A Numerical Study of Instability
Arising from the Bénard Problem

by

Yuweil Zhao

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Justin W.L. Wan & Prof. Serge J.D. D’Alessio

Waterloo, Ontario, Canada, 2012

© Yuwei Zhao 2012



I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

[ understand that my report may be made electronically available to the public.

i



Abstract

Investigated in this report is the Rayleigh-Bénard problem with rotation and a periodic
temperature distribution. Both approximate and numerical solutions to the steady-state
and unsteady equations have been obtained. The numerical results are based on a finite
difference method together with an implicit time stepping method and an iteration algo-
rithm. The analytical results, on the other hand, were obtained by expanding the variables
in a series involving a small parameter appearing in the governing equations. Comparisons
between the numerical and the analytical results are also included. By varying the Rayleigh
number the numerical results were able to confirm the theoretical prediction for when the
flow becomes unstable.
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Chapter 1

Introduction

By investigating the convection of air, meteorologists can obtain valuable information to
aid them in the prediction of weather as well as the study of climate. Our motivation is
to study air convection in the atmosphere, shown in Figure 1.1. The diagram presents key
features which are used in describing the general circulation observed in the atmosphere.
For example, it shows a decreasing surface temperature towards the pole due to solar
heating and rotation about the polar axis. The thickness of the atmosphere is denoted by
H and is small compared to the radius of the earth, R. The ratio % is denoted by 0 which
is a small parameter.

Pole

Equator

Figure 1.1: The flow setup by a simpler geometry



In this report, we will investigate a simplified version of that shown in Figure 1.1. We
will consider a similar problem in a rectangular coordinate system, that of free convection
confined within a long, rotating rectangular domain with a sinusoidally varying temper-
ature along the bottom. This simplified problem can be thought of as an extension of
traditional Rayleigh-Bénard convection. Rayleigh-Bénard convection has been thoroughly
studied and is very well understood [!]. In the original Rayleigh-Bénard experiment [2],
a horizontal fluid layer is confined within two thermally well conducting plates in parallel
positions. When the temperature difference between the top and bottom plates is higher
than a critical value, a flow develops and forms a series of convection cells. The difference
between our problem and the traditional Bénard problem is that our problem includes
both rotation and a periodic temperature distribution along the bottom plate.

Numerous investigations have been devoted to the Bénard problem and many of them
are documented in the review by Bodenschatz, Pesch and Ahlers [I]. A recent study
worth mentioning is that of Freund, Pesch and Zimmermann[3] which investigates Bénard
convection with a sinusoidal temperature boundary condition, but without rotation. Our
problem is an extension of their work to include rotation.

In this project, approximate steady and unsteady analytical solutions have been ob-
tained by D’Alessio and Ogden [!] by taking advantage of the thinness of the fluid layer
when the governing equations are cast in dimensionless form. Numerical solutions have
been computed and one goal of this research is to compare the approximate steady and
unsteady analytical solutions with the numerical solutions. Another objective is to propose
an efficient numerical solution procedure to solve the full system of equations. Another
goal of this project is to conduct numerous numerical experiments showing the evolution
of convective flows with increasing Rayleigh (Ra) number.

The remainder of this report is arranged as followings. Chapter 2 contains background
information on the Bénard problem and introduces the full system of governing equations.
Chapter 3 describes the numerical solution procedure used to solve the governing equations.
Chapter 4 presents numerical results and comparisons with analytical results that was
derived in Chapter 2. In Chapter 5, we summarizes the key results.



Chapter 2

Model

2.1 Traditional Bénard problem

Traditional Bénard convection is also referred to as Rayleigh-Bénard convection. In a ther-
mally expansive fluid, hot fluid rises whereas cold fluid sinks. Rayleigh-Bénard convection
concerns the study of the instabilities which gives rise to fluid motion.

I=T, (cold)

d  fluid

g b
_

/

I=T,+ o1 (hot)

Figure 2.1: Rayleigh-Bénard convection.

When there is no convection, that is, no movement of fluid, the temperature gradient
should be constant. 07 is the temperature difference between the bottom and the top of



the fluid layer. If 47" is small, then there will be no convection , due to the stabilizing effect
of viscosity. But if 67" is sufficiently large, then convection will occur.

2.2 Governing equations for Bénard problem with ro-
tation and a periodic temperature distribution

Although we are primarily interested in solving the problem on the globe, here we simplify
the problem to a thin rectangular domain. The main difference between this problem
and the traditional Bénard problem is that this problem includes rotation and a periodic
temperature distribution on the bottom plate.

gidlid ¢ T =T -AT

S L

CT =T, - AT cos (4J¥)

Figure 2.2: The coordinate system and configuration.

The above figure shows the two-dimensional flow is constricted within a thin rectan-
gular area. Our assumption is that the flow is uniform in the z-direction and the entire
configuration can rotate about the z-axis .

According to conservation of mass, momentum and energy, we obtain the following
governing equations (the interested readers may find more details of these equations in

[5]):

V-7=0 (2.1)



O (oo o =la p
5—1—(@V)v—i—kav—EVp—%gk’—l—VVv, (22)
T [ o\
5;+O%V)T—RVTZ (2.3)

where V = (05,0y,0,), V* = 02, + 0;, + 02, ¥ = (u,v,w) is the velocity, T is the
temperature, k is the unit vector in the zdirection, or k = (0,0,1), 0 = (f/2)l;: is the
vector denoting the rate of rotation, thus f denotes the twice of the rate of rotation,
g= —glz: is the acceleration due to gravity, p is the pressure, and v and k are two fluid
properties which represent the kinematic viscosity and the thermal diffusivity, respectively.

Here, the density p, is taken to vary with temperature according to
p=po(l —alT —Tp)),

with o representing the thermal expansion coefficient and pg, Ty representing reference
values for density and temperature.

From equation (2.1), we have that

ou Ov Ow

I I ) 2.4
8m+8y+0z 0 (24)

Because the flow is assumed to be uniform in the z-direction, this means that % = 0.
Therefore, a stream function v can be permitted, which is defined as:

v—g—wandw:——.

02 dy

We can verify that equation (2.4) is satisfied after introducing the stream function v:

u_ v _dw_dv du_ 0 (00) 0 ( v
or Oy 0z Oy 0z Oy \0z 0z oy

In fluid dynamics, vorticity is a vector field and is defined as the curl of the velocity
_ﬁeld:.u_j = V XU = (‘3—2’ — g—;, —g—’gj + %, g—;‘; —.g—Z): According to our'assumption that the flow
is uniform in the z-direction, the first derivatives of v and w with respect to x are both
zero. Therefore, o =V x 0 = (%—Z’ — %, %, —g—Z). We can see here the last two components
of & are only related to u. But we can derive the equation for u directly from equation



(2.2). And thus, we only need to look at the z-component of the vortocity ¢, denoted as
_ 9 v _ 9 (_ 0 8 (0% _ P2y | 9%
(=G gr=A-5 -2 = (5 +5%).
Right now, our system of equations has four unknowns, which are T, u, ¢, . In order
to solve for these four unknowns, we need four equations.

Using g—z = 0 and ?)QTZ = 0 from our assumption that the flow is uniform in the z-
direction and introducing ), the equation of T becomes

T oY aT 8¢8T_K<82T 82T)

ot Tozoy awo: "\apg o

Similarly, the equation for u becomes:

o v dwou o6 _ (u o
ot 0z0y Oy oz dz  \oy? 022)°

Recall that the equation for v is:

In order to obtain the equation for ¢, we take the curl of equation (2.2); the first term

on the left-hand side yields:

- 0 A(VxT) 03

g W _VxT %

ot ot ot

by the definition of vorticity. Because the z-component of the above involves ¢ and we are
aiming to derive the equation for (, we only need to look at the z-component of each term
after taking the curl of equation (2.2).The term

- (8u ou @ v 8_w 8w>

VX[(U-V)U}:VX 9 2 ay+wa,vay+ 5,

has an z-component given by:

0, ow ow 0, Ov ov,  OYoC oo

5 T T e e, TV T ey o



The z-component of V x (fk x 7) is —f %. Therefore, the left-hand side is given by:
¢ N opao¢C oo ou

ot  0z0y 0Oyoz 0z
Simplifying the right-hand side using vector identities, we obtain the equation for (:

ot 9zdy Oydz oz 0

o¢C oo¢ 0o ou 8_T+V(@+@)
ot  0z0y 0yoz 0z '

In conclusion, the system of equations is as follows:

A A I du oT (azg+@)

ot " ozay oyor Ta: T Moy Y
0? 0?
— _w + _w = C)
oy? 022
ou OYou O ou o , (82u 82u>

ot ' 0z dy 0y 0z 0z
or oyor oyvorT (82T (‘92_T>

ot Tz oy awo: "\apton

with boundary conditions given by:

u=v=w=v==0 at z=0,H andy=0,\
T =Ty — AT cos (2#%) at z =0,
T=1T,— AT at z=H, y=0,A\.

2.2.1 Nondimensionalization of equations

We introduce the non-dimensional quantities by using the following scaling:

H2
t— ?t,y—>>\y,z—>Hz,w%mb,C—>%C,T—MTO—AT)+ATT,u—> %u

This procedure introduces the non-dimensional parameters:

7och3AT K v . H
Ra = - ’RO_Hf)\’PT_/f’é_ e

7



Note that the parameter Ra is called Rayleigh number and represents the ratio of buoyancy
forces to viscous forces.When Ra exceeds a critical value, instability occurs.

Expressed in non-dimensional form, the system of equations becomes:

¢ oY OC opoC 0 Ou oT ,0°C 0%
— 40— —-0——=———=0PrRa— + Pr(0°— + — 2.
ot * 0z Oy Oy 0z Ro0dz rha dy + P Oy? + 322)’ (25)
2y 0%
— 2_ —_— =
(6 ay2 + 822) C) (26)
ou oY ou 0V ou 0 oY ,0u  0%u
— 4| === | —=—=—=Pr |0 —+ — 2.
ot * <8z dy 0Oy 82) Ro 0z T( 8y2+822 ’ (2.7)
oT oY orT o0y oT ,O'T 0T
— 4| = | =0 =+ =— 2.
or <8z oy oy 82) a2 o (28)
Boundary conditions for traditional Bénard problem are:
Yv=C=u=0 at z=0,1and y=0,1
T=0 at z=1
T=21-z2) at y=0,1
T=2 at z=0
(2.9)

while boundary conditions for Bénard problem with rotation and a periodic temperature
distribution are given by:

vV=C=u=0 at z=0,1and y=0,1
T=0 at z=1and y=0,1
T =1— cos(2my) at z=10

(2.10)

We are mainly interested in solving equations (2.5) to (2.8) subject to the boundary
conditions given by (3.5).



2.3 Analytical steady-state solutions

2.3.1 Analytical steady-state solutions for the traditional Bénard
problem

It can be shown that the analytical steady-state stable solutions to the traditional Bénard
problem is: ( =¢ =0,7 =2(1 — z),u =0 [5].

2.3.2 Analytical steady-state solution for Bénard problem with
rotation and a periodic temperature distribution

The steady-state solution to this problem is much more complicated than the traditional
Bénard problem due to the periodic temperature distribution. Instead of solving the com-
plete system of equations, we expand the variables in a series in the small parameter § to
get an approximate analytical solution.

For small ¢ (6 << 1), we expand the variables in the following series:

Y=o+ 01 +...,
¢=C+dG+...,
u=ug—+ou;+...,
T=Ty,+6T+....

Retaining only the dominant terms Ty, (o, Yo, and ug. Here, Ty, (o, 1o, and ug correspond
to the solutions to the complete system of equations when 6 = 0, i.e. H = 0. Then, the
steady-state problem is governed by the system:

%23;0 — 0, (2.11)
% = —(5Raaa—]?;0, (2.12)
8(;;0 = —(, (2.13)
%2:2“ — 0, (2.14)

subject to boundary conditons (3.5).



If we denote the steady-state solutions to equations (2.11)-(2.14) by Ty, (s, s, us, the so-
lutions can be found and are given by:[/]

Ts(y,z) = (1 — 2)[1 — cos(27my)], (2.15)
Ys(y, z) = 2ndRaF (2) sin(z7y), (2.16)
Cs(y, 2) = —27T5RaF”( ) sin(27y), (2.17)
us(y, z) = (2.18)
where
1 . 1 1 1
F(z) = —mz" + ﬂz - Ez + 52 (2.19)
F'(z) = —éz?’ + %z - %z. (2.20)

Since ugs = 0, this shows that rotation does not affect the steady-state solution at leading
order.

2.4 Analytical unsteady solution for Bénard problem
with rotation and a periodic temperature distri-
bution

We use a similar technique as that for solving the steady-state problem. For small §
(6 < 1), we expand the variables in the series.

Again, retaining the dominant terms in the unsteady equations leads to the simplified
system:

oT, T
= (2:21)
¢ %G Ty
o = Prga + Profay (2.22)
82
=, (223)
2
% - Pr%, (2.24)

10



subject to boundary conditions (3.5) and the initial conditions: Ty = T'(y, 2,t = 0) =
Ts(y,z), CO - C«S(y?’z)? ¢0 = ¢s(3/;2)7 Uy = us(yvz) =0.

Since we use the initial condition Ty = T'(y, z,t = 0) = Ts(y, z), it follows that 7" = T for
all ¢t > 0.

Also, since uy = u(y, z,t =0) = us = 0, then u = u, = 0 for all ¢ > 0.
To solve equation (2.22), we set ( = (s + ¢. Then, (2.22) simplifies to:
¢ 0%
0%

subject to ¢ = 0 along the boundary and ((y, z,¢t = 0) = —(,(y, z) which corresponding to
(=0att=0.

By separation of variables, the general solution to equation (2.25) is:
é(y7 z, t) - Z an(y)e—nQNQPrt Sin(n’ﬂ'Z) .
n=1

To determine a,(y), we apply initial conditions and use orthogonality to obtain:

1
an(y) = —2/0 C(y, 2)sin(nrz) dz = _40Ra

.3 sin(zmy).

Similarly, we set ¢ = 9, + 1/3 and obtain

%) .
52 ¢

with ¢y =0 at t = 0.
Then, we find that

Uy, 2, 1) = — Z an(y) e Pt gin(nrz).

11



Chapter 3

Numerical Methods

Recall that the full equations are given as:

0C VO 0YIC b D or ¢ 0%
9 0 G009 0 U sprpe 4 pr 1
o 0925y oyo.  Reos PR, w0 stan). (D)
Py 0%
- (#5E+5) = (32)
ou Mpou  pou\ 0 0 232 82u
ot " 0 (62 dy Oy 87) Rodz br (5 ay? T2 ) (3:3)
OT (94T  9paT\ L0°T T
E”(&a—y e az) o T o (3:4)

and the boundary conditions for the Bénard problem with rotation and a periodic temper-
ature distribution are given by:

Vv=C=u=0 at z=0,1and y =0,1
T=0 at z=1and y=0,1
T =1— cos(2my) at z=0

(3.5)

In this chapter, we discuss the numerical methods to compute the numerical solutions for
the full system of equations.

12



3.1 Finite difference method

In this project, we use the finite difference method [0] as the main numerical method [7]
to compute the numerical solutions. The partial differential equations can be discretized
using first order and second order finite difference schemes on a computational grid, as
shown in Figure 3.1.

=
-
L 3

Zi-l 24 254,

Figure 3.1: The finite difference method relies on discretizing a function on a grid

Let N+1 be the number of grid points along each direction. Thus the grid size h = +1
A grid point is denoted by (z;,y;), where z; = ih,y; = jh,1 <i < N+1,1<j < N+ 1
We approximate T'(z;,y;) by T;; on grid point (z;,y;). Similarly, (;;, 15, and u;; are
approximations of ((z;,y;), ¥(z;,y;), and u(z;,y;,), respectively.

Then, we discretize each term in the system. We will focus on equation (3.4) as an
example.

zl] 21—;j+1—;+1]

3 +O(h?). (3.9)

oT Ty — T N 9
(% ) G 36
( ) Z]+1 7—;] 1 + O(h2> (37)
dy
it 2] 1 27;] +E]+1 2
( ayQ) - +O(h?), (3.8)

A
Q.’J
w

13



The derivatives of the other functions are discretized similarly.

We note that one sided difference is used at the end points. Consider (3.4) again. When
discretizing the equation of T, we use forward difference approximation at j = 1, which is

given by:
or Tip —Tia
— = ——+0O(h).
(ay)m h +OW)

We use backward difference approximation at j = N + 1, which is given by:

T T; =T
(8_) — VL SN L o).
Ay i, N+1 h

The finite difference approximation in space for the numerical approximation of (3.4) with-
out discretizing %—? is:

a_T + 5(wi+1,j - %'71,1 CFi,,jJrl - E,,jfl . ¢i,j+1 B wm‘q T‘i+1,j - Tifl,j

)

ot 2h 2h 2h 2h
el m 2l + Ty Ty =20y A Tiny
h? h? '

3.2 Implicit time stepping

When discretizing the terms involving time ¢ in the system of equations, i.e. terms such
as %, we apply the implicit time stepping method. Implicit method is used instead of
explicit method since the explicit time stepping method requires a small At due to the
stability condition. The implicit scheme, on the other hand, is stable for any At. Let T}
be an approximation to 7'(z;,y;) at time ¢t". Then the implicit time stepping formula for

the numerical approximation of equation (3.4) is :

n+1 n n+1 n+1 n+1 n+1 n+1 n+1
Ty — TG _ el =205 +Tin L Ty — 2155 + Ty,
At h? h?
n+1 n+1 n+1 n—+1 n+1 n+1 n—+1 n+1
B 5(1/’i+1,j — iy T — 5 Yige — Y Ty — i) (3.10)
2h 2h 2h 2h ' '

The idea of implicit time stepping method is that we approximate all the terms involving
time by their value at time n + 1.

We now derive the matrix form of the equation (3.10). Define:
(T”*l)’ — (Tgf;l,TQ’fgfl,--- 7T£}1,T§f§1,--- ’TQE{... 7T]T\1[?;1,... 777\;’45\})’

n\/ __ n n mn mn mn n mn
(T ) - (T2,27T2,3>"' ) 2,N7T3,27"' y L3Ny T 7TN,27"' 7TN,N)'

14



According to the boundary conditions, T'=0at z =1 and y = 0,1, T = 1 — cos(27y) at
z = 0. Thus, we have Tny12 = Tny13 = -+ = Inyaan =0, Thj = 1 — cos(2my(j)), for
j=1---N+1. And T, =T, y+1 =0, for i = 2--- N. Similarly,

n+1\/ __ n+1 n+1 n+1 n+1 n+1 n+1 n+1
(w ) _( 22 1 %23 7""1/)2,N7 32 5 T W3 Ny T PN2 T N,N)'

Consider the first derivative of T" with respect to vy,

n n n+1
(aT ) T - T
Ay )i, 2h

)

The matrix form can be written as:

1
%(Dy x T + Try),

where the matrix Dy is to be defined and Tgy, is a vector of size (N — 1)2 accounting for
the boundaries of T". Since T'=0 at y = 0 and y = 1, we have

(TRL), = (07 Oa T 70) (311)

Let Dyy be an (N — 1) x (N — 1) matrix defined as:

Dy,

Similarly, the first derivative of T" with respect to z can be written as:

1
ﬁ(Dz x Tt + TUD)7

15



where Typ is a vector with size (N — 1)?] corresponding to the boundary values of T on
the top and bottom,

(Typ) = (=T, —T13, -+ ,—T1n,0,--+,0).

Recall the boundary conditions stated above, we have T} ; = 1—cos(27y(j)), for j =2--- N.
The matrix corresponding to the first derivative is defined as:

1 -1
1 —1
DZl = 1 s DZQ = —1

1 -1

where Dz; and Dzy are both matrix with size (N — 1) x (N — 1). Then Dz is given by:

0 DZl
Dz 0 Dz

Dz — DZQ 0 DZ]
D22 0
The size of Dz is (N —1)? by (N —1)2

The approximation to the second derivative of T" with respect to z is:

241 n+1l n—+1 n+1
(3 N T, 2 AT
022 - h? '

2V

Its matrix form can be written as:
1
ﬁ(A X Tn+1 — TUD),

where

A —2 , Ay = 1

16



and
Ay Ay
Ay Ay A,
A= Ay Ay Ay

Ay Ay
The size of both A; and Ay is N — 1 by N — 1, and the size of A is (N —1)? x (N —1)%
The approximation to the second derivative of T" with respect to y is:

(aQTn—}—l) N T;'?,?_—ll _ 27—:;—&-1 + Tvir’?:_ll
B ~ g ‘
i,

Its matrix form can be written as:

1
E(B X Tn+1 — TRL))

Since Tgy is a zero array (3.11),the matrix form can be rewritten as:

1 n+1
ﬁB x T .
Let
-2 1
1 -2 1
B, = 1 -2 1
1 -2
Then B is given by
By
By
B = By

By
The size of By is (N — 1) x (N — 1), and the size of B is (N — 1)% x (N — 1)2.
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Similarly, the other terms on the right-hand side of equation (3.10) can be written as,

n+1 n—+1
E,j-&-l - j;,j—l _ (iDy > Tn+1> 7
%,J

2h 2h
T‘TL+1‘ . T‘7L+1‘ 1
i+1,j i—1,j n+1
— = = [ —(D T T
2h (2h< z X + UD))ija
dj:j—i}l — 1/)Zj+—ll _ iDy « wn+1
2h 2h i
n+1 n+1
i+1,9 77Di—l.,j 1 D n+1
et —_— X .
2h (2h 2xY )J

Note that all the boundary values of ¢ are zeros. Then we have
T Jr1—71 =At (52ﬁBXT +1+ﬁ(AXT Jr1—7_'[]1))>

At

~ e (diag(Dz x ¥™*) x (Dy x T™) — diag(Dy x ¢"*") x (Dz x T"' + Ty p))

(3.12)

?

where diag(Dz x ") is a diagonal matrix whose diagonal entries are diag(Dz x "), =
(Dz x ") fori=1,--- (N —1)2

By arranging and combining terms in equation (3.12), we get:

A J
T — h_Qt ((523 +A)— %diag(Dz x ™Y x Dy + Zdz’ag(Dy x ™) x Dz) x T
VAN AtS 1
=T" — ﬁTUD -+ Wdzag(Dy X ?/J + ) X TUD-
Then the equation (3.10) can be written as:

ArT™ = f7,

where

Ar=1-— at (((523 +A) — %dmg(Dz x ") x Dy + gdiag(Dy x ") x Dz) ,

h2
At ALS )
fr=T1"— ﬁTUD + 4—h2dzag(Dy X YY) X Typ.

Arp is the coefficient matrix of T"*!, and it also depends on "' which is also unknown.
1 is the sum of terms related to 7™ and all the constant terms.
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3.3 Iterative method

Recall that in the previous section, we can write equation (3.10) in the following form:
ArT™ = f2 To emphasize Ar also depends on ¢! we rewrite it as:

AT(wn-i-l)Tn-‘rl — qu

Applying similar techniques, we can obtain matrix form of the other equations for "+,
Y"1 and u"t, respectively. We start with solving the equation for temperature 7T first,
since T is the driving force for the whole system. And the order of others does not matter.
As a result, the system of equations can be written as the follows:

Ap(p™hTt = f7, (

AC(T7L+1’ w’rb-‘rl, un—H)C,H_l — gaj (
A"t = ¢t (3.15

Ay (P Hu = f (

At time step n+ 1, we want to solve (3.13) to (3.16). But, all the equations are coupled.
For instance, in order to solve equation (3.13) for T we need to know the value of "1
Apparently, ©"! is also an unknown here. It is very complicated to solve all these four
coupled equations directly. Instead, we apply a fixed point method here, Specially, we treat
Y™t as a fixed value. By fixing ¢!, we can solve for 7"*!. Then we move on to the
next equation, i.e. equation (3.14). Similarly, by fixing 7", ¢)"*1 and u"™!, we can solve
for ("*1. And then move on to the next, we solve for ¥"*! by keeping ¢("*! fixed. Lastly,
we fix 1"t and solve for u"*!. Afterwards, we update the values of 77+ (n+i on+t
and u"*! to the solutions we have obtained just now. Then we iterate the process until
the differences of the value got from previous iteration and the value got in the current
iteration are smaller than the tolerance e we pick. After that, we move on to the next time
step.

The previous paragraph gives a general idea of our iterative algorithm. When writing
in a more precise way, we denote the k™" iteration of the solution at time step n+1 of T, v,
¢, was (THOE (e (Crtl)E (gnH)F respectively. We begin with solving the equation
for T'. As described above, we need to fix the value of ¥ in order to solve T". In the first
iteration, we let (7,2"“)0 = 9", which means we fix ¢ at the solution for ) obtained from
the previous time step. The general equation for T' in iteration k + 1 at time step n + 1 is

Ap((m k) (TR = f7 (3.17)
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Specially, in the first iteration of time step ¢t = At, we fix 1 at its initial value. We can solve
for (T™+1)F+1 from (3.17). Similarly, we can solve for ({1 (rt1)k+L (gn+l)k+l Then,
we update the values of 77! ¢ "+ and v to (T"H)k“, (f”“)k“, (zﬂ"“)k“,
(4" 1)L respectively. The iteration process terminates when the differences of the value
got from previous iteration and the value got in the current iteration are smaller than a
given tolerance e. Note, we choose € = 1075 in our experiments.

The iteration algorithm is outlined in the following table:

Iteration Algorithm
1. Initialize (T™1)% =77, (¢"*1)0 = ¢, (Y0 = (a0 = y»
— the solutions from the previous time step.

2. for £ =0,1,2,--- until convergence achieved do
3. Solve for (T™+1)*1 from Ap(("+1)F) (T 1)+t = fr
4. Solve for (é e from A ((¢n+1) ’(Tn-l—l) (G )(Cn—i-l)k:—i-l fr
5 Solve for (w DAL from A (¢n+1)k+1 (én—i—l)k
6 Solve for (a"*1)**! from Au((wnﬂ) Y@y = fo
7 if

[(Tm )Rt — (T )k < ¢ and

||(é Lyt — (CA"H)’“HOO < e and

”(lﬁ )kH (JJWFI) ||c>O < € and

[(@ )R — (@)oo

then

Terminate the iteration
8. end if
9. end for

Table 3.1: Iteration Algorithm

The unsteady solutions at the final time step of the full set of equations can be obtained
by implementing algorithm in Table 3.1.
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Chapter 4

Numerical Results

In this chapter, the numerical results obtained by applying the numerical methods in the
previous chapter are presented. In our numerical experiments, we begin with comparing
our numerical solutions with the analytical steady state solutions for the the approximated
problem (2.11) to (2.14). Then, we compare the unsteady solutions with the analytical
solutions for the simplified problem (2.21) to (2.24). Thereafter, we demonstrate the nu-
merical solutions for the full set of original nonlinear system (2.5) to (2.8) with boundary
conditions (3.5). Lastly, we show the evolution of the convection with increasing the Ra
number and keeping other parameters constant. The calculations were performed on a
Windows 7 laptop with 2.5GHZ processor, 4GB memory using MATLAB[3].

4.1 Numerical steady-state solutions of approximate
equations

We will compare the numerical steady-state solutions of the approximate equation with
the analytical solutions (2.15) to (2.20).

In this experiment, we pick Ro = 0.0548, Pr = 0.7046, and Ra = 388.7. The solutions
are calculated using the grid size N = 100. In Figure 4.1 to Figure 4.4, numerical solutions
are shown on the left-hand side and the analytical solutions are shown on the right-hand
side. From the plots, it appears that the numerical methods we used have provided good
agreement with the analytical solutions.

In order to convince the readers and ourselves of this, we present further comparisons
of contour plots with different grid sizes for each unknown variable. In the steady-state
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problem, both the numerical solutions and the analytical solutions for u are always zero.
Thus, we omit the contour plot of u with different grid sizes. In the contour plots Figure
4.5 to Figure 4.7, the black curve in each plot is the analytical solution when grid size
h = %. The yellow curve in each plot is the numerical solution when grid size h = %. The
red curve in each plot is the numerical solution when grid size h = %. The green curve
in each plot is the numerical solution when grid size h = ﬁ. The blue curve in each plot
is the numerical solution when grid size h = %. We can see that with a smaller grid size,
the numerical solutions provide better agreement with the analytical solution. Based on
these plots, with the gird size h = i, the plot of the numerical solution is very close to
the analytical solution. Therefore, we expect that a smaller grid size than h = & would

80
also provide a good approximation.

T T__solution

Figure 4.1: (Left): Numerical steady-state solution for 7' of approximate equations.
(Right): Analytical steady-state solution for 7" of approximate equations.
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Ieta Zeta_ solution

Figure 4.2: (Left): Numerical steady-state solution for ¢ of approximate equations. (Right):
Analytical steady-state solution for ¢ of approximate equations.

Psi Psi__solution

Figure 4.3: (Left): Numerical steady-state solution for i of approximate equations.
(Right): Analytical steady-state solution for v of approximate equations.
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u__solution

Figure 4.4: (Left): Numerical steady-state solution for u of approximate equations.
(Right): Analytical steady-state solution for u of approximate equations.
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R=R
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a7

0.6

o5t

0.4

03F

02r

o1k

Figure 4.5: Contour plots of T" with different grid sizes denoted by different colours. Yellow:
h = 11—0. Red: h = 2—10. Green: h = 4—10. Blue: h = %. Black: Analytical solution of 7" when
grid size h = %

25



R=R

0.6

o5t

0.4

0.1

Figure 4.6: Contour plots of ( with different grid sizes denoted by different colours. Yellow:
h = 11—0. Red: h = %. Green: h = ﬁ. Blue: h = %. Black: Analytical solution of ¢ when
grid size h = %

26



R=R

06

o5t

0.4

0.1

Figure 4.7: Contour plots of 1) with different grid sizes denoted by different colours. Yellow:
h = %. Red: h = QLO. Green: h = 4—10. Blue: h = %. Black: Analytical solution of ¢/ when
grid size h = %

Table 4.1 displays the error calculated with varying grid sizes by defining Fj, as the
difference between the numerical solutions and the analytical solutions:

E(T)n =T =T (4.1)

Similarly, we calculate the error for ¢, (, u, respectively. We can see the error of T
is about 10713, which is essentially the roundoff error. In this simplified problem, the
numerical solutions for T are actually the exact solution. Since %’L is approximately 4
for ¢ and 1, it demonstrates second order convergence, which is consistent with the error
arising from the finite difference method we have discussed in the previous chapter (3.6)
to (3.9).
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- T C v
grid size (h) o oo 7 oo o oo
E h E h E
T 00089 x 10 | —— [0.0025 | —— |02219x10°| ——
1 0.0200 x 10~ | 0.4444 | 0.0007 | 3.7483 | 0.0589 x 10~% | 3.7661
1 0.0222 x 10~ | 0.9000 | 0.0002 | 3.9760 | 0.0148 x 10-° | 3.9900
L 0.1021 x 10~ | 0.2174 | 0.0000 | 3.9963 | 0.0037 x 10~° | 3.9946

Table 4.1: Error table for numerical steady-state solutions of approximate problem.

4.2 Numerical unsteady solutions of approximate e-
quations

In this experiment, we use the following parameters: N = 100, Ro = 0.0548, Pr = 1,
Ra =1, At = 0.1 and a final time ¢ = 1. Figure 4.8 to Figure 4.11 show the numerical
unsteady solution compared to the analytical solution for 7', ¢, v, and u respectively.

T T__solution

Figure 4.8: (Left): Numerical unsteady solution for T" of approximate equations. (Right):
Analytical unsteady solution for 7" of approximate equations.
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Ieta Teta_ solution

005 0.08

Figure 4.9: (Left): Numerical unsteady solution for ¢ of approximate equations. (Right):
Analytical unsteady solution for ( of approximate equations.

Psi Psi__solution

X0 ™ ? X0

Figure 4.10: (Left): Numerical unsteady solution for ¢ of approximate equations. (Right):
Analytical unsteady solution for 1) of approximate equations.
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u__solution

Figure 4.11: (Left): Numerical unsteady solution for u of approximate equations. (Right):
Analytical unsteady solution for u of approximate equations.

Table 4.2 shows the error calculated with varying grid sizes by using the same way
defined in (4.1). Similarly to the steady state case, the numerical unsteady solutions for T
are also the exact solution. We get second order convergence for ¢ and (, of which EE—Z’: is
approximately 4. The results are consistent with the error arising from the finite difference

method we have discussed in the previous chapter (3.6) to (3.9).

o T ¢ Y

rid size (h

g (h) B, | & E, o B, | @
15 02219 x10° % | —— 10.0025| —— [02219x107°| ——
= 0.0178 x 103 [ 0.1250 | 0.0007 | 3.7567 | 0.0591 x 10~% | 3.7559
& 0.0466 x 1013 | 0.3810 | 0.0002 | 4.0134 | 0.0150 x 103 [ 3.9475
= 0.1799 x 103 | 0.2593 | 0.0000 | 4.1512 | 0.0039 x 10~% | 3.8319

Table 4.2: Error table for numerical unsteady solutions of approximate problem.
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4.3 Numerical unsteady solutions of full set of original
nonlinear equations

In this experiment, we use the following parameters: N = 100, Ro = 0.0548, Pr = 1,
Ra =1, = 0.1, At = 0.01 and a final time ¢t = 1. Figure 4.12 to Figure 4.13 show the
numerical unsteady solution for T, {, v, and wu, respectively.

T Zeta

goz

g2

gl
150

Figure 4.12: (Left): Numerical unsteady solution for 7" of original nonlinear equations.
(Right): Numerical unsteady solution for ¢ of original nonlinear equations.
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Figure 4.13: (Left): Numerical unsteady solution for ¢ of original nonlinear equations.
(Right): Numerical unsteady solution for u of original nonlinear equations.

Table 4.3 displays the error calculated with varying grid sizes by defining E(T), =
1Th = Tonllss, E(@)n = |l¥n — tanllee and E(Cr) = [[Gh — Canlloc. The reason why we use
a different way of calculating the errors here is that we do not have analytical solutions
for the full set of original equations. We can see from the table % is approximately 4 for
¢ and 9. This demonstrates second order convergence, which is consistent with the error
arising from the finite difference method we have discussed in the previous chapter (3.6) to
(3.9). But the errors of T and u are worse than second order. The possible reason maybe
because the At we use here is 0.1, which results in that the first order time stepping error
dominates the error. Thus, they do not show second order convergence.

T ¢ P U
Eh Lo Eh Lo Eh Lo Eh L

grid size (h)

0.0010 | —— [0.0068 | —— [0.1663 x 107 | —— [0.1663 x 107° | ——

0.0011 | 0.8858 | 0.0016 | 3.5418 | 0.1228 x 1073 | 3.4667 | 0.1228 x 1075 | 1.3549
0.0006 | 1.7984 | 0.0004 | 3.7763 | 0.0708 x 103 | 3.8071 | 0.0708 x 1075 | 1.7344
0.0002 | 2.9966 | 0.0001 | 3.9750 | 0.0363 x 1072 | 3.9796 | 0.0363 x 107° | 1.9503

Bl-5-El-p -

Table 4.3: Error table for numerical unsteady solutions of original nonlinear equations.

32



4.4 Bénard instability

It has been shown [9] that if Ra is smaller than a certain critical value, then there will be
no convection, duc to the stabilizing effect of the viscosity. But if Ra is larger than the
critical value, then convection will occur. In this experiment, we focus on the traditional
Bénard problem which has a constant temperature on the boundary. The theoretical
critical Ra value is given as Ra = %, which is approximately Ra = 329. We display
the the stream function for the equations (2.5) to (2.8) with boundary conditions (2.9) to
show the evolution of convection with increasing Ra values. In the following experiments,

we use Ro = 0.0548, Pr = 0.7046, 6 = 0.1, N = 80.

First, we set Ra = 1. Figure 4.14 shows that there is no convection when Ra = 1, since
the magnitude of ¢ is about 5 x 107°. It can be considered to be negligible.

Gl — - - - - - ‘ N
70f \\ /I/
60} \
50 f
40t

30 R

20

i \J

Figure 4.14: (Left): Contour plot of ¢» when Ra = 1. (Right): Mesh plot of ¢ when
Ra =1.

Second, we set Ra = 200. Figure 4.15 illustrates weak convection when Ra = 200. In
other words, no significant flow occurs when Ra = 200.
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£l 100
10t
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Figure 4.15: (Left): Contour plot of ) when Ra = 200. (Right): Mesh plot of ¢ when
Ra = 200.

Third, we set Ra = 300 which is still slightly smaller than the critical value. Figure 4.16
shows that when Ra approaches to the theoretical critical value of Ra = 329, convection
gets stronger.

70

60

50

401

30 ¢

20F

L L L L L L L L
10 20 30 40 50 60 70 80

Figure 4.16: (Left): Contour plot of ¢ when Ra = 300. (Right): Mesh plot of ¢) when
Ra = 300.
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Then, we set Ra = 350 which is just beyond the critical value. Figure 4.17 illustrates
that we get noticeable convection for Ra = 350.

70h ~

60} \\ [

50 |
401 ‘

20} \\ ‘l\_

200 Vo L

Figure 4.17: (Left): Contour plot of ¢» when Ra = 350. (Right): Mesh plot of ¢ when
Ra = 350.

Next, Ra is increased to 400. According to the increased number of convection cells
and increase in magnitude of ¢ shown in Figure 4.18, we have stronger convection here
than when Ra = 350.
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80F T T T T T T T =

nr / ~ V1
/ [ D

sof A \ \ N

50H

40h

30

204

10 20 30 40 50 60 70 80

Figure 4.18: (Left): Contour plot of ) when Ra = 400. (Right): Mesh plot of ¢ when
Ra = 400.

Lastly, we set Ra = 450. The stream function v in Figure 4.19 exhibits an even stronger
flow than in the previous cases.

80F T T T T T T T =
7ot i T
60}
s0f

|
af k

30

20F

Figure 4.19: (Left): Contour plot of ¢» when Ra = 450. (Right): Mesh plot of ¢ when
Ra = 450.
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Chapter 5

Conclusion

In this paper, we investigated the Rayleigh-Bénard problem with rotation and a periodic
temperature distribution. We presented numerical steady-state and unsteady solutions to
the approximate and full equations. The numerical results are based on a finite difference
method, an implicit time stepping method and an iteration algorithm.

From comparisons with the analytical solutions to the approximate equations, we
showed that the numerical results are in good agreement. The numerical results demon-
strated second order convergence which is consistent with the finite difference method
applied.

We performed numerical experiments by varying the Rayleigh number. The experi-
ments confirmed the theoretical prediction for the onset of convection.

In this work, we only considered a simplified version of our original problem. The
simplified model was intended to mimic the flow in the atmosphere. Instead we consid-
cred the flow in a confined long, rotating rectangular domain with a sinusoidally varying
temperature along the bottom. Possible future work includes transforming the plates to
curved surfaces. And then, investigating the Rayleigh-Bénard problem with rotation and
a periodic temperature distribution on the curved surfaces.
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