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Abstract

Microscopic image analysis is an important step in biological study. Biologists study the
movements of cells under certain drug treatments through a sequence of time-lapse mi-
croscopic images to determine the effect of the treatments. The development of modern
bright-field microscopes allows more detailed investigations of the cell activities. How-
ever, it also brings challenges for automatic cell image analysis because of the low-contrast
nature of bright-field microscopic images.

This paper presents contributions to automatic bright-field cell image segmentation. We
propose ten methods for bright-field cell image segmentation. The ten methods are based
on two well-known methods in computer vision, namely spectral clustering and robust prin-
cipal component analysis (RPCA). The first three methods are based on spectral clustering.
They determine the segmentations by classifying the k segments from spectral clustering
into cell segments and background segments. The other three methods are RPCA-based
methods. The cell image segmentation problem is treated as a background subtraction
problem, where the cells are the sparse moving objects to be identified. Several modifica-
tions have been made to RPCA to improve the segmentations. In the last four methods, we
combine spectral clustering and RPCA to solve the segmentation problem. The first two
methods use the results from RPCA to help the segmentation based on spectral clustering.
In the last two methods, we formulate the problem as a principal component pursuit with
graph cut penalization, and obtained the segmentation results similar to the three RPCA-
based methods presented previously. The last method outperforms all previous methods
in terms of segmentation quality.

We have applied these methods on a set of C2C12 cells in bright-field microscopy. Ex-
perimental results confirm that the proposed methods give accurate segmentation of cells
in bright-field microscopy, which conventional image segmentation methods cannot at-
tain.
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Chapter 1

Introduction

Image segmentation, a well-developed field in computer vision, describes the process of
partitioning an image into more semantic segments. It is the first fundamental step in
many applications, for example, tracking a moving object in a video surveillance and
recognizing different types of objects in a vision guided assembly system. Its applications
range from medical imaging to traffic control systems. The result of image segmentation
is a simplification of the original image from tremendous number of pixels to just a few
segments, and thus provides additional information to aid further analysis and higher level
processing.

In many cases, segmentation reduces the problem of identifying the boundaries of the fore-
ground region. More specifically, it becomes a task of classifying pixels into foreground
pixels and background pixels. This task can be performed easily in human vision system.
However, the massive amount of images from laboratories necessitates the use of computer
to facilitate the segmentation. Various methods have been introduced in literature on
image segmentation. However, there is not any general method gives good results in all
applications. Moreover, some method is more desirable than the others in particular appli-
cations, because we are looking for different forms of segmentation in different applications.
For example, in object recognition, the objective is to capture the basic shape of the ob-
jects. However, in the detection of brain lesions, a more precise segmentation of the white
matter of the brain is required. In addition, pixel intensities and textures vary slightly in
the images, which complicate the segmentation process. One particular challenge in this
area is the automatic segmentation of eukaryotic cells in bright-field microcopies.



1.1 Bright-field Cell Images

The motivation for this project comes from its applications in medical image segmentations
for eukaryotic cells. Eukaryotic cells are complex cells that are part of plants and animals.
These cells are transparent and contain different organelles in their cytoplasm. The most
fundamental characteristic of Eukaryotic cells, which makes them different from prokaryotic
cells, is that they have nuclei, within which the genetic material like deoxyribonucleic acid
(DNA) is contained. The presence of a nucleus differentiates the cell division process of
eukaryotic cells and prokaryotic cells. During its reproduction cycle, a eukaryotic cell goes
through five stages of cell division, replicating its DNA and all of its internal organelles in
this process.

In an attempt to capture the many phases of cell division for eukaryotic cells, biologists
have adopted a few different methods of microscopy. Two of the most popular kinds
are fluorescent microscopy and bright-field microscopy. Fluorescent microscopy is a more
complicated method done by introducing a gene to the cell so that it emits a certain light
around its nucleus. This light makes the segmentation process very easy, but the images
often only capture the nucleus of the cell where the DNA is contained. It is also possible
that the gene introduced in fluorescent microscopy affects the behaviour of the cell during
cell division. In this case, biologists turn to bright-field microscopy, where the images
provide information on the cytoplasm as well as the nucleus. Figure 1.1 compares the
fluorescent microscopy and the bright-field microscopy. The fluorescent images only show
the nuclei of the cells, but the bright-field images show the complete cells.

(a) (b)

Figure 1.1: Comparison of fluorescent microscopy and bridght-field microscopy



However, in bright-field microscopy, the overall intensity of the cell is very similar to that
of the background, hence making it difficult to perform image segmentation. In these
images, different regions of a cell absorb different degrees of light, which makes some
regions brighter than the others. This makes the cell body not uniform in intensity level
and many algorithms have difficulty identifying where the cell body is. Furthermore,
the method of bright-field microscopy introduces a halo around the cell, but the halo
may not be consistent. This halo causes difficulty in edge detection algorithms, as the
halo is not consistent throughout different stages of the cell division. Image segmentation
applied to bright-field microscopy is therefore a much more difficult problem compared to
its fluorescent counterpart.

1.2 Bright-field Image Segmentation

Various image segmentation techniques have been tried to segment cell images. The most
classical method is the edge evolution method. It begins with an initial curve within
the image boundary, and moves the curve according to an equation defined by an energy
functional, which is related to the pixel intensity inside the cells and outside the cells.
It is defined in a way such that the evolving curve is stopped at the cell boundaries.
However, this type of method is not successful in segmenting bright-field cell images. In
particular, only the halo has been identified as foreground in most cases. Figure 1.2 shows
the segmentation result of applying a curve evolution method! on the bright-field cell
images. The evolving curve can only capture the halo, because the pixel intensities inside
the cell bodies are indistinguishable from the background.

(a)
Figure 1.2: Segmentation of bright-field image using Chan-Vese

'We have applied the Chan-Vese active contour without edge algorithm on the cell image.



Spectral clustering has gained in popularity recently on image segmentation, and it has
been applied on segmenting bright-field cell images [2]. However, the method can only
produce a decent segmentation for images with only a couple of cells. Therefore, a global-
local method was proposed in [2]. The method first segments an individual cell cluster
in a confine area, and then combines every piece of segmented cell cluster to be the final
segmentation result. Figure 1.3 shows the segmented cells using the spectral clustering
method in [2]. This method gives a good segmentation result, but the method is hard to
implement. Each individual cell cluster is extracted by identifying its location manually.
The goal of this project is to develop some robust mathematical models to segment a
bright-field cell image without human intervention.

Figure 1.3: Spectral clustering on an image with one cell cluster

The remainder of this research paper is organized as follows. Chapter 2 will introduce
some background knowledge of spectral clustering, robust principal component analysis
(RPCA), and Chan-Vese active contour without edge model. They are the main methods
we will use in the image segmentation algorithms. In Chapter 3, we will introduce ten
methods. The first 3 methods are based on spectral clustering. The others are based on
RPCA, but spectral clustering are also involved in the last 4 methods. In Chapter 4, we
apply the methods on a set of bright-field cell images, and display the segmentation results.
Finally, we will end our discussion by some concluding remarks.



Chapter 2

Background

In this Chapter, we give an overview on some existing methods in the field of computer
vision. These methods are adopted in the methods proposed in Chapter 3. The cell
segmentation methods proposed in Chapter 3.1, and Chapter 3.3 use spectral clustering,
which we will discuss in Chapter 2.2. For a given sequence of microscopic images, we
have developed several cell segmentation methods based on a data analysis model called
robust principal component analysis (RPCA) in Chapter 3.2 and Chapter 3.3. The model
of RPCA will be reviewed in Chapter 2.3. In some RPCA based methods proposed in
Chapter 3, classical image segmentation techniques are used as the post-processing steps.
We will briefly talk about the classical image segmentation techniques in Chapter 2.1.

2.1 Classical Image Segmentation Methods

Most image segmentation algorithms assume that pixels belonged to the same object are
connected by local grouping cues, for example pixel intensities, pixel location, and texture.
In the simplest case, global attribute is sufficient in segmenting an image. Methods use
solely global attribute are called non-contextual methods. One typical example of a non-
contextual method is intensity-based thersholding. This simple method does not exploit
enough information from the image to produce a good segmentation result. However, it is
a useful tool for improving the segmentation quality if the thresholds can be obtained from
other more sophisticated methods. Contextual methods, on the other hand, consider local
attributes. They group pixels with similar attributes together to form the segmentation
result. Region-growing methods, edge-based methods, watershed segmentation methods,



and active contour methods are all contextual methods. The Chan-Vese model is an
example of region based active contour model. It begins with an initial contour,and evolves
the contour according to an evolution equation in such a way that it stops on the object
boundaries. More specifically, if we let u be the given image, and C' be the evolving
curve. The Chan-Vese model achieves segmentation according to the following energy
functional:

F(c1, e2,C) = pLength(C) + vArea(inside(C))

J

-~
regularizing terms

+ M\ / | u(z,y) — 1 | dedy + )\2/ | u(z,y) — o | dady,
inside(C) outside(C)

J/

~
fitting terms

(2.1)

where ¢; is the average intensity value inside the contour C, ¢y is the average intensity
outside the contour C, inside(C) is the region inside the curve C, and outside(C') is the
region outside the curve C. The regularity part is to control the smoothness of the contour
(', while the fitting part is to move the contour to object boundaries. Figure 2.1 illustrate

how this model works.

(a) Case 1 ) Case 2 (c) Case 3 ) Case 4

Figure 2.1: All possible cases in the position of the curve: the fitting term is minimized in
the case when the curve and the object boundary coincide. Case 1: Fi(C) > 0, F5(C) =~
0 = Fitting > 0. Case 2: Fi(C) ~ 0,Fy(C) > 0 = Fitting > 0. Case 3: F;(C) >
0, F»(C) = 0 = Fitting > 0. Case 4: F1(C) = 0, F5(C) ~ 0 = Flitting = 0.

By minimizing the fitting terms, we can minimize the difference between the intensities in
inside(C') and the foreground, and the difference between the intensities in outside(C') and
the background, and thus move the contour C' to the actual object boundaries Cj.



2.2 Spectral Clustering and Image Segmentation

Clustering is a procedure of collecting a set of data points together so that the data
points in the same group are similar and data points in different groups are dissimilar.
It is a crucial step in data analysis, and a well-explored area in data mining. The most
popular existing algorithms include k-means clustering, the Gaussian mixture model, and
spectral clustering. In the problem of image segmentation, spectral clustering is usually the
most effective algorithm among the others, because spectral clustering uses a user-defined
similarity measurement. Therefore, the most interesting features of pixels such as pixel
intensities, RGB values, and pixel locations can be focused more on when performing the
clustering.

To apply spectral clustering in image segmentation, the given image is transformed into a
weighted undirected graph G = (V, E), where each node corresponds to a pixel and each
edge is formed between each pair of pixels. Weights are assigned to all edges to reflect
the image structure. If two pixels belong to a same object in the image, their intensities
are very similar. Therefore, the edge connecting these two pixels should be assigned to
a high weight. We will address more on this issue in Chapter 3. The rest of this section
will devote to the explanation of the general spectral clustering algorithm. Section 2.2.1
explain the formulation of the algorithm in the view of graph partitioning. Section 2.2.2
presents the algorithms.

2.2.1 Spectral Graph Partitioning

The idea of spectral clustering originates from spectral graph partitioning [20]. Spectral
graph partitioning partitions a graph based on the similarity of the nodes. Intuitively,
we would like to find a way to cut the graph into different parts such that nodes in the
same part are similar, and nodes in different parts are dissimilar. In data analysis, each
data point is considered as a node of the graph. By cutting the graph in this way, similar
data points can be in the same cluster, and dissimilar data points can be in the different
clusters.

Similarity Graph

Let G = (V, E) be a weighted undirected graph with vertex set V' = {vy,...,v,,} and edge
set E = {{v;,v;}| vertex ¢ and vertex j are connected}. The weight corresponding to



{vi,v;} is wy;. Since the graph is undirected, the weight w;; = w;;. The affinity weight
matrix is defined to be a symmetric matrix W, where W;; = w;;. Define d; = Z;n:l w; j to

be the weighted degree of the vertex v;, and the degree matrix D to be a diagonal matrix

with diagonal {dy,...,d,, }.

Consider any two sets of vertices A and B. Define a metric to measure the similarity
between cluster A and cluster B:

W(AB) = Y wy (2.2)

i€A,jEB

The function W (A, B) simply sums up the weights of the edges connecting cluster A and
cluster B, which corresponds to the inter-region similarity in the image. Define a metric
to measure the similarity between pixels in cluster A:

vol(A) =Y d;. (2.3)

€A

The function vol(A) simply sums up the weighted degree of each vertex in cluster A, which
corresponds to the intra-region similarity in the image.

There are three different constructions of similarity graphs. They include: the e-neighbourhood
graph, the k-nearest neighbour graph, and the fully connected graph. In the the e-
neighbourhood graph, two points are connected only if their pairwise distance is within the
parameter €. In the k-nearest neighbour graph, a point v is connected to a point w only if

v is one of the k-nearest neighbours of w. Finally, the fully connected graph is a complete
graph with all the edge weights being nonzero.

Approximating graph-cut

Given any two sets of vertices A and B, the graph-cut of these two sets is defined to be
the following:
cut(A,B) =W(A,B) = > wy. (2.4)

i€A,jeB

To separate these two sets with minimal linkage broken, we can find a partition such that
(2.2) is minimized. However, in most of the cases, the minimum cut separates the these two
sets by isolating the point with minimal edge weight and the rest of the graph, which is not
we want. We prefer to cut the graph into two balanced sets instead of some isolated points



and a very large set. Some modified versions of graph-cuts were proposed to consider the

sizes of clusters, namely the Ratio Cut:

cut(A,B)  cut(A, B)
A Bl -

RatioCut(A, B) = (2.5)

and the Normalized Cut:
cut(A, B) N cut(A, B)
vol(A) vol(B)

Here, |A| denotes the cardinary of the set A, and vol(A) is defined in (2.3). They both
can be considered as a measure of the cluster size of A. Minimizing (2.5) or (2.6) not only
cut off the two clusters with minimal linkages broken, but also try to keep the two clusters
balanced as measured by its cardinary or total edge weights respectively.

NCut(A, B) = (2.6)

The problems of minimizing Ratio Cut and Normalized Cut are very similar, because
they arc only using different measures for the cluster sizes. We will give a detail solution
method of minimizing (2.6), and just state the solution of minimizing (2.5) due to space
limitation.

Minimizing the NCut

In order to minimize the inter-region similarity, and to maximize the intra-region similarity;,
we consider the following optimization problem:

k —

1 Z W(%W)’ (2.7)

min —
ViyeVi 2 4 T vol i

1=

where V; corresponds to the ith cluster in the data set. The objective value is small as long

as the cluster V; is not too small for any i. Actually, the quantity Zf’zl W is minimized

when all vol(V;) coincide, and the partition is balanced.

Let k£ be the number of clusters we want to classify.

Case 1 k =2: Given any subset V; C V, the indicator vector

(V1) e
ZZZTi)’ if v; e p

W) ify T



defines the classification of the nodes in the graph. Define the Laplacian matrix L to be
L =W — D. In [20], the author has shown that 27 Lz = vol(V)Ncut(Vy,Vy), (Dx)'1 =0,

and x7 Dz = vol(V'). Then, the minimization problem (2.7) can be written as:

minimize 27 Lx
Vi
subject to x has the form defined in (2.8),
(Dz)'1 =0,

v Dx = vol(V).

(2.9)

However, this problem is NP hard. Relax (2.9) by considering all z € R™. Also, by
substituting y = D2z and letting Loym = D= LD3, (2.9) becomes:

minimize yTLsymy
y

subject to y7(D21) =0, (2.10)
yTy = vol(V).

Since vol(V') is a constant, (2.10) is equivalent to the following problem:

N YT Lyymy
minimize T
y yTy (2.11)

subject to y*(D21) = 0.

By Rayleigh-Ritz theorem, the solution to (2.11) is given by the second eigenvector of Ly,
which gives the objective value being the second eigenvalue of Lgy,".

Case 2 k> 3: Let H be a n x £ matrix whose nonzero entries of the jth column define
the elements in the jth cluster. More specifically, we define the jth column of H to be
hj = (th, ceey hm]’)T ,Where

. » U € V;
hi; = vol(V;) (2.12)
0, otherwise,

'We assumed that all eigenpairs are sorted according to the eigenvalues in ascending order.

10



fori=1,..,nand j=1,.. k.

Similar to the previous case, we have H'H = I, h;" Dh; = 1, and h;" Lh; = cut(V;, V;) Jvol(V;).
The problem of minimizing the Normalized Cut can be written as:

minimize Tr(H'LH)
Vi Vi

subject to H has the form defined in (2.12), (2.13)
H"DH = 1.

Relax H to be a matrix in R™**_ and substitute P = D%H7 problem (2.13) becomes:

minimize 77 (P" LgymP)
P (2.14)
subject to PTP =1.

This is a trace minimization problem of a real symmetric matrix. The solution of (2.14) is
given by [vq, ..., vy], the first k eigenvectors of Lgy,,.

Minimizing the Ratio Cut

The procedure of minimizing the Ratio Cut is very similar to that of the Normalized Cut,
so we will only outline the solutions here.

Problem: .
. I =WV, V)
Jin 5>

where A; corresponds to the ith cluster in the data set.

Case 1 £ =2 : Define the indicator vector to be:

ahve .
X — %7 1f7}i€‘/la

= i3 . B
— W, if v; € Vi

11



Similar to the steps in minimizing Normalized Cut, we obtain the following problem:

L xTLx
minimize
y 2T (2.15)

subject to 71 = 0.

By Rayleigh-Ritz theorem, the solution to (2.15) is given by the second eigenvector of
L.

Case 2 k > 3 Define the jth indicator vector for cluster j to be:

hiy =< Vil (2.16)
0, otherwise,
for i=1,..,n.

Let H be a n x k matrix such that H;; = h; ;. Similar to the problem of minimizing a
Normalized Cut, we have:

minimize Tr(H'LH)
’ (2.17)
subject to HTH =1,

whose solution is given by [uj, ..., u;], the first k eigenvectors of L.

2.2.2 Spectral Clustering: The algorithm

The relaxization of minimizing the Ratio Cut leads to the unnormalized spectral clustering,
and the relaxization of the Normalized Cut leads to the normalized spectral clustering.
Algorithm 1 and Algorithm 2 below outline the steps of the unnormalized and normalized
spectral clustering respectively.

12



Algorithm 1: Unnormalized Spectral Clustering

Input: A set of data points {xy, ..., 2, }, a number k representing the number of
clusters
Output: Clusters Vi, ..., Vj, with V; = {i|z; € C;}
1 Construct a similarity graph of {zy,...,x,}, and let W be the
corresponding affinity weight matrix;
Compute L =D — W;
Compute the first £ eigenvectors vy, ..., v, of L;
Let U be a n x k matrix such that U = [vy, ..., vg;
Consider each row of U as a data point and cluster these points using the
k-means algorithm into clusters (1, ..., C};

[SL I NI M)

Algorithm 2: Normalized Spectral Clustering

Input: A set of data points {z1, ..., 2, }, a number k representing the number of
clusters
Output: Clusters V1, ..., Vj with V; = {i|z; € C;}
1 Construct a similarity graph of {zy,...,x,}, and let W be the
corresponding affinity weight matrix;
Compute L = D — W and L, = D"2LD"2;
Compute the first k eigenvectors vy, ..., v; of Lgn;
Let U be a n x k matrix such that U = [vy, ..., vg];
Consider each row of U as a data point and cluster these points using the
k-means algorithm into clusters (', ..., Cj;

[S. S NI N

2.3 Robust Principal Component Analysis for Back-
ground Subtraction

Background Subtraction describes the process of isolating moving objects from the static
background in a video surveillance. Many background subtraction methods have been
developed in the past few years, which include the non-parametric density models [7], the
Eigenbackgrounds approach [16], and the Robust Principal Component Analysis (RPCA)
[11]. The RPCA approaches are adopted in most applications because of its efficiency
and effectiveness. In this section, we will review the technique of RPCA via Principal
Component Pursuit (PCP) [3], and briefly mention how it works in moving foreground

13



detection. In Chapter 3, several cell segmentation methods based on these ideas will be
proposed. Before the discussion of RPCA, we will give a brief introduction on Alternating
Direction Method of Multipliers (ADMM) as this is the method to solve the optimization
problem associated to PCP.

2.3.1 Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) are based on the method of mul-
tipliers [12]. The method of multipliers is a robust modification of the dual ascent method,
which provides convergence for not strictly convex functions. Consider the following prob-

lem:
minimize  f(z)
v (2.18)
subject to Ax =b.

The augmented Lagrangian for (2.18) is L = f(z) +y” (Az —b) 4 (§)||Az — b||3, where y is
the dual variable, and p > 0 is the penalty parameter. The augmented Lagrangian is the
standard Lagrangian of the following problem:

L. Y 2
minimize z)+ (=)||Ax — b
mice (o) + (542 — b} 10
subject to Ax =b.

The minimization problems (2.18) and (2.19) are equivalent since any feasible solutions
would give the same objective function in both problems. The purpose of adding the ¢
norm term is to avoid the ill-conditioning of the problem when f is not strictly convex.
The extra ¢, norm term brings two issues. Firstly, the primal feasibility is not obviously
imposed in each iterative update. However, the extra ¢, norm penalization term acts as a
price incurred by infeasibility. In fact, it can be shown that the primal residual Az**! —b
converges to zero eventually. Secondly, the extra ¢, term ruins the decomposability of the
objective function even when f is separable. Consider the following problem:

minimize  fi(z) + fo(2) + (g)HA:c + Bz — b2

T,z

(2.20)
subject to Az + Bz =b.

It would be more efficient if we could split (2.20) for updating the primal in each intera-
tion. ADMM addresses this problem by minimizing the augmented Lagrangian L over one
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variable at a time while keeping all others fixed. Below outlines the steps of ADMM for
solving (2.20):

oFi=argmin  L(z, 2", 9%), (2.21)
2 —argmin Lz, 2, y%), (2.22)
Y= gk p(AZFT 4 B2ATE o). (2.23)

It can be shown that if the functions f; and f5 satisfy the following two assumptions:
e The functions f; and f, are closed, proper, and convex?.
e The regular Lagrangian of (2.20) has a saddle point.

Then the iteration of ADMM satisfies the following three types of convergences:
e The residual 7% = Az* 4+ Bz*F — ¢ goes to zero when k is sufficiently large.

e The objective function f;(z*) + fo(2*) approaches the optimal value when k is suffi-
ciently large.

e The dual variable y* approaches the dual optimal point when & is sufficiently large.

The proof of above result can be found in [1]. The solution of ADMM converges to true
solution with moderate accuracy reasonably fast in most applications [1], but it takes many
iterations for it to attain a high accuracy. Therefore, ADMM is useful in most statistical
and machine learning problems, where moderate accurate solutions are sufficiently to give
good predictions.

2.3.2 RPCA via PCP

Given an m x n data matrix M. The objective is to find a decomposition of M such
that M = Ly + Sy, where Ly is low-rank and Sy is sparse. Intuitively, we can find the

2A function is closed, proper, and convex if and only if its epigraph is a closed nonempty convex set.

15



decomposition by solving the following optimization problem:

minimize  Rank(L) + M||S||o
L.S (2.24)
subject to L+ S = M,

where ) is a parameter to control the sparsity of S. This problem looks very simple, but
actually it is NP-hard. In fact, we need to perform a search in a restricted solution space,
which has combinatorial complexity [11]. Candes et al. [3] proposed relaxing (2.24) by the
Principal Component Pursuit (PCP):

minimize || L]« + A||S]]1
L,S (2.25)
subject to L+ S =M,

where [|L[|, := >7;0i(L)* denotes the nuclear norm of L, and [[S]l; = 37, ;|
the vector-version ¢; norm. Candes et al. [3] has shown that if the problem is well-posed?,
then the decomposition can be recovered exactly with very high probability, provided that
the rank of the low-rank component L and the £y norm of the sparse component S satisfies
the following conditions:

Si;| denotes

pr max(m,n)
k(L) <
rank(L) < plog(min(m,n))?’

1Sllo < psmn, (2.26)

where p, and p, are some positive constants.

PCP can be solved using the alternating direction method of multipliers (ADMM) [3]. The
augmented Lagrangian is:

L(L,S,Y) = |Ll + M|+ (Y.M=L= $) + ZIM-L -S|} (227)

As mentioned in Section 2.3.1, ADMM suggests recursively updating L, S, and Y according
to the following:

LkH ::arginin L(L,S* Y"), (2.28)

30;(L) is the ith singular value of L
4Ly and Sy satisfy some conditions [3], which implies that Ly and Sy cannot be sparse and low-rank at
the same time.
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has ::argénin L(LF, S, YH), (2.29)

YR = YR g (DF 4 ST M. (2.30)

It can be shown that®:
(argmin. L(L,5,Y)) = Sye+(M = L+ poY), (2.31)
(argznin L(L,S,Y)) =D, +(M—S+u'Y), (2.32)

where § and D are the shrinkage operators defined below:
S.(x) = sign(z) max(|z| — 7,0), D.(X)=US(2)V'S.

The order of updating (2.28) and (2.29) are not crucial. However, the final results might
be different with different updating order, because the dual update (2.30) is then done
after the update of L and before the update of S. Algorithm 3 outlines the steps of solving
PCP with ADMM.

Algorithm 3: PCP by ADMM
Input: m x n data matrix M ,parameter p
Output: m x n matrix L and m X n matrix S
1 initialize S° = L% = 0,,,4n;

while not converge do:
2 compute " =D,1(M — S* 4+ p71Y*);
compute S* =8, -1 (M — LFF 4+ 7Y F);
compute Y =Y* 4 (M — LF — Sk,

W

end while
output S and L.

5The derivations will be shown in Appendix A.
6X = UXV7 is the singular value decomposition of X.
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Chapter 3

Methodology

Cell image segmentation describes the process of decomposing a microscopic image into
cells and background. This problem is different from other image segmentation problems
in computer vision. The major challenge comes from the low variation of pixel intensities
between cells and background. Classical segmentation techniques introduced in Section
2.1 cannot give a good segmentation results. Therefore, some state-of-the-art methods
are required to tackle this problem. There are two ways to think about this problem.
It can be casted as a large-scale clustering problem, which comes down to classifying
pixels into cell pixels and background pixels. It can also be considered as a background
subtraction problem, where the cells are the moving objects we want to isolate from the
static background.

Spectral clustering is one of the most popular clustering algorithms in machine learning.
It is good at clustering data with implicit connection. Intuitively, it maps the data to
user-defined feature space, and then performs k-means clustering in the low-dimensional
subspace spanned by the first k eigenvectors of the corresponding Laplacian matrix. This
makes spectral clustering particularly fit the cell segmentation problem. Because of the
low cell-to-background contrast, if we classify the pixels directly with k-mean clustering
based on the pixel intensity, the algorithm will wrongly classify all pixels into a single
cluster. To overcome this problem, we incorporate the physical distance of pixels into
the similarity measurement, and perform spectral clustering using the defined similarity
matrix. A hierarchical spectral clustering approach to capture cell boundary automatically
is proposed in Section 3.1.1. We have also made two modifications to the hierarchical
approach to better fit the problem. The variations will be presented in Section 3.1.2 and
Section 3.1.3 respectively.
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If a sequence of consecutive cell images is given, we can consider the segmentation problem
as identifying the moving cells over time. We use Robust Principal Component Analysis
(RPCA) introduced in Section 2.2 to locate the cells. However, there are issues when using
RPCA in our problem setting. Since the data we deal with are images, it is reasonable
to assume that their decompositions having non-negative entries as well. Therefore, We
propose to add non-negative constraints to the Principal Component Pursuit (PCP) to
ensure non-negativity of component entries. Also, we have used a different approximation
of the zero-norm to suit our problem better. These methods will be introduced in Section
3.2.

The segmented regions from the spectral clustering methods are spatially consistent, form-
ing a closed connected set of pixels. The background in the segmented result usually does
not have any misclassified cell pixels in it. However, this often results in under-segmentation
of the cells because some cell pixels are considered to be very similar to the background
in the affinity weight matrix. The RPCA method, on the other hand, which exploits in-
formation of other frames, can capture more close-to-background cell pixels. However, the
intensities are not exactly the same in the background for different frames due to artifacts,
which give rises to scattered noises in the background in the RPCA methods. In addition,
the segmented regions in the RPCA methods are sometime not a connected set of pixels.
Our objective is to improve their deficiencies by combining the two techniques.

It is not totally obvious how to combine the two methods since the spectral clustering
methods and the RPCA methods are very different. They are developed from two very
different points of view: one is considered as a clustering problem, and the other is consid-
ered as a static background-modelling problem. A straight forward way to combine these
two methods is to formulate it as a two-stage approach. Two formulations of the step-
wise methods are proposed in Section 3.3.1. They combine spectral clustering with RPCA
step-by-step. The stepwise methods do not improve the segmentation results significantly,
because the two methods act independently. Ideally, there should be interaction between
the two methods in the combined method so that the combined method is superior to any
individual method.

A more sophisticated way to combine the spectral clustering with RPCA is to formulate the
problem as a Principal Component Pursuit (PCP) with graph-cut penalization. We add
an extra penalty to PCP to measure how well the partition is with respect to its graph-cut.
The problem comes down to making the connection between PCP and graph-cut in the
optimization. We propose two ways for the connection, and give the derivations of the two
methods in Section 3.3.2.
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3.1 Hierarchical spectral clustering methods for im-
age segmentation

In Chapter 2, we have mentioned that spectral clustering can be used in image segmentation
by constructing a similarity matrix to reflect the structure of the image. However, in bright-
field microscopy, cell pixels have very similar intensity values as the background pixels. It
is likely that the similarity measure of two background pixel intensities is almost the same
as the one of a cell pixel and a background pixel. Therefore, we need to consider additional
local grouping cues. The physical distance between two pixels is simple to measure. In
particular, let the weight w; ; of each edge be a similarity function between pixel i and j
in the given image. We can use the Gaussian function to measure the similarity between

each pair of pixels:
—(zyu)— 1 ()12 —1(@5,0)— (25,513
W;; = € I e 7d ,

where I(z,y) is a function that computes the intensity value of a pixel at location (z,y),
and o7 and o, are the input parameters, which penalize on pixel intensities and spatial
distances of pixels respectively. Therefore, o; and o4 need to be tuned to obtain the optimal
results depending on the nature of the graph. In order to be able to create disjoint clusters,
we construct a graph that has local connection only. In Chapter 2, three constructions of
similarity graphs are presented. For large scale clustering problem like image segmentation,
the € — neighborhood graph is most appropriate in terms of efficiency as it will produce a
sparse banded Laplacian matrix. In our implementation, we construct the similarity graph
using the € — netghborhood method.

3.1.1 Image segmentation as a spectral clustering problem

Spectral clustering can be applied directly to the cell images, but it is hard to determine
the number of clusters in the algorithm. The ideal case is to choose two clusters, so one
cluster represents the foreground and the other represents the background. However, since
the intensity values in the cell images are very close, pixels are not different enough to
give a good result of the two-class clustering. Choosing two clusters will often give an
under-segmentation result with noises in the background and holes inside the cells. On
the other hand, choosing too many clusters will result in a multiple clusters of a single
cell. However, the clusters comprised the cell can capture the cell body precisely such
that it can even match up the curvature of the cell boundaries. To be able to capture the
cells without human intervention, we utilize both the two-classes clustering result and the
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k-classes clustering result, where k is a large integer. The two-classes clustering result is
used to detect the cell location, and can be used to determine which of the k clusters are
cells. More specifically, if the majority of the points in a cluster C of the k-classes result are
the points of foreground in the two-classes result, then C is classified as cells. We use the
coarse two-classes segmentation result as a mask to identify the labels of each super-pixel
obtained from the k-classes spectral clustering. The algorithm of this method is stated
below.

Algorithm 4: Spectral clustering for image segmentation

Input: Image M, parameter 0, 04y, 0i, 02y, numMber of clusters k, n X n zero matrix
M
Output: Binary matrix M
1 Construct the weighted affinity matrix W; of M using the RBF kernel
with bandwidth o; and o,,:

=Ty ) =Ty w2 —I(sm)—(25.57)13
w;; =€ or e %d ,

and compute the Laplacian matrix using L; = Diag(sum(W;)) — Wy;

2 Solve for the eigenvector v corresponding to the second smallest
eigenvalue of L;

3 Classify the pixels of M based on the sign of v, and obtain the
corresponding binary matrix M* with cell pixels labelled by ones;

4 Construct the Laplacian matrix L, as step 1 using bandwidth p; and p,,
respectively;

5 Solve for the k-+1 eigenvectors that corresponding to the k+1 smallest
eigenvalues of L;

6 Disregard the eigenvector corresponding to the smallest eigenvalue, and
form a n? x & matrix U using the remaining eigenvectors;

7 Run k-means to cluster the rows of U into k segments;

8 Use M* obtained from step 3 to classify the m segments obtained from
step 7 into cell segments and background segments;

9 Set all pixels in M corresponding to cell segments to ones;
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3.1.2 Spectral clustering on an image volume

One very important fact of the cell image segmentation problem is that we are given a
sequence of cell images taken over different time instead of a single image. We might
assume that cells do not move dramatically over frames. This assumption is reasonable
as one can control the number of pictures to be taken over a unit of time to ensure small
movements of cells. In this case, the shape and the location of cells at earlier time can help
the segmentation of cells at current time. To realize this idea in the spectral clustering
approach, we consider a classification of voxels instead of pixels. To be specific, we align
the sequence of images together as a volume, and apply the previous method on the 3D
image volume. Similar to Method 1, we use the Gaussian kernel function to measure the
similarity between each pair of voxels:

(95020~ 1oy 2 )2 =120 = (25,95,2)13
Wi = € 71 e 7d ,

where the z-coordinate corresponds to the layer of the image volume. The Laplacian
matrix is then compute using L = Diag(sum(W)) — W'. This method will improve
the segmentation result because it considers additional information. The new Laplacian
matrix reflects the relationship between pixels at the current time frame and the ones at
the consecutive time frames. In particular, if a pixel at time frame ¢ is a pixel of cell,
our method will put more weights on the label of cell for that pixel at time frame ¢ + 1.
However, the number of rows (columns) of the square Laplacian matrix equals to the
number of voxels in the image volume. The computation is more expensive, because we
need to solve an eigen-decomposition problem for a much larger matrix. The detail of this
method is outlined in Algorithm 5.

3.1.3 Recursive spectral clustering

Another difficulty of segmenting the cells is that the intensity contrast is not uniform
between cells or even within a single cell. Using the previous methods may give under-
segmentation results. The parts of the cells with higher intensity contrast can be segmented
out, but the parts with lower contrast are usually identified as background mistakenly. To
overcome this problem, one small variation can be made to improve the segmentation
result. The idea is to perform the previous method recursively. We first obtain an ini-
tial under-segmentation result by using one of the previous methods, and then perform

Lsum(W) = 2 W)
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Algorithm 5: Spectral clustering for 3D image segmentation

Input: a sequence of n x n images M,..., My, parameter 0;, 04y, 0, 02y, and number
of clusters m, n x n X m zero matrix M

Output: A three dimensional matrix of binary numbers

Stack M,...,M} together to form a three-dimensional matrix M such that

the sth page of M corresponds to M,;

Construct the weighted affinity matrix W; of M using the RBF kernel

with bandwidth o; and o,,:

— (@920 =1 (@5,95,2)12 —1(w3.95:2) —(2.95.2)13
- o ag
ww = e I e d ,

and compute the Laplacian matrix using L; = Diag(sum(W7)) — Wy;
Solve for the eigenvector v corresponding to the second smallest
eigenvalue of L;

Classify the voxels of M based on the sign of v and obtain the
corresponding binary matrix M* with cell voxels labelled by ones.
Construct the Laplacian matrix L, as step 1 using bandwidth p; and g,,
respectively;

Solve for the k41 eigenvectors that corresponding to the k+1 smallest
eigenvalues of Lo;

Disregard the eigenvector corresponding to the smallest eigenvalue, and
form a (k x n?) x m matrix U using the remaining eigenvectors;

8 Run k-means to cluster the rows of U into k segments;

10

Use M* obtained from step 3 to classify the m segments obtained from
step 8 into cell segments and background segments;
Set all voxels in M corresponding to cell segments to ones;

spectral clustering again on the initial result. To do this, we mark all pixels classified as
foreground previously to be one class by assigning the value 1 to corresponding entries in
the normalized weight matrix . We fill in other values of W using the Gaussian similarity
function as before, and perform the k-classes clustering. The method is summarized in the
following:
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Algorithm 6: Recursive spectral clustering for image segementation

10

11

12

Input: n x n images M, n X n binary image M, parameter o;, Oays 03 Oxy, NUMber
of clusters m, n x n zero matrix M

Output: Binary Image M

Construct the weighted affinity matrix WW; of M using the RBF kernel

with bandwidth o; and o,,:

()~ 1@ju)2 =10)—(5,97)13
u}ij = o1 e od ,

and compute the Laplacian matrix using L; = Diag(sum(W;)) — Wy;
Solve for the eigenvector v corresponding to the second smallest
eigenvalue of L;

Classify the pixels of M based on the sign of v, and obtain the
corresponding binary matrix M* with cell pixels labelled by ones;

do:
Construct the weight similarity matrix using bandwidth p; and g,,
respectively;
For every pixel p labelled as foreground in M, set W (p,q) = 1 if pixel q

is labelled as foreground in M;
Construct the Laplacian matrix L, associate to W;
Solve for the m+1 eigenvectors that corresponding to the m-+41
smallest eigenvalues of Lo;
Disregard the eigenvector corresponding to the smallest eigenvalue,
and form a n? x m matrix U using the remaining eigenvectors;
Run k-means to cluster the rows of U into m segments;
until converge
Use M* obtained from step 3 to classify the m segments obtained from
step 10 into cell segments and background segments;
Set all pixels in M corresponding to cell segments to ones;
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3.2 Image Segmentation as a sparsity pursuit prob-
lem

Robust principal component analysis (RPCA) is a well-received method in data analysis.
Its principal objective is to reduce the dimension of a data set to aid higher level processing,
which coincides with the objective of image segmentation. However, RPCA has rarely
been used on image segmentation, because in most cases only a single image is given to
segmentation. For cell image segmentation, a consecutive sequence of cell images is given.
These images usually record the cell activities, where cells move slightly over consecutive
frames. Thus, it is intuitive to use RPCA to aid the segmentation since RPCA can be
used to capture the moving objects in the static background.

3.2.1 Detection of moving cells

RPCA has been successful in the detection of foreground from the static background in
a video surveillance system. RPCA gives an accurate approximation to the probability
distribution of the background and foreground by decomposing a data matrix into a low-
rank component L and a sparse component S, where L recovers the background and S
recovers the moving foreground. If we consider each cell image as a frame in a video, we can
use RPCA to capture the moving cells. First, a data matrix M can be formed by appending
each cell image as the column of M. We decompose the data matrix M by solving the
related sparsity pursuit problem. The sparsity pursuit problem is formulated as a convex
optimization problem to minimize the sum of the nuclear norm of the low-rank component
L and the ¢; norm of the sparse component S subject to a linear constraint:

minimize || L]« + A||S|x
LS

)

subject to L+ S = M.

The problem can be solved using the alternating direction method of multipliers (ADMM)
whose solution converges to the true solution with moderate accuracy reasonably fast [1].
After we have obtained the sparse component S, we consider each column of S as an
indicator vector with zero labeled background and non-zero labeled cells. However, while
S is a sparse matrix, it may have nonzero entries distributed everywhere. In fact we have
observed that there are many zero entries inside the cell body, and many nonzero entries
in the background. These are the misclassified points in our case. Some post processing
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is needed to clean up the results, and to remove the scattered noise in the background.
In particular, we first remove all small clusters with less than 10 pixels?, and then fill the
holes inside the cells with morphological operations. Finally, a standard curve evolution
method [1] is applied on the binary image to capture the cell boundaries. We summarize
the algorithm below.

Algorithm 7: Robust Principal Component Analysis for image segmenta-
tion
Input: a sequence of images My,..., M,,, parameter u, A
Output: a sequence of binary images S;, 7 =1,..,n
1 Form a data matrix M, where each column of M corresponds to a cell
image;
2 initialize S,L,Y;

while not converge do:
compute L =D, (M — S+ p'Y);
compute S =8, 1(M — L+ p'Y);
compute Y =Y + u(M — L —95)
end while
6 reshape each column of S to be the size of the original image remove
small clusters in each 5;;
8 fill holes inside S; using morphological operations;
9 perform Chan-Vese active contour method on each S;;

output S; j=1,....n

3.2.2 PCP with non-negative constraints

If we consider each image as a topographical map with the intensity value of a pixel
interpreted as its altitude on the map, then applying RPCA is like slicing the map into
two parts: one part contains the cells and the other part contains the background. Since
the background part is forced to be identical for every image in the sequence, negative
entries might be in the components from the decomposition. For images with inconsistent
pixel intensity in the background, RPCA gives scattered negative entries in the background.

2This can be done using the MATLAB built in function: bwareaopen.
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Therefore, we can enforce non-negative constraints to reduce the number of missed classified
points in the sparse component S

minimize || L]« + A||S|h
L,S

subject to L+ S =M,
L>0,5>0.

The non-negativity constraints of L and S complicate the optimization problem. We can
introduce auxiliary variables S+ and L+, and enforce non-negativity on these two variable,
so the objective function does not involve variables with non-negativity constraints. More
specifically, the non-negative sparsity pursuit problem can be rewritten in the following
form:

minimize || L« + A||S]1
L,S
subject to L+ S = M,
L="L+,S=S5+,
L+ >0, S+ > 0.
This problem can be solved by ADMM. We have added 4 more variables: two more primal
(L+, S+) and two more dual (Z, Q) to the augmented Lagrangian:
ﬁ(L7S7L+7S+7KZ7Q) =
1
|\L|\*+/\||S||1+<Y,M—L—S>+§HM—L—S||%+ (3.1)

(Z,L—L+>+<Q,S—S+>+%HL—L+||%+%HS—S+H%.

Minimizing the augmented Lagrangian with respect to one variable at a time can solve the
problem. Since the non-negativity constraints are applied to L+ and S+ only. We can use
the same approaches as the ones described in Appendix A.1 and Appendix A.2 to derive
the update formulas for L and S. For the update of L+ and S+, we consider the following
problems:

. B Tir _ 2
m1n£+mlze (Z, L L+>+2||L L+ %

subject to L+ > 0,
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and
minsiinize (@, —S+) + %HS — S+ %

subject to S+ > 0.

The above two minimization problems are non-negative quadratic programmings, which
have been well-studied in the literature. One simple approximation is to enforce the non-
negativity constraints by projecting the usual update® onto the convex feasible set corre-
sponding to the space defined by all the non-negative constraints [1%]. The update formulas
for L+ and S+ are: L+ = max(L+~71Z,0) and S+ = maz(S+~71Z,0), respectively. Fi-
nally, we update the dual variables according to gradient ascent. The steps of this method
are outlined in Algorithm 8.

3.2.3 Sparsity Pursuit with different /; approximation

In the sparsity pursuit problem, ¢; norm is used as an approximation of the 3 norm such
that the objective function is convex and easier to solve. However, in our problem setting,
the ¢, penalty gives a solution S with small magnitude noises in the background, because
minimizing the ¢; of S usually gives a solution with moderate number of moderated-sized
nonzero entries [19]. In our problem, we want S to be sparse with large magnitude nonzero
entries. Thus, we replace the ¢; penalty by another ¢y norm approximation to force the
entries in S to be either 0 or nonzero with relatively large magnitude. In particular, we
use the approximation proposed by Zhang [9]:

1/57;‘, if |.S;; <,
g(sij):{ Sil, - 3f 155

vn, otherwise,

where v and 7 are some predefined constant to control the magnitude of the nonzero
entries.

The Zhangs penalty is a two-stage rescaled ¢; penalty. The penalty is exactly ¢; penalty
for parameters with small magnitude. The parameters with relatively large magnitude are
not penalized anymore. Figure. 3.1 shows the comparison between the ¢; penalty and the
Zhangs penalty.

3Since the objective function is strictly convex, the usual update is to enforce the first necessary con-
dition
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Algorithm 8: Non-negative Robust Principal Component Analysis for im-
age segmentation

Input: a sequence of images Mjy,..., M, parameter u, A,y
Output: a sequence of binary images S;, j = 1...n

1 Form a data matrix M, where each column of M corresponds to a cell
image;

2 initialize S,L,S+,L+,Y,7Z,Q;

while not converge do:
3  compute

L =Dy (A7) M= p(pu47) 7 LA+ (A7) 7Y +y(pty) ~H(L+) — ()1 2);
4 compute

S = Sx(uty) 1 ()T M = pu(p+7) T L () 7Y Ay () TS H) = (p+7) 7' Q);

© 0 N o o

compute L+ = max(L +~v7'Z,0);

compute S+ = max(S +~717,0);

compute Y =Y + u(M — L — 5);

compute Z = Z + (L — L+);

compute Q = Q +7(Q — Q+);
end while

10 reshape each column of S to be the size of the original image remove
small clusters in each S;;

12 fill holes inside S; using morphological operations;

13 perform Chan-Vese active contour method on each S;;

output S; j=1,...,n

5 5
4 4
3 3
2 2
1 1
% 0 5 % 0 5

Figure 3.1: Comparison of ¢; penalty (left) and the Zhang’s penalty (right).
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Since the function g is step function whose function value depends on the value of S;;, we
update Sfj, the value of S;; at the kth iteration based on Sfj_l, the value of S;; at the k —1
iteration. The detail is outlined in step 4 of Algorithm 9. Here, we do not enforce the first
necessary condition of S exactly, but the numerical result in Chapter 4 suggests that this
is a reasonable approximation. The steps of the RPCA with the modified approximated
ly penalty are outlined in Algorithm 9. This model is able to eliminate some noises in the
background. However, one small detail need to be mentioned is that the parameter A need
to be smaller in this new model. Otherwise, some entries corresponding to the cell bodies
will be forced to zero in this model.

3.3 Combinations of spectral clustering and RPCA

We have proposed three variations of image segmentation methods using spectral clus-
tering, and three using RPCA in the previous two subsections. The spectral clustering
methods produce nearly noiseless results. Classified pixels tend to get together, because
the physical distance is incorporated into the computation of the affinity weight matrix.
However, many foreground pixels are misclassified as background as their intensity values
are identical to the ones of the background. Therefore, the methods based on spectral clus-
tering usually gives under-segmentation results. Another two important drawbacks are the
significant computation time and the sensitivity to tuning parameters. On the other hand,
the RPCA based methods are more robust and efficient. They are also capable of capturing
the closed-to-background cell pixels, because they link the cell segments at different time
frame. However, the major drawback of the RPCA approach is that they produce results
with scattered noises in the background. Also, some entries in the cells are set to be zero,
so the segmented cell regions are not closed continuous sets, which causes difficulty in the
post-processing step. In this section, we will present two novel methods linking RPCA and
spectral clustering as the principal component pursuit with graph-cut penalization. The
two methods are in the hope to offset the weaknesses of the previous proposed methods.
Before we present the algorithms, we will show two methods that combine spectral cluster-
ing and RPCA as two separate steps. These two methods cannot give great improvements
to the segmentation results, but they are worth mentioning because they might provide
insights for future research. The two stepwise methods will be presented in Section 3.3.1,
and the two novels methods will be presented in Section 3.3.2.
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Algorithm 9: Robust Principal Component Analysis for image segmenta-
tion with Zhang’s penalty

Input: a sequence of images My,..., M,,, parameter u, \,n
Output: a sequence of binary images S;, 7 =1,..,n

1 Form a data matrix M, where each column of M corresponds to a cell
image;

2 initialize S,L,Y’;

while not converge do:
s compute L =D, (M — S+ pY);

4 if |SZ]| <n: compute S = S)\ufl (MZJ — Lij + /leij)
else: compute SU = Afl] — L” + Mle;'j;
5 compute Y =Y +u(M—-L-S5);

end while

6 reshape each column of S to be the size of the original image remove
small clusters in each S;;

8 fill holes inside S; using morphological operations;

9 perform Chan-Vese active contour method on each S;;

output S; j=1,...,n

3.3.1 Two-steps Methods

The first method is very similar to the hierarchical spectral clustering method in Section 3.1.
Instead of using spectral clustering twice, we can use RPCA to obtain a coarse segmentation
to separate cells and background. Similar to the methods in Section 3.1, we use the two-
class result as a mask to classify the k segments from the k-classes spectral clustering
into cell segments and background segments, and thus obtain a clearer segmentation. This
method produces very similar results as the hierarchical spectral clustering method, because
the two classes clustering result is not a deterministic step in the method. It only uses
as a mask to help identifying cell locations. However, this method performs better than
hierarchical spectral clustering in term of efficiency and robustness. RPCA performs much
faster, and their result is less dependent on the parameters in the model. The steps are

outlined in Algorithm 10.
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The second method is formulated as a normalized cut with partial grouping constraints
[24]. Tt proceeds in two steps: in the first step, an initial sparse segmentation is obtained by
RPCA through a large penalization on the ¢; norm. The result is sparse, and only partial
foreground pixels are correctly classified. In the second step, we incorporate the sparse
classified result as the priori of the spectral clustering method. The priori is specified as
some linear constraints. Suppose t points have been classified as foreground in the first
step using RPCA. We set down ¢ — 1 independent constraints, where each constraint is a
m x 1 vector with m being the product of image dimensions. Let V be a (t —1) X m matrix.
The kth column Vj of V' has only two nonzero entries: Vi (i) = 1, and Vi(j) = —1 if pixel
¢ and pixel j are both classified to foreground in the first step. The spectral clustering
problem can be reformulated incorporating with the partial grouping constraints:

minimize z! Lz
T

subject to ||z]| = 1,
Vg =0,
172 = 0.

An equivalent form is
maximize z’ (ol — L)z
x

subject to ||z]| =1, (3.2)

Ulz =0.
where « is a sufficiently large constant so that al — L is positive definite, and the two
constraints: V7z = 0 and 17z = 0 are combined into a more compact form Ulz = 0.

Also, since the homogeneous constraint U7x = 0 is invariant to scaling, it is plausible to
approximate (3.2) by the following problem:

. T (al — L)x
maximize —————
x xTx

subject to UTx = 0.

This maximization problem is called the affinely constrained generalized Rayleigh quo-

tients, which can be solved efficiently according to [5]. Algorithm 11 shows the steps of
this method.
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Algorithm 10: stepwise RPCA and Spectral clustering for image segmen-
tation
Input: a sequence of images Mj, ..., M, parameter i, A, 0y, 04y, number of clusterk

Output: a 3D binary Image M

1 Form a data matrix M, where each column of M corresponds to a cell
image;

2 initialize m x n matrices S, L,Y’;

while not converge do:
3 compute L=D,1(M - S+ p'Y);
4 compute S =S8y, 1(M—L+p'Y);
compute Y =Y + (M — L - S5);

end while

6 for each column S; of 9, reshape S; to be a matrix with the same
dimension as the images, and stack 951, ...,.5, together to form a
three-dimensional matrix S;

7 Stack M,...,M; together to form a three-dimensional matrix M such that
the sth page of M corresponds to M,;

8 Construct the Laplacian matrix L of M using the RBF kernel with
bandwidth o; and o,, respectively;

9 Solve for the k+1 eigenvectors that corresponding to the k+1 smallest
eigenvalues of L;

10 Disregard the eigenvector corresponding to the smallest eigenvalue, and
form a (m x n) x k matrix U using the remaining eigenvectors;

11 Run k-means to cluster the rows of U into k clusters;

12 Use S obtained from step 6 to classify the k clusters into foreground and
background, and record the result into matrix A;

3.3.2 RPCA with graph-cut penalization

The previous two methods use both spectral clustering and RPCA to solve the problem, but
it does not give great improvement to the quality of the segmentation since the two methods
just put together as two separate steps. To further improve the segmentation quality,
we combine spectral clustering and RPCA in a more sophisticated way. As mentioned
in Chapter 2, both the spectral clustering algorithm and the RPCA algorithm can be
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Algorithm 11: Spectral clustering with partial grouping constraints

Input: a sequence of images M, ..., M,,, parameter u, A, 0;, 04y, &
Output: a sequence of binary images

1 Form a data matrix M, where each column of M corresponds to a cell
image;

2 initialize m x n matrices S, L,Y’;

while not converge do:
compute L =D, (M — S+ p'Y);
compute S =38, (M — L+ p'Y);
compute Y =Y + y(M — L - 5)
end while
for each column S; of S, do:
6 Construct the Laplacian matrix L; of M, using the RBF kernel with
bandwidth o; and o,, respectively;

compute the partial grouping constraints:
7 let J to be the index set of nonzeros of S, t = |J|;

for k=1.t—-1:
Vi(J(k)) =1, Vi(J(k+ 1)) = —1, where V}, is the kth column of V;

end for
8 let U = 0,4, and compute U(:,1) =1, U(:,2:t) =V;
9 compute P =1 —U({UTU) U7,
10 compute the leading eigenvector u; of P(al — L;)P
end for
output U = [uq, ..., Up,).

considered as solving minimization problems. Particularly, spectral clustering is minimizing
the graph cut which imposes penalty on the goodness of an image partition. Let X; be an
indicator vector defined in the following way:

/141
|A]‘|7 v; € Aja
X, = J
T |A;] .
—. /51 otherwise
|A; 7 !
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where A; C V is the subset of cell pixels in image j. In Chapter 2, the weighted inner
product XT L(S;)X; is shown to be |V|RatioCut(A;, A;), which is proportional to the sum
of edge weights between the cell cluster and the background cluster. The right partition
can be found if X; minimizes XJ-TL(Sj)Xj. On the other hand, the sparsity structure of
S; obtained from the previous RPCA-based method indicates the cell segmentation of jth
image. The indicator vector X; and the jth column of the matrix S serve the same purpose:
defining the cell segmentation, but they have different forms. The indicator vector X
defines the segmentation with negative entry labeled background and non-negative entry
labeled cells, while S; defines the segmentation with zero entry labeled background and
non-zero entry labeled cells. Our objective is to connect the segmentation defined by 5
from RPCA with its corresponding graph-cut so that the segmentation of S; gives rise to a
small graph-cut. The way of relating graph-cut with RPCA is not trivial. We will present
two solutions, which correspond to Method 9 and Method 10 presented in the rest of this
Chapter.

Connecting the graph-cut and RPCA through an extra non-linear constraint:
One way to connect X; and S is to use the Heaviside function*:

H(e) = {0, r <0,

1, =>0.

The indicator vector X; corresponding to the partition defined by S; can be expressed as
a summation of Heaviside functions:

1
Xj = cH(|S] — ) — —H(e —|51),

surement of the graph-cut can be incorporated into the minimization problem as an extra
penalty term through the connection:

4 One continuous approximation of H(z) is % + %tcmh(kw). Since we use an approximation with larger
support than the exact Heaviside function, thresholding is required according to k in order to obtain a
sparse solution.
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L A2 T
minimize | L] —I—/\1]SH1+ ZX L

subject to L+ S =M,
1
Xj = cH(|S8j] =€) = —Hle —|5)]),
17X, =0,
T
The extra term XJ-TL(SJ')Xj controls the quality of the output S;, so that the partition
defined by S; minimize the graph-cut. However, the optimization problem becomes much

more complicated since the nonlinear constraints are involved in the problem. To simplify
the problem and use existing algorithms, we introduce an auxiliary variable P;:

e )\2 . T 71(S;)
mipimize |\L||*+)\1|]SH1+721XJ- LY X,
J:
subject to L+ S5 =M,

1
Xj = cH([Sj| —€) - EH(G — 1551),

Xj =P
17P; =0,
PP =1.

The partial augmented Lagrangian that takes care of the first two constraints is
)\ n v n
UL S, XY, Z) =Ll ST+ 5 D0 X LN 4 3 (5, M; = Ly = )
i=1 j=1

ILL n » n 1
+5 > NIM; = Ly — Sjllz+ > (Zy, cH(IS;| —€) — “He—185]) = Xj)
j=1

j=1

RS 1
+5 D NeH(|S;] - €)= “He= 15 = Xillr-

j=1
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Similar to the alternating direction method of multipliers (ADMM), we can relax the
problem by considering it as the following problem?®:

minimize (L, S, X,Y, Z)
L,5,X

subject to  X; = P,
1"P; =0,
PIP=1

The unknowns L and S can be solved by the minimizers of the an unconstrained optimiza-

tion problem:
minLirSglize I(L,S, X,Y, 7).

For X and P, we can solve them by applying the method of splitting orthogonality con-
straints (SOC) [14]. This method is a slight modification of ADMM [1] and split Bregman
iteration [10], so it is consistent with our previous steps of solving L and S. The steps are
outlined below. An auxiliary variable B;, and a parameter r are introduced similar to the
method of split Bregman iteration.

1 XM = argmin I(X;) + 511X, — PF+ BF|I3.
J
2. P; =argmin 3||P; — (XF™ + B¥)[3  subject to 17P; = 0 and || P;]]s = 1.
prtt '
J

k+1 _ pk k+1 k+1
3. BEfl = B 4 XKL phL

The first problem is an unconstrained minimization related to the previous augmented
Lagrangian, which can be solved by enforcing the first necessary condition. The second
problem has a closed form analytic solution. In particular, the solution to the more general
problem:

minimize gHu — (v+w)l3
u

subject to Au = b,
[ulla = 1,

is provided in the following theorem [14].

5In this optimization problem, P does not appear in the objective function. The connection of [ and P
is through the equality between X and P in the first constraint.
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Theorem 3.3.1. Let A be an m X n matriz with rank k, and let AT = [Ql Qﬂ []?)l] be

the QR factorization of AT, where [Ql Q2i| is a n X n orthogonal matriz, and Ry is a
k x m upper triangular matrix. Then, the solution to the problem:

minimize gHu — (v+w)3
u

subject to  Au =D,

lull2 =1,
is
* U2
u = 1—Hu1||%m+u17
where uy; = argmin ||ully and vy = QQ (v + w).
Au=b
The proof of Theorem 3.3.1 can be found in [I4]. We outline the steps of this method in

Algorithm 12.

Connecting the graph-cut and RPCA trough an extra discrepancy measure-
ment in the objective function: The previous method links the principal component
pursuit (PCP) and the graph-cut problem by enforcing an equivalent relation of X; and
a nonlinear transformation of the minimizer of S;. As mentioned in Chapter 2, since a
relaxation has been applied by minimizing the augmented Lagrangian, feasibility does not
fulfill exactly. However, the method imposes a price of not being feasible through some
penalty terms in the augmented Lagrangian. Similarly, we can relate PCP to the graph-cut
problem by adding a penalty term measuring similarity between X; and S; in the objective
function: . o
mipiize L]l + ST+ 22 D0 XTEOG + 30 47
7j=1 7j=1 =1
subject to L+ S =M,
A=1- Xsign(|S| —e),
1"X;=0,j=1,..,n,
X/X;=1j=1,.n

(3.4)

Note:

At — Aij) if Aij >0
9 0, otherwise
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The jth column of A connects the partition defined by X; and the partition defined by S;.
The second constraint of the above optimization problem is to enforce that the locations
of zeros in S are the same as the locations of negative entries in X. We use ADMM again
to solve this problem. The augmented Lagrangian is:

>\ n
UL, S, XY, Z, A0, B) =| L]l + M| S]h + gZXﬁLW

+ZZAU+ZYM L;— “ZHM L; — Sj|I%

]111

. [ .

+ Z(Zjv 1= X;sign(|Sj| —€) = A) + 5 Z 11— Xjsign(|S;| — €) — 4%
=1 j=1

+Z a;,~17X;) “ZulTX I

p
+ ij, - X7X)) Z 11— X7 X3
j=1

7=1

(3.5)

According to ADMM, we solve the problem by iteratively imposing the first necessary con-
dition of [ with respect to L, S,X,A, and then updating the Lagrange multiplier Y, Z, o, 3.
However, for solving a graph-cut like problem in the direction of X;, we can avoid solving
a nonlinear equation by identifying it as a normalized cut problem with extra linear con-
straints. A small modification needs to be applied to ADMM to suit our setting. First, we
solve
L = argmin [,
L

by L =D, (M — S+ p'Y) and solve

S = argmin /[,
S

by S = solve(l'(S),0)% similar to Algorithm 12.

6S=solve(f(S),b) denotes that S solves the equation f(S)=b
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Algorithm 12: RPCA with ratio-cut penalization for image segmentation

Input: a sequence of images My,..., M,, and their corresponding Laplacian

matrixLsymy, ..., Lsym,, parameter p, Ay, As
Output: a sequence of binary images

Form a data matrix M, where each column of M corresponds to a cell

image;
initialize L,S)Y, X, Z P, B;

R1><1
compute the QR factorization of 17 = |Q7*! Qg”(m_l)} [ 6 ];

choose a vector q such that 17¢ = 0;

5 compute p = ¢ — Q,Q7F;

10

11

12

13

while not converge do:
compute L =D, (M — S+ p'Y);
solve for S such that \tahn(kS) —Y —u(M — L — S)+ ZH (S)+
p(H(S) = X)H'(S) = 0, where H(S) = cH(|Sj| — €) — tH(e — |5)]);
compute Y =Y + y(M — L —S)

for each column j, do:
solve X; such that (ML + (r — p))X; = Z; + rP; — rBj — pH(S;);

compute Z; = H(S;) — X, ;
compute f_’] = Qng(Xj + Bj);
compute P; = mﬁs}g + Pp;
compute B; = B; + X; — P};

end while
output S;
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To solve A;; = argmin [, we recognize that

Aij

n m n

Ay :ar%?in JZI ; Ay + ;(Zj, 1 — X;sign(]S;] —e) — A;)

. (3.6)
L .
+3 > 1L = X;sign(]S;] — €) — A7

=1

This problem can be solved by the following proposition [22].
Proposition 3.3.2. The solution to the unconstrained minimization problem

1
minimize Aat + 5”@ - ’Y”%7
S
Y= )‘7 V> )"
S)\(”}/): 0, OS/}/S)‘)

The proof of the proposition can be found in [23].

Also, note that:

. m . 1Z;]13
(Z;,1 — X;sign(|S;| —¢€) — Aj) + §||1 — X;sign(|S;] — €) — A; |7 + 22 2 =

(3.7)
“ | 7.
§Hl — Xjsign(|S;| —e€) — A; + j”%-

Along with Proposition 3.3.2, the solution to the problem is:

1 1 Z;

in —AL+ =11+ X.si Sl —e)—A; + =222

argAI;nn iy ZJ+2|| + Xjsign(]S;| — €) it /L iz (3.8)
. Z;

To update X;, we need to solve the following unconstrained optimization:
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arg_mm 5 ZX]-TL(SJ)Xj + Z<Zj, 1— X;sign(]S;| —e€) — Aj)+

RN . 3
52”1 — X;sign(S;| — ) _Aj"%‘+z<aj7_1TXj> (3.9)

Jj=1 j=1

M n n M
ST Y081 - XX 52 - XTI
j=1 7j=1 =1

To relate (3.9) to be a graph-cut problem with linear constraints, we consider a similar
problem of (3.9):

A , .
o SN (25,1 = Xsign([5)] - ) - 4y)
H)}lmnluze m )
jJ=l.n i
Jr5”1 — X;sign([S;| —€) — Ajllw (3.10)
subject to 1TXj =0,5=1,....,n,

X/X;=1j=1,...n

Equations (3.9) and (3.10) are not equivalent, but the constrained problem (3.10) is more
accurate than the unconstrained one, and gives a better approximation to (3.4).

Let b; =1 — A;, and D; = Diag(sign(]S;| —€)). The above minimization problem can be
rewrltten in the followmg form:

A
minimize ngTL(Sj)Xj + gXJ-TD]TDij . (Z/TD] + b;D;)X;

Xj,j=1l..n

subject to 17X; =0,5=1,...,n, (3.11)
X]TX]‘ =1,7=1,...,n
Introducing an auxiliary variable Q; = —(Z] D; 4 b} D;)X;, we obtain a minimization of

quadratic function with linear and spherical constraints:
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D VU,

guinimize - 2n X LG + Q)

subject to 17X; =0, =1,....n, (3.12)
X;TXJ = 17j = 1, ey Ny

Q; = _(ZJTDj + bej)Xj.

We can apply ADMM to the quadratic problem (3.12), and update @), as:

. mu
argmin - Q;j + (75, @5 + (Z] Dj + b1 Q;)X;) + TH(ZJ'TDJ +0; D;)X; + Q;1 %

Qj

Since @); has already been taken care, we are left with the following problem:

X

TrSHx. L HxTpTp x.
Igl{i%g?lgf 5 X; LW X; + 2Xj D; D;X;
subject to 1TXj =0,7=1,...,n, (3.13)

X'X;=1,j=1,..,n,
Q; = —(Z] D; + bl D;)X;.

We can again reformulate the problem by introducing a sufficiently large constant v so
that (vI — %L(Sﬂ') — ’%D]-TDj) is positive definite. Also, the second constraint is combined
in the objective function to get a more compact form. Then, (3.13) can be approximated
by the following:

o XTI - ZL™ - 8DID;)X;
BN XTX,
subject to lTXj =0,7=1,...,n,
—(Z]D; +bI D;)X; = Q;.

(3.14)

This is the problem of affinely constrained Rayleigh quotients [5]. The solution of this type
of problem is presented in [8]. We will briefly derive the solution here.
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1T
First, some notation is needed to simplify the problem. Let B; = (—(Z-TD~ n b-TD-))’
J J J J

and ¢; = ( C(Q) ) The derivation of the result requires the following lemma.
J

Lemma 3.3.3. Let A be an m x n matriz. Then Range(A) = Kernel(A"), where A is a
matriz such that Range(A) = (Range(A))*.

Proof. Let y € Range(A), then ATy = 0. Therefore, y € Kernel(AT). Similarly,
suppose y € kernel(AT), ATy = 0. By the fundamental theorem of linear algebra,
y € (Range(A))*. Since Range(A) = (Range(A))*, (Range(A))* = Range(A). There-
fore, y € Range(A). O

Let K; be a matrix such that Range(K;) = (Range(c;))*. Since we have B;X; = c¢;,
cicT

B;X; € Range(c;), and K;(B;jX;) = 0. Let K; = oy — ”ijﬁ2, then Range(K;) =

(Range(c;))* and rank(K;) = 1. Let J = (0 1), then JK; is full rank, so we have

JK;B;X; =0 < B;X; = ¢;. Then we can transform (3.14) into the following:

o XT(wl—22L0) — DT D)) X;
maximaize
X;,j=1l.n X]TXj

subject to JKC;B;X; = 0.

Let W; = JK;B;, and P; = I — W] (W;W])~"W;. Then the problem is equivalent to the
unconstrained problem:

argmax XTPy(vI — 22LG) — LDTD;)P;X;

, 3.15

which can be solved by the eigenvector corresponding to the largest eigenvalue of P;(v1 —
%L(SJ’) — %DjTDj)Pj. We summarize this method in the following algorithm.
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Algorithm 13: RPCA with normalized-cut penalization for image segmen-
tation

7

10

11

Input: a sequence of images Mj,..., M, and their corresponding Laplacian
matrixLsymy, ..., Lsym,, parameter p, Ay, Ay, v

Output: a sequence of binary images

Form a data matrix M, where each column of M corresponds to a cell

image;

initialize L, S, X, Y, A, Z, ~;

while not converge do:
compute L =D, (M — S+ p'Y);
solve for S such that \jtahn(kS) =Y —u(M — L —S) — ZXH'(S)—
p(l1 — XH(S) — A)XH'(S) =0, where H(S) = tanh(k(|S| — ¢));
compute Y =Y + y(M — L - 5)

for each column j, do:
compute b; =1 — A;, D; = Diag(H(S;)), Fj = vl — (Lsym; + (

b 17 (0
J _(ZJTD]—f—bJTD]) y G = Q] ’

C/'C«'T —
Kj=1-"9% 7=(0 1), w;=JK;B;, and P; = I — wl(w;w!) w;;

2
llesl1=?

))D;" D;),

2]
2

compute X; by computing the largest eignvector v of P;F;P};
compute Q; = _71 — - (Z;"D; + b;"D;)X;3
v =+ w(Q; — (2,7 Dj +b;"Dj) X;);
Aj =52 (1+ % X;H(S)));
Zj = Zj+ p(l — X;H(S)) — Ay
end while
output S;
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Chapter 4

Numerical Results

In this chapter, we illustrate the segmentation results for the methods presented in chapter
3 on a set of C2C12 cells images!. The code is implemented in MATLAB, so it takes a
long time for the computation to complete. Due to time limitation, we down-sample the
original input images to 300 x 300 images. The results of the hierarchical spectral clustering
method and its variation will be presented in Section 4.1. The results of the RPCA based
methods will be presented in Section 4.2, and the results of the RPCA based methods with
graph-cut penalization will be presented in Section 4.3.

4.1 Results of the hierarchical spectral clustering method

The results of Method 1 and Method 2 applied on two cell images are shown in Figure 4.1
and Figure 4.2, respectively. The figures are displayed in a 4 columns format to describe
each step of the algorithms.

Method 1 and Method 2 are very similar. The main difference is that Method 2 performs
spectral clustering on a stack of consecutive cell images, while Method 1 deals with one
image at a time. Figure 4.1(a) and Figure 4.2(a) are the original 300 x 300 input images.
The intensity values are almost the same between some cell interiors and background. They
are difficult to differentiate even for human vision system. Figure 4.1(b) and Figure 4.2(b)
are the two-classes spectral clustering results. We have obtained this result by performing
spectral clustering to label the pixels (voxels) into two groups: cells and background. As

! Images of mouse myoblast cells from the Ontario Institute for Cancer Research and the Department
of Medicine and Human Genetics at McGill University
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(a)

Figure 4.1: Method 1 applied on a C2C12 cell image: (a) 300 x 300 input image. (b)
Two-classes spectral clustering result. (c) 300-classes spectral clustering result. (d) Final
segmentation result.

(a)

Figure 4.2: Mecthod 2 applied on a C2C12 cell image: (a) 300 x 300 input image (b)
Two-classes spectral clustering result. (c) 400-classes spectral clustering result. (d) Final
segmentation result.

described in Chapter 3, the eigenvector associated with the second smallest eigenvalue is
divided through the zero crossing. The two-classes clustering result is very sensitive to the
paramecters o; and o, of the kernel function in the weight affinity matrix. In addition, the
parameters need to be modified in every different image to obtain a good result. For image
(b) in Figure 4.1, we have used o; = 0.003, 0, = 100000. Figure 4.1(c) and Figure 4.2(c)
are the k-classes spectral clustering results with £ = 200 in the 2D case and k = 400 in
the 3D case. The number k needs to be large enough to capture fine details of the cells.
Specifically, we have found out that the larger £ is, the better the segmentation result.
However, the problem is that the method is very time consuming for a large number of
k. The computation of the 200-classes spectral clustering takes around 4909 seconds, and
the 400-classes spectral clustering takes around 9698 seconds in MATLAB. Figure 4.1(d)
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and Figure 4.2(d) show the final segmenting curves on top of the input images. To obtain
the segmenting curve, we first use the two-classes spectral clustering results to determine
which of the k segments of the k-classes spectral clustering results are cell segments, and
background segments. Then the segmenting curves are obtained by the boundaries of the
groups of the cell segments.

Method 2 gives a better segmentation result than Method 1. It uses extra information
from previous image and the image after it. We compare the segmentation results of these
two approaches in Figure 4.3. The first row of Figure 4.3(a) and Figure 4.3(b) show the
segmentation results obtained from Method 1. The second row of Figure 4.3(a) and Figure
4.3(b) show the segmentation results obtained from Method 2. Method 1 and Method 2
both give under-segmentation of the cells. However, Method 2 often captures more cell
interiors than Method 1. For example, the cell at the South-East corner are very close to
the background. In our experiment, Method 1 cannot capture this cell in 5 out of 6 frames,
but Method 2 can capture this cell in all 6 frames.

Method 3 is the recursive spectral clustering method for image segmentation. It performs
spectral clustering recursively to identify misclassified points left from Method 1. Figure
4.4 shows Method 3 in each step. Figure 4.4(a) is the input cell image. Figure 4.4(b)
shows the initial segmentation result obtained from Method 1. We mark segmented cells
as one class, and perform spectral clustering again on the same image. We stop after two
repetitions of spectral clustering. Figure 4.4(c) is the two-classes obtained in the second
time of two-classes spectral clustering, and Figure 4.4(d) is the 200-classes obtained in the
second time of 200-classes spectral clustering. Figure 4.5 compares the segmentation results
of the initial segmentation results obtained using Method 1 and the results of Method 3
(the recursive spectral clustering method). Method 1 always gives under-segmentation
results. Method 3 is able to capture more cell interiors. For example, Method 3 gives a
great improvement of the cell cluster at the top right corner. In our experiment, Method
1 cannot capture the top part of this cell cluster. In Method 3, we solve this problem by
performing spectral clustering again under the assumption that the all cell-labeled obtained
from Method 1 are belong to the same class. We see that the segmentation of the cell cluster
is improved in Method 3. However, in Method 3, some background pixels are forced to be
cell pixels because of the compact nature of segment obtained from the spectral clustering
algorithm. Recall that the affinity weight matrix also incorporates pixel locations into the
similarity measurement, so pixels close to each other are easier to be classified into a same
class even though there are differences between their intensities. In our experiment, the
group of cells near the center of the images is classified correctly in Method 1 such that
there are three individual cells in the group. However, in Method 3, these three cells merge
together. They are misclassified as one large cell in 5 out of 6 images.
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Figure 4.3: Comparison of segmentation results from Method 1 (first row of (a) and (b))
and Method 2 (second row of (a) and (b))
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Figure 4.4: Method 3 applied on a C2C12 cell image: (a) 300 x 300 input image. (b) initial
result obtained using Methodl (c) mask used for locating cells (d) 200 classes spectral
clustering result (e)final segmentation result.

4.2 Results of the RPCA based methods

The spectral clustering methods are quite successful in capturing cell boundaries, but
they are very slow due to the computation of eigenvectors and performing the k-means
algorithm. The RPCA based methods are much faster than the spectral clustering based
methods, and they are more robust models. We will start this section with the numerical
results of the basic RPCA method introduced in Method 4 of chapter 3.

In the first stage of the algorithm, we apply RPCA on a 90000 x 120 data matrix M, whose
columns are the cell images recording the activities of cells. We decompose the data matrix
M into a sparse matrix S and a low rank matrix L using A = \/Lm and p = Wn(%]) The
sparsity of S and the rank of L can be altered by changing A and p. The component S is
more sparse for a larger \. However, the low rank component L has larger rank for a large
A. We want S to be very sparse such that only the cell interiors are nonzero. Therefore, we
set A to be larger than the value suggested in [3]. The computation takes around half an

hour, and terminates in 589 iterations. The second column of Table 4.1 shows the sparse
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Figure 4.5: Comparison of the initial results from method 1 (first row of (a) and (b)) and
the results of Method 3 (second row of (a) and (b))
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component obtained from RPCA. In the second stage, we consider each column of the
sparse component S as a coarse binary image by marking all nonzero entries to 1. For any
image j that corresponds to the jth column of S, S; does not give connected cell interiors.
Also, there are many noises in the background. We need some post-processing as decribed
in Algorithm 7 to improve the appearance of S;. Finally, we apply the Chan-Vese active
contour technique [5] on the binary image S; to obtain the cell boundaries. The third
column of Table 4.1 shows the segmentation results.
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Table 4.1: Results of the RPCA method. First column:
the input images. Second column:the results from PCP.
Third column: the segmentation results

Some background noises are scattered in the binary images obtained from RPCA. Method 5
and Method 6 aim to eliminate the noises by modifying the optimization problem. Method
5 is the modified PCP with non-negative constraints. It is capable of erasing some of
the noises since most of the background noises are points with negative values. These
points have very small magnitude, and they occur due to the non-uniform intensities of
the background. We have solved the PCP problem with non-negative constraints on the
same data matrix M. The complexity of this method is roughly the same as Method 4.
Figure 4.6 shows the segmentation results; the first row of Figure 4.6 (a) and (b) show the
corresponding columns of the sparse matrix S obtained from the PCP problem with non-
negative constraints; the second row of Figure 4.6 (a) and (b) show the final results.
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Figure 4.6: Results of the RPCA method with non-negtive constraints. First column:
results from PCP with non-negative constraints. Second column: final segmentation results
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Method 6 modifies the regular PCP problem to have a two-stages rescaled ¢; penalty. It can
therefore remove entries with small magnitude, and keep the entries with relatively large
magnitude only. Figure 4.7 displays the results of the PCP with the modified ¢; penalty.
The method seems to be better than the other two methods in term of segmentation results,
because it eliminates the background noises of the binary images from the 1st stage, while
keeping the cell interiors almost as dense as the results of the regular PCP. The resulting
binary images from S arc almost free of background noises. We fill the holes in the cells by

performing some morphological operations to get the segmentation result shown in second
row of Figure 4.7 (a) and (b).

4.3 Results of the RPCA based methods with extra
graph-cut penalization

One common problem of the previous three RPCA based methods is that the binary
mask in the first stage cannot capture the cell interiors completely. In particular, some cell
interiors break into several parts. The missing parts are almost identical to the background,
so it is very hard to determine whether they are background or cells. On the other hand,
the results of spectral clustering are more compact due to the inclusion of the physical
distance in the affinity weight matrix. Method 9 and method 10 improve method 4 by
considering extra information to evaluate the goodness of the partition. The two methods
can be formulated as PCP problems with the graph-cut penalization. The only difference
between Method 9 and Method 10 is the way of connecting the graph cut and the sparse
component S.

Method 9 solves the PCP problem with the ratio-cut penalization. It associates the sparse
component S with the ratio-cut through the Heaviside function. However, since the Heav-
iside function is not differentiable, we use % + %tanh(lm) to approximate the Heaviside
function. The parameter k controls the support of the approximation. In fact, the larger k
is, the better the approximation. However, a very large k makes the zeros-finding problem
in the 7th step of Algorithm 12 converge very slowly. One way to get around this problem
is to apply the shrinkage S 1 (S). The solution S of nonlinear equation defined in Method 9
is sparse after the shrinkage. Figure 4.8 shows the results of Method 9 applied on the same
set of images. Here, we solve the modified PCP with y = m, and \; = Ay = \/Lm
In this case, the computation of S is costly as it requires solving a nonlinear system. We
terminate the algorithm after 167 iterations when the stopping criteria meet.
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Figure 4.7: Results of the RPCA method with two-stage rescaled ¢; norm. First row of
(a) and (b): results from PCP with with two-stage rescaled 11 norm. Second row of (a)
and (b): final segmentation results
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Figure 4.8: Results of the modifed RPCA method with ratio-cut penalization. First row
of (a) and (b): results from PCP with with ratio cut penalization. Second row of (a) and
(b): final segmentation results
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Figure 4.9: Results of the modifed RPCA method with normalized-cut penalization. First
row of (a) and (b): results from PCP with with normalized-cut penalization. Second row
of (a) and (b): final segmentation results
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Method 10 uses another way to connect the graph-cut and the sparse component S. For
each image j, the model penalizes the discrepancy between the indicator vector of the
normalized cut and the jth column of S. This model involves more auxiliary variables,
and more parameters. However, it is not very sensitive to parameters. The method works
well for reasonable range of each parameter. We solve the modified PCP problem specified
in algorithm 12 with y = W,MJ)’ A\ = \/Lm,)\g = \/%, and v = 10. Figure 4.9 shows
the segmentation results of this method.

More interestingly, the byproducts of Method 9 and Method 10 are the indicator variables
X;’s for the jth image. They bridge the gap between PCP and the graph-cut. Theoretically,
the zero crossing of X; should define the same partition as S; does, so it can be used to
obtained the segmentation of the jth image. We have obtained very different results from
Method 9 and Method 10. In Method 9, the partition defined by the indicator variables
X is very different from the partition defined by S;. Figure 4.10 (a) plots the partition
defined by X7, the first column of the matrix X obtained from Method 9. The black
pixels cover all of the cells, but segmentation is coarse and cannot correctly capture the
cell shapes. On the other hand, X; from Method 10 divides the cells from the background
in image j correctly. Figure 4.10 (b) plots the partition defined by X{° the first column
of the matrix X obtained from Method 10. The cell segments are compact with smooth
boundaries. It gives an even better result than using S; alone. Actually, the partition
defined by X; in Method 10 outperforms the results of all previous methods. The result
is visually impressive. We present the segmentation results obtained from the indicator
matrix X from Method 10 in Figure 4.11. The first row of Figure 4.11 (a) and (b) shows
the partition defined by the corresponding columns of X; the second row of Figure 4.11
(a) and (b) shows the final segmentation result obtained from the partition above it.

hd

®
g
Figure 4.10: Binary segmentation results defined by X; from Method 9 (left) and Method
10 (right)
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Figure 4.11: Results from X of the modifed RPCA method with normalized-cut penaliza-
tion. First row of (a) and (b): partitions defined by corresponding columns of X. Second
row of (a) and (b): final segmentation results
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Chapter 5

Conclusion

This paper proposes ten methods for brightfield microscopic image segmentation. These
methods are effective in capturing all of the cells in the low-contrast image, which tra-
ditional image segmentation methods cannot capture. In existing methods of brightfield
microscopic image segmentation, localized steps are often required prior to global segmen-
tation in order to obtain accurate segmentation results. In all of our methods, localized
steps are no longer needed for good segmentation results.

Our spectral clustering segmentation methods give a clear and compact segmentation re-
sult, but they usually give under-segmentation of the cells. These methods are also very
expensive in complexity because of the involvement in the computation of eigenvectors
and k-means clustering. The RPCA-based methods, on the other hand, allow more closed-
to-background cell pixels to be identified. These methods hinge on solving the principal
component pursuit (PCP) problem to obtain the sparse component from the data ma-
trix defined by the sequence of microscopic images. The computation of singular values
also slow down the RPCA-based methods, but they are more efficient comparing to the
spectral clustering segmentation methods. Several modifications have been applied on the
PCP models to better suit the segmentation problem and improve the segmentation re-
sults. They include the modifications of extra non-negative constraints, rescale ¢; norm
approximation of ¢, norm, and extra graph-cut penalizations. It turns out that the result
produced by the method formulated as a PCP with normalized-cut penalization outper-
forms all other methods we have proposed. This method is more robust than the spectral
clustering method since the parameters o; and o, are not as crucial in the segmentation
results. Reasonable range of o; and o, usually give indifferent results. It gives clear and
compact results as the spectral clustering methods do, but is also capable of capturing
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more closed-to-background cell pixels as the other RPCA-based methods do.

One possible area for future research might be the incorporation of more sophisticated
local grouping cues such as texture and the probability density function of each pixel into
similarity measurement of spectral clustering. Also, further testing and parameters tuning
is required for the spectral clustering method with partial grouping constraints. We have
not provided experimental results for this method due to time limitation. The methods of
associating spectral clustering to robust principal component analysis could be improved
and further developed to attain better accuracy. Furthermore, the computational time
could be improved by implementing the methods in parallel computing framework.
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Appendix A

Derivations for (2.31) and (2.32)

Al
Show argmin L(L,S,Y) = Sy,~«(M — L+ p'Y):
S

argmin L(L,SY) <
s

argmin)\||S||1+<Y,M—L—S>+%||M—L—S||2F =
S
in AllS Y M—L—8)+20a -0 =92+ Ety)?
argmin XS]+ (¥, )+ i+ Byl
argglin A[STr + §(2<M_1Y7 M—-L—-S8)+|M-L-SE+p'Y[];) <«

argmin ||l +5IM — L= 5= u 'V} &
S

A 1
argmin —|S;;| + é(Mw — Lij— Sy —p 'Y foralli=1,...,mand j =1,..,n. (A.1)
Lemma A.1.1. The solution of argmin i(z — ¢)? + v|z| is S,(c), where ¢ and v are

constants.

Proof. Let f(z) = 3(x — ¢)* + v|z|. The first necessary condition of the optimization
problem is f'(x) = x — ¢ + vsign(x) = 0. Since the objective function is convex, the
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minimizer occurs at the zeros of f'(x).

Case 1 2>0: 2" =c—v, andf(a:*)zcy—%

Case 2 # < 0: 2™ = c+v, and f(z*) = v — <.

2
Case 3 x =0: 2" =0, and f(z™*) = %

sign(c)(el —v), ie>v o =

Therefore, we have argmin f(z) = =
x 0, otherwise

Combine result (A.1) and Lemma A.1.1, we can show that
Sij = Sy (M — Lij + 1Y),

which is equivalent to (2.31).

A.2
Show argmin L(L,S,Y) = D,-1(M — S+ pY):
L

argmin L(L,S)Y) <
L
argmin ||L||, + (Y, M — L — S) + gHM —L-S|Z &
L
argmin L]l + (Y, M — L= S)+ ZIM - L= S[F + 517V &
L

. M _ _
argmin | Ll + 5(2<M YM—L—=8)+|M—-L-S|E+pg'Y|7) <

L 1 _
argmin 4 1||L||*+§||M—L—5—M Y% (A.2)
Lemma A.2.1. The solution of argmin v||X | + 5| X — W% is U1S,[S1]Vi', where W =
X
U SiVAT s the singular value decomposition of W.

Proof.
1
argmin Z[1X — W[ +vX]. &
X
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1
argmin §t7‘((X -WMTNX -W) +v|X|. <«
X

1
argmin §(tr(XTX) —2tr(XTW) + tr(WTW)) + v|| X||. (A.3)
X
Let X = USVT, and W = U5, V{" be the corresponding singular value decompositions.

(A.3) is equivalent to:

1
argmin (itr(STS) + vtr(Z) + argmax tr(WTUSVT)) &
s UV

1
argmin (gtr(STS) + vtr(Z) 4+ argmax tr(V,STUTUSVT)) <
s A%

1
argmin (itr(STS) + vtr(Z) + argmax tr(VIVISTUTUS)) (A4)
s UV

By [23], the maximum attains when U; = U,V = V}.

argmin (%tr(STS) + vtr(S) +tr(STS)) <
S

arggnin (%tr((S —S)T(S = 8))) +vtr(S)) &

1
arggmn §||S—51]]%+y\|5||1 (A.5)

By Lemma A.1.1, the minimizer is S* = &,[S1]. Therefore, X = U;S*V/! = U5, [S1|V{.
O

Combine result (A.2) and Lemma A.2.1, we can conclude that argmin L(L, S,Y) = D,-1 (M —
L
S+ pty).
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