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Abstract

In recent years pressure-robust finite element methods have become popular for incompressible
flows as they are generally more accurate than finite element methods that are not pressure-
robust. The main concept behind pressure-robust discretizations, in which the velocity error is
independent of the best approximation error of the pressure, was introduced in [A. Linke and C.
Merdon, Comput. Methods Appl. Mech. Engrg. 2016].

However, pressure-robustness is not a new idea. For a general saddle point problem, a priori
error estimates are studied in [Brezzi and Fortin, Mixed and Hybrid Finite Element Method
Springer-Verlag 1991] in which one of the unknowns admits estimates that are independent of
the other unknown. For the generalized case, we call this ‘Q-robustness’.

Unfortunately, the Q-robustness analysis in this book by Brezzi and Fortin applies only to
conforming finite element methods and needs to be extended for the nonconforming case. This
is the topic of this research paper; we extend the analysis of Q-robust error estimates presented
in the book by Brezzi and Fortin to nonconforming finite element methods.

We give sufficient conditions under which Q-robustness is achieved. We then apply the ex-
tended theory to an H(div)-conforming discontinuous Galerkin method for Stokes equations. We
provide a proof of Q-robustness for the Stokes problem.
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Chapter 1

Introduction

1.1 The Saddle Point Problem

A classical quadratic energy functional corresponding to a minimization principle is given by

J(v) =
1

2
a(v, v)− l(v), (1.1a)

u = arg min
v

J(v). (1.1b)

The associated variational formulation is given by

a(u, v) = l(v) ∀v ∈ V, (1.1c)

with V a suitable function space and the solution u minimizes the energy functional J(·). The
Galerkin method seeks a solution uh ∈ Vh ⊂ V , with Vh a suitable finite dimensional subspace of
V , such that

a(uh, vh) = l(vh) ∀vh ∈ Vh, (1.1d)

A finite element is a Galerkin method in which Vh is the space of piecewise polynomials.

Alternatively, a variational principle can also express a saddle point equilibrium. Let V
and Q be suitable function spaces. A pair (u, p) ∈ V × Q is said to be a saddle-point of a
Lagrangian functional L : V ×Q→ R if

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀(v, q) ∈ V ×Q. (1.2a)

The motivation behind the name “saddle-point” can be seen by the following example where we
have a Lagrangian functional z = L(x, y) = x2 − y2 and for x = 0 and y = 0 it holds that (see
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Figure 1.1: z = L(x, y) = x2 − y2, (0, 0) is the saddle point which is marked red.

fig. 1.1):

L(0, y) ≤ L(0, 0) ≤ L(x, 0) ∀(x, y) ∈ R2. (1.2b)

If the Lagrangian functional L : V ×Q→ R is defined as [8, Proposition 2.39]

L(v, q) =
1

2
a(v, v) + b(v, q)− f(v)− g(q), (1.2c)

the variational formulation of the saddle point problem is given by

a(u, v) + b(v, p) = f(v) ∀v ∈ V, (1.2d)

b(u, q) = g(q) ∀q ∈ Q, (1.2e)

and the discrete problem is given by

a(uh, vh) + b(vh, ph) = f(vh) ∀vh ∈ Vh ⊂ V, (1.2f)

b(uh, qh) = g(qh) ∀qh ∈ Qh ⊂ Q. (1.2g)

Using piecewise polynomial function spaces, we obtain the mixed finite element method.
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1.2 Pressure-robustness for the Stokes Problem

The Stokes problem is given by

−ν∇2u+∇p = f , (1.3a)

−∇ · u = g, (1.3b)

with suitable Dirichlet and/or Neumann boundary conditions. In variational form,

a(u,v) + b(v, p) = (f ,v), ∀v ∈ V , (1.4a)

b(u, q) = (g, q), ∀q ∈ Q, (1.4b)

where the biliear forms are given by

a(u,v) := ν(∇u,∇v) = ν

∫
Ω
∇u : ∇v, (1.4c)

b(v, q) := −(∇ · v, q) = −
∫

Ω
q∇ · v. (1.4d)

The corresponding discrete problem is given by

a(uh,vh) + b(vh, ph) = (f ,vh), ∀vh ∈ Vh ⊂ V , (1.4e)

b(uh, qh) = (g, qh), ∀qh ∈ Qh ⊂ Q. (1.4f)

An a priori error analysis of many mixed finite element methods results in the following
velocity error estimate:

‖u− uh‖ . inf
vh∈Vh

‖u− vh‖+ ν−1 inf
qh∈Qh

‖p− qh‖ . (1.5)

It is clear that the estimate of the velocity error depends on the best approximation error of the
pressure scaled by the inverse of the viscosity ν. This is undesirable when ν is small, as we show
in the following example.

Example 1.1 (Lack of pressure-robustness for Taylor–Hood). Consider the Stokes equations in
the unit square. Set u = 0 on the boundary and f and g such that the exact solution is given
by (u, p) = (0, cos(y)). To discretize the Stokes problem we use the P2 − P1 Taylor–Hood finite
element spaces. Here P2 is the space of continuous piecewise polynomials of degree two. Similarly,
P1 is the space of continuous piecewise polynomials of degree one. We plot the solution in fig. 1.2
for different values of ν. We observe that as ν decreases, the error in u increases by ν−1.

Under certain conditions on the function spaces, it is possible to obtain an a priori error
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(a) ν = 1 ; L2-error: 1.9 · 10−9 (b) ν = 10−4 ; L2-error: 1.9 · 10−5

(c) ν = 10−9 ; L2-error: 1.9 · 100 (d) ν = 10−10 ; L2-error: 1.9 · 10+1

Figure 1.2: P2 − P1 Taylor–Hood elements to solve the Stokes problem, see example 1.1.
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estimate of the velocity that satisfies

‖u− uh‖ . inf
vh∈Vh

‖u− vh‖ . (1.6)

Such an error estimate is said to be pressure-robust ; the error in the velocity does not depend on
the best approximation error of the pressure scaled by the inverse of the viscosity. In example 1.2
we demonstrate the advantages of the pressure-robust scheme.

Example 1.2 (A pressure-robust finite element method). Consider the same setup as in exam-
ple 1.1. We now use the Scott–Vogelius finite element to solve the Stokes problem on a mesh
created as a barycentric refinement of a regular triangular mesh. For the Scott–Vogelius element
we consider a piecewise continuous polynomial space of degree two for the velocity. For the pres-
sure we use a piecewise discontinuous polynomial space of degree one. Note that the difference
between the Scott–Vogelius and the Taylor–Hood element is that the Scott–Vogelius element ap-
proximates the pressure by discontinuous polynomials. The Taylor–Hood element uses continuous
polynomials. We plot the solution in fig. 1.3 for different values of ν. We now observe that ν has
no effect on the error in u. The Scott–Vogelius element is pressure-robust. We remark that the
increase in the L2-error of the velocity comes from a machine precision term which dominates
the velocity error in this test case.

The comparison between Taylor–Hood and Scott–Vogelius shows that the Scott–Vogelius ele-
ment is significantly more accurate in approximating the velocity than the Taylor–Hood element.
This is due to the special choice of the pair of velocity and pressure spaces. As we will see, for
the Stokes problem it is important the divergence of the approximate velocity lies in the pressure
space.

Remark 1.1. Both example 1.1 and example 1.2 were implemented using NGSolve [20].

1.3 Goal of This Research Paper

As we saw in the previous section, the finite element used to discretize the Stokes problem can
have a significant impact on the accuracy of the velocity solution uh. In particular, a pressure-
robust finite element scheme results in a velocity solution of which its accuracy does not depend
on the pressure solution and the viscosity.

This property can be generalized to a general saddle point problem. Consider a saddle point
problem

a(u, v) + b(v, p) = f(v) ∀v ∈ V, (1.7a)

b(u, q) = g(q) ∀q ∈ Q, (1.7b)
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(a) ν = 1 ; L2-error: 1.5 · 10−12 (b) ν = 10−4 ; L2-error: 1.5 · 10−8

(c) ν = 10−6 ; L2-error: 1.5 · 10−6 (d) ν = 10−8 ; L2-error: 1.5 · 10−4

Figure 1.3: Scott–Vogelius finite element, on a mesh with barycentric refinement, to solve the
Stokes problem, see example 1.2.
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and its finite element discretization,

ah(uh, vh) + bh(vh, ph) = f(vh) ∀vh ∈ Vh, (1.8a)

bh(uh, qh) = g(qh) ∀qh ∈ Qh. (1.8b)

where ah(·, ·) and bh(·, ·) may differ from, but are consistent with, the bilinear forms a(·, ·) and
b(·, ·), respectively.

In this research paper we investigate under what condition(s) the discrete system eq. (1.8)
admits an a priori estimate for ‖u− uh‖ that is independent of ‖p− ph‖, i.e.,

‖u− uh‖ . inf
vh∈Vh

‖u− vh‖ . (1.9)

In the literature the most commonly used notation for the function spaces of a general variation
saddle point problem are V and Q. Our goal is to find a bound for u ∈ V which is independent
of p ∈ Q. For this reason we refer to the property eq. (1.9) as Q-robustness. We note that in
the Stokes case, Q-robustness reduces to pressure-robustness.

1.4 Outline of This Research Paper

Conforming finite element methods for the saddle point problem eq. (1.7) have been studied in
[4]. They provide sufficient conditions for conforming finite element methods to be Q-robust. We
study this theoretical framework in more detail in chapter 2.

Although non-conforming and pressure-robust finite element methods are well understood for
the Stokes problem, c.f., [11, 13, 14, 16, 17], a theoretical framework of Q-robustness for non-
conforming methods for a general saddle point problem is missing. In chapter 3 we will provide
this theoretical framework.

In chapter 4 we apply the generalized Q-robustness theory to non-conforming finite element
approximations of the Stokes problem. We will show that the analysis reduces to existing pressure-
robustness analysis. We conclude this research paper in chapter 5.
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Chapter 2

Conforming FEM for Saddle Point
Problems

In this chapter, we introduce the basic saddle point problem and cast it in operator form (sec-
tion 2.1). We then give equivalent statements of the different properties of the operator. This
will enable us to make equivalent statements about the well-posedness of our problem, see (sec-
tion 2.2). These preliminary results will aid in proving well-posedness in section 2.3, obtaining a
basic error estimate in section 2.4, and a Q-robust error estimate in section 2.5.

2.1 The Basic Saddle Point Problem

Consider two Hilbert spaces, V and Q, and two continuous bilinear forms: a(·,·) on V × V and
b(·,·) on V ×Q. The basic saddle point problem reads: Given f ∈ V ′and g ∈ Q′, find (u, p) ∈ V ×Q
such that,

a(u, v) + b(v, p) = 〈f, v〉V ′×V ∀v ∈ V, (2.1a)

b(u, q) = 〈g, q〉Q′×Q ∀q ∈ Q. (2.1b)

The continuous bilinear forms are related to bounded linear operators. We can associate with
b(·,·) on V ×Q the bounded linear operator B from V to Q′ defined as

〈Bv, q〉Q′,Q := b(v, q) ∀v ∈ V, ∀q ∈ Q. (2.2)

We may similarly associate with a(·, ·) on V × V a bounded linear operator A from V to V ′.

We note that a bilinear form is continuous if and only if its associated linear operator is
continuous.
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We define the transposed operator Bt from Q to V ′ by

〈v,Btq〉V,V ′ := b(v, q) ∀v ∈ V, ∀q ∈ Q. (2.3)

Note that a transposed operator is a generalization of a transposed matrix, as shown in the next
remark.

Remark 2.1. We note that if V := Rn and Q := Rm, by the Riesz Representation Theorem (see
theorem 2.4), dual operations can be identified with scalar products, and so the linear operator
B : V → Q′ (which is always bounded when V is finite dimensional) can be identified as an m×n
matrix,

〈B~v, ~q〉 = ~qTB~v = ~vTBT ~q = 〈~v,BT ~q〉 ∀~v ∈ Rn, ∀~q ∈ Rm.

In operator form, we may write eq. (2.1) as

Au+Btp = f in V ′, (2.4a)

Bu = g in Q′. (2.4b)

Let Vh and Qh be finite-dimensional subspaces of V and Q, respectively. The discrete problem
approximating eq. (2.1) is given by: Find (uh, ph) ∈ Vh ×Qh such that:

a(uh, vh) + b(vh, ph) = 〈f, vh〉V ′h×Vh ∀vh ∈ Vh, (2.5a)

b(uh, qh) = 〈g, qh〉Q′h×Qh
∀qh ∈ Qh. (2.5b)

Accordingly, the discrete problem in operator form is given by:

Ahuh +Bt
hph = f in V ′h, (2.6a)

Bhuh = g in Q′h, (2.6b)

where Bh : Vh → Q′h is defined as

〈Bhvh, qh〉Q′h,Qh
:= b(vh, qh) ∀vh ∈ Vh, ∀qh ∈ Qh. (2.7)

The operator Ah : Vh → V ′h is defined similarly.

We next list a few useful definitions.

Definition 2.1 (The kernel and image of a linear operator). Let D and R be Hilbert spaces
(complete normed vector spaces equipped with inner products). Let M : D → R be a linear
operator. The kernel and image of M , denoted respectively by Ker(M) and Im(M), are defined
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Figure 2.1: An example of the extension operator EZ→V .

as

Ker(M) := {d ∈ D such that Md = 0} ,
Im(M) := {r ∈ R such that ∃ d ∈ D with Md = r} .

The following definitions are required to establish the relation between B and Bh in a compact
form (see [4, Chapters 4 and 5]).

Definition 2.2 (Extension Operator). Given a subspace Z ⊆ V , the extension operator EZ→V :

Z → V associates every z ∈ Z with the same z, thought as an element of V . Where no confusion
may occur we will simply denote the extension operator by EZ . See fig. 2.1.

Definition 2.3 (Orthogonal Complement). Given a Hilbert space H and a linear subspace Z ⊆
H. The orthogonal complement of Z, denoted by Z⊥, is defined as

Z⊥ :=
{
v ∈ H such that (v, z)H = 0 ∀z ∈ Z

}
, (2.8)

where (·, ·)H is the inner product on H.

Definition 2.4 (Projection Operator). Let Z ⊆ H be a closed subspace. The projection operator
ΠH→Z : H → Z is defined for every v ∈ H by

ΠH→Zv ∈ Z and (ΠH→Zv − v) ∈ Z⊥. (2.9)

Where no confusion may occur we will simply denote the projection operator by ΠZ . See fig. 2.2.
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Figure 2.2: An example of a projection operator ΠH→Z .

The next lemma now establishes the relation between B and Bh.

Lemma 2.1. The relation between B and Bh can be written as,

Bhvh = ΠQ′h
BEVhvh ∀vh ∈ Vh. (2.10)

We end this section by defining conforming methods and consistency.

Definition 2.5 (Conforming method). A finite element method is called conforming if Vh ⊂ V
and Qh ⊂ Q.

Definition 2.6 (Consistency). If the solution (u, p) ∈ V ×Q of the continuous problem eq. (2.1)
satisfies the discrete problem eq. (2.5), i.e.,

a(u, vh) + b(vh, p) = 〈f, vh〉V ′h×Vh ∀vh ∈ Vh ⊂ V, (2.11a)

b(u, qh) = 〈g, qh〉Q′h×Qh
∀qh ∈ Qh ⊂ Q, (2.11b)

then the discrete problem is said to be consistent.
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2.2 Equivalent Statements of the Properties of Operators

Before we state theorems for well-posedness of the saddle point problem in section 2.3, we give
equivalent statements of surjectivivity and bijectivity of operators. We consider the general
setting of Banach operators, i.e., continuous/bounded linear operators between Banach spaces,
see [8, Appendix A]. This framework exploits fundamental theorems in Banach theory which we
discuss next.

Definition 2.7. Let U and V be two normed vector spaces. L(U ;V ) is the vector space of
continuous/bounded linear operators from U to V . A norm equipped on L(U ;V ) is given by:

‖l‖L(U ;V ) := sup
u∈U

∥∥l(u)
∥∥
V

‖u‖U
.

Therefore, L(U ;V ) is a normed vector space.

The next proposition gives a condition for L(U ;V ) to be complete, i.e., for L(U ;V ) to be a
Banach space.

Proposition 2.1. Let U be a normed vector space and let V be a Banach space. Then, L(U ;V )
is a Banach space.

Remark 2.2. L(U ;V ) is a normed vector space

Remark 2.3. L(U ;V ) = U ′ when V = R, thus the dual space of a Banach space is a Banach
space. The dual space of a dual space is also a Banach space.

Theorem 2.1 (Hahn–Banach Theorem (simplified version)). Let V be a normed vector space
and let G be a subspace of V equipped with the same norm. Let BG ∈ G′ = L(G;R) be a linear
continuous mapping with norm

‖BG‖G′ = sup
g∈G

〈BG, g〉G′×G
‖g‖V

.

Then there exists BV ∈ V ′ with the following properties:

(i) BV is an extension of BG, i.e., BV g = BGg for all g ∈ G.

(ii) ‖BV ‖V ′ =‖BG‖G′.

Definition 2.8 (Dual operator). Let U and V be two normed vector spaces and let A ∈ L(U ;V ).
The dual operator AT : V ′ → U ′ is defined by

∀u ∈ U, ∀v′ ∈ V ′, 〈AT v′, u〉U ′×U = 〈v′, Au〉V ′×V .
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Theorem 2.2 (Closed Range Theorem). Let V and W be real Banach spaces. Let A ∈ L(V ;W ).
The following statements are equivalent:

(i) Im(A) is closed.

(ii) Im(AT ) is closed.

(iii) Im(A) = (Ker(AT ))⊥.

(iv) Im(AT ) = (Ker(A))⊥.

Theorem 2.3 (Open Mapping Theorem). Let V and W be real Banach spaces. Let A ∈ L(V ;W ).
If A is surjective and U is an open set in V , then A(U) is open in W .

It may be difficult to check that Im(A) is closed in theorem 2.2. We therefore list equivalent
statements, which are a consequence of the open mapping theorem 2.3, in the following lemma.

Lemma 2.2 (Operators with closed range). [8, Lemma A.36] Let M ∈ L(D;R). The following
statements are equivalent:

(i) Im(M) is closed.

(ii) There exists β > 0 such that

∀r ∈ Im(M), ∃d ∈ D, Md = r and β‖d‖D ≤‖r‖R .

(iii) ∃LM ∈ L(Im(M), D) and α > 0 such that:

∀r ∈ Im(M), LMr = d, MLMr = r and LM is bounded as ‖LMr‖D ≤ β
−1‖r‖R .

Remark 2.4. Statement (iii) in lemma 2.2 is not given in [8, Lemma A.36]. Instead, it is a
rephrasing of statement (ii): If M is surjective, then Im(M) = R and so the domain of LM (a
lifting operator) is R. Hence LM is the right inverse of M . See [4, Eq. (4.2.23)] and [15,
Def. 6.6].

Remark 2.5. Statement lemma 2.2(ii) can be rewritten as

β‖d‖D ≤‖Md‖R , ∀d ∈ D, (2.12)

provided that M is also injective. Equation (2.12) is commonly called the bounded below property
(‘bounding’ in [4]) of the operator M .
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Remark 2.6. To summarize remark 2.4 and remark 2.5, if we enhance a bounded linear operator
M with surjectivity, then M has a bounded right inverse; if we enhance it with injectivity, then
M is bounded below.

Lemma 2.3 (Surjective operators). ([8, Lemma A.39] adding statement about right inverse.)
Let M ∈ L(D;R). The following statements are equivalent:

(i) MT : R′ → D′ is surjective.

(ii) M : D → R is injective and Im(M) is closed in R.

(iii) The right inverse of MT exists, i.e., the lifting operator LMT , such that
∥∥LMT d′

∥∥
R′
≤

β
∥∥d′∥∥

D′
with β > 0 a constant.

(iv) M is bounded below: there exists β > 0 such that

∀d ∈ D, ‖Md‖R ≥ β‖d‖D .

(v) There exists β > 0 such that

inf
d∈D

sup
r′∈R′

〈r′,Md〉R′×R
‖r′‖R′‖d‖D

≥ β. (2.13)

Proof. (i)⇔ (ii) is a consequence of the closed range theorem 2.2. (i)⇔ (iii) is discussed already
in remark 2.4. So is (iii) ⇔ (iv) in remark 2.5. (iv) ⇔ (v) is a consequence of the Hahn-Banach
theorem 2.1. (See [8, Corollary A.17]).

Alternatively, exchanging M and MT ,

Lemma 2.4 (Surjective operators). ([8, Lemma A.40] adding statement about right inverse) Let
M ∈ L(D;R). The following statements are equivalent:

(i) M : D → R is surjective.

(ii) MT : R′ → D′ is injective and Im(MT ) is closed in R.

(iii) The right inverse of M exists, i.e., the lifting operator LM , such that ‖LMd‖R ≤ β‖d‖D
with β > 0 a constant.

(iv) MT is bounded below: there exists β > 0 such that

∀r′ ∈ R′, ‖MT r′‖′D ≥ β ‖r
′‖R′ .

14



(v) There exists β > 0 such that

inf
r′∈R′

sup
d∈D

〈MT r′, d〉D′×D
‖r′‖R′‖d‖D

≥ β. (2.14)

Remark 2.7. Equation (2.14) is the famous inf-sup condition of M.

Lemma 2.5 (Bijective operators). Let M ∈ L(D;R). The following statements are equivalent:

(i) M is bijective (i.e. isomorphism).

(ii) There exists β > 0 such that

inf
d∈D

sup
r′∈R′

〈r′,Md〉R′×R
‖r′‖R′‖d‖D

≥ β,

inf
r′∈R′

sup
d∈D

〈MT r′, d〉D′×D
‖r′‖R′‖d‖D

≥ β.
(2.15)

Remark 2.8. Equation (2.15) can be called the double inf-sup condition of M (and MT ). It
is probably the most compact statement equivalent to bijectivity.

Given all the above definitions, lemmas and remarks, we now consider again the saddle point
problem eq. (2.1) and eq. (2.4).

Consider a bilinear form induced operator B, i.e.,

〈Bv, q〉Q′,Q := b(v, q) ∀v ∈ V, ∀q ∈ Q. (2.16)

The dual operator and the transposed operator of B : V → Q′ are defined as, respectively,

BT : Q′′ → V ′ 〈v,BT q′′〉V,V ′ := 〈Bv, q′′〉Q′,Q′′ ∀v ∈ V, ∀q′′ ∈ Q′′. (dual operator)

Bt : Q→ V ′ 〈v,Btq〉V,V ′ := b(v, q) ∀v ∈ V, ∀q ∈ Q. (transposed operator)

We want to specify conditions for Banach spaces under which these two operators are identical.

Lemma 2.6 (Isometry with the double dual). [8, Proposition A.24] Let Q be a Banach space
and let JQ : Q→ Q′′ be the linear mapping defined by

∀q ∈ Q, ∀q′ ∈ Q′, 〈JQq, q′〉Q′′×Q′ = 〈q′, q〉Q′×Q.

Then, JQ is an isometry.
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Definition 2.9 (Reflexive Banach spaces). Let Q be a Banach space. Q is said to be reflexive if
JQ is an isomorphism.

Theorem 2.4 (Riesz Representation Theorem). Let Q be a Hilbert space. For each q′ ∈ Q′, there
exists a unique Rq′ = q ∈ Q, with R : Q′ 7→ Q the Riesz map, such that

∀w ∈ Q, 〈q′, w〉Q′×Q = (q, w)Q.

Moreover, the Riesz map R is an isometric isomorphism.

Remark 2.9. The Riesz map R : Q′ 7→ Q introduces an inner product (Hilbertian structure) to
the dual space by

(p′, q′)Q′ = (Rp′,Rq′)Q.

It can easily be seen that this inner product is consistent with the dual norm imposed on the dual
space Q′ that makes Q′ a Banach space. Equipped with this inner product, Q′ becomes a Hilbert
space. By the same arguments, we can also equip the double dual of Q with Hilbertian structure.

Another interesting fact about the Riesz map is that, in this Hilbertian setting, the isometry
with the double dual JQ can be easily shown to be exactly the composite of Riesz maps of Q and
Q′. And since both Riesz maps are isomorphic, we deduce the following lemma:

Lemma 2.7. Hilbert spaces are reflexive.

Proof. For ∀q ∈ Q, ∀q′ ∈ Q′, we have,

〈(R′)−1 ◦ R−1q, q′〉Q′′×Q′ = (R−1q, q′)Q′ = (q,Rq′)Q = 〈q, q′〉Q×Q′ .

Therefore, JQ = (R′)−1 ◦ R−1, and so JQ is an isomorphism.

The following diagram shows the hierarchy of the spaces we consider.

Normed vector space
completion
======⇒ Banach space

reflexivity
======⇒

Reflexive Banach space
inner product
========⇒ Hilbert space

Provided that the domain Banach space is reflexive we may replace the dual operator by
the transpose operator for our bilinear form induced operators. Furthermore, in the Hilbertian
setting we have reflexivity.
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2.3 Well-posedness

We are now ready to state the following theorem which gives necessary and sufficient conditions
for the well-posedness of our problem, see also [4, Theorem 4.2.2].

Theorem 2.5 (Well-posedness). Problem eq. (2.4) has a unique solution if and only if:

(i) A is an isomorphism (bijective) from Ker(B) to (Ker(B))′.

(ii) B is surjective from V to Q′.

Furthermore, the solution is stable, i.e., the solution is bounded by the data:

‖u‖V ≤ C1‖f‖V ′ + C2‖g‖Q′ ,
‖p‖Q ≤ C3‖f‖V ′ + C4‖g‖Q′ ,

(2.17)

where C1, C2, C3 and C4 are positive constants.

Remark 2.10. The constants in eq. (2.17) vary in size according to different conditions imposed
on a(·, ·) such as: ellipticity on the whole space or ellipticity just on Ker(B); symmetry of a(·, ·),
etc.. However, the size of the constants do not play an important role in this research paper.

The two conditions in theorem 2.5 may be difficult to verify. The following two lemmas give
alternative statements that may be easier to verify.

Lemma 2.8 (B is surjective). Let B be defined as in eq. (2.2). The transposed operator, or
equally, the dual operator of B is defined as in eq. (2.3). The following statements are equivalent:

(i) B : V → Q′ is surjective.

(ii) Bt : Q→ V ′ is injective and Im(Bt) is closed in V ′.

(iii) The right inverse of B, i.e., the lifting operator LB, exists and is such that‖LB‖ ≤ 1
β , where

β > 0 is a constant.

(iv) Bt is bounded below, i.e., there exists a constant β > 0 such that

∀q ∈ Q, ‖Btq‖V ′ ≥ β‖q‖Q .

(v) There exists a constant β > 0 such that

inf
q∈Q

sup
v∈V

〈Btq, v〉V ′×V
‖q‖Q‖v‖V

≥ β (2.18)
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or, equivalently,

inf
q∈Q

sup
v∈V

b(v, q)

‖q‖Q‖v‖V
≥ β. (2.19)

Equation (2.19) is the famous inf-sup condition of B.

Lemma 2.9 (A is bijective on Ker(B)). Let M ∈ L(D;R). The following statements are
equivalent:

(i) A is bijective on Ker(B), i.e., A is an isomorphism.

(ii) There exists a constant α > 0 such that

inf
v∈Ker(B)

sup
w∈Ker(B)

a(v, w)

‖v‖V ‖w‖V
≥ α,

inf
w∈Ker(B)

sup
v∈Ker(B)

a(v, w)

‖v‖V ‖w‖V
≥ α.

(2.20)

The difference between eq. (2.4) and its discrete approximation eq. (2.6) is that the spaces in
eq. (2.6) are finite dimensional approximations of those in eq. (2.4). The well-posedness for the
discrete problem eq. (2.6) is therefore a special case of theorem 2.5 as discussed next.

Theorem 2.6 (Discrete Well-posedness). Equation (2.6) has a unique solution if and only if:

(i) Ah is an isomorphism (bijective) from Ker(Bh) to (Ker(Bh))′.

(ii) Bh is surjective from Vh to Q′h.

Furthermore, the solution is stable, i.e., the solution is bounded by the data:

‖uh‖V ≤ C5‖f‖V ′ + C6‖g‖Q′ ,
‖ph‖Q ≤ C7‖f‖V ′ + C8‖g‖Q′ ,

(2.21)

where C5, C6, C7 and C8 are positive constants.

Unfortunately, A being bijective from Ker(B) to (Ker(B))′ does not imply Ah being bijective
from Ker(Bh) to (Ker(Bh))′. Similarly, B being surjective from V to Q′ does not imply that Bh
is surjective from Vh to Q′h. This is unlike the ‘standard’ case where well-posedness of eq. (1.1d)
follows from the well-posedness of eq. (1.1c) by the Lax–Milgram theorem, e.g., [5, Cor. 2.7.13].

We note, however, that Ker(Bh) ⊆ Ker(B) is sufficient to guarantee the bijectivity of Ah.
Unfortunately, we often do not have this kernel inclusion (as we will see in section 2.5). For-
tunately, a(·, ·) being coercive on V × V implies that A and Ah are bijective on Ker(B) and

18



Ker(Bh) respectively, as we show next. If a(·, ·) is coercive on V × V , there exists α > 0 such
that

a(u, u) ≥ α‖u‖2V , ∀u ∈ V.

Since Ker(B) ⊂ V , we have

a(u, u) ≥ α‖u‖2V , ∀u ∈ Ker(B).

Equivalently,
a(u, u)

‖u‖V
≥ α‖u‖V , ∀u ∈ Ker(B).

This implies that

sup
v∈Ker(B)

a(u, v)

‖v‖V
≥ α‖u‖V , ∀u ∈ Ker(B) and sup

v∈Ker(B)

a(v, u)

‖v‖V
≥ α‖u‖V , ∀u ∈ Ker(B),

and so

inf
u∈Ker(B)

sup
v∈Ker(B)

a(u, v)

‖v‖V
≥ α and inf

u∈Ker(B)
sup

v∈Ker(B)

a(v, u)

‖v‖V
≥ α.

From lemma 2.9(ii) it therefore follows that A is bijective on Ker(B). Similarly, Ah is bijective
on Ker(Bh) since Ker(Bh) ⊂ Vh ⊂ V .

The following proposition [4, Remark 5.1.4] presents an equivalent statement between the
surjectivity of Bh (theorem 2.6(ii)), assuming B is surjective, and the kernel inclusion Ker(Bt

h) ⊆
Ker(Bt). This proposition will play an important role in section 2.5.

Proposition 2.2. Given B is surjective, the following two statements are equivalent:

(i) KerBt
h ⊆ KerBt.

(ii) Bh is surjective.

Proof. We prove first (i)⇒ (ii). From lemma 2.8(ii) we know that Bt is injective, i.e, Ker(Bt) =
{0}. SinceKer(Bt

h) ⊆ Ker(Bt) we immediately deduce thatKer(Bt
h) = {0}, i.e., Bh is surjective.

We next prove (ii) ⇒ (i). We prove the contrapositive. If Ker(Bt
h) * Ker(Bt), then Ker(Bt

h)
cannot be {0}, and so Bt

h cannot be injective. As a result, Bh cannot be surjective (see lemma 2.8).

2.4 Basic Error Estimate

Let (u, p) ∈ V × Q be the solution to eq. (2.1) and let (uh, ph) ∈ Vh × Qh be the solution to
eq. (2.5). In this section we determine bounds for the errors ‖u− uh‖V and ‖p− ph‖Q. For this,
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let (uI , pI) ∈ Vh ×Qh. By the triangle inequality it is clear that

‖u− uh‖V ≤‖u− uI‖V +‖uh − uI‖V ,
‖p− ph‖Q ≤‖p− pI‖Q +‖ph − pI‖Q .

(2.22)

We will show that

‖uh − uI‖V .‖u− uI‖V +‖p− pI‖Q ,
‖ph − pI‖Q .‖u− uI‖V +‖p− pI‖Q ,

(2.23)

where we used the notation ‖·‖ .‖·‖ to denote ‖·‖ ≤ C‖·‖, where C > 0 a constant independent
of the mesh size h. Combining eq. (2.22) and eq. (2.23) then results in the main result of this
section:

Theorem 2.7 (Basic Error Estimate). Let (u, p) ∈ V × Q be the solution to eq. (2.1) and let
(uh, ph) ∈ Vh ×Qh be the solution to eq. (2.5). We find that

‖u− uh‖V . inf
uI∈Vh

‖u− uI‖V + inf
pI∈Qh

‖p− pI‖Q ,

‖p− ph‖Q . inf
uI∈Vh

‖u− uI‖V + inf
pI∈Qh

‖p− pI‖Q .
(2.24)

Proof. To prove this result we therefore need to prove eq. (2.23). To start, by consistency
eq. (2.11) of the conforming case,

a(uh, vh) + b(vh, ph) = a(u, vh) + b(vh, p) ∀vh ∈ Vh, (2.25a)

b(uh, qh) = b(u, qh) ∀qh ∈ Qh. (2.25b)

Subtracting uI and pI from both hand sides of eq. (2.25) we obtain:

a(uh − uI , vh) + b(vh, ph − pI) = a(u− uI , vh) + b(vh, p− pI) ∀vh ∈ Vh, (2.26a)

b(uh − uI , qh) = b(u− uI , qh) ∀qh ∈ Qh. (2.26b)

The right hand sides can be treated as linear forms on Vh and Qh.

〈F , vh〉 := a(u− uI , vh) + b(vh, p− pI) ∀vh ∈ Vh, (2.27a)

〈G, qh〉 := b(u− uI , qh) ∀qh ∈ Qh. (2.27b)

Hence,

a(uh − uI , vh) + b(vh, ph − pI) = 〈F , vh〉 ∀vh ∈ Vh, (2.28a)

b(uh − uI , qh) = 〈G, qh〉 ∀qh ∈ Qh. (2.28b)
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Note that (ũh, p̃h) := (uh − uI , ph − pI) ∈ Vh ×Qh is the solution to:

a(ũh, vh) + b(vh, p̃h) = 〈F , vh〉 ∀vh ∈ Vh, (2.29a)

b(ũh, qh) = 〈G, qh〉 ∀qh ∈ Qh. (2.29b)

Assuming well-posedness of the discrete problem, we have the following stability property eq. (2.17):

‖uh − uI‖V .‖F‖V ′h +‖G‖Q′h ,

‖ph − pI‖Q .‖F‖V ′h +‖G‖Q′h .
(2.30)

We now need to bound ‖F‖V ′h and ‖G‖Q′h . We may bound these as follows:

‖F‖V ′h ≤ sup
vh∈Vh

a(u− uI , vh)

‖vh‖V
+ sup
vh∈Vh

b(vh, p− pI)
‖vh‖V

,

‖G‖Q′h ≤ sup
qh∈Qh

b(u− uI , qh)

‖qh‖Q
.

(2.31)

By boundedness of a(·, ·) and b(·, ·) it follows that

‖F‖V ′h .‖u− uI‖V +‖p− pI‖V ,

‖G‖Q′h .‖u− uI‖V .
(2.32)

Equation (2.30)–eq. (2.32) now imply eq. (2.23).

2.5 Q-robust Error Estimate

Let (u, p) ∈ V × Q be the solution to eq. (2.1) and let (uh, ph) ∈ Vh × Qh be the solution to
eq. (2.5). Under certain conditions on the function spaces it is possible to improve the error
estimate for ‖u− uh‖V given in theorem 2.7. Determining these improved bounds is the topic of
this section.

We define the affine manifolds (Zh(Bu), Z∗h(Btp)) as

Zh(g) :=
{
vh ∈ Vh, b(vh, qh) = 〈g, qh〉Q′h×Qh

, ∀qh ∈ Qh
}
,

Z∗h(f) :=
{
qh ∈ Qh, b(vh, qh) = 〈f, vh〉V ′h×Vh , ∀vh ∈ Vh

}
,
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and

Zh(Bu) :=
{
vh ∈ Vh, b(vh, qh) = 〈Bu, qh〉Q′h×Qh

= b(u, qh), ∀qh ∈ Qh
}
,

Z∗h(Btp) :=
{
qh ∈ Qh, b(vh, qh) = 〈Btp, vh〉V ′h×Vh = b(vh, p), ∀vh ∈ Vh

}
.

By definition of F and G (see eq. (2.26) and eq. (2.28)), we note that

uI ∈ Zh(Bu)⇒ b(u− uI , qh) = 0, ∀qh ∈ Qh ⇒ ‖G‖Q′h = 0,

pI ∈ Z∗h(Btp)⇒ b(vh, p− pI) = 0, ∀vh ∈ Vh ⇒ ‖F‖V ′h .‖u− uI‖V .

We also require the following proposition.

Proposition 2.3. [4, Prop. 5.1.3] Suppose that the affine manifold Zh(Bu) is nonempty, then
for any u ∈ V ,

inf
wh∈Zh(Bu)

‖u− wh‖V . inf
vh∈Vh

‖u− vh‖V .

The Q-robust error estimate is given by the following theorem.

Theorem 2.8 (Conforming Q-robustness). Suppose that both the affine manifolds Zh(Bu) and
Z∗h(Btp) are nonempty. Then,

‖u− uh‖V . inf
vh∈Vh

‖u− vh‖V .

Proof. As in section 2.4, let (uI , pI) ∈ Vh ×Qh. By the triangle inequality,

‖u− uh‖V ≤‖u− uI‖V +‖uh − uI‖V . (2.33)

If we choose uI ∈ Zh(Bu) and pI ∈ Z∗h(Btp) then

‖uh − uI‖V .‖u− uI‖V . (2.34)

Combined with eq. (2.33),
‖u− uh‖V .‖u− uI‖V , (2.35)

or, equivalently,
‖u− uh‖V . inf

uI∈Zh(Bu)
‖u− uI‖V . (2.36)

The result follows using proposition 2.3.

Remark 2.11. Note that the estimate in theorem 2.8 is independent of ‖q − qh‖Q, hence the
term ‘Q-robustness’. This is an improved bound for the error ‖u− uh‖V compared to that given
in eq. (2.24).
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The Q-robustness result of theorem 2.8 hinges on the nonemptiness of the affine manifold
pair (Zh(Bu), Z∗h(Btp)). It may sometimes be difficult to verify this property. Fortunately, the
following proposition gives sufficient conditions, see [4, Proposition 4.1.6; 5.1.1; 5.1.2].

Proposition 2.4. The following statements are equivalent:

(i) There exists a linear mapping Πh : V → Vh such that:

b(v −Πhv, qh) = 0, ∀v ∈ V, ∀qh ∈ Qh.

(ii) Ker(Bt
h) ⊆ Ker(Bt).

From this proposition we note that Πhv ∈ Zh(Bu), hence Zh(Bu) is not empty.

Alternatively, exchanging B and Bt,

Proposition 2.5. The following statements are equivalent:

(i) There exists a linear mapping Φh : Q→ Qh such that:

b(vh, q − Φhq) = 0, ∀q ∈ Q, ∀vh ∈ Vh.

(ii) Ker(Bh) ⊆ Ker(B).

From this proposition we note that Φhq ∈ Z∗h(Btp), hence Z∗h(Btp) is not empty.

We end this section with the following remarks. In the general case we found in section 2.3
the following.

Remark 2.12. Proposition 2.2 tells us that the kernel inclusion Ker(Bt
h) ⊆ Ker(Bt) is equivalent

to Bh being surjective. Then by lemma 2.8, this is equivalent to the discrete inf-sup condition
(assuming the continuous inf-sup condition holds).

For Q-robustness, the following is important.

Remark 2.13. For theorem 2.8 to hold we require that Zh(Bu) and Z∗h(Btp) are nonempty.

• Proposition 2.4 gives a sufficient condition for Zh(Bu) to be nonempty, namely Ker(Bt
h) ⊆

Ker(Bt). This condition is equivalent to the discrete inf-sup condition (see remark 2.12).

• A sufficient condition for Z∗h(Btp) to be nonempty is given proposition 2.5, namely Ker(Bh) ⊆
Ker(B). This condition is not possessed by most finite element pairs and explains why most
finite element pairs are not Q-robust.

Note that we have only discussed sufficient conditions for Zh(Bu) and Z∗h(Btp) to be nonempty.
There may be finite element methods that do not satisfy these sufficient conditions but that are
Q-robust.
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Chapter 3

Nonconforming FEM for Saddle
Point Problems

The results presented in chapter 2 are known from the literature. This chapter presents a gen-
eralization of these results to nonconforming finite element methods and forms the main part
of new contributions of this research paper. In particular, we will obtain error estimates for
nonconforming finite element methods by generalizing the approach in chapter 2.

3.1 The Nonconforming Discrete Problem

Given two finite dimensional discrete spaces Vh (with norm |||·|||Vh) and Qh (with norm |||·|||Qh
).

Let ah(·, ·) : Vh × Vh → R and bh(·, ·) : Vh × Qh → R be bilinear forms that approximate a(·, ·)
and b(·, ·) as given in eq. (2.1). We consider the following discrete problem: Given f ∈ V ′h and
g ∈ Q′h, we want to find (uh, ph) ∈ Vh ×Qh that solves:

ah(uh, vh) + bh(vh, ph) = 〈f, vh〉, ∀vh ∈ Vh, (3.1a)

bh(uh, qh) = 〈g, qh〉, ∀qh ∈ Qh. (3.1b)

In the nonconforming setting at least one of the following two inclusions does not hold: Vh ⊂ V
or Qh ⊂ Q.

3.2 Well-posedness

For the well-posedness of problem eq. (3.1), we first note that bilinear forms ah(·, ·) and bh(·, ·) are
bounded on Vh× Vh and Vh×Qh due to their finite dimensionality. We denote by Anch : Vh → V ′h
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the operator associated with the bilinear form ah and Bnc
h : Vh → Q′h the operator associated

with the bilinear form bh. These are defined as:

〈Anch uh, vh〉V ′h,Vh := ah(uh, vh) ∀uh ∈ Vh, ∀vh ∈ Vh,
〈Bnc

h vh, qh〉Q′h,Qh
:= bh(vh, qh) ∀vh ∈ Vh, ∀qh ∈ Qh.

The kernel of Bnc
h is defined as

Ker(Bnc
h ) :=

{
vh ∈ Vh, bh(vh, qh) = 0, ∀qh ∈ Qh

}
.

We now state the well-posedness result for nonconforming finite element methods.

Theorem 3.1 (Well-posedness nonconforming FEM). Problem eq. (3.1) has a unique solution if
and only if:

(i) Anch is an isomorphism (bijective) from Ker(Bnc
h ) to (Ker(Bnc

h ))′.

(ii) Bnc
h is surjective from Vh to Q′h.

Furthermore, the solution is stable, i.e., the solution is bounded by the data:

|||uh|||Vh ≤ C1|||f |||V ′h + C2|||g|||Q′h ,

|||ph|||Qh
≤ C3|||f |||V ′h + C4|||g|||Q′h .

(3.2)

Proof. The proof is identical to the proof of well-posedness for the conforming case, see [4, The-
orem 4.2.2].

3.3 Basic Error Estimate

In this research paper we assume that the exact solution (u, p) ∈ V ×Q to eq. (2.1) also satisfies
the discrete problem eq. (3.1). However, Vh 6⊂ V and/or Qh 6⊂ Q. This presents a problem
since the bilinear forms ah(·, ·) and bh(·, ·) are not defined on, respectively, V × V and V × Q.
We therefore assume (see for example [15, Section 1.3.3]) that there are subspaces V∗ ⊂ V and
Q∗ ⊂ Q to which the exact solutions belong, and such that the bilinear forms ah(·, ·) and bh(·, ·)
may be extended to, respectively, V∗h × V∗h and V∗h ×Q∗h, where (see fig. 3.1)

V∗h = Vh + V∗, and Q∗h = Qh +Q∗.
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Figure 3.1: Depiction of an example of V∗, Vh and V∗h (left) and Q∗, Qh and Q∗h (right).

We also define the operators Anc : V∗h → V ′∗h and Bnc : V∗h → Q′∗h by

〈Ancu, v〉V ′∗h,V∗h := ah(u, v) ∀u ∈ V∗h, ∀v ∈ V∗h,
〈Bncv, q〉Q′∗h,Q∗h := bh(v, q) ∀v ∈ V∗h, ∀q ∈ Q∗h.

The kernel of Bnc is defined as

Ker(Bnc) :=
{
v ∈ V∗h, bh(v, q) = 0, ∀q ∈ Q∗h

}
. (3.3)

Consistency is now defined as follows.

Definition 3.1 (Consistency). We say that the discrete problem eq. (3.1) is consistent if for the
exact solution pair (u, p) ∈ V∗ ×Q∗,

ah(u, vh) + bh(vh, p) = 〈f, vh〉, ∀vh ∈ Vh, (3.4a)

bh(u, qh) = 〈g, qh〉, ∀qh ∈ Qh. (3.4b)

It is often not possible to show boundedness of ah(·, ·) and bh(·, ·) on V∗h×V∗h and V∗h×Q∗h
in the norms |||·|||Vh and |||·|||Qh

. For this reason we assume norms |||·|||V∗ and |||·|||Q∗ for which it is
possible to show boundedness of ah(·, ·) on V∗h×Vh, bh(·, ·) on V∗h×Qh, and bh(·, ·) on Vh×Q∗h,
see [15, Section 1.3.4]. The norm |||·|||V∗ defined on V∗h is assumed to be such that for all vh ∈ Vh,
|||vh|||Vh ≤ |||vh|||V∗ ≤ C|||vh|||Vh with C independent of h. Similarly, |||·|||Q∗ is defined on Q∗h such
that for all qh ∈ Qh, |||qh|||Qh

≤ |||qh|||Q∗ ≤ C|||qh|||Qh
with C independent of h. We summarize
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these results in the following two definitions.

Definition 3.2 (Boundedness of ah). We assume that the bilinear form ah(·, ·) is bounded on
V∗h × V∗h if there exists a Cabnd > 0, independent of h, such that,∣∣ah(v, wh)

∣∣ ≤ Cabnd|||v|||V∗ |||wh|||Vh ∀(v, wh) ∈ V∗h × Vh.

Definition 3.3 (Boundedness of bh). We assume that the bilinear form bh(·, ·) is bounded in
V∗h ×Qh if there exists a Cb

′
bnd > 0, independent of h, such that,∣∣bh(v, qh)
∣∣ ≤ Cb′bnd|||v|||V∗ |||qh|||Qh

∀(v, qh) ∈ V∗h ×Qh.

We assume that the bilinear form bh(·, ·) is bounded in Vh × Q∗h if there exists a Cb
′′
bnd > 0,

independent of h, such that,∣∣bh(vh, q)
∣∣ ≤ Cb′′bnd|||vh|||Vh |||q|||Q∗ ∀(vh, q) ∈ Vh ×Q∗h.

We may now prove an error estimate for nonconforming FEM.

Theorem 3.2 (Nonconforming Basic Error Estimate). Let (u, p) ∈ V∗×Q∗ be the unique solution
of problem eq. (2.1). Let (uh, ph) ∈ Vh × Qh solve problem eq. (3.1). Assume consistency and
boundedness of the bilinear forms ah(·, ·) and bh(·, ·). Then there exists Cerr > 0, independent of
h, such that

|||(u− uh, p− ph)|||Vh,Qh
≤ Cerr inf

(vh,qh)∈Vh×Qh

|||(u− vh, p− qh)|||V∗,Q∗ , (3.5)

where |||(v, q)|||2Vh,Qh
:= |||v|||2Vh + |||q|||2Qh

for all (v, q) ∈ V∗h ×Q∗h.

Proof. By the virtue of consistency,

ah(uh − uI , vh) + bh(vh, ph − pI) = ah(u− uI , vh) + bh(vh, p− pI) ∀vh ∈ Vh, (3.6a)

bh(uh − uI , qh) = bh(u− uI , qh) ∀qh ∈ Qh, (3.6b)

which is similar to eq. (2.26) for conforming FEM. Likewise, considering the right hand sides in
eq. (3.6) as linear forms Fnc and Gnc acting on Vh and Qh,

ah(uh − uI , vh) + bh(vh, ph − pI) = 〈Fnc, vh〉h ∀vh ∈ Vh, (3.7a)

bh(uh − uI , qh) = 〈Gnc, qh〉h ∀qh ∈ Qh, (3.7b)

which is similar to eq. (2.28) for conforming FEM. By the stability property eq. (3.2) we observe
that

|||uh − uI |||Vh ≤ C1|||Fnc|||+ C2|||Gnc|||. (3.8)
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We may bound |||Fnc||| and |||Gnc||| as follows:

|||Fnc||| ≤ sup
vh∈Vh

ah(u− uI , vh)

|||vh|||Vh
+ sup
vh∈Vh

bh(vh, p− pI)
|||vh|||Vh

, (3.9a)

|||Gnc||| ≤ sup
vh∈Vh

bh(u− uI , qh)

|||qh|||Qh

. (3.9b)

By boundedness of ah and bh eq. (3.9) becomes

|||Fnc||| . |||u− uI |||V∗ + |||p− pI |||Q∗ , (3.10a)

|||Gnc||| . |||u− uI |||V∗ . (3.10b)

Combined with eq. (3.8) we then obtain

|||uh − uI |||Vh . |||u− uI |||V∗ + |||p− pI |||Q∗ . (3.11)

By the triangle inequality,

|||u− uh|||Vh . inf
uI∈Vh

|||u− uI |||V∗ + inf
pI∈Qh

|||p− pI |||Q∗ ,

|||p− ph|||Qh
. inf

uI∈Vh
|||u− uI |||V∗ + inf

pI∈Qh

|||p− pI |||V∗ ,

which may be combined to eq. (3.5).

3.4 Q-robust Error Estimate

As we saw previously in section 2.5, it was possible to obtain improved error estimates (Q-robust
error estimates) under certain conditions on the function spaces. In this section we generalize
these results to the nonconforming setting and improve the error estimates given by theorem 3.2.

We define the affine manifolds (Zh(Bncu), Z∗h(Bnctp)) as

Zh(Bncu) :=
{
vh ∈ Vh, bh(u− vh, qh) = 0, ∀qh ∈ Qh

}
,

Z∗h(Bnctp) :=
{
qh ∈ Qh, bh(vh, p− qh) = 0, ∀vh ∈ Vh

}
,

We require also the following propostion.

Proposition 3.1. For any u ∈ V∗h, there exists C, independent of h, such that

inf
wh∈Zh(Bncu)

|||u− wh|||V∗ ≤ C inf
vh∈Vh

|||u− vh|||V∗
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Proof. We show that for arbitrary vh ∈ Vh we can always find wh ∈ Zh(Bncu) such that

|||u− wh|||V∗ ≤ C|||u− vh|||V∗ .

We first note that the inf-sup condition

βnc∗ |||qh|||Qh
≤ sup

vh∈Vh

bh(vh, qh)

|||vh|||V∗
, ∀qh ∈ Qh, (3.12)

follows directly from

βnc|||qh|||Qh
≤ sup

vh∈Vh

bh(vh, qh)

|||vh|||Vh
, ∀qh ∈ Qh, (3.13)

since |||vh|||V∗ and |||vh|||Vh are equivalent for vh ∈ Vh.

Let LBnc
h

be the right inverse of Bnc
h associated with the inf-sup condition eq. (3.12). (Recall

the equivalence between Bnc
h being surjective and the fact that the right inverse of Bnc

h exists and
that is bounded with constant 1/βnc∗ , see lemma 2.8.) We then set for all vh ∈ Vh,

dh := LBnc
h

(ΠQ′h
Bnc(u− vh)),

where ΠQ′h
: Q′∗h → Q′h is the projection operator as defined in definition 2.4. We then find

Bnc
h (dh + vh) = ΠQ′h

Bnc(u− vh) +Bnc
h vh

= ΠQ′h
Bncu.

This shows that wh := dh + vh ∈ Zh(Bncu) (which follows by definition of Bnc
h , Bnc and ΠQ′h

).
We also find that

|||dh|||V∗ ≤
1

βnc∗
|||ΠQ′h

Bnc(u− vh)|||Q′h ≤
Cb
′
bnd

βnc∗
|||u− vh|||V∗ ,

where the first inequality is by boundedness of LBnc
h

and the second inequality is by

〈ΠQ′h
Bnc(u− vh), qh〉Q′h×Qh

= bh(u− vh, qh),

and boundedness of bh.

The result then follows by a triangle inequality:

|||u− wh|||V∗ ≤ |||u− vh|||V∗ + |||dh|||V∗ . |||u− vh|||V∗ .
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The Q-robust error estimate is given by the following theorem.

Theorem 3.3 (Nonconforming Q-robust Error Estimate). Let (u, p) ∈ V∗ × Q∗ be the unique
solution of problem eq. (2.1). Let (uh, ph) ∈ Vh × Qh solve problem eq. (3.1). Assume the affine
manifolds Zh(Bncu) and Z∗h(Bnctp) are nonempty. Then,

|||u− uh|||Vh . inf
vh∈Vh

|||u− vh|||V∗ .

Proof. As in section 2.5, for uI ∈ Zh(Bncu), |||Gnc||| = 0, and for pI ∈ Z∗h(Bnctp),

|||uh − uI |||Vh . |||Fnc||| . sup
vh∈Vh

ah(u− uI , vh)

|||vh|||Vh
. |||u− uI |||V∗ , (3.14)

where the last inequality is by boundedness of ah(·, ·) as defined in definition 3.2. By the triangle
inequality,

|||u− uh|||Vh ≤ |||uh − uI |||Vh + |||u− uI |||Vh . |||u− uI |||V∗ .

Thus,
|||u− uh|||Vh . inf

uI∈Zh(Bncu)
|||u− uI |||V∗ . (3.15)

The result follows by proposition 3.1.

The Q-robustness result of theorem 3.3 hinges on the nonemptiness of Zh(Bncu) and Z∗h(Bnctp).
However, the nonemptiness of Zh(Bncu) is equivalent to the surjectivity of Bnc

h , i.e., the discrete
inf-sup conditon of bh(·, ·), which is always required for well-posedness. Hence, to obtain Q-
robustness requires to show nonemptiness of Z∗h(Bnctp).

Recall that kernel inclusion Ker(Bh) ⊆ Ker(B) is a sufficient condition for Z∗h(Btp) to be
nonempty in the conforming case (see remark 2.13). For the nonconforming case we have a similar
condition as given in the next proposition.

Proposition 3.2. The following statements are equivalent:

(i) Ker(Bnc
h ) ⊆ Ker(Bnc).

(ii) ΠV ′h
Im(Bnct) ⊆ Im(Bnct

h ).

(iii) There exists a linear operator Φh : Q∗h → Qh such that

b(vh, q − Φhq) = 0 ∀q ∈ Q∗h, ∀vh ∈ Vh. (3.16)
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Proof. For a proof of (i)⇔ (ii) see [4, Prop. 4.1.6]. We prove (ii)⇔ (iii).

(iii)⇒ (ii) ∀q ∈ Q∗h, eq. (3.16) can be rewritten as

ΠV ′h
Bnctq = ΠV ′h

BnctEQh
Φhq = Bnct

h Φhq ∈ Im(Bnct

h ).

(ii)⇒ (iii) ∀q ∈ Q∗h,

ΠV ′h
Bnctq ∈ Im(Bnct

h ),

Let L
Bnct

h
be the right inverse of Bnct

h . Define now

Φhq := L
Bnct

h
(ΠV ′h

Bnctq).

It follows that
Bnct

h Φhq = ΠV ′h
Bnctq,

which is the same as eq. (3.16).

31



Chapter 4

The Stokes Problem

In this chapter we apply the theory of chapter 2 and chapter 3 to the Stokes problem. We first
briefly introduce this problem.

The incompressible Navier–Stokes equations are the fundamental equations of fluid dynamics.
The steady Navier–Stokes equations are given by:

−ν∇2u+ (u · ∇)u+∇p = f , (4.1a)

∇ · u = 0, (4.1b)

u|∂Ω = 0, (4.1c)

〈p〉Ω = 0. (4.1d)

Here eq. (4.1a) is the equation of momentum conservation while eq. (4.1b) is the equation for
mass conservation. Furthermore, we consider only homogeneous Dirichlet boundary conditions
eq. (4.1c). Since the pressure is unique up to a constant, we impose that the mean of the pressure
over the whole domain is zero by eq. (4.1d).

In the low Reynolds number limit the Navier–Stokes equations simplify to the Stokes equa-
tions:

−ν∇2u+∇p = f , (4.2a)

−∇ · u = g, (4.2b)

u|∂Ω = 0, (4.2c)

〈p〉Ω = 0. (4.2d)

We remark that g in eq. (4.2b) originates from transforming inhomogeneous Dirichlet boundary
conditions to no-slip boundary conditions [11]. And

∫
Ω g dx = 0 because the divergence theorem
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implies
∫

Ω∇ · udx =
∫
∂Ω u · nds = 0. We also remark that there are variations on boundary

conditions besides eqs. (4.2c) to (4.2d) (see [8, Section 4.1.4] and [7, Chapter 3]) and the rest
of the analysis in this chapter can be altered accordingly for a treatment to general boundary
conditions.

4.1 Variational Formulation

Let Ω ⊂ Rd be a polygonal (d = 2) or polyhedral (d = 3) domain and let f ∈ L2(Ω) and
g ∈ L2(Ω). Let L2

0(Ω) be the space of square integrable functions with vanishing mean on Ω and

let H1
0 (Ω) :=

[
H1

0 (Ω)
]d

. The variational formulation of the Stokes problem eq. (4.2) is given by:
find (u, p) ∈ V ×Q := H1

0 (Ω)× L2
0(Ω) such that

a(u,v) + b(v, p) = (f ,v), ∀v ∈ V , (4.3a)

b(u, q) = (g, q), ∀q ∈ Q, (4.3b)

where

a(u,v) := ν(∇u,∇v) := ν

∫
Ω
∇u : ∇v dx,

b(v, q) := −(∇ · v, q) = −
∫

Ω
q∇ · v dx,

where (·, ·) denotes the L2 inner product over Ω. These bilinear forms are clearly bounded:

a(u,v) = ν(∇u,∇v) ≤ ν‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ ν‖u‖H1(Ω)‖v‖H1(Ω) ,

b(v, q) = −(∇ · v, q) ≤‖∇ · v‖L2(Ω)‖q‖L2(Ω) ≤‖∇v‖L2(Ω)‖q‖L2(Ω) ≤‖v‖H1(Ω)‖q‖L2(Ω) .

The operator B associated with the bilinear form b is given by

B = ∇· : H1
0 (Ω)→ L2

0(Ω), (4.4)

and its kernel is given by

Ker(B) =
{
v ∈H1

0 (Ω) : Bv = ∇ · v = 0
}
. (4.5)

Recall theorem 2.5. For problem eq. (4.2) to be well-posed, we require

• a(·, ·) satisfies the double inf-sup condition on Ker(B) (see lemma 2.9).

• b(·, ·) satisfies the inf-sup condition (see lemma 2.8).
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For the first condition, it suffices that a(·, ·) is coercive on H1
0 (Ω). To show this we require

Poincaré’s inequality, as defined next.

Lemma 4.1 (Poincaré inequality). [9, Theorem 1 and remark, Section 5.7] Let 1 ≤ p ≤ ∞ and
let Ω be a bounded open set. Then there exists constant Cp,Ω > 0 such that

∀v ∈W 1,p
0 (Ω), Cp,Ω‖v‖Lp(Ω) ≤‖∇v‖Lp(Ω) . (4.6)

To show now that a(·, ·) is coercive on H1
0 (Ω), note that

a(u,u) = ν(∇u,∇u) = ν‖∇u‖L2(Ω) ≥ α‖u‖H1(Ω) , ∀u ∈H1
0 (Ω), (4.7)

where we used Poincaré’s inequality for the last step. Furthermore, α = νC where C is a constant
that depends on the Poincaré constant.

To show that b(·, ·) satisfies the inf-sup condition (equivalently, the surjectivity of the diver-
gence operator eq. (4.4)), we require the following definition.

Definition 4.1 (Star-shaped w.r.t. a ball). An open bounded set Ω is said to be star-shaped
w.r.t. a ball B if for any x ∈ Ω and z ∈ B ⊂ Ω, the segment joining x and z is contained in Ω.

Using this definition, it was shown [10, Lemma 3.1] that the divergence operator is surjective:

Lemma 4.2 (Bogovskǐi). Let Ω is star-shaped w.r.t. a ball B ⊂ Ω. Then the divergence operator
B = ∇· : H1

0 (Ω)→ L2
0(Ω) is surjective.

We remark that if p = 2 in lemma 4.1 then lemma 4.2 holds also for a domain Ω of which the
boundary is Lipschitz (instead of Ω being star-shaped), see [8, Remark B.70]. This is the case for
the Stokes problem.

Denoting the inf-sup constant by β > 0, the inf-sup condition for the divergence constraint
eq. (4.3b) is given by:

inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω)

(∇ · v, q)
‖v‖H1(Ω)‖q‖L2(Ω)

≥ β. (4.8)

We may now state well-posedness of the Stokes problem.

Theorem 4.1 (Well-posedness of the Stokes problem). The Stokes problem (4.2) is well-posed.
Furthermore, the solution satisfies the following bounds: ∀f ∈ L2(Ω) and g ∈ L2

0(Ω),

‖u‖1,Ω ≤
1

α
‖f‖−1,Ω +

2‖a‖1/2

α1/2β
‖g‖0,Ω , (4.9a)

‖p‖0,Ω ≤
2‖a‖1/2

α1/2β
‖f‖−1,Ω +

2‖a‖1/2

α1/2β
‖g‖0,Ω , (4.9b)
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where ‖a‖ = ν and α = Cν (see eq. (4.7)).

4.2 Standard Mixed FEM Methods

Let Vh×Qh ⊂ V ×Q denote a pair of stable conforming piecewise polynomial spaces w.r.t. a mesh
Th of Ω. A Galerkin mixed finite element method for the Stokes equations seeks (uh, ph) ∈ Vh×Qh
such that,

a(uh,vh) + b(vh, ph) = (f ,vh), ∀vh ∈ Vh, (4.10a)

b(uh, qh) = (g, qh), ∀qh ∈ Qh. (4.10b)

Using the theory introduced in section 2.4 we immediately find the following error estimate for
the velocity:

‖u− uh‖H1(Ω) ≤ (
2‖a‖
α

+
2‖a‖1/2

α1/2β
)‖u− uI‖H1(Ω) +

‖b‖
α
‖p− pI‖L2(Ω) ,

=
2

C̃Ω

(
1

C̃Ω

+
1

β
)︸ ︷︷ ︸

C1

‖u− uI‖H1(Ω) +
1

C̃2
Ω︸︷︷︸

C2

ν−1‖p− pI‖L2(Ω) ,

where we used that ‖b‖ = 1. We therefore find that

‖u− uh‖H1(Ω) ≤ C1 inf
vh∈Vh

‖u− vh‖H1(Ω) + C2ν
−1 inf

qh∈Qh

‖p− qh‖L2(Ω) , (4.11)

where the constants C1, C2 depend only on the domain Ω. This estimate immediately shows the
dependence of the velocity error estimate on the best approximation error of the pressure scaled
by the inverse of the viscosity, see example 1.1. However, as we saw in section 2.5, if we use a
stable conforming finite element pair with the kernel inclusion property proposition 2.5(ii), this
result may be improved. We, however, do not pursue this here. Instead, in the next section we
consider a non-conforming finite element method.

4.3 H(div)-Conforming DG Methods

In this section we consider an H(div)-conforming discontinuous Galerkin (DG) finite element
method for the Stokes equations eq. (4.2). We consider the interior penalty DG version of the
method originally introduced in [6].

The new theory for nonconforming methods developed in chapter 3 will provide guidance in
proving a pressure-robust error estimate for the velocity.
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4.3.1 The Raviart–Thomas Space

To define the H(div)-conforming DG method, we require H(div)-conforming finite element spaces.
We consider the Raviart–Thomas (RT) space [4, Chapter 2]. However, we start by defining
H(div,Ω).

Definition 4.2. The Hilbert space of vector fields that possess a weak divergence (defined in the
same way as weak derivatives) is defined by

H(div,Ω) := {w ∈ L2(Ω) : ∇ · w ∈ L2(Ω)}. (4.12)

Let Th denote a shape-regular triangulation of Ω. Let Fh denote the set of all the edges
(d = 2) or faces (d = 3) of the mesh Th. The set of boundary edges/faces is denoted by FBh ⊂ Fh
while FIh ⊂ Fh is the set of interior edges/faces. Consider an arbitrary element K ∈ Th. We will
next define the Raviart–Thomas space on K.

Definition 4.3 (Polynomials). [19, Section 2] We introduce preliminary notations in order to
define and investigate the RT polynomial space on K.

• Pk(K) is the space of polynomials of degree at most k defined on K.

• Pk(K) := Pk(K)d.

• P̃k(K) are homogeneous polynomials of degree k.

• Pk(e) with e ∈ ∂K is the space of (d− 1)-variate polynomials on tangential coordinates.

• Rk(∂K) = Πe∈∂KPk(e) are piecewise polynomial functions on ∂K.

The Raviart–Thomas space is now defined as:

Definition 4.4 (Raviart–Thomas Space). The RT space on K is defined as

RT k(K) := Pk(K)⊕ xP̃k(K). (4.13)

The RT space satisfies the following useful property which will play an important role in
deriving pressure-robust error estimates in section 4.3.4:

Proposition 4.1. div(RT k(K)) = Pk(K).

For other useful properties of the RT space we refer to [19, Prop. 2.3].

For the RT space to be a proper finite element, the RT space requires the definition of local
degrees of freedom and, accordingly, the local interpolation/projection operator.
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Definition 4.5 (The Raviart-Thomas Projection). [19] Let v : K → Rd be sufficiently smooth.
The RT projection ΠRT

k v ∈ RT k(K) is defined by the equations

(ΠRT
k v,w)K = (v,w)K ∀w ∈ Pk−1(K), (4.14a)

〈ΠRT
k v · n, µ〉∂K = 〈v · n, µ〉∂K ∀µ ∈ Rk(∂K). (4.14b)

Proposition 4.2. Equation (4.14) are uniquely solvable, i.e., the RT space is a unisolvent finite
element [19, Prop. 2.4].

The RT projection ΠRT
k satisfies the following approximation results.

Proposition 4.3 (Approximation estimates of RT projection). Let K be an affine element.
There exists a constant C depending only on k and the shape of K such that, for 1 ≤ m ≤ k+ 1,
s = 0 or 1 and for any v in Hm(K), we have

‖v −ΠRT
k v‖s,K ≤ Ch

m−s
K |v|m,K (4.15)

Proof. This a special case of [4, Prop. 2.5.1].

The following commutativity property will play an important role in deriving the inf-sup
condition in lemma 4.8. This commutativity property enables the RT projection to be a Fortin
operator as we will see in lemma 4.7.

Proposition 4.4 (Commutativity Property). [19, Eq. (17)] Consider v ∈ H(div,Ω), the fol-
lowing commutativity property holds:

∇ ·ΠRT
k v = Πk∇ · v, (4.16)

where Πk is the L2(K)-projection onto Pk(K), i.e., for all u ∈ L2(K),

(Πku, v)K = (u, v)K ∀v ∈ Pk(K).

4.3.2 Weak Formulation

We will now discuss the nonconforming DG weak formulation for the Stokes problem eq. (4.2).

As finite dimensional function spaces we consider

Vh := RT k := {vh ∈H0(div,Ω) : vh|K ∈ RT k(K) ∀K ∈ Th},
Qh := {qh ∈ L2

0(Ω) : qh|K ∈ Pk ∀K ∈ Th},
(4.17)
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where H0(div,Ω) :=
{
v ∈H(div,Ω) : v · n = 0 on ∂Ω

}
. We note that Vh 6⊂ H1

0 (Ω), i.e., we
are considering a nonconforming finite element for the Stokes problem. However, since Vh ⊂
H(div,Ω), this method is called H(div)-conforming.

The DG weak formulation using H(div)-conforming finite element methods is now given by:
Find (uh, ph) ∈ Vh ×Qh such that

ah(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh, (4.18a)

b(uh, qh) = (g, qh) ∀qh ∈ Qh. (4.18b)

The bilinear form ah(uh,vh) is the ‘standard’ interior-penalty DG method for the vector-
Laplacian modified for H(div)-conforming finite element methods (see appendix A for a heuristic
derivation):

ah(uh,vh) :=

∫
Ω
∇huh : ∇hvh dx

−
∑
F∈Fh

(∫
F
{{ε(uh)}}JvhK ds+

∫
F
{{ε(vh)}}JuhK ds− σ

hF

∫
F
JuhKJvhK ds

)
. (4.19)

Here we used the standard notation for the average and jump operators. These are defined on
interior facets F ∈ FIh , F = ∂K+ ∩ ∂K− by

{{ε(u)}}|F :=
1

2

(∂(u+ · τK+)

∂nK+

+
∂(u− · τK−)

∂nK−

)
, (4.20a)

JuK|F := u+ · τK+ + u− · τK− , (4.20b)

where u± = u|K± and where τK denotes the tangential unit vector of ∂K, obtained by rotating
the normal nK by 90 degrees counterclockwise. For a boundary edge F ∈ FBh these operators
are defined as

{{ε(u)}}|F :=
∂(u · τK)

∂nK
, (4.20c)

JuK|F := u · τK . (4.20d)

To prove consistency, boundedness and stability of the DG method eq. (4.18), we require the
definition of extended function spaces with norms. Let V∗h := Vh+V∗ := Vh+(Hs(Ω)∩H1

0 (Ω)),
with s > 3

2 , and let Q∗h := Qh+Q∗ = Qh+(H1(Ω)∩L2
0(Ω)). We let the two bilinear forms ah(·, ·)

and b(·, ·) be extended, respectively, on V∗h × V∗h and V∗h ×Q∗h. Note that since Q∗h ⊆ L2(Ω),
the domain of the second argument of the bilinear form b(·, ·) needs not to be extended. We
introduce two norms |||·||| and |||·|||∗ on V∗h [21, eqs. (4.5) and (4.6)] since the H1-norm cannot
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be used for H(div,Ω). These two norms are defined as:

|||v|||2 = |v|21,h +
∑
F∈Fh

h−1
F

∥∥JvK∥∥2

F
, (4.21a)

|||v|||2∗ = |||v|||2 +
∑
F∈Fh

hF
∥∥{{ε(v)}}

∥∥2

F
, (4.21b)

where |v|21,h =
∑

K∈Th |v|
2
1,K and ‖·‖F is the L2-norm on F . On Q∗h, since Q∗h ⊆ L2(Ω), we use

the L2-norm and it will be denoted as ‖·‖.

To obtain an error estimate, recall from section 3.3 that we require that for all vh ∈ Vh,
|||vh||| ≤ |||vh|||∗ ≤ C|||vh||| with C independent of h. We verify that this is true.

Let K be an element with F as an edge. By the continuous trace inequality [15, Lemma 1.49]
and Young’s inequality we can show the following variant of the trace inequality [21, eq. (4.7)].
(See appendix B for a proof.)

Lemma 4.3 (Variant of Trace Inequality). There exists a constant C, independent of the mesh
size h, such that for any v ∈ H1(K)

‖v‖2F ≤ C(h−1
K ‖v‖

2
K + hK |v|21,K). (4.22)

We now show the equivalence of the norms |||·||| and |||·|||∗ on Vh. First of all, the inequality
|||vh||| ≤ |||vh|||∗ is trivial for all vh ∈ Vh so that we only show that |||vh|||∗ ≤ C|||vh|||. We first
note that the second term on the right hand side of eq. (4.21b) can be bounded using eq. (4.22)
as: ∑

F∈Fh

hF
∥∥{{ε(vh)}}

∥∥2

F
.
∑
K∈Th

(|vh|21,K + h2
K |∇vh|21,K) ∀vh ∈ Vh. (4.23)

We now apply an inverse inequality [22, Eq. (3.3)] to the second term on the right hand side to
obtain ∑

F∈Fh

hF
∥∥{{ε(vh)}}

∥∥2

F
.
∑
K∈Th

|vh|21,K . (4.24)

It follows that indeed
|||vh|||∗ . |||vh|||, (4.25)

so that |||·||| and |||·|||∗ on Vh.

We are now ready to prove consistency, boundedness of ah(·, ·), coercivity of ah(·, ·), and the
inf-sup condition of b(·, ·).

Lemma 4.4 (Consistency). Let (u, p) ∈ V∗ × L2
0(Ω) be the exact solution to the Stokes problem
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(4.3). Then, {
ah(u,vh) + b(vh, p) = (f ,vh), ∀vh ∈ Vh,

b(u, qh) = (g, qh), ∀qh ∈ Qh,
(4.26)

Proof. This is shown in appendix A.

Lemma 4.5 (Boundedness of ah(·, ·)). ah(·, ·) is bounded on V∗h, i.e.,

|ah(u,v)| . |||u|||∗|||v|||∗ ∀u,v ∈ V∗h. (4.27)

Proof. This is an immediate consequence of the Cauchy–Schwarz inequality. For all u,v ∈ V∗h
it holds that

|ah(u,v)| .

{
|u|1,h|v|1,h +

( ∑
F∈Fh

hF
∥∥{{ε(u)}}

∥∥2

F

) 1
2
( ∑
F∈Fh

h−1
F

∥∥JvK∥∥2

F

) 1
2

+

( ∑
F∈Fh

hF
∥∥{{ε(v)}}

∥∥2

F

) 1
2
( ∑
F∈Fh

h−1
F

∥∥JuK
∥∥2

F

) 1
2

+ σ

( ∑
F∈Fh

h−1
F

∥∥JuK
∥∥2

F

) 1
2
( ∑
F∈Fh

h−1
F

∥∥JvK∥∥2

F

) 1
2

}
. |||u|||∗|||v|||∗.

Remark 4.1. We note that when v is restricted to Vh, by eq. (4.25), lemma 4.5 reduces to

|ah(u,vh)| . |||u|||∗|||vh|||. (4.28)

Lemma 4.6 (Coercivity of ah(·, ·)). There exists a constant Cell∗, independent of h, such that
∀vh ∈ Vh we have

ah(vh,vh) ≥ Cell∗|||vh|||2∗, (4.29)

provided that the penalty parameter σ is sufficiently large.

Proof. It follows from the Cauchy–Schwarz inequality, eq. (4.24), and Young’s inequality, that
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there exists a constant C such that∣∣∣∣∣∣
∑
F∈Fh

∫
F
{{ε(uh)}}JvhK ds

∣∣∣∣∣∣ ≤
( ∑
F∈Fh

hF
∥∥{{ε(uh)}}

∥∥2

F

) 1
2
( ∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F

) 1
2

≤ C|uh|1,h
( ∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F

) 1
2

≤ 1

2
|uh|21,h +

C2

2

∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F
.

Using the above inequality and eq. (4.25), we obtain

ah(vh,vh) = |vh|21,h + σ
∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F
− 2

∑
F∈Fh

∫
F
{{ε(vh)}}JvhK ds

≥ |vh|21,h + σ
∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F
− 1

2
|vh|21,h −

C2

2

∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F

=
1

2
|vh|21,h +

(
σ − C2

2

) ∑
F∈Fh

h−1
F

∥∥JvhK∥∥2

F

≥ Cell|||vh|||2

≥ Cell∗|||vh|||2∗,

where the second inequality holds for sufficiently large σ, i.e., if σ > C2

2 .

To prove the discrete inf-sup condition of b(·, ·), we first recall Fortin’s trick [4, Prop. 5.4.2]:

Definition 4.6 (Fortin Operator). Fortin’s operator Πh : V → Vh is defined as

b(v −Πhv, qh) = 0 ∀qh ∈ Qh. (4.30)

Proposition 4.5 (Fortin’s trick). Assume that the continuous inf-sup condition eq. (4.8) is sat-
isfied. If the Fortin operator is bounded with a constant CΠ, independent of h, i.e.,

|||Πhv||| ≤ CΠ‖v‖V ∀v ∈ V , (4.31)

then

sup
vh∈Vh

b(vh, qh)

|||vh|||
≥ β

CΠ
‖qh‖ ∀qh ∈ Qh. (4.32)
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Proof. The proof is as follows:

sup
vh∈Vh

b(vh, qh)

|||vh|||
≥ sup

v∈V

b(Πhv, qh)

|||Πhv|||
= sup

v∈V

b(v, qh)

|||Πhv|||
≥ 1

CΠ
sup
v∈V

b(v, qh)

‖v‖V
≥ β

CΠ
‖qh‖ . (4.33)

We apply Fortin’s trick now to our H(div)-conforming DG finite element method. We note
first that the Fortin operator in our case is the Raviart–Thomas projection:

Lemma 4.7 (The Raviart–Thomas projection ΠRT
k is a Fortin Operator). For all v ∈ V∗h,

ΠRT
k : V∗h → Vh is a Fortin operator. Furthermore, the Raviart–Thomas projection ΠRT

k is
bounded.

Proof. An immediate consequence of the commutativity property of ΠRT
k proposition 4.4 is that

b(v −ΠRT
k v, qh) = 0 ∀qh ∈ Qh. (4.34)

We are left to show boundedness, i.e., that

|||ΠRT
k v||| .‖v‖V ∀v ∈ V . (4.35)

By the approximation estimates of the RT projection operator eq. (4.15) and the trace inequality
eq. (4.22), we see that

|||v −ΠRT
k v|||2 = |v −ΠRT

k v|21,h +
∑
F∈Fh

h−1
F

∥∥Jv −ΠRT
k vK

∥∥2

F

≤ C|v|21 + C
∑
K∈Th

∑
F∈∂K

h−1
F

∥∥v −ΠRT
k v

∥∥2

F

≤ C‖v‖21 + C
∑
K∈Th

(h−2
K

∥∥v −ΠRT
k v

∥∥2

K
+ |v −ΠRT

k v|21,K)

≤ C‖v‖21 + C
∑
K∈Th

(h−2
K h2

K |v|21,K + |v|21,K)

≤ C‖v‖21 v ∈H1
0 (Ω).

(4.36)

Furthermore,
|||v||| = |v|1 ≤‖v‖1 ∀v ∈ V = H1

0 (Ω).

Equation (4.35) then follows from the triangle inequality.

We may now prove the discrete inf-sup condition.
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Lemma 4.8 (Inf-sup condition of b(·, ·)). There exists constant β∗ independent of h such that

sup
vh∈Vh

b(vh, qh)

|||vh|||∗
≥ β∗‖qh‖ ∀qh ∈ Qh. (4.37)

Proof. By the equivalence result eq. (4.25) and eq. (4.35),

|||ΠRT
k v|||∗ ≤ C‖v‖1 . (4.38)

The result follows by proposition 4.5.

4.3.3 Well-posedness

We now prove well-posedness of the H(div)-conforming DG method eq. (4.18).

Recall from theorem 3.1 that we need to fulfill two conditions for our H(div)-conforming finite
element method to be well-posed. The first condition in theorem 3.1 is satisfied because ah is
coercive on Vh lemma 4.6. The second condition in theorem 3.1 is also satisfied, see lemma 4.8.
Note that in both cases we use the equivalence of the norms |||·||| and |||·|||∗ on Vh. We therefore
have the following result.

Theorem 4.2. The discrete formulation eq. (4.18) has a unique solution (uh, ph) ∈ Vh × Qh.
Furthermore, this solution is stable, i.e., the solution is bounded by the data:

|||uh||| ≤ C1|||f |||V ′h + C2‖g‖Q′h ,
‖ph‖ ≤ C3|||f |||V ′h + C4‖g‖Q′h .

(4.39)

4.3.4 Pressure-Robust Estimate

We end section 4.3 by proving a pressure-robust velocity error estimate, i.e., we prove

|||u− uh||| . inf
vh∈Vh

|||u− vh|||∗. (4.40)

We know from theorem 3.3 that eq. (4.40) holds provided that the following two affine mani-
folds are nonempty:

Zh :=

{
vh ∈ Vh, b(u− vh, qh) =

∫
Ω
∇ · (u− vh)qh dx = 0, ∀qh ∈ Qh

}
,

Z∗h :=

{
qh ∈ Qh, b(vh, p− qh) =

∫
Ω
∇ · vh(p− qh) dx = 0, ∀vh ∈ Vh

}
.
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The nonemptiness of Zh can be easily shown due to the Raviart–Thomas projection operator
ΠRT
k . To see this, note that ΠRT

k u ∈ Zh.

We now show the nonemptiness of Z∗h. For this we require the following proposition.

Proposition 4.6. ∇ · Vh ⊆ Qh.

Proof. For ∀vh ∈ Vh, by proposition 4.1, we have ∇·vh|K ∈ Pk and so ∇·vh ∈ L2(Ω). Moreover,∫
Ω
∇ · vh dx =

∫
∂Ω
vh · nds = 0,

since vh ∈ H0(div,Ω). We obtain ∇ · vh ∈ L2
0(Ω). Since ∇ · vh|K ∈ Pk and ∇ · vh ∈ L2

0(Ω) the
result follows.

We remark that Vh is a Hilbert space. Furthermore, since Vh is finite dimensional and the
divergence operator is a bounded linear operator, ∇ · Vh is a finite dimensional subspace of
L2(Ω), thus closed. Using that a closed subspace of a Hilbert space is itself a Hilbert space [4,
Section 4.1.2] with respect to the same inner product, we note that ∇ ·Vh is a Hilbert space. We
may now apply the Riesz Representation Theorem, theorem 2.4, to show that we have a unique
wh ∈ ∇ · Vh ⊆ Qh such that

b(vh, p− wh) =

∫
Ω
∇ · vh(p− wh) dx = 0, ∀vh ∈ Vh.

Therefore, Z∗h is nonempty. The pressure robust estimate eq. (4.40) now follows.
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Chapter 5

Conclusions

Pressure-robust finite element methods have become very popular in recent years. This is because
the velocity error is independent of the pressure error scaled by the viscosity. In chapter 1 we
compared a pressure-robust discretization for the Stokes problem against a discretization that is
not pressure-robust. We saw a significant improvement in the velocity.

The analysis of pressure-robust methods has also gained much popularity recently. However,
the result, i.e., a velocity error estimate that is independent of the pressure error, is not new.
Such results may be found for example in the book of Brezzi and Fortin (Mixed and Hybrid Finite
Element Methods, 1991). There, an analysis for general saddle-point problems is presented and
conditions are presented on conforming mixed finite element spaces under which one may achieve
pressure-robustness. This research paper extended these ideas to non-conforming finite element
methods for general saddle-point problems. Since in the general case the scalar unknown is not
necessarily a pressure, we refer to our analysis as ‘Q-robustness’.

We give sufficient conditions for ‘Q-robustness’ for general nonconforming mixed finite element
methods for saddle point problems. These conditions are the nonemptiness of the following affine
manifolds:

Zh :=
{
vh ∈ Vh, bh(u− vh, qh) = 0, ∀qh ∈ Qh

}
,

Z∗h :=
{
qh ∈ Qh, bh(vh, p− qh) = 0, ∀vh ∈ Vh

}
.

In general it may be difficult to show that Zh and Z∗h are not empty. For this reason we
presented equivalent, but easier to show, conditions under which we obtain Q-robustness. In
particular, we showed:

• The discrete inf-sup condition is a necessary condition for the discrete saddle-point problem
to be well-posed. We showed that it also guarantees that the first manifold is nonempty.

45



• A kernel inclusion is sufficient for the nonemptiness of the affine manifold Z∗h.

We applied our extended theory to an H(div)-conforming discontinuous Galerkin method for
the Stokes equations. We showed well-posedness of the method and provided a simple proof of
Q-robustness. This is the main application of the extended theory in this research paper.

Future Work

In the future we plan to:

• We want to apply our extended analysis framework to an H(div)-conforming hybridized
discontinuous Galerkin method for the Stokes problem. In this case, since the method
introduces Lagrangian multipliers for both velocity and pressure approximations, we need
remark that ah(·, ·) 6= a(·, ·) and bh(·, ·) 6= b(·, ·) (in this research paper we only consid-
ered the case ah(·, ·) 6= a(·, ·) and bh(·, ·) = b(·, ·)). Although pressure-robustness of the
discretization has already been shown in the literature, we expect that our new analysis
will provide a shorter proof. In particular, we will analyze the nonemptiness of the affine
manifold Z∗h,

Z∗h :=
{
qh ∈ Qh, bh(vh, p− qh) = 0, ∀vh ∈ Vh

}
.

• It can be shown that both H(div)-conforming discontinuous Galerkin method and H(div)-
conforming hybridized discontinuous Galerkin method are nice methods in the sense that
the velocity approximation is H(div)-conforming and pointwise divergence free. It can be
further shown that these two nice properties will guarantee the nonemptiness of the affine
manifold Z∗h.
A very nice result of the analysis we did is that our analysis provides sufficient condi-
tions under which Q-robustness may be achieved. These may be weaker than requiring
the velocity approximation to be H(div)-conforming and pointwise divergence free. This
suggests that it might be possible to design new Q-robust finite element methods (or modify
existing finite element methods to be Q-robust) that do not necessarily result in a velocity
approximation that is H(div)-conforming and/or pointwise divergence free.

• Instead of imposing nonemptiness of Zh and Z∗h on the finite element method, it may be
possible to weaken the conditions for Q-robustness even further. We believe this might
be achieved by considering the Helmholtz decomposition and closed range theorem. This
may again result in new Q-robust finite element methods that do not necessarily result in
a velocity approximation that is H(div)-conforming and/or pointwise divergence free.
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Appendix A

The DG Method for Stokes

We derive the bilinear form ah for an H(div)-conforming DG method (see eq. (4.19)). It is based
on the Symmetric Interior Penalty (SIP) method introduced by Arnold [3]. In contrast with the
derivation in [15, section 4.2], here we introduce only the tangential jumps across the element
interfaces since H(div)-conformity implies normal continuity.

For simplicity, consider the non-dimensionalized Stokes equations:

−∇2u+∇p = f , (A.1a)

∇ · u = g, (A.1b)

u|∂Ω = 0, (A.1c)

〈p〉Ω = 0. (A.1d)

Multiply the eq. (A.1a) by an arbitrary vh ∈ Vh (recall the definition in eq. (4.17)) and rewrite
the integral as the sum of integrals on each element:∑

K∈Th

[
−
∫
K
∇2u · vh dx+

∫
K
∇p · vh dx

]
=

∫
Ω
f · vh dx,

Apply the divergence theorem to both integrals inside the square bracket. The left hand side
becomes:∑

K∈Th

[∫
K
∇u : ∇v dx−

∫
∂K

∂u

∂nK
· vh ds−

∫
K
p∇ · vh dx+

∫
∂K

pvh · nK ds

]
, (A.2)
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where ∑
K∈Th

∫
∂K

pvh · nK ds =
∑
F∈FB

h

∫
F
pvh · nK ds = 0,

where the first equality is due to the normal continuity of vh across an element boundary and
the assumption that p ∈ H1(Ω); the second equality is because of the boundary condition of
the weak problem. (Again, recall the definition in eq. (4.17).) For the sum of the second inte-
gral in eq. (A.2), we first consider the decomposition of vh in normal and tangential directions
respectively,

vh = (vh · nK)nK + (vh · τK)τK ,

∂u

∂nK
· vh =

∂u · nK
∂nK

(vh · nK) +
∂u · τK
∂nK

(vh · τK).

Thus, ∑
K∈Th

∫
∂K

∂u

∂nK
· vh ds =

∑
K∈Th

∫
∂K

[
∂u · nK
∂nK

(vh · nK) +
∂u · τK
∂nK

(vh · τK)

]
ds

=
∑
K∈Th

∫
∂K

∂u · τK
∂nK

(vh · τK) ds,

(A.3)

where the second equality is again due to normal continuity of vh across an elment boundary and
the assumption that u ∈H2(Ω) (which implies the continuity of u). We next simplify eq. (A.3).

Consider a single edge/facet F ∈ FIh as illustrated in fig. A.1. Then∫
F

∂u|K1 · τ1

∂n1
(vh|K1 · τ1) ds+

∫
F

∂u|K2 · τ2

∂n2
(vh|K2 · τ2) ds

=−
∫
F

∂u|K1 · τ1

∂n1
(vh|K1 · τF ) ds+

∫
F

∂u|K2 · τ2

∂n2
(vh|K2 · τF ) ds,

=

∫
F

1

2

(
∂u|K1 · τ1

∂n1
+
∂u|K2 · τ2

∂n2

)(
vh|K2 · τF − vh|K1 · τF

)
ds

+

∫
F

1

2

(
∂u|K1 · τ1

∂n1
− ∂u|K2 · τ2

∂n2

)
︸ ︷︷ ︸

=0 due to continuity

(
vh|K2 · τF + vh|K1 · τF

)
ds

=

∫
F

1

2

(
∂u|K1 · τ1

∂n1
+
∂u|K2 · τ2

∂n2

)(
vh|K2 · τ2 + vh|K1 · τ1

)
ds,
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Figure A.1: Notation for an edge/facet. Note that the normal direction of an arbitrary F ∈ FIh
is determined once there is a mesh and does not change afterwards.

where the second equality uses the identity:

a2b2 − a1b1 =
1

2
(b2 + b1)(a2 − a1) +

1

2
(a2 + a1)(b2 − b1).

To simplify notation we define average and jump operators on interior edges/facets as:

{{ε(u)}}|F :=
1

2

(
∂u|K1 · τ1

∂n1
+
∂u|K2 · τ2

∂n2

)
(A.4a)

JuK|F := u|K1 · τ1 + u|K2 · τ2. (A.4b)

On boundary edges/facets, the average and jump operators are defined as:

{{ε(u)}}|F :=
∂u|K1 · τ1

∂n1
(A.5a)

JuK|F := u|K1 · τ1. (A.5b)

We can therefore write eq. (A.3) as:∑
K∈Th

∫
∂K

∂u

∂nK
· vh ds =

∑
F∈Fh

∫
F
{{ε(u)}}JvhK ds.
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We observe from eq. (A.2) that we can define the bilinear form ah(·, ·) as:

ah(uh,vh) :=

∫
Ω
∇huh : ∇hvh dx−

∑
F∈Fh

∫
F
{{ε(uh)}}JvhK ds. (A.6)

However, ah(·, ·) defined this way is not symmetric. To obtain symmetry we add a consistent
term:

ah(uh,vh) :=

∫
Ω
∇huh : ∇hvh dx−

∑
F∈Fh

∫
F
{{ε(uh)}}JvhK ds−

∑
F∈Fh

∫
F
{{ε(vh)}}JuhK ds. (A.7)

To see that the extra term is consistent, we observe that for u ∈H2(Ω) ∩H1
0 (Ω):

JuK|F∈FI
h

= u|K1 · τ1 + u|K2 · τ2 = 0,

JuK|F∈FB
h

= u|K1 · τ1 = 0.

Unfortunately, ah(·, ·) given in eq. (A.7) is not coercive. To see this, note that

ah(vh,vh) :=

∫
Ω
∇hvh : ∇hvh dx− 2

∑
F∈Fh

∫
F
{{ε(vh)}}JvhK ds.

We note that the sign of ah(vh,vh) is undetermined. To fix this, we add a stabilization term:

ah(uh,vh) :=

∫
Ω
∇huh : ∇hvh dx−

∑
F∈Fh

∫
F
{{ε(uh)}}JvhK ds−

∑
F∈Fh

∫
F
{{ε(vh)}}JuhK ds

+
σ

hF

∑
F∈Fh

∫
F
JuhKJvhK ds,

where σ is the stablization parameter that needs to be chosen sufficiently large to ensure stability.
Note again that the extra term is consistent.
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Appendix B

Variant of the Trace Inequality

Lemma B.1 (Young’s Inequality). Let a, b, ε ∈ R. Then,

ab ≤ a2

2ε
+
εb2

2
.

Proof. This is direct consequence of

0 ≤ (a− εb)2 = a2 − 2εab+ (εb)2.

Now we use Young’s Inequality to prove lemma 4.3.

Proof. By the continuous trace inequality [15, Lemma 1.49], we have

‖v‖2F ≤ C
(
|v|1,K + h−1

K ‖v‖K
)
‖v‖K ,

≤ C
(
|v|1,K ‖v‖K + h−1

K ‖v‖
2
K

)
,

≤ C

(
hK |v|21,K

2
+
‖v‖2K
2hK

+ h−1
K ‖v‖

2
K

)
,

≤ C
(
h−1
K ‖v‖

2
K + hK |v|21,K

)
.
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