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Abstract

Current literature on optimal trade execution generally assumes a constant volatility
model over the execution time horizon. Using Monte Carlo simulations, we compare execution
cost evaluation between a recent Realized GARCH volatility model and the constant volatility
Geometric Brownian Motion, and the results show that under RGARCH model trading cost
is less sensitive to volatility change. In addition we consider volatility-based market impact
functions. We then compute optimal strategies by minimizing mean and Conditional Value-
at-Risk (CVaR) of execution costs. The monte carlo simulation with smoothing method we
proposed can solve the nonlinear optimal execution problem easily. The efficient frontiers
of optimal execution cost show that RGARCH model is always more preferable to GBM,

especially considering either expected costs alone or risk alone.
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1 Introduction

The execution costs of stock and portfolio liquidation have been recognized as a large deter-
minant in investment performance (see, for example, Freyre-Sanders, Guobuzaite, and Byrne
(2004)). A general goal in recent literature is to find the optimal execution strategies under
a particular optimal execution formulation, such as the minimum mean cost approach of
Bertsimas and Lo (1998), the mean and variance approach of Almgren and Chriss (2000),
and the mean-quadratic-variation approach of Forsyth, Kennedy, Tse, and Windcliff (2012).

However, most of these studies assume constant volatility over the execution time horizon.

Stochastic volatility models have been intensively discussed and adopted to a wide variety
of applications, such as option pricing (see Duan (1995)) and portfolio risk management (see
Gron, Jorgensen, and Polson (2011)). Past studies, including Almgren, Thum, Hauptmann
and Li (2005), and Beltran, Durré, Giot (2009), also provide evidence that increased volatility
is a dominant cause of higher trading costs in stock transactions. Almgren (2012) discussed
the mean-variance optimal trade strategies based on stochastic volatility and liquidity, but

they used linear impact models to simplify discussion.

In this paper, we investigate the potential use of a recently proposed Realized GARCH
volatility model by Hansen, Huang and Shek (2011), for execution costs modeling and anal-
ysis. We use Monte Carlo simulation to compare the execution costs to that of the constant
volatility Geometric Brownian Motion (GBM). To evaluate trading cost, we also need to
choose the market impact models that account for price shifts in respond to stock trades.
As a benchmark for comparison, we first use the linear permanent and temporary impact
functions under GBM and Realized GARCH. Then we contrast that to the GBM and Re-
alized GARCH model under the volatility-based temporary impact functions. Using Monte
Carlo Simulations under same initial volatility, we can obtain some comparison results for
the naive trading strategy, i.e. trading equal amount in each period over the trading hori-

zon. Our analysis of the trading costs can also be applied to any other latent volatility models.

Our next investigation is to compute optimal execution strategy by minimizing mean
and CVaR of the execution costs under GBM and Realized GARCH. To keep the discus-
sion simple, we ignore permanent impact in the optimization formulation as it is relatively
small compared to temporary impact. This yiclds a piecewise differentiable nonlinear convex

optimization problem. To resolve the non-differentiable points in the objective function, we



propose a change-of-variable as well as a smoothing technique, and the latter gives significant
reduction in computational complexity. This approach can also be applied to minimize mean

and other types of risk measure, such as variance and down-side risk.

2 Stock Price and Trading Impact Models

To effectively estimate the trading costs of a particular financial security, first we need to
model normal price dynamics of the securities to be traded. In addition, we need to model

the price shifts in respond to large stock trading activities.

2.1 Price Dynamics

In this section we introduce models of price dynamics of a financial security.

Suppose at time 0 we hold X units of a single security, that we wish to completely liquidate

this asset before time T. We divide [0,7] into N discrete intervals of equal time length
At=T/N

To simplify notation, we define t = 1... N as each trading stage, and n; as the number of

units we want to sell between t — 1 and ¢.

We assume the initial price of the security is Sy, thus the initial market value of our

position is XSy, and the security price S; follows a geometric random walk

St:St,l(lJrrt—Atg(%)),tzl...N (1)

where r; represents the return of the asset, and the permanent market impact g (v) is a

function of the average rate of trading v = %% during the interval ¢ — 1 and ¢.

2.1.1 Geometric Brownian Motion (GBM)

As our goal is to consider the trading costs under a stochastic volatility model, we want

to compare its trading cost to traditional constant volatility model. Therefore we use the



well-known constant volatility Geometric Brownian Motion as a benchmark for comparison

rfBM = Vhz, (2)

where vk is the constant volatility parameter, z; ~ 7id (0,1). Here the return r&BM replaces

7, in the price dynamics model (1) (same with r?%).

2.1.2 The Realized GARCH (1, 2) Model

Latent volatility models have been successful in modeling financial returns since the early
seminal work published by Engle (1982). The recent Realized GARCH model of Hansen,
Huang and Shek (2011) provides a framework that jointly models return and realized mea-
sure of volatility. Due to its generality in nesting existing ARCH and GARCH models, and
its improvement from standard GARCH models, it has generated wide interests since its
publication. We have chosen this model as the focus of our discussion in estimating trading

costs under a stochastic volatility.

The structure of the Log-Linear specification of the Realized GARCH(p, q) model can be

described as follows
TfG = \/h_tZt (3)

p q
logh; =w+ Z Biloghy_; + Z v;log xy—;

i—1 =1
logz, =&+ ¢loghy +7(2) +w

Except for change of notation, the parameters are the same as those in Hansen, Huang and
Shek (2011). Here the return ' replaces 7; in the price dynamics model (1), z; ~ 4id (0, 1),
hy = var (r;|Fi_1) is the stochastic volatility parameter, with F; = o(ry, e, 701,241 ... ),
u; = 1id (0,02), and 7 (2;) is the leverage function, for which we choose the quadratic form
7(21) = 71z + 72 (22 — 1) because it ensures that E (7 (2;)) = 0, for any distribution z;, as

long as E (z;) = 0, and var (z;) = 1.

We choose the Log-Linear specification of the Realized GARCH model, due to its appeal-
ing features: it ensures positive variance, and it does not require non-zero returns, as they

are occasionally observed in practice.



Following the test results and recommendations of Hansen, Huang and Shek (2011), We
are particularly interested in the Realized GARCH(1, 2) model (RGARCH), i.e.

logh; =w+ Blogh;—1 +vlogx,_y +plogx, (4)

To estimate the parameters in the RGARCH model, we follow the Quasi-Maximum Like-
lihood Analysis of Hansen, Huang and Shek (2011) with the data set sample

{rt =so...s7}

{.Tt|t =S50.-.- ST}

where ¢t marks the beginning of sample, and ¢t marks the end of sample.

Note: the choice of stochastic volatility model is not limited to the RGARCH model. Our

discussion is also applicable to any other latent volatility models.

2.2 Market Impact Functions

The next step of our model is to determine the price impact on trading a particular security.
Following the discussion of Almgren and Chriss (2000), we assume two types of price impact.
Temporary market impact is caused by temporary change in price caused by our trading
as it drains liquidity from the market; it only affects the price of orders we are trading at
the current trading stage. Permanent impact characterizes permanent change in the security

price due to our trading, which remains at least until the end of the trading horizon.

2.2.1 Permanent Market Impact Function

We have assumed the permanent market impact in the price dynamics (1). Huberman and
Stanzl (2004) showed that permanent market impact must be linear such that no quasi-
arbitrage is possible
T . My
7(&0) =S

where /i is a constant multiplier.



2.2.2 Temporary Market Impact

We define the execution price S} as follows

si=sa (1= (55)) (5)

g
At

rent trading stage. Here we provide a review of several different specifications of temporary

Note: the temporary market impact function f ( ) only affects execution price in the cur-

impact function f.

Similar to permanent impact, Almgren and Chriss (2000) use the linear temporary impact

function

ST . i
f (At) = ésgn (ng) + Atnt

where ésgn (n,;) is the fixed cost of selling, such as half of the bid-ask spread plus certain

transaction fees, and 7j is a constant parameter.

Non-linear impact functions were also proposed, such as the power law function of Alm-

gren, Thum, Hauptmann, and Li (2005)

F(5e) =sen o] 25|

Grinold and Kahn (1994) and Toth et. (2011) investigated the volatility-based impact

function, and provided evidence of good approximation of the model

PN - |4
/ <E> = sen () (” ALt EDV) (6)
2.3 Capture and Cost of Trading Strategies

Once we have price dynamics and trading impact, we can estimate the trading costs under a

particular trading strategy. We define a trading strategy as
{ni...ny}

Zi\ilnt:X

subject to



The capture of a trading strategy
N

Z nfSZ(

t=1

And the implementation shortfall is:
N
XSy =Y nS;
t=1

Although in practice trading costs also involve human labor, systems and other costs, we
only consider trading costs as the implementation shortfall, which is the direct financial loss
and the most easily quantifiable costs of security liquidation. In the rest of the paper we
compare the trading costs under the GBM and the RGARCH model.

3 Monte Carlo Simulation

To evaluate the execution costs of a particular security, we report the mean, variance, Value-
at-Risk with confidence level 95% (VaR 95%) and Conditional Value-at-Risk (CVaR 95%). As
the analytical expression of these measures under the RGARCH model is very complicated,
we use M Monte Carlo simulations instead to approximate them. For example, the mean of

execution costs can be approximated as

N 1 M N ‘
E <X50 - Znts;> ~ o > (XSO -y ntS:(‘]))
t=1 j=1 t=1

where M is the number of independent simulations, and j indicates the jth scenario.

3.1 Initialization Issues

For a reasonable comparison, we need same constant parameters for both GBM and RGARCH.
Then we also need to set the initial volatility for both models (2) (3) to be equal, i.e. h = hy.
In addition, we want to infer the initial volatility hg from reasonable observations of realized

measures of volatility z_s and x_; before the simulation starts

loghy =w + Bloghy +vilogr_1 +logr



¢ | _ | _
= hy = exp <W+71 0gr_1 + Ylogx 2)

— 7)

To make our comparison realistic, we choose the realized measures of volatility from the
data sample
: 2 2
ming: , (755 —22)* + (224 —24)

s.t. {z*y, 2%} € {z, w1 }t =s0...570 — 1}

where z*, and 2*; are the real values we use in simulations to replace z_5 and x_; in (7).

To make our comparison comprehensive, we choose several reasonable scenarios for z_o
and x_;. Specifically we consider average initial volatility estimated from the RGARCH

model, high initial volatility, and low initial volatility.

3.1.1 Average Initial Volatility

We define expected realized measure T as the average of all x; over the estimation period.

The average volatility A is the value of volatility we obtain by setting
T_9 =T _1 = T
Then we can infer A from (7), same below.

3.1.2 High Initial Volatility

To determine the effect of increased initial volatility on trading costs, we define the high with

low initial volatility A" as of when high realized measures of volatility are observed
logz_o =logx_y =logx + 0,

3.1.3 Low Initial Volatility

Similarly, we set the low initial volatility h!°® as of when

logx_ o =logx_y =logx — o,



3.2 Empirical Analysis

In this section we present results using returns and realized measures of volatility for 18 stock

indices and their respected exchange-traded funds (ETFs).

3.2.1 Data Description

We use the daily open-to-close stock index data from Jan 1, 2000 to Dec 31 2001 to estimate
the RGARCH model parameters. Following the methods described in 3.1, we also compute

the initial volatility from this sample.

Since we cannot trade the stock indices directly, we select one index-tracking ETF for each
stock index in our sample to compute the average daily open price Sy, average daily volume
EDV and average bid-ask spread. To keep the study up-to-date, we use the open-to-close
index ETF data from Jan 1, 2012 to Jun 30, 2012.}

3.2.2 Choice of Parameters

For a reasonable comparison of different execution cost models, we choose the following

parameters
M = 10,000,000

X =1/5 of average daily trading volume (shares)
T =5 (days)
N=5

In addition, we choose the naive strategy as an example of cost comparison, i.e. trading

equal amount of volume over 5 stages
ng=n=X/N,t=1...N (8)

We follow the same approach from Almgren and Chriss (2000) to obtain parameters for the
linear impact functions, except we need to scale the parameters by initial price to account

for the geometric model
bid ask spread

H=90% of EDV % 5,

($/share?)

!This sample is obtained from (©Bloomberg



. half of bid ask spread
€ = 3
0

. bid ask spread
"= 1% of EDV 5,

(8/share)/(share/day)

For the volatility-based volatility impact function f to be comparable to the linear impact
based function f, we set the parameters such that their costs are equal if we are trading the

average volume ny; = 1 under average volatility o, = vVh

(ai) =7 ()

Thus we can obtain the parameters for h (%)

half of bid ask spread
So

€ =

5 20 % bid ask spread

($/share)/(share/day)

- Sp * average volatility

3.3 Simulation Results

In this section, we present our test result of the Monte Carlo Simulations. To save space,
we report some selected comparison results of the trading costs under GBM and RGARCH:
Table 2 shows trading costs based on linear impact models, with average initial volatility.
Table 3 shows trading costs under linear impact models, with high initial volatility. Table 4
shows trading costs under volatility-based impact models, with high initial volatility. Table 5
shows the initial volatiilty, observed realized measures of volatility and the expected volatility
at the last stage of the RGARCH model.



Index Code w I} Y1 Y2 £ 10) 1 T2 Oy

SPX 0.1 0.70 0.43 -0.18 -0.37 1.01 -0.10 0.10 0.45
FTSE  0.06 0.73 0.27 -0.06 -0.28 1.13 -0.07 0.11 0.47
N225  0.09 0.66 0.35 -0.10 -0.21 1.05 -0.02 0.14 0.45
GDAXI  0.03 0.76 0.39 -0.17 -0.07 0.99 -0.12 0.11 0.42
RUT  0.37 0.69 0.36 -0.04 -1.00 0.77 -0.07 0.15 0.61

DJI  0.13 0.70 0.41 -0.12 -0.41 0.93 -0.09 0.07 0.43

IXIC  0.14 0.79 0.50 -0.31 -0.53 1.00 -0.08 0.10 0.48
FCHI  0.08 0.71 0.29 -0.04 -0.23 1.00 -0.05 0.13 0.42

HSI  0.07 0.79 0.20 -0.05 -0.37 1.21 -0.08 0.14 0.38

KS11 0.11 0.72 0.43 -0.22 -0.37 1.17 -0.01 0.12 0.44
AEX  0.01 0.72 0.46 -0.17 -0.06 0.90 -0.12 0.07 0.44
SSMI  0.15 0.67 0.42 -0.10 -0.51 0.96 -0.08 0.11 0.35
IBEX  0.08 0.78 0.34 -0.17 -0.36 1.09 -0.08 0.12 0.38
MXX  0.25 0.80 0.49 -0.28 -1.00 0.73 -0.04 0.12 0.58
BVSP  0.28 0.69 0.34 -0.15 -1.00 1.22 -0.03 0.14 0.47
STOXX50E  0.11 0.76 0.29 -0.10 -0.49 1.12 -0.12 0.13 0.50
FTSTI  0.15 0.72 0.37 -0.14 -0.59 1.04 -0.01 0.12 0.44
FTSEMIB  0.09 0.72 0.40 -0.15 -0.31 0.98 -0.09 0.11 0.49

Table 1: Estimated parameters for the log-linear Realized GARCH(1,2) model

Constant Volatility Realized RGARCH
Stock Index Index ETF  Mean Std  VaR CVaR Mean Std  VaR CVaR
(95%)  (95%) (95%)  (95%)
SPX SPY 5.9 301 497 619 5.9 300 500 636
FTSE ISF 137 1,025 1,814 2,232 135 1,022 1,811 2,253
N225 NKY 8,002 19,008 39,059 46,774 7,976 19,011 38,972 47,358
GDAXI DAXEX 18.7 141 248 305 18.5 141 250 313
RUT IWM 6.0 204 339 420 6.2 204 340 432
DJI DIA 6.8 255 422 525 6.9 254 426 538
IXIC QQQ 6.3 244 402 498 6.4 244 405 513
FCHI CAC FP 9.7 73 129 158 9.8 73 129 160
HSI 2800 HK 23.5 43 93 110 23.4 43 93 111
KS11 EWY 7.2 165 275 341 7.3 165 275 347
AEX TAEX 12.4 58 107 130 12.5 58 108 134
SSMI CSSMI 16.0 97 175 215 16.0 97 176 220
IBEX BBVAI 12.9 17 41 47 12.9 17 41 48
MXX NAFTRAC 10.1 105 180 222 10.4 105 181 228
BVSP BOVAL11 20.1 182 317 389 20.0 182 316 394
STOXX50E SX5EEX 10.9 57 103 126 10.9 56 104 129
FTSTI STTF SP 8.4 5 17 19 8.4 5 17 19
FTSEMIB LEVMIB 5.4 13 27 33 5.4 13 28 34

Table 2: Trading costs (cents/share) with average initial volatility under linear impact models
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Stock Index

SPX
FTSE
N225
GDAXI
RUT

DJI

IXIC
FCHI

HSI

KS11
AEX
SSMI
IBEX
MXX
BVSP
STOXX50E
FTSTI
FTSEMIB

Index ETF

SPY

ISk
NKY
DAXEX
IWM
DIA
QQQ
CAC FP
2800 HK
EWY
TAEX
CSSMI
BBVAI
NAFTRAC
BOVA1l
SX5EEX
STTF SP
LEVMIB

Constant Volatility

Mean

6.2
135
7,955
185
5.7
6.6
5.7
9.6
923.5
7.3
125
16.0
13.0
10.3
19.8
11.0
8.4
5.4

Std  VaR
(95%)
347 571
1,286 2,231
21,933 43,736
173 300
283 465
320 527
331 539
90 156
51 106
198 328
75 134
119 211
21 47
141 239
209 359
67 120
6 18
17 33

CVaR
(95%)
710
2,752
52,600
369
577
656
666
193
127
406
164
259
56
296
442
147
21
40

Realized GARCH

Std  VaR CVaR
(95%)  (95%)

5.9 343 568 724
136 1276 2,224 2,771
7,961 21,647 43,218 52,700
18.5 172 301 378
6.3 278 458 581
6.6 317 528 666
6.0 329 540 684

Mean

9.6 89 155 194
23.4 51 106 128
7.4 196 325 410
12.5 74 135 168
15.9 118 210 263
12.9 21 47 57

10.3 138 234 295
20.1 205 354 442

10.9 66 120 149
8.3 6 18 21
5.4 17 33 40

Table 3: Trading costs (cents/share) with high initial volatility under linear impact models

Stock Index

SPX
FTSE
N225
GDAXI
RUT

DJI

IXIC
FCHI

HSI

KS11
AEX
SSMI
IBEX
MXX
BVSP
STOXX50E
FTSTI
FTSEMIB

Index ETF

SPY

ISF
NKY
DAXEX
IWM
DIA
QQQ
CAC FP
2800 HK
EWY
TAEX
CSSMI
BBVAI
NAFTRAC
BOVAL11
SX5EEX
STTF SP
LEVMIB

Constant Volatility

Mean

6.6
162
8,776
21.0
7.8
8.9
7.2
11.2
26.5
8.4
15.0
18.1
15.2
12.6
21.6
12.3
9.4
6.4

Std  VaR
(95%)
347 572
1,284 2,255
21,048 44,574
173 303
283 467
320 530
331 540
90 158
51 109
198 329
75 137
119 213
21 49
141 242
209 361
67 121
6 19
17 34

CVaR
(95%)
711
2,779
53,372
372
579
659
668
194
130
407
167
261
58
298
444
148
22
40

Realized GARCH

Std  VaR CVaR
(95%)  (95%)

6.1 342 563 703
159 1,273 2,233 2,752
8,524 21,642 43,858 52,732
20.6 172 300 370
7.3 277 457 569
7.9 317 525 654
7.2 330 538 669

Mean

10.8 89 156 192
26.2 50 108 129

8.2 197 327 406
14.6 74 135 166
17.9 119 211 260
14.8 21 49 o8

12.2 138 236 292
20.4 206 355 438

12.0 66 120 147
9.1 6 19 22
6.2 17 33 40

Table 4: Trading costs (cents/share) with high initial volatility under volatility-based impact

models
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The results demonstrate that in both models increased initial volatility leads to substantial
increase in risk, and the expected costs also increase under volatility-based impact model. In

the same way expected costs and risk decrease with volatility for both models (not reported).

In addition, if we start trading with high initial volatility, the expected volatility under
RGARCH model generally declines over time, therefore the trading costs under RGARCH
and volatility-based impact models are lower than that under GBM. In the same way, the
costs under RGARCH are higher than GBM with low initial volatility (not reported), which
makes RGARCH model less sensitive to volatility change than GBM.

4 Optimal Execution

Our next step is to formulate the optimal execution problem under the RGARCH model.
First we need to compute the optimal execution strategies obtained under both GBM and
RGARCH models. Then instead of comparing both strategies under their respective models,
we are interested in comparing the performance of the strategies under the RGARCH model,

since it apparently provides much better fit to the market.

4.1 Optimal Execution Problem

Following the assumptions of Moazeni, Coleman and Li (2010), the decision maker wants to
minimize the mean and CVaR of the implementation shortfall, which leads to the stochastic

programming problem:

N N
t=1 t=1

ny... nny

n; . F; — measurable

Zi\ilnt:X

subject to

® is a risk measure of the cost, and )\ is a constant risk tolerance parameter. In particular,

® is often chosen as Variance, VaR, or CVaR.
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4.2 Minimizing Mean and CVaR

In this paper, we focus our discussion of risk measure on CVaR, following the definition of
Rockafellar and Uryasev (2000)

CVaR,(Y) = min (a n %pE (Iv - a]+)>

So the objective function becomes

N N
min E (XSO — ZntSf) + ACVaR, <XSO — ZntS;‘> (10)

ny... Ny, a t=1 t=1

ng . F; — measurable

which is equivalent to

N +
X5 —ZntSt* —a]

t=1

min (XSO Z nyS; ) +ha+ LE

ny... ny,a p

n; : F; — measurable

As many studies of optimal execution have been conducted on linear impact models (see, for

example, Almgren (2012)), we focus on the volatility-based temporary impact function (6)

Ty

. P
St_S”(l A EDV)

Note that Moazeni, Coleman and Li (2010) developed a computational technique to solve

this stochastic dynamic programming problem, but based only on constant volatility GBM.
Our goal here is to obtain a static strategy by solving for the constant values of ny... ny
(under Fp)

+

(11)

N
XSy — ZntS: —a
t=1

N
. A
mmgjlvaE (XSO ZntS ) +)\a+1—E

t=1
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4.3 Monte Carlo Simulation Method

Since the objective function (11) does not have a simple analytic expression, we again use

the Monte Carlo Simulation approach to approximate it

A\ M N ‘ +
/) *(7)
nl.I.I.HIl —Z <XSO Znts (i ) +)\a+mz (XS() - ZntSt J) _ a) (12)

nn,a
t=1 j=1 t=1

If we consider the execution price S} as it is defined, the objective function becomes a very

complex nonlinear polynomial. One way to formulate a convex optimization problem is to

ne
At

impact f (E)' This way we have the new price function S,

ignore the permanent impact function g ( ) as it is relatively small compared to temporary

St St 1 (1 + Tt) SO S()

As far as optimization is concerned, S;, t = 1... N are constants, and the execution price

51=50 (11 (2)

S} becomes

The objective function becomes

n{pln —Z(XSO Znt )+)\a+A[(1)\_ Z(XSO Znt —) (13)

nn,a
J=1

4.3.1 Change of Variable Method

To better formulate the problem, we can use a change of variables

M N ~ M
1 " A
- () ~_ " it
min - XSo—37> ), (“S (1 A EDV)) Pt Sy 2

ny...ny, 7=1 t=1 j=1

a,yi---Ym
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(Ziilnt:X

ne 2 0, t=1...N
y; =0, j=1...M
\ijXSO_Zz{,\Llntgt(pl (1—€—Aitat\/g) —a, j=1...M

This is a convex optimization problem as it has a nonlinear convex objective function and

subject to

the constraints form a nonlinear convex set. However, solving this problem can be computa-

tionally very expensive due to the number of scenarios M is typically very large.

4.3.2 Smoothing

An alternative way to avoid the large number of constraints is to adopt the smoothing
technique proposed by Alexander et al. (2006). See also Moazeni, Coleman and Li (2010).

To simplify notation, we define

N ~
Z]:XSO_Zntgt(J_)l(l—g—iO_t i >—a,]:1]\/[

We can approximate the piecewise convex function [Zj]+ with a continuously piccewise dif-

ferentiable function p,(z;) with a small resolution parameter

zj, if z; >k
i (25) = + S48, if k<2 <k
0, if z; <—k
The problem becomes
N A&
o ; 2 +a) +>\CH_JV[(T§ w (25) (15)
subject to il =X

16



Now we have a convex optimization problem with nonlinear convex objective function and

linear constraints. To simplify notation, we define L to be the objective function

1 M M
Z _p)jzlpn (ZJ)

J:1

2J+a +)\a+

Proposition 1 The gradient of the objective function VL = (C‘?nLl . £L—LN, g—s) is given by

5’ZJ )\ 0z ,
vy _ - - hars t=1...N
ant Z ant p) j:1 ant K (Z])7
oL A M
b W !
8@ ]\4(1_p);pm(2])
where
1, it z; >k
0pf€( ) z
Pl = =S = s g i A<y <n
0, it z; < -k
827 (4) - 3 77 Tt
= 1—€6— —— = N
an, = P “To9AN EDV

Proposition 2 The Hessian of the objective function is

r 9%L 9*L
on? On10ns
3*L J*L
8%26711 6n§
V(L) = : :
9*L d*L
onnOny onpnOng
9%L 9L
L Odadny Oadns
where
M M
82L 822?] Z 822] /
A7 = 77 P
871? « Onj (1—p nZ "
J
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oL oL A = 8Zj azj 1"
- B —Lpi(z), s=1...N, t=1...
On.On; ~ Onidn, M (1= p) 2= on, om,* 9 ° : N, s#t

L PL XN R0y,
dadn,  On,0a M (1—p) = 8ntp“

L AR,

0z; . . o
where pl, (z;) and 5 are given in Proposition 1, and

0, if z;>k
— _ FrRA"IJ 1 .
0,

it z; < —k

822’]‘ & (4 3 ﬁ 1
5 gw 2 L —— t=1...N
on? t_l4Atat\/ EDVn,’

4.4 Optimization Results

We now present the results obtained by implementing the smoothing method described in
chapter 5.4.2 For all the results presented, we use the same data set and parameters given
in chapter 3.2, all but the naive trading strategy (8), and to reduce computing time we run

M = 1,000,000 simulations for the optimization.

Table 6 shows trading costs and optimal strategies with high initial volatility given risk
tolerance level 0.1. Table 7 shows those results with low initial volatility. Using the RGARCH
model for price dynamics, the figures show efficient frontiers obtained by GBM and RGARCH
optimal strategies for selected ETFs.

2We solved the optimization problem with the interior point algorithm in the Matlab fmincon solver. For
details of the algorithm see Byrd, Hribar, and Nocedal (1999), and Waltz, Morales, Nocedal, and Orban
(2006).
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SPX Efficient Frontier Comparizon under RGARCH SPX. Efficient Frontier Comparizon under RGARCH
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Figure 1: Efficient frontier comparison of stock index ETF SPY with high initial volatility.
Left: entire efficient frontier. Right: zoomed in on right end.

As shown in the tables and figures, even if we assume the RGARCH model to be the ac-
curate market model, the costs computed under GBM optimal strategies are generally close
to the efficient frontier of RGARCH optimal strategies.

However, if we compare the same risk aversion level under both GBM and RGARCH
optimal strategies, the trading costs obtained by the GBM strategies can still be far away
from RGARCH strategies, for example getting less expected costs in the expenses of incurring
more risk, or vice versa. Especially when we want to only minimize the expected cost or only
minimize the risk, GBM optimal strategy can produce both larger expected costs and larger

risk altogether, which can never be optimal compared to the RGARCH strategy.

5 Conclusion

In this paper, we have compared the trading costs under the recent RGARCH model to the
constant volatility GBM by using Monte Carlo Simulations. We have demonstrated that
increased volatility leads to increased trading costs. However, the difference in trading costs
between GBM and RGARCH is small.

To obtain the optimal trading strategies under the volatility-based impact model, we have
developed a change-of-variable and a smoothing method to formulate the minimization of

mean and CVaR as a convex optimization problem, and the smoothing method proves to
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Figure 2: Efficient frontier comparison of stock index ETF SPY with low initial volatility.
Left: entire efficient frontier. Right: zoomed in on right end.
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Figure 3: Efficient frontier comparison of stock ETF STTF SP with high initial volatility.
Left: entire efficient frontier. Right: zoomed in on left end.
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be very effective to this problem. The results have shown that although the difference is

small between optimal strategies under the two models, RGARCH is always more preferable,

especially when only minimizing expected costs or only minimizing risk without considering
the other.

Possible extension of the analysis is either to consider the trading costs of a portfolio

of stocks (ETFSs), or to compare the costs under the constant volatility GBM to a different

volatility model. Models for highly volatile markets, such as regime switching models or

volatility models with jumps, may reveal larger discrepancies from the constant volatility

model within a short liquidation time frame.
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