looks like a handwritten integer from 0 to 9, while not identical to any
xi ∈ D . It is important to note that we input nothing but noise to the score network sθ(·, ·)
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for the generation of x̃M , which involves repeated Langevin updates, as described in line 6
of Algorithm 1.
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Chapter 3

Methodology

In this chapter, we will explore the application of score-based generative models to a
problem related to implied volatility surfaces. In particular, we will treat each implied
volatility surface as an image, and our aim is to estimate missing volatilities by filling in
the gaps in these images, much like an inpainting task, where missing parts of an image are
filled to form a complete image. We will then discuss in detail how a score-based generative
model can perform inpainting and how we adapt it to ensure no-arbitrage conditions.
Furthermore, we will delve into the methods we employ to tune the hyperparameters
of a score-based generative model, thereby enhancing its performance. Throughout this
chapter, we will follow the notations established in Chapter 2.

3.1 Volatility completion problem

3.1.1 General formulation

Recall in Chapter 2 that the implied volatility surface refers to the function (K,T ) 7→
σBS(K,T ). When it is plotted graphically, it is a surface with its shape usually1 con-
strained by Theorem 2.2.1. The market implied volatility surface (K,T ) 7→ σBS(K,T )
is determined by the bid and ask occurring in the market. Due to the limited transac-
tions in the market, we might need to estimate the missing implied volatilities based on
known implied volatilities at other points. Hence we will formulate the volatility surface
computation as a completion problem:

1Unless there is a market inefficiency where a static arbitrage can be obtained.
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Problem 1 (Volatility completion problem, general form). Given the implied volatilities
{σBS(Ki, Ti)}Ni=1 of European call options with different strikes and maturities, all on the
same underlying. Based on that information, how can we estimate the implied volatility
σBS(K,T ) for a strike-maturity pair (K,T ) /∈ {(Ki, Ti)}Ni=1.

Formulating the volatility surface computation as a completion problem enables us to
develop a systematic approach to estimate missing implied volatilities. Unlike traditional
option models that place a significant emphasis on modeling the dynamics of the asset
price path St, this formulation focuses on the estimation of missing data. This data-driven
perspective makes the problem more amenable to machine-learning approaches. In the
next section, motivated by practical interest, we will further refine the problem, resulting
in a form where score-based generative models can be applied.

3.1.2 Image perspective

The general formulation of the volatility completion problem, as presented earlier, does
not take into account the distribution of strike prices Ki and maturities Ti. In other
words, it lacks constraints that reflect the real-world patterns of trading activity, which
predominantly occur for specific strike-maturity pairs. The absence of these constraints
could make the estimation of implied volatilities unnecessarily difficult, less accurate, and
less relevant for practical applications.

In practice, options with strike prices K that significantly deviate from the current
underlying price S0 are traded less frequently, as well as options with maturities T greater
than 1 year. Therefore, it is important to refine the volatility completion problem by
focusing on strike-maturity pairs that are more relevant to actual trading activity. To this
end, we consider an increasing sequence of strikes K1 < K2 < . . . < Kn with K1 = e−1S0

and Kn = e1S0, limiting the problem to options with strikes relatively close to S0. We
also consider an increasing sequence of maturities 0 < T1 < T2 < . . . < Tm with Tm = 1,
further limiting the problem to options with a maturity of at most one year.

To connect this practical consideration with the original volatility completion Problem
1, we introduce a fixed grid of strikes and maturities, denoted by ∆ := {(Ki, Tj)}n,mi=1,j=1.
Thus, we will only consider options with a strike-maturity pair (Ki, Tj) ∈ ∆. We also
extend Problem 1 slightly by allowing estimating multiple missing volatilities at once.
Hence, the problem can be described as: given implied volatilities for some grid points in
∆, how can we estimate the unknown implied volatilities associated with the remaining
grid points in ∆?

16



To be precise, following the notation in [15], for any subset A of ∆, we denote the
implied volatilities associated with strike-maturity pairs in A by ΣBS(A) := {σBS(Ki, Tj) |
(Ki, Tj) ∈ A}. Thus, the complete discretized implied volatility surface is just ΣBS(∆) =
{σBS(Ki, Tj)}n,mi=1,j=1. Using subset A to denote the set of strike-maturity pairs to which
implied volatilities are missing, the general formulation of the volatility completion Problem
1 can be refined to the following:

Problem 2 (Volatility completion problem, image form). Fix a subset A of ∆. Assume
that we are given ΣBS(∆ \ A). Based on this information, how can we estimate ΣBS(A),
thus obtaining the complete implied volatility surface ΣBS(∆)?

In this paper, we propose that we can view the complete implied volatility surface
ΣBS(∆) as an image with n · m pixels. This is a significant insight that allows machine
learning methods, in particular, score-based generative models, which have been well-
developed for image inpainting, to be extended to performing implied volatility completion.

Score-based generative models are capable of reconstructing an incomplete image of
human faces to the point there is no visible difference to humans [27]. The image of
the implied volatility surface ΣBS(∆), described visually, is just a picture consisting of
gradually changing grey colors, which is way less complicated than human faces. Inspired
by the success of image inpainting capability of score-based generative models on human
faces, we will explore the use of score-based generative models for implied volatility surfaces.
Another advantage of using score-based generative models is that its sampling algorithm
is more amenable than other generative models like generative adversarial networks. As a
result, we are able to modify it to ensure no-arbitrage conditions.

Transforming Problem 1 to Problem 2, we can treat it as an image inpainting problem,
to which score-based generative models can solve. We have mentioned in Chapter 2 how
score-based generative models can sample from an unknown data distribution pdata(x). In
the coming sections, we will describe how to modify the Algorithm 1 so that it can perform
inpainting. Furthermore, we will discuss how we can ensure no-arbitrage conditions by
further tweaking the sampling process.

Before moving to the next section, it should also be mentioned that the image point of
view is first explored in [15] and has inspired the above formulation. However, the problem
at hand here is different from the problem in [15]. They are concerned with speeding up
existing option pricing models by training a feedforward multilayer neural network Fθ to
approximate the option evaluation map F . In contrast2, in our setting, the emphasis is
given to the supposedly given knowledge ΣBS(∆ \ A) and how we can estimate ΣBS(A)

2Nonetheless, [15] points out an advantage of the grid-based approach that is also applicable in our
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while preserving no-arbitrage on ΣBS(∆), leveraging the image inpainting capability of
score-based generative models.

3.2 Inpainting algorithm with no-arbitrage conditions

Image inpainting is the task of reconstructing the missing parts of an incomplete image.
For simplicity, we assume the image is grey scale. Hence, we can denote the complete
image by x ∈ Rn×m, a n×m matrix storing the pixel values, where n,m are the height and
the width of the image respectively. Let Ξ ∈ {0, 1}n×m be the mask that indicates regions
not missing in the incomplete image so that Ξij = 1 means the pixel at (i, j) position is
not missing and Ξij = 0 means the pixel at (i, j) position is missing. Then the incomplete
image is just x⊙Ξ, where ⊙ means element-wise multiplication. The goal of inpainting is
to recover x based on the incomplete image x ⊙ Ξ. In the following, we will first discuss
the original inpainting algorithm [28] and then we will discuss how to modify it to solve
the Problem 2 with an emphasis on ensuring no-arbitrage conditions on ΣBS(∆).

3.2.1 Original

Score-based generative models have been developed for image inpainting [27, 28]. Intu-
itively, it is achieved by modifying the sampling Algorithm 1 to incorporate the signal
of the given pixels into the noise conditional score network sθ(·, ·). During the sampling
process 1, we instead hard-code the given pixels to each x̃t, with the unknown pixels
guided by the usual Langevin update. That is, we set x̃t ⊙ Ξ = x ⊙ Ξ and allow the
missing parts x̃t ⊙ (1 − Ξ) to be guided by the usual Langevin update. The conditional
score sθ(x̃t, φi) so calculated will be guiding us towards the higher probability region of
the noise-perturbed distribution with respect to noise φi conditioned on the knowledge
of the given pixels x ⊙ Ξ, i.e., qφi

(x̃|x̃ ⊙ Ξ = x ⊙ Ξ). By the same logic as in Algo-
rithm 1, through annealing the noise level, we can, in the end, obtain a good sample from
qφL

(x̃|x̃⊙ Ξ = x⊙ Ξ) ≈ pdata(x̃|x̃⊙ Ξ = x⊙ Ξ).

The annealed Langevin dynamics (ALD) inpainting algorithm is presented in Algorithm
2. For notation convenience, whenever we sample a random number in Algorithm 2, it is

setting. Suppose we prepare our training dataset by the usual Monte Carlo approach, with certain (usually
around 100000) stock price sample paths at hand. Then we can easily evaluate options with additional
strikes and maturities using the same set of sample paths. This allows an easy refinement on ∆. While
we still need to retrain our score model on the implied volatility surfaces corresponding with new ∆, the
data preparation step needs not to be redone completely and a significant amount of time is saved.
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assumed to be drawn independently from all previous random samples. Moreover, we
reuse the symbols with the same definitions from Algorithm 1. Recall that the goal is
to recover the complete image x based on the given incomplete image x ⊙ Ξ. Compared
to Algorithm 1, Algorithm 2 takes additional inputs: mask Ξ and the incomplete image
x⊙ Ξ. As seen in lines 4 and 5, for each noise level φi, we add noise z̃ to x⊙ Ξ, obtaining
y = x ⊙ Ξ + z̃. This is to make sure that when we hard-code the given pixels value
to the post-Langevin sample x̃t in line 9, we are still sampling from qφi

. The ability of
Algorithm 2 to complete the image relies on the signal sθ(x̃t−1, φi) in line 8. Note that
x̃t−1 ⊙ Ξ = y ⊙ Ξ = x ⊙ Ξ + z̃ ⊙ Ξ ≈ x ⊙ Ξ. Thus, sθ(x̃t−1, φi) implicitly contains the
information of the given incomplete image. Intuitively, it encodes the direction in which
we can make the image more realistic, starting from the incomplete image x⊙Ξ and noise
elsewhere.

Algorithm 2 Annealed Langevin dynamics (ALD) inpainting

Input: {φi}Li=1,M, ϵ, sθ(·, ·)
Input: Ξ, x⊙ Ξ

▷ Ξ is mask indicating regions not occluded, x is the complete image and so x ⊙ Ξ is
the given incomplete image

Output: x̃M

▷ Approximate sample from pdata(x̃|x̃⊙ Ξ = x⊙ Ξ). Estimate of x
1: Initialize x̃0 ∼ N (0, ID)
2: for i = 1, 2, . . . , L do
3: αi = ϵ · φ2

i /φ
2
L

4: z̃ ∼ N (0, φ2
i ID) ▷ Random sample

5: y = x⊙ Ξ + z̃ ▷ Consistent with qφi

6: for t = 1, 2, . . . ,M do
7: zt ∼ N (0, ID) ▷ Random sample
8: x̃t = x̃t−1 + αisθ(x̃t−1, φi) +

√
2αizt

9: x̃t = x̃t ⊙ (1− Ξ) + y ⊙ Ξ
▷ The given pixels are hard-coded to the sample x̃t while the missing pixels are guided
by the Langevin update

10: end for
11: x̃0 = x̃M

12: end for
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3.2.2 With no-arbitrage conditions

Following our image perspective on the discrete implied volatility surface ΣBS(∆) and
previous notations in Section 3.2.1, we will use x to denote ΣBS(∆), treating ΣBS(∆) as an
image. Also, the subset A of ∆, recording the positions of missing implied volatilities, can
be represented by 1− Ξ. Thus, ΣBS(∆ \ A) is just the given incomplete image x⊙ Ξ and
based on that we want to recover x, i.e., ΣBS(∆). Thus we see that Problem 2 is the same
inpainting problem that Algorithm 2 is trying to solve.

However, recall that the implied volatility surface (K,T ) 7→ σBS(K,T ) is constrained
by Theorem 2.2.1. Thus, to solve Problem 2, we cannot simply adopt the original in-
painting Algorithm 2. We have to impose additional constraints to make the resulting
estimate of the discrete implied volatility surface ΣBS(∆) satisfies Theorem 2.2.1. The
authors of [1] proposed to use soft constraints in the training process of their feedforward
multilayer neural network. Their approach relies on the fact that their neural network
actually takes input (K,T ) and outputs an estimate of σBS(K,T ). In other words, they
are training a neural network w̃θ directly approximating the implied total variance func-
tion w. Thus, by employing twice-differentiable activation functions, they can exactly
calculate ∂T w̃θ(k, T ), ∂kw̃θ(k, T ), ∂kkw̃θ(k, T ). This allows them to calculate ℓcal, ℓbut for
w̃θ and ensuring no arbitrage in the training process of w̃θ. However, the same approach
cannot be adopted here since our noise conditional score network sθ(·, ·) does not directly
approximate the implied total variance function (K,T ) 7→ w(K,T ). In fact, it is not even
a function with variables (K,T ).

Instead of modifying the training objective, as was done in [1], we propose here to mod-
ify the original inpainting Algorithm 2 to ensure no-arbitrage conditions when estimating
x = ΣBS(∆). The basic idea is first to define butterfly and calendar spread loss functions
B,C to measure how an intermediate estimate x̃t of the true implied volatility surface x,
as generated by Algorithm 2, deviates from no-arbitrage conditions 4, 5 in Theorem 2.2.1.
Inspired by the Metropolis-Hasting update rule (2.5), we propose a no-arbitrage update
rule. By using the losses B(x̃t), C(x̃t), we define an acceptance ratio β. The no-arbitrage
update rule will accept x̃t as our next sample if β is small enough. Intuitively, the no-
arbitrage rule forces the sampling process to explore more the region of probability space
that exhibits no-arbitrage and ensures on average our intermediate samples will gradually
satisfy no-arbitrage. Since the true implied volatility surface x is in fact free of arbitrage,
this is beneficial to solving the volatility surface completion. Now we will describe the
method in detail.

For a discrete implied volatility surface ΣBS(∆), by making use of the grid ∆ =
{(Ki, Tj)}n,mi=1,j=1, we use finite difference method to approximate ∂Tw(k, T ), ∂kw(k, T ),
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∂kkw(k, T ). To be precise, for a ΣBS(∆), we let ki be the log-moneyness corresponding to
Ki and denote the finite difference approximations by ∂̃Tw(ki, Tj), ∂̃kw(ki, Tj), ∂̃kkw(ki, Tj).
These quantities are given by the following formulae:

∂̃Tw(ki, Tj) : =
w(ki, Tj+1)− w(ki, Tj)

Tj+1 − Tj

, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1,

∂̃kw(ki, Tj) : =
w(ki+1, Tj)− w(ki, Tj)

ki+1 − ki
, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m,

∂̃kkw(ki, Tj) : =
∂̃kw(ki+1, Tj)− ∂̃kw(ki, Tj)

ki+1 − ki
, 1 ≤ i ≤ n− 2, 1 ≤ j ≤ m.

Note that we can only obtain all three approximations simultaneously on the restricted
grid ∆−2,−1 := {(Ki, Tj)}n−2,m−1

i=1,j=1 . Based on Theorem 2.2.1, we can then obtain the finite
difference approximation of ℓcal(k, T ), ℓbut(k, T ) at (Ki, Tj) ∈ ∆−2,−1 which we denote by
ℓ̃cal(ki, Tj), ℓ̃but(ki, Tj) respectively. Now, we define the butterfly loss function B and the
calendar spread loss function C evaluated at x = ΣBS(∆) by

B(ΣBS(∆)) =
1

(n− 2)(m− 1)

n−2∑
i=1

m−1∑
j=1

max(ℓ̃but(ki, Tj), 0),

C(ΣBS(∆)) =
1

(n− 2)(m− 1)

n−2∑
i=1

m−1∑
j=1

max(ℓ̃cal(ki, Tj), 0).

Let x̃′
t denote the proposed update for the intermediate estimate. We first calculate

Bt := B(x̃′
t), Ct := C(x̃′

t)
3. Then we compare the current losses with the losses of the

previous step by computing the following no-arbitrage acceptance ratio:

β = max
( Bt

Bt−1 + ϵ′
,

Ct

Ct−1 + ϵ′

)
, (3.1)

where ε′ can be any small positive number to avoid division by 0 with default value 0.001.
Moreover, we define B0 = 0, C0 = 0 ensuring (3.1) is well-defined when t = 1.

Then the no-arbitrage update rule is as follows. We first generate a random number
u ∼ U [0, 1.2]. If the acceptance ratio β ≤ u, then we accept x̃′

t as our next sample and set

3Note that these losses are saved so that we can plot the quantiles of the losses for each noise level to
understand how the proposed samples gradually satisfy the no-arbitrage conditions through annealing the
noise level.
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x̃t = x̃′
t. If β > u, then we reject the proposed update x̃′

t and set x̃t = x̃t−1. The upper
bound 1.2 is chosen so that in some cases we accept x̃t even though it might be slightly
worse in terms of satisfying no-arbitrage conditions. Intuitively, it allows our no-arbitrage
inpainting algorithm to explore a larger region of the probability space.

Additionally, as opposed to Algorithm 2, we do not add noise to the given incom-
plete image x⊙ Ξ when hard-coding these pixels to the intermediate sample. We observe
that such a change can slightly improve the performance of estimating missing implied
volatilities.

Moreover, after all the sampling steps are done, we add a denoising step setting our
final estimation to be x̃M + φ2

Lsθ(x̃M , φL), as suggested by [18]. This is a technique that
can improve the sample quality when applied at the end of Langevin dynamics [18, 27]. As
mentioned in [18], if we denote the optimal score network that minimizes (2.9) by sθ∗(·, ·),
then the expected denoised sample given a noisy sample x̃M can be expressed as

Ex∼qφL
(x|x̃M )[x] = x̃M + φ2

Lsθ∗(x̃M , φL).

Practically, we also observe improved performance in solving Problem 2 when we employ
the denoising step. After the denoising step, for the sake of consistency, we hard-code the
given incomplete image x⊙ Ξ again.

The no-arbitrage inpainting algorithm is presented in Algorithm 3.

3.3 Model framework

In this section, we will discuss how to apply Algorithm 3 to solve Problem 2, the image
version of the original volatility surface problem. In particular, we will describe the frame-
work for generating synthetic datasets, training the model, and finally evaluating the model
performance. This will allow the reader to have a better grasp of the results presented in
Chapter 4.

Before diving into the steps of the framework, for the architecture of the noise condi-
tional score network sθ(·, ·), we have followed the U-Net architecture as employed in [28],
inspired by its successful performance in the task of semantic segmentation. We only made
one minor adjustment to the Refine-Net [20] (a variant of U-Net) architecture of sθ(·, ·)
by reducing the number of filters, i.e., number of feature maps, for layers corresponding
to each cascade, accustoming the fact that the volatility surface is not as complicated as
human faces.
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Algorithm 3 ALD inpainting, with no-arbitrage

Input: {φi}Li=1,M, ϵ, sθ(·, ·)
Input: Ξ, x⊙ Ξ, ϵ′ = 0.001

▷ Ξ is mask indicating regions not occluded, x is the complete image and so x ⊙ Ξ
is the given incomplete image, ϵ′ can be any small positive number suitable to avoid
division by 0.

Output: x̃M

▷ Approximate sample from pdata(x̃|x̃⊙ Ξ = x⊙ Ξ). Estimate of x
1: Initialize x̃0 ∼ N (0, ID)
2: for i = 1, 2, . . . , L do
3: αi = ϵ · φ2

i /φ
2
L

4: for t = 1, 2, . . . ,M do
5: zt ∼ N (0, ID) ▷ Random sample
6: x̃′

t = x̃t−1 + αisθ(x̃t−1, φi) +
√
2αizt

7: Bt = B(x̃′
t), Ct = C(x̃′

t)
▷ Butterfly and calendar losses of the proposal x̃′

t

▷ Save Bt, Ct to consider the losses for each noise level
8: β = max(Bt/(Bt−1 + ϵ′), Ct/(Ct−1 + ϵ′)) ▷ No-arbitrage acceptance ratio
9: u ∼ U [0, 1.2] ▷ Random sample
10: if β ≤ u then
11: x̃t = x̃′

t

12: else if β > u then
13: x̃t = x̃t−1

14: end if
15: x̃t = x̃t ⊙ (1− Ξ) + x⊙ Ξ

▷ The given pixels are hard-coded to the sample x̃t while the missing pixels are guided
by the Langevin update when the acceptance ratio β is small

16: end for
17: x̃0 = x̃M

18: end for
19: x̃M = x̃M + φ2

Lsθ(x̃M , φL) ▷ Denoising Step
20: x̃M = x̃M ⊙ (1− Ξ) + x⊙ Ξ ▷ Hard-code the given pixels again
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Given a grid ∆ := {(Ki, Tj)}n,mi=1,j=1, let A ⊆ ∆ be a set recording the positions of
missing implied volatilities. We also define mask Ξ ∈ Rn×m associated to A by

Ξij =

{
0, if (Ki, Tj) ∈ A

1, otherwise.

The data-driven framework for solving the volatility completion problem then involves the
following steps:

• Step 1: Generate synthetic discrete implied volatility surfaces ΣBS(∆) by existing
option pricing models. In particular, we choose a traditional stochastic volatility
model – Heston model. Let us denote the Heston model by M(η), where η ∈ R5

is its model parameters. The model parameters η fully specify the corresponding
prices of financial contracts under Heston model. Thus, by solving a Heston model
with given model parameters η, we can obtain a synthetic discrete implied volatility
surface on ∆ which we denote by Mη(∆). We randomly sample a sequence of the
model parameters of the Heston model, obtaining η1, η2, . . . , ηN . Hence, we obtain a
dataset DIVS = {xi := Mηi(∆)}Ni=1, where we use the notation xi to emphasize the
image perspective. More details about the Heston model, the dataset DIVS and how
we sample η1, . . . , ηN will be presented in Section 4.1.

• Step 2: We split the dataset DIVS into a training part and a test part, denoted
respectively by D train

IVS ,D test
IVS . The training part D train

IVS and the testing part D test
IVS

contains respectively 80%, 20% of the whole dataset DIVS.

• Step 3: We feed the training dataset D train
IVS and train the noise conditional score

network sθ(·, ·) to minimize the unified training objective (2.9). We denote the trained
noise conditional score network by sθ̃(·, ·), where θ̃ is the updated parameters.

• Step 4: Consider x ∈ D test
IVS . We treat it as a complete image. We then employ no-

arbitrage inpainting Algorithm 3 with inputs {φi}Li=1,M, ϵ, sθ̃(·, ·),Ξ, x⊙Ξ, obtaining
x̃M – our estimate of the complete image x. We then calculate the relative error
εrel(x) ∈ Rn×m of our estimate by

[εrel(x)]i,j =

{
|[x̃M ]ij−xij |

|xij | , if (Ki, Tj) ∈ A

0, otherwise.

• Step 5: Due to limited computational power, we will limit our error calculation on
a subset {xtest

1 , xtest
2 , . . . , xtest

100} ⊆ D test
IVS . For each position (i, j), we will consider the
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average, the standard deviation, and the maximum of the set {[εrel(xtest
k )]i,j}100k=1. We

will then present these errors by respectively three heat maps. This allows us to
evaluate our model performance in solving Problem 2.

3.4 Hyperparamters tuning

There are several hyperparameters of the noise conditional score network and the no-
arbitrage Algorithm 3. They include the noise schedule {φi}Li=1, number of sampling steps
per noise scale M , step size parameter ϵ, choice of optimizer for minimizing (2.9), numbers
of epochs (or equivalently numbers of batches to be scanned) when minimizing (2.9), etc.
In this section, we will discuss how we tune and choose them.

The authors of [29] proposed five techniques for choosing the aforementioned hyper-
parameters. We have adopted three techniques with slight modifications based on model
performance in solving Problem 2. They are presented as follows:

Technique 3.4.1 (Initial noise scale). Choose φ1 to be as large as the maximum Euclidean
Distance between all pairs of training data points.

Technique 3.4.2 (Other noise scales). Let D = n·m, the dimension of the implied volatility
surface in the dataset DIVS. Choose {φi}Li=1 as a geometric progression with common ratio
γ such that

Φ(
√
2D(γ − 1) + 3γ)− Φ(

√
2D(γ − 1)− 3γ) = E := 0.5,

where Φ is the c.d.f. of the standard normal.

Note that the choice of E is arbitrary, motivated by practical experiments in image
tasks [29]. Moreover, once we have chosen the smallest noise scale φL, by making use of
the optimal γ as provided by Technique 3.4.2, we can calculate the corresponding L. In
fact, recalling that γ = φi+1

φi
, we have φL = φ1(1/γ)

L−1 and so L = −− log(φL/φ1)
log(γ)

+ 1.

Technique 3.4.3 (Selecting M and ε). For a given number of sampling steps per noise
scale M , we should choose a step size ϵ that makes the following maximally close to 1.

(
1− ϵ

φ2
L

)2M

γ2 − 2ϵ

φ2
L − φ2

L

(
1− ϵ

φ2
L

)2

+
2ϵ

φ2
L − φ2

L

(
1− ϵ

φ2
L

)2

25



It was originally proposed in [29] that one should choose M as large as the computa-
tional budget allows. However, our experiments show that it does not necessarily improve
our model performance in solving Problem 2. It is plausible since our no-arbitrage inpaint-
ing Algorithm 3 deviates from the simple Langevin dynamics. We choose M = 1000 be-
cause it provides the best model performance among the grid {100, 1000, 2000, 4000, 8000, 10000}.
Note that our limited computational budget does not allow experiments with M of order
≥ 105.

Observant readers might notice that these three techniques do not address how to pick
the smallest noise level φL. In fact, it is actually the most determining hyperparameter
based on the results of our experiments. Intuitively, the smaller φL the better since it
will make the noise-perturbed distribution qφL

closer to the true data distribution pdata.
However, the smaller the φL, the larger the L is and hence more terms in the training
objective (2.9). This will hinder the training process of the noise conditional score network
sθ(·, ·) resulting inaccurate estimation of scores and hence worse performance in solving
Problem 2. By fixing the number of iteration steps (i.e., the number of batches to be
scanned) of the minimization process of (2.9) to be 300000, we performed a grid search on
different φL and adopt the choice φL = 0.00001 = 10−5.

The number of iteration steps 300000 is motivated by that as used in image generation
task [29]. We also set the batch size to be 128 and employ the Adam optimizer with a
learning rate of 0.001.
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Chapter 4

Results

In this chapter, we will discuss in detail how the datasets are generated from the existing
option pricing model. In particular, we will generate two datasets with different grid sizes.
We will then present our model performance (see Section 3.3 for the model framework) in
interpolation and randomized mask settings.

4.1 Dataset details

As mentioned in Section 3.3, we will use the Heston model to generate synthetic discrete
implied volatility surfaces ΣBS(∆). Recall that the Black-Scholes model assumes a constant
volatility σ in (2.1) when modeling the price path St. This is a weakness of the Black-
Scholes model since its outputted implied volatility surface will be flat and not consistent
with the observed market implied volatility surface. By contrast, the Heston model, a type
of stochastic volatility models, employs another stochastic differential equation to model
the behavior of the volatility, reflecting the volatility skew observed in the financial data.
The Heston model [13] employs a system of stochastic differential equations to model the
price path St and instantaneous variance vt as follows:

dSt = rStdt+
√
vtStdZ

S
t , St0 = S0, (4.1)

dvt = κ(v̄ − vt)dt+ ξ
√
vtdZ

v
t , vt0 = v0, (4.2)

dZS
t dZ

v
t = ρdt, (4.3)

where ZS
t , Z

v
t are two Brownian motions for St and vt respectively with correlation coeffi-

cient ρ, v̄ is the long term variance, κ is the reversion speed of vt to v̄, ξ is the volatility of
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the volatility, r is the risk-free interest rate, and S0, v0 are the initial values for St and vt
respectively.

By standard no-arbitrage arguments [13], it can be shown that the option price V
satisfies the following PDE:

1

2
vS2∂

2V

∂S2
+ ρξSv

∂2V

∂S∂v
++

1

2
ξ2v

∂2V

∂v2
+ rS

∂V

∂S
(4.4)

+ κ(v̄ − v)
∂V

∂v
− rV +

∂V

∂t
= 0.

Note that the option price V does not have an analytical formula and needs to be solved
numerically. Common methods to solve (4.4) include Monte Carlo simulation, numerical
integration [19], and COS method [10]. These three methods, presented in these papers,
involve the use of the Feynman-Kac Theorem stating that the price V can be obtained as
the discounted expected value of the payoff of V at its maturity T , under a risk-neutral
measure. Moreover, numerical integration and the COS method make further use of the
Fourier transform of the risk-neutral density. The applicability of the Feynman-Kac The-
orem also ensures the resulting implied volatility surface from the Heston model is free of
static arbitrage (c.f. Definition 1.2 in [23]).

To generate our synthetic datasets, we will employ numerical integration [19] to ensure
that the option price so calculated has a relative error below 10−13. For the datasets we
shall generate, for convenience, we will assume S0 = 100 and r = 0. Thus, the Heston
model (4.1 - 4.3) is completely determined by five model parameters: {ρ, v̄, κ, ξ, v0}. We
use η ∈ R5 to denote these five model parameters η = [ρ, v̄, κ, ξ, v0]

T . Using the notation
mentioned in Section 3.3, we denote such a fully specified Heston model as M(η). By
fixing a grid ∆, we can numerically solve the fully specified Heston model M(η) to obtain
a synthetic call price surface. Then by solving the equation (2.3) using a root finding
method [17], we obtain a synthetic discrete implied volatility surface Mη(∆). We can then
generate a synthetic dataset DIVS = {xi := Mηi(∆)}Ni=1 by sampling ηi uniformly from an
appropriate range. In particular, we will generate two datasets denoted by DIVS,1,DIVS,2.

For the first dataset DIVS,1, we consider a 8 × 8 grid ∆1 = {(Ki, Tj)}8,8i=1,j=1. More
precisely, we choose K1, . . . , K8 to be 8 equidistant points between (including) e−1S0 to
e1S0, where S0 = 100 is used for all of our experiments and the second dataset. For
maturities, we choose T1, . . . , T8 to be 8 equidistant points between (including) 0.5 and 1.
We then obtain 100, 000 samples of η using Latin hypercube sampling from the following
ranges in Table 4.1.

Furthermore, we impose the Feller condition [2] 2κv̄ > ξ2 by filtering out some sampled
η to ensure the instantaneous variance vt is strictly positive. We also filter out some choices
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Heston parameter Lower bound Upper bound
ρ -0.95 0
v̄ 0.05 0.5
κ 0.1 2
ξ 0.05 0.5
v0 0.05 0.5

Table 4.1: Range for Heston parameters η

of η where the associated call price surface contains a call price that is less than 10−6 to
guarantee that the root-finding method in [17] can be properly applied to obtain Mη(∆1).
After applying the above constraints, the resulting dataset DIVS,1 has 91, 529 elements, i.e.,
DIVS,1 = {xi := Mηi(∆1)}91529i=1 .

For the second dataset DIVS,2, we consider a finer 16× 16 grid ∆2 = {(Ki, Tj)}16,16i=1,j=1.
Similarly, we choose K1, . . . , K16 to be 16 equidistant points between (including) e−1S0 to
e1S0. For maturities, we choose T1, . . . , T16 to be 16 equidistant points between (including)
0.2 and 1. So we consider even smaller maturity in this setting. We apply the same
sampling method as before. In the end, we obtain a dataset DIVS,2 of size 87, 527.

Note that the dataset DIVS,2 has a finer grid ∆2. This is a deliberate choice to explore
whether a finer grid will affect the model performance or not.

4.2 Experiments

In this section, we will present the performance of our model framework (see Section 3.3) in
solving the Problem 2 for the datasets DIVS,1,DIVS,2 respectively. We will first consider the
case where the missing volatilities are assumed to be located in the middle of the image of
the implied volatility surface. We will refer to this scenario as Interpolation. After that, we
will consider a randomized mask setting, where the locations of the missing volatilities are
randomly chosen, thus some of the missing volatilities may be located along the boundary
of the grid. This randomized mask setting is more faithful to the market practice since
there are not fixed patterns of missing volatilities.
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Figure 4.1: 8×8 grid, training dataset size 73,223, errors over 100 test IVS

Top left Top right Bottom left Bottom right
Average relative errors 0.0005915% 0.0006146% 0.0006451% 0.0007194%
Standard deviations 0.0005045% 0.0004346% 0.0006154% 0.0008349%

Maximum relative errors 0.002046% 0.001681% 0.003260% 0.005362%

Table 4.2: 8×8 grid, training dataset size 73,223, errors over 100 test IVS

4.2.1 Interpolation, coarse grid

In this experiment, we assume there are 4 missing volatilities located in the middle of the
implied volatility surface and we consider the model performance on the dataset DIVS,1

with a coarse 8× 8 grid ∆1.

As mentioned in Section 3.3, we will train our score network on 80% of DIVS,1, resulting
a training dataset of size 73, 223 and calculate the testing error on 100 testing implied
volatility surfaces. In particular, we present the average, the standard deviation, and the
maximum of the relative error set {[εrel(xtest

k )]i,j}100k=1 in Figure 4.1. Note that the colored
points in the heat maps represent the assumed missing volatilities in the implied volatility
surface. Furthermore, the exact error values are shown in Table 4.2. We see that the
average and the standard deviation of the relative percent errors are of the order 10−4

while the maximum of the relative percent error is of the order 10−3. This indicates the
effectiveness of score-based generative models in interpolating missing volatilities.

We also plot the original and the completed implied volatility surface in Figure 4.2.
We observe that the plotted surface is smooth and visibly not differentiable from the true
implied volatility surface.

Moreover, we plot the average update rate of the no-arbitrage update rule, as stated
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(a) Original IVS (b) Completed IVS

Figure 4.2: 8×8 grid, training dataset size 73,223. (a) Original IVS. (b) Completed IVS.

in Algorithm 3; see Figure 4.3. It refers to the proportion of samples, out of 100 test
IVSs, that have an acceptance ratio β ≤ u (see lines 8 - 14 in Algorithm 3), hence passing
the no-arbitrage update rule, for each noise level φi. We observe that the average update
rate is around 10% for the initial noise levels and increases to 1 through annealing the
noise levels. The low average update rate for the initial large noise levels is expected since
with large noise, samples from the perturbed distribution of implied volatility surfaces are
heavily affected by randomness. The no-arbitrage rule guides these samples to a region of
probability space that exhibits a smaller deviation from no-arbitrage. The convergence of
the average update rate to 1 reflects the fact that for small noise levels, most of the samples
generated satisfy the no-arbitrage conditions and have zero butterfly and calendar losses.

Furthermore, as mentioned in Section 3.2.2, we plot the 90% quantile of the butterfly
and calendar losses Bt, Ct for each noise level of the perturbed distributions in Figure 4.4a
- 4.4b. The 90% quantiles are obtained by sorting the losses Bt, Ct for 100 samples we have
at each noise level φi. We observe that the no-arbitrage conditions are gradually satisfied
by the intermediate samples when annealing the noise level, as shown in the decrease of
the 90% quantiles to 0. The gradual decrease is accredited to the employment of the no-
arbitrage update rule, guiding the sampling process to explore regions of probability space
of implied volatility surface that has no-arbitrage property.
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Figure 4.3: 8×8 grid, training dataset size 73,223, average update rate per noise level

(a) Butterfly loss (b) Calendar loss

Figure 4.4: 8×8 grid, training dataset size 73,223, 90% quantile of losses per noise level.
(a) Butterfly loss. (b) Calendar loss.
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Figure 4.5: 16×16 grid, training dataset size 70,021, errors over 100 test IVS

Top left Top right Bottom left Bottom right
Average relative errors 0.0008107% 0.0007974% 0.0009226% 0.0007649%
Standard deviations 0.0006258% 0.0006016% 0.0006500% 0.0005785%

Maximum relative errors 0.002680% 0.003279% 0.002865% 0.002448%

Table 4.3: 16×16 grid, training dataset size 70,021, errors over 100 test IVS

4.2.2 Interpolation, finer grid

This experiment is similar to the one in Section 4.2.1, but we will test it on the dataset
DIVS,2 with a finer 16× 16 grid ∆2. Similarly, 80% of DIVS,2 will be used to train the score
network, hence the training dataset size is 70, 021.

Figure 4.5 and Table 4.3 demonstrate the average, the standard deviation, and the
maximum relative errors of the predicted volatilities, in heat maps and a table respectively.
We note that the average and standard deviation of the relative percent errors are of order
10−4 and the maximum of the relative errors is of order 10−3. Hence, we see that the errors
for 16 × 16 grid ∆2 are of the same order as in the case of 8 × 8 grid ∆1, the errors for
which are shown in Figure 4.1 and Table 4.2. Whether a finer grid would enhance the
model performance remains to be verified.

We also plot the original and the completed implied volatility in Figure 4.6. Again,
we observe that the plotted surface is smooth and visibly not differentiable from a true
implied volatility surface.

Moreover, we plot the average update rate of the no-arbitrage update rule and the 90%
quantiles of the butterfly and calendar losses Bt, Ct for each noise level in Figure 4.7 - 4.8.
Same as in the case of coarse grid ∆1, we observe that the average update is around 10% for

33



(a) Original IVS (b) Completed IVS

Figure 4.6: 16×16 grid, training dataset size 70,021. (a) Original IVS. (b) Completed IVS.

the initial noise levels and increase to 1 through annealing the noise level. We also observe
that the no-arbitrage conditions are gradually satisfied by the intermediate samples when
annealing the noise level, as shown in the decrease of the 90% quantiles to 0.

4.2.3 Randomized mask, coarse grid

In this experiment, we consider the model performance on the dataset DIVS,1 with a coarse
8× 8 grid ∆1 under the randomized mask setting. In particular, we assume that the mask
Ξ recording the locations of the missing volatilities of the grid ∆1 is randomly selected
with around 50% of ∆1 being masked.

The average, the standard deviation, and the maximum of the relative errors are pre-
sented in Figure 4.9. Even with 50% of ∆1 assumed to be missing, we can still achieve an
average of 0.008% of relative errors with a maximum relative error of around 0.1%. We
also note that the model performance on the boundary and especially the corner of the
image is generally worse than other parts of the image.

Again, the original and the completed implied volatility surface under this randomized
mask setting have no visual difference; see Figure 4.10.
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Figure 4.7: 16×16 grid, training dataset size 70,021, average update rate per noise level

(a) Butterfly loss (b) Calendar loss

Figure 4.8: 16×16 grid, training dataset size 70,021, 90% quantile of losses per noise level.
(a) Butterfly loss. (b) Calendar loss.
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Figure 4.9: 8×8 grid, training dataset size 73,223, errors over 100 test IVS, 50% of the
implied volatilities are missing

(a) Original IVS (b) Completed IVS

Figure 4.10: 8×8 grid, training dataset size 73,223, 50% of the implied volatilities are
missing. (a) Original IVS. (b) Completed IVS.
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Figure 4.11: 8×8 grid, training dataset size 73,223, 50% of the implied volatilities are
missing, average update rate per noise level

The average update rate of the no-arbitrage rule and the 90% quantiles of the butterfly
and calendar losses are shown in Figure 4.11 - 4.12. Compared to the case as displayed
in Figure 4.3, we observe that the average update rate in the case of estimating multiple
missing volatilities at once, saturates to 1 slower than that in the case of estimating only
4 missing volatilities. As expected, due to the presence of more missing volatilities, the
butterfly and calendar losses start with a higher initial value. Nonetheless, the gradual
decrease of butterfly and calendar losses to 0 when annealing the noise level is still observed
in Figure 4.12a - 4.12b, ensuring no-arbitrage on the final surface.

We would also like to emphasize that when applying a higher percentage of masking,
such as 60%, to ∆1, the maximum relative error increases beyond 1%, leading to an implied
volatility surface that no longer appears visually accurate.

4.2.4 Randomized mask, finer grid

In this experiment, we consider the model performance on the dataset DIVS,2 with a finer
16×16 grid ∆2 under the randomized mask setting. In this case, we assume that the mask
Ξ recording the locations of the missing volatilities of the grid ∆2 is randomly selected
with around 80% of ∆2 being masked, more than the 50% mask in Section 4.2.3.

The average, the standard deviation, and the maximum of the relative errors are pre-
sented in Figure 4.9. We achieve an average of 0.012% of relative errors with a maximum
relative error of around 0.1%. Moreover, compared to the results of 50% random mask
on ∆1 in Section 4.2.3, we see that by employing a finer grid ∆2 we can allow a higher
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(a) Butterfly loss (b) Calendar loss

Figure 4.12: 8×8 grid, training dataset size 73,223, 50% of the implied volatilities are
missing, 90% quantile of losses per noise level. (a) Butterfly loss. (b) Calendar loss.

percentage of volatilities to be missing while preserving the same order of errors. Based on
these findings, it is recommended to use the finest grid achievable, given the constraints of
computational resources and the availability of observable market data.

Once more, there is no discernible visual difference between the original and completed
implied volatility surfaces under this randomized mask setting, as illustrated in Figure
4.14.

The average update rate of the no-arbitrage rule, along with the 90% quantiles of the
butterfly and calendar losses are shown in Figure 4.15 - 4.16. Similar to the scenario
presented in Section 4.2.3, we notice that the average update rate saturates to 1 at a
slower pace compared to that in Figure 4.7. Additionally, the butterfly and calendar losses
exhibit higher initial values, approximately two orders of magnitude greater than those in
Figure 4.8a and 4.8b. Despite this, as shown in Figure 4.16a and 4.16b, both butterfly
and calendar losses consistently decrease to zero when the noise level is annealed, ensuring
no-arbitrage in the resulting surface.

We remark that when applying a higher percentage of masking, such as 90%, to ∆2,
the maximum relative errors surpass the 1% mark, resulting in an implied volatility surface
that does not appear to be visually accurate.
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Figure 4.13: 16×16 grid, training dataset size 70,021, errors over 100 test IVS, 80% of the
implied volatilities are missing

(a) Original IVS (b) Completed IVS

Figure 4.14: 16×16 grid, training dataset size 70,021, 80% of the implied volatilities are
missing. (a) Original IVS. (b) Completed IVS.
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Figure 4.15: 16×16 grid, training dataset size 70,021, 80% of the implied volatilities are
missing, average update rate per noise level

(a) Butterfly loss (b) Calendar loss

Figure 4.16: 16×16 grid, training dataset size 70,021, 80% of the implied volatilities are
missing, 90% quantile of losses per noise level. (a) Butterfly loss. (b) Calendar loss.
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Chapter 5

Conclusion

In this paper, we have explored the perspective of viewing each implied volatility surface as
an image and proposed a score-based generative model approach to solving the volatility
surface completion problem. Treating each implied volatility surface as an image, we have
developed a no-arbitrage inpainting algorithm for a score-based generative model to output
an implied volatility surface that is free of arbitrage. Our numerical results in Chapter 4
demonstrate the effectiveness of our approach, achieving an average relative percent error
of order 10−4 in the interpolation setting and a maximum relative error less than 0.5%
in an extreme setting where 80% of volatilities are assumed to be missing while ensuring
no-arbitrage on the produced implied volatility surfaces.

Furthermore, the proposed score-based generative model approach has several advan-
tages over existing methods. First, it is model-free, meaning that it does not require mod-
eling the underlying asset price by stochastic differential equations, bypassing the need
for calibration. In fact, we can train our score network purely based on historical data.
That is, we can create the dataset DIVS = {xi}Ni=1 with each xi being a historical implied
volatility surface. Second, by choosing xi to be surfaces produced by different option pric-
ing models, our score network framework allows an easy mixture of option pricing models.
Moreover, the framework is flexible in the sense that we do not assume any patterns in
the missing volatilities, i.e., the set A that records the positions of missing implied volatil-
ities, can be an arbitrary subset of ∆, unlike existing methods like [11] where the implied
volatility curve for at-the-money options is required. Lastly, once the time is invested in
training the score network, the volatility surface completion task can be done quickly via
the no-arbitrage inpainting Algorithm 3.

Nonetheless, our score-based generative model is not perfect. An obvious limitation
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is that it requires an implied volatility surface to be represented as an image. In terms
of training data, this might mean that more time needs to be invested in running the
existing option pricing models to generate implied volatility surface for a particular grid
∆. Another difficulty is that one score network can only deal with one grid ∆. While
this difficulty can be addressed by making the grid ∆ sufficiently fine, this would at the
same time require more training data. Moreover, unlike the ANN approach where we
can calculate the options’ Greeks exactly, we can only obtain the Greeks based on finite
difference methods on the grid ∆. This again requires a sufficiently fine grid ∆ to ensure
numerical accuracy. Future work is encouraged to address these limitations.

There are also other potential directions for future work. One is to understand quan-
titatively how the size and granularity of the grid ∆ will affect our model performance in
solving the volatility completion problem. Another direction to further enhance our model
performance might be to consider as well the temporal structure of implied volatility sur-
faces. A good starting point might be to consider the use of score-based generative models
to tackle time-series data [32].
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Appendix A

Miscellaneous

A.1 Calendar spread and butterfly arbitrage

It can be shown [23] that an implied volatility surface is free of arbitrage if and only if it
is free of calendar spread arbitrage and each time slice of the surface is free of butterfly
arbitrage.

For simplicity, let us denote the price of a call option with strike K and maturity T by
C(K,T ). Let us also denote the price of the underlying at time t by St. A calendar spread
is a trading strategy Π that involves the simultaneous purchase of a call option with strike
K and maturity T2 and sell of another call option on the same underlying with the same
strike K and a shorter maturity T1 < T2. At the time T1, the calendar spread has the
value:

ΠT1 = −max(ST1 −K, 0) + C(K,T2 − T1),

where the first term is the value (payoff) of the short call at T1 and the second term is the
value of the long call at T1. By a simple no-arbitrage argument, we know that at the time
T1, C(K,T2 − T1) ≥ max(ST1 −K, 0) and hence ΠT1 ≥ 0 with the probability of ΠT1 > 0
being nonzero. Thus, by no-arbitrage argument, we must have Π0 > 0. Calendar spread
arbitrage [1] refers to the case that Π0 ≤ 0, where one can initialize the portfolio Π without
cost and is guaranteed to have a non-negative payoff at time T1. Generally, the calendar
spread strategy is used when one expects an overall increase in implied volatility of the
underlying.

On the other hand, butterfly arbitrage is a trading strategy Π that involves the purchase
of two calls with the same maturity T and strikes K1 < K2 respectively, and the sell of
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two calls with the same maturity T and a same strike K3 = (K1 + K2)/2. So we have
K1 < K3 < K2. Note that at time T , the value of the portfolio Π is given by:

ΠT = max(ST −K1, 0) + max(ST −K2, 0)− 2max(ST −K3, 0)

=


0, if ST ≥ K2

K2 − ST > 0, if K3 ≤ ST < K2

ST −K1 > 0, if K1 < ST < K3

0, if ST ≤ K1.

Thus, ΠT ≥ 0 with a nonzero probability that ΠT > 0. By no-arbitrage argument, we
must have Π0 > 0. Butterfly arbitrage [1] refers to the case that Π0 ≤ 0. Generally, the
butterfly strategy is used when one expects the future volatility of the underlying S to be
smaller than its implied volatility.
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