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Abstract

Streak artifacts caused by unavailable metal implants degrade the CT image’s quality
and disturb medical diagnose. The common methods used to reduce these metallic artifacts
often consists of interpolation or iteration methods. The former tend to lose image quality
by introducing extra artifacts, and the latter costs heavy computational time. This paper
proposes a new strategy based on Euler’s elastica inpainting method, which can preserve
the curvature of the original image, making the restoration results more continuous and
complete. Results of quantitative and qualitative experiments on both simulated phan-
toms and clinical CT images demonstrate that our method can suppress metal artifacts
significantly.

iii



Acknowledgements

I would like to greatly appreciate my supervisor, Prof. Justin W. L. Wan. Without his
large support and guidance, this work could not be possible. I would also like to thank Prof.
Jeff Orchard, who helps reading this paper and gives me valuable advice. Particularly, I
want to thank my lovely friends in the CM program, as well as all the people who give me
kindly help during this memorable year in the University of Waterloo.

iv



Dedication

This is dedicated to my dear parents and the ones I love.

v



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Metal Artifacts in CT Radiology . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Metal Artifact Reduction Development . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Projection Completion MAR Methods . . . . . . . . . . . . . . . . . . . . 5

2.1.1 One Dimensional Interpolation MAR Method . . . . . . . . . . . . 7

2.1.2 Normalized MAR Algorithm . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Euler Elastica’s Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Elastic Energy Function . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Numerical Discretization . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodolody 14

3.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Forward Projection and Metal Trace Identification . . . . . . . . . . . . . . 17

3.3 Contrast Enhancement and Sinogram Inpainting . . . . . . . . . . . . . . . 18

vi



3.3.1 Initial Condition and Boundary Condition . . . . . . . . . . . . . . 19

3.4 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Iterative Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Experiments 23

4.1 Image Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Elastica parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Convergence constant . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.4 Lagrangian multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.5 Zero gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Inpainting Results on Sinogram Domain . . . . . . . . . . . . . . . . . . . 29

4.4 Conparison with LIMAR and NMAR . . . . . . . . . . . . . . . . . . . . . 30

4.5 Comparison Experiments with LIMAR and CIMAR . . . . . . . . . . . . . 32

4.6 Iteration Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusion 39

References 40

vii



List of Tables

4.1 Quantitative measurement comparison with LIMAR and CIMAR . . . . . 32

4.2 Quantitative measurement for iterations . . . . . . . . . . . . . . . . . . . 35

viii



List of Figures

1.1 Streak artifacts in head, hip and tooth CT images . . . . . . . . . . . . . . 2

2.1 Image and corresponding sinogram . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Simulated Inpainting result . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Inpainting regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Flowchart of the whole methodolody . . . . . . . . . . . . . . . . . . . . . 16

3.2 K-means Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Metal mask and the identified metal trace inpainting domain on the sinogram 19

3.4 Increase the contrast using Gamma Correction . . . . . . . . . . . . . . . . 20

3.5 Boundary conditions given by linear interpolation . . . . . . . . . . . . . . 20

3.6 PSNR and changing of PSNR over time . . . . . . . . . . . . . . . . . . . . 22

4.1 Four types of image data used for testing . . . . . . . . . . . . . . . . . . . 24

4.2 Test image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Test on timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Test on b/a ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Test on lagrangian multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Test on lifting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Correction of the artifact sinogram . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Correction of the artifact sinogram . . . . . . . . . . . . . . . . . . . . . . 30

4.9 Euler’s elastica inpainting results with jaw phantom image . . . . . . . . . 31

ix



4.10 Clinical CT phantom image comparison with LIMAR and CIMAR . . . . . 33

4.11 Clinical CT phantom sinogram comparison with LIMAR and CIMAR . . . 34

4.12 Iteration results for clinical CT phantom images . . . . . . . . . . . . . . . 36

4.13 Iteration Experiment for real CT artifact images . . . . . . . . . . . . . . . 37

4.14 Experiment on extreme cases . . . . . . . . . . . . . . . . . . . . . . . . . 38

x



Chapter 1

Introduction

Computed Tomography (CT) has been widely used as a medical diagnostic tool over the
years since it was first invented in 1972 [19]. CT images show clear and reliable information
about body structures, bones and soft tissues in the interested regions of the examining
body. However, metal artifacts, which commonly appear in CT images, will severely de-
grade the quality of CT images. The formation of artifacts is related to the metallic parts
inside the body. Metal is usually a high-attenuating material, which will disturb the X-ray
propagation while passing through the human body. As a result, light and dark artifacts
originating from the metal piece will spread out the whole image, causing serious damage
to the information provided by CT images. It has been reported that about 10% of the CT
images are affected by metal artifacts to different degree [11]. This will cause misdiagnosis
for doctors, which largely limits the application of CT imaging. Therefore, the research
about how to reduce the artifacts is of significance.

Figure 1.1 illustrates how metal artifacts affect the visual quality of CT images. They
are CT images with metallic objects in head, hip and tooth. In the first image of 1.1,
the metal objects are inserted at two knees, and there are straight artifacts crossing on
the image. The second and third images have one metallic object in the middle, and
radioactive artifacts are emitted from the metal object. In the second line of 1.1, we can
notice that dramatic white lines are gathering around the region of teeth. The quality of
the CT images has been severely damaged by the streaking artifacts.
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Figure 1.1: Streak artifacts in head, hip and tooth CT images

1.1 Metal Artifacts in CT Radiology

The formation of metal artifacts is closely related to the principle of CT imaging. When a
patient is under going a CT scanning, X-ray beams carrying different levels of energy will
pass through the body from all directions. For an object containing tissues with different
density and thickness, the attenuation to the X-ray beams is not uniform. High-density
tissues tend to absorb more high-energy photons thus becoming harder in the final image.
This effect is commonly referred as beam hardening effect, or cupping effect. Because
of this selective absorption character, the collected projection data no longer follows the
linear relation as before. When there exists strong attenuating objects, typically metallic
objects, the beam hardening effect becomes so strong that severely breaks the propagation
process and results in artifacts.

After projection, the collected data are stored as a matrix with each column corre-
sponding to one direction of the projection. The matrix shown as a two dimensional image
is called raw data, or sinogram. Then, a filtered back-projection (FBP) algorithm will be
used to reconstruct the raw data shaping into a two-dimensional image, which is the final
CT image we are familiar with. FBP algorithm assumes a linear propagation to these
collected projection data and re-project them in each column to recover the shape of the
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original object. A detailed description of how FBP works is demonstrated in the latter
chapter. Basically, it is the missing information in the raw data leads to the artifacts after
a reconstruction in the final CT images.

1.2 Metal Artifact Reduction Development

The problem about metal artifacts on the CT images starts to appear from the beginning
when CT technique was invented. Over the decades, there have been a large variety
of methods to tackle this problem. All these approaches are referred as metal artifact
reduction (MAR) methods. Generally speaking, they can be categorized into two types:
projection completion methods, and statistical algebraic methods.

The first projection completion based method was invented in [22]. The main idea of
this type of approach is to replace the corrupted pixels in the raw data with proper val-
ues calculated from the surrounding information. The specific approaches used to predict
missing values are various. Linear interpolation [20] is one of the most frequently used
methods among those, due to its simplicity and fast speed. Later on, there are cubic in-
terpolation [3], polynomial interpolation [2], and wavelet interpolation [36]. Basically, all
the interpolation techniques can be used for prediction. Besides traditional interpolation
methods, there are some other ways trying to make use of the surrounding pixels of the
objective object, such as pins at the opposite or an optimal direction. Moreover, some
image preprocessing techniques have been introduced into this problem and used as one
step before implementing interpolation algorithms. Among these, one of the most efficient
approaches is to take advantage of a prior image. To calculate the prior image, a segmen-
tation is applied on the original image in order to separate different types of tissues [6].
Making use of the prior image can reduce the possibility of choosing improper values when
applying interpolation. One of the most popular and successful methods using a prior
image is called normalized MAR (NMAR) [26]. In their experiments, this method outper-
formed most of the one dimensional interpolation methods and largely fixed the missing
information in the corrupted raw data.

While most of the MAR methods belong to the projection completion based methods,
they have significant drawbacks. One of the major problem is that most of the interpo-
lation methods use one dimensional interpolation, and limited information can be taken
advantage of. The inconsistency and mis-prediction problems result in new artifacts in the
reconstructed image after a FBP reconstruction. Subsequently, another type of approach
has been proposed to avoid these problems arisen during FBP reconstruction process.
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The statistical iterative approach uses the idea of treating the reconstruction as an
optimization problem. More precisely, an initial image is guessed, followed by a forward
projection. The original sinogram is then divided by the estimated sinogram values ac-
cordingly [13]. The goal of the iteration is to obtain the “best” estimation based on the
restored result from last time. The best known example of statistical iterative reconstruc-
tion technique is the maximum likelihood-expectation maximization (ML-EM) algorithm.
From theoretical analysis, the statistical iterative method can obtain a “perfect” recovery
of the original un-affected sinogram with infinite iteration times. Accordingly, the main
problem to this type of methods is their extremely high computational time and heavy
dependence on the CT equipment characteristics [4].

In this thesis, we present a novel approach to reduce metal artifacts both preserving the
consistency of the whole image. This method uses inpainting technique, more specifically
Euler’s elastica and curvature-based inpainting to fill in the corrupted domain such that
the sinogram image looks consistent and continuous. If the sinogram is better restored,
then after reconstruction, the final corrected image will be better.

The layout of this thesis is as follows. In Chapter 2, we will introduce the background
of the current MAR methods and then the mathematical fundamental of Euler’s Elastica
inpainting. Detailed numerical implementation formula will also be given. In Chapter 3,
a methodology of our model and how we implement the method on medical artifact image
will be proposed. Chapter 4 shows the experiment and results with different images as well
as the comparison between different methods. A conclusion will be provided in Chapter 5.
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Chapter 2

Background

In this chapter, we will first introduce some current MAR methods, and discuss their
principles, advantages and disadvantages. Then we will introduce and explain Euler elastica
inpainting. A brief review of how inpainting works and develops will also be given. Finally,
we will describe the formulation and discretization of the equations.

2.1 Projection Completion MAR Methods

Before inpainting, our raw image data are 2-D images corrupted with artifacts. The ar-
tifacts on the image are caused by multiple mechanisms, including the beam hardening,
scatter, noise, motion, and edge effects. Among those, beam hardening is one of the most
prominent sources.

Beam hardening effect is caused by high-density materials in the body. When a bunch
of X-rays carrying beams with different level of energy passes through the scanning body,
low-energy beams are easier to be absorbed. To be specific, the beams with lower energy
will firstly be absorbed by tissues, while those with higher energy can pass through and be
received by detectors.

The intensity of the X-ray exiting a scanning material is a function of the material
thickness and the attenuation coefficients. When there are metallic objects, whose attenu-
ation value is much higher than human tissues in the scanning body, most of the low-energy
beams can not pass. And high-energy beams can pass through the body and be received by
detectors, so that the energy of beams received will be much higher than the normal range,
and the effect of beam hardening will be extremely severe. The linear relation between the
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amount of beams and tissues’s density no longer holds, causing a non-linear error at the
region with metallic objects.

In the next procedure, the information of X-ray beams that collected by the detectors
are used to perform a back-projection to form the reconstructed image. The reconstruction
algorithm use the intensity of collected beams to calculate the tissue’s density and assumes
that the collected X-ray beams’ intensity follow a linear relation with tissues’s density,
which is not the fact due to the non-linear error caused by beam hardening. Since the
lightness of reconstructed images should be determined by the densities of human’s tissues,
when we use the intensity of collected beams to calculate the tissue’s density, the non-linear
error mentioned above will affect calculation results, which leads to streaking artifacts in
the constructed images.

To fix the artifacts directly on the image is not feasible. According to Figure 1.1, the
regions that has been influenced by artifacts and the surrounding regions are very blurry
and complicated. As a result, it is hard to distinguish metallic objects, artifacts and body
tissues on the image. Therefore, instead of fixing the original image directly, projection
completion MAR methods tend to restore the corrupted regions on the forward projection
of the original image, which is the sinogram domain.

Sinogram is the radon transform of the original image. It can be regarded as a sim-
ulation of the tomography process. One single projection can provide information of the
object at one direction. If we perform projections to the object from several different di-
rections, we are able to compute the shape of the object. A matrix of projections is called
a sinogram, each column corresponding to the information from one direction. Figure 2.1
shows the original image and its corresponding sinogram .

From Figure 2.1, we can see that on the sinogram domain, the metallic objects and its
artifacts are shown as several light traces. Comparing with correcting the metal artifacts
on the image domain, it is much easier to locate and fix the metal trace on the sinogram
domain. The main idea of a projection completion MAR method is to replace those light
traces with values calculated from surrounding reliable information. Then, the corrected
sinogram is transformed back into an image, which is the final restored image we desire.

A general procedure of projection completion MAR method often consists of two steps.
Firstly, identify and locate the pixels that contain wrong information, and secondly make
use of different interpolation methods to fix them. Among all the projection completion
methods, we will implement three of them in our project, including two 1-D interpolation
methods and the normalized MAR method.
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Figure 2.1: Image and corresponding sinogram

2.1.1 One Dimensional Interpolation MAR Method

Two of the one dimensional interpolation methods we will introduce are linear interpolation
and cubic interpolation. Linear interpolation technique was firstly made use of to reduce
the artifacts in CT images in [20]. As one of the most effective and commonly used
algorithms so far, linear interpolation MAR is simple and easy to implement. A general
procedure is as follows. Raw data is reconstructed into a 2-D image with artifacts on the
background. Then metallic objects are segmented by thresholding. Most of the time, this
value is set at the maximum value of the whole reconstructed image, for the reason that
metallic material often has a large attenuation value. After that, the segmented metal
is forward projected to get a metal trace sinogram. Comparing the metal trace with the
original sinogram pixel by pixel, the location of the corrupted raw data can be identified.
Two points are chosen a few pixels away from the top and bottom of the metal trace,
followed by a linear interpolation. The corrected sinogram is reconstructed again into a
restored image. Segmented metal can be inserted back onto the restored image.
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Cubic spline interpolation method (CIMAR) almost follows the exactly same proce-
dures except that the interpolation used for replacing the metal pixels is cubic Hermite
spline . The cubic spline has a first continuous derivative, therefore is smoother and more
continuous comparing with linear interpolation.

Advantages of these two interpolation approaches are that they are easy and fast to
implement, and can be combined with other methods. The drawback is also significant.
Since both linear interpolation and cubic interpolation only use the information from one
direction, it is very sensitive to the location of the interpolation points. With the wrong
information, the interpolation results will be inconsistent with the surrounding pattern;
thereby generating extra artifacts on the final reconstructed image.

2.1.2 Normalized MAR Algorithm

Another type of the MAR method we compare with is the normalized MAR, or shorten as
NMAR. Normalized metal artifact reduction (NMAR) algorithm was recently introduced
in [26]. The main idea of NMAR is to take advantage of a prior image, which is obtained by
a multi-threshold segmentation of the initial image. The prior image is used to normalize
the sinogram projections before interpolation. The sinogram from artifact image is divided
by the sinogram from the prior image and, after interpolation, are de-normalized again.

Normalized MAR has only moderate extra computational costs compared with one-
dimensional interpolation methods, but could largely improve the image quality. In addi-
tion, it can be used as an additional step in other conventional sinogram-completion based
MAR methods.

However, NMAR still suffers from a loss of details close to the metal implants as most
of the interpolation completion algorithms. Moreover, neither of the LIMAR nor NMAR
considers the curvature of the pattern, which will break the continuity of the whole image
and affect the visual quality of the restored image.

Generally speaking, most of the classical projection completion methods use only one
dimension information. There are some methods proposed recently making use of the
optimization techniques, such as choosing optimal pixels from the neighborhood of the
corrupted region [34]. The performance of the reconstructed image has been improved,
but still lose the continuity of curvature in the background. However, this issue is greatly
addressed in the proposed approach which is based on an inpainting algorithm.
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2.2 Euler Elastica’s Inpainting

In this essay, we propose a method using an image inpainting technique to restore the
sinogram. Firstly, a brief review of inpainting and concepts will be described, and then
mathematical formulas and discretization will be given.

2.2.1 Inpainting

The term “inpainting” was firstly introduced into image processing area in [8]. The objec-
tive of a image inpainting problem is to fill in the missing regions with proper values, so
that the whole image looks natural to human eyes.

In some previous inpainting methods, total variation (TV) inpainting [10] aims to min-
imize the total variation norm in the inpainting domain, while penalizing the changing
in other parts outside the inpainting domain. TV inpainting works well for some simple
images with sharp edges and homogeneous patches, but it fails to capture the curvature
in curved edges. This problem is overcomed by introducing the curvature term into the
model, making the whole image more continuous. This kind of inpainting is called curva-
ture driven diffusion (CDD) inpainting [28]. A comparison of the two inpainting methods
is shown in Figure 2.2.

Figure 2.2: Simulated Inpainting result

Then Euler elastica inpainting model is a method that incorporates curvature infor-
mation into the elastic energy [29]. Firstly, we will show the elastic energy function and
the general PDE formulation for this inpainting problem. Then we give the numerical
discretization of the Euler elastica inpainting model.

9



2.2.2 Elastic Energy Function

The elastic energy function describes the energy stored in a flexible rod when there is a
changing of its shape in two directions. The model tries to find a curve, Γ, that minimizes
the elastic energy function described as follows:

E[Γ] =

∫
Γ

(a+ bκ(s)2)ds, (2.1)

where κ(s) is the scalar curvature of every pieces along the curve with length ds, a, b are
two positive constants, and the ratio of b/a determines the elastica of the curve.

Consider Figure 2.3, in an inpainting problem, the missing region to be filled is called
“inpainting domain”, D. The region that contains correct and reliable pixel values for
inpainting is called “extended domain”, E, and the whole image is Ω.

Figure 2.3: Inpainting regions

Let the original image be u(x), x ∈ Ω, and the curvature of u be defined as the
divergence of the normal, which is ∇ · ∇u|∇u| , and ds = ∇udx. Then the elastica energy
function in the inpainting domain becomes

E[u] =

∫
D

(a+ b(∇ · ∇u
|∇u|

)2)|∇u|dx. (2.2)

Then we incorporate the elastica energy function into the inpainting model. Similar to
TV inpainting, we add a penalty term to the energy function. But instead of minimizing
total variation term, we minimize the elastica energy function. Also in practice, we apply
the energy function on E ∪D instead of only the inpainting domain D in order to obtain
a smoother result. The PDE formulation of Euler elastica inpainting is

J [u] =

∫
E∪D

(a+ b(∇ · ∇u
|∇u|

)2)|∇u|dx+
λ

2

∫
E

(u− u0)2dx, (2.3)
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where u0 is the true image value that we use to compare with the inpainting value at
the extended region E; λ is the Lagrangian multiplier which controls the weight on the
inpainting term and the penalty term. In [28], the authors show that solving (2.3) is
equivalent to computing the steady state solution of the following equation:

∂u

∂t
= |∇u|∇ · ~V − |∇u|λE(u− u0), (2.4)

where

~V = (a+ bκ2)~n− 2b

|∇u|
∂(κ|∇u|)

∂~t
~t

and

λE =

{
λ, u ∈ E
0, u ∈ D

Here ~t is the tangential direction and ~n is the normal direction. In the normal direction, the
model propagates the elastic energy directly, while in the tangential direction, it propagates
the derivative of the elastic energy.

2.2.3 Numerical Discretization

In this section, we will discretize (2.4) by finite difference method. We use the explicit
scheme in [29] which yields the following time stepping method,

un+1
i,j = uni,j + ∆t

[
|∇uni,j|F (uni,j)− |∇uni,j|λE(uni,j − u0

i,j)
]
. (2.5)

where (i, j) represents a pixel of the inpainting image, timestep is from n = 0, 1, · · · with
a time step size ∆t. Then uni,j is the value of u at pixel (i, j) at time step n. Also

F (uni,j) = ∇ · ~V n
i,j, and u0 is the value in region E that we already know.

There are two unknowns ∇uni,j to be discretized in the right-hand side of (2.5). Accord-
ing to [23], the first one is in front of F (uni,j), and is approximated by central differencing

|∇ui,j| =
1

2

√
(ui+1,j − ui−1,j)2 + (ui,j+1 − ui,j−1)2 (2.6)

and the second one is discretized by upwind scheme

|∇ui,j| =
√

(upwind Dxui,j)2 + (upwind Dyui,j)2, (2.7)
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upwind Dxui,j =

{
ui,j − ui−1,j if (ui+1,j − ui−1,j)(ui,j − u0

i,j) > 0,

ui+1,j − ui,j if (ui+1,j − ui−1,j)(ui,j − u0
i,j) < 0.

upwind Dyui,j =

{
ui,j − ui,j−1 if (ui,j+1 − ui,j−1)(ui,j − u0

i,j) > 0,

ui,j − ui,j+1 if (ui,j+1 − ui,j−1)(ui,j − u0
i,j) < 0.

Now is the discretization of F (un(i,j)) = ∇ · ~V n
(i,j). It is carried out in two dimensions

based on half-point central differencing.

F (uni,j) = ∇~Vi,j = DxV
1
i,j +DyV

2
i,j

=
(
V 1
i+ 1

2
,j
− V 1

i− 1
2
,j

)
+
(
V 2
i,j+ 1

2
− V 2

i,j− 1
2

)
(2.8)

where V 1 and V 2 represent the x and y components of ~V . For the curvature term κ, we
use the “min-mod” method to calculate the values at the half-point:

κn
i+ 1

2
,j

= minmod(κni+1,j, κ
n
i,j), minmod(α, β) =

sign(α) + sign(β)

2
min(|α|, |β|) (2.9)

Dx at half-point (i+ 1
2
, j) is approximated by central differencing of (i+ 1, j) and (i, j)

Dxui+ 1
2
,j = ui+1,j − ui,j, (2.10)

Dx(κ|∇u|)i+ 1
2
,j = κi+1,j|∇u|i+1,j − κi,j|∇u|i,j (2.11)

These are all the discretized terms in (2.5). To the consideration of stability, we use
the implicit scheme provided in [9]. They have shown that the implicit scheme is un-
conditionally stable, which means that it converges with any timestep. This allows an
implementation with a relatively larger timestep, which speeds up the algorithm. The
approach used in the implicit scheme is based on the “convexity splitting” technique [15].
The main idea is to divide the energy function into a concave part and a convex term, and
solve the concave component explicitly and the convex component implicitly. During the
division, there is a C1 parameter, which is a constant added to ensure the convexity. Then
all the other discretization methods used for other terms are the same with those in the
explicit method.

The final discretization formula for Euler elastica inpainting model is

un+1 −∆t
1

λ
∇
(
(a+ C1 + bκ2)~nn+1 + un+1

)
= un + ∆t

[
1

λ
∇
(
−C1~n

n − 2b

|∇un|
∂(κ|∇un|)

∂~tn
~tn
)

+ u0

]
, (2.12)
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with all the parameters to be assigned: λ is the the Lagrangian multiplier; C1 is a term
in implicit scheme to ensure the convexity; ∆t is the timestep; a and b are the elastica
parameters that determine the stiffness of the curve.

(2.12) can be rewrite into a linear system

Aun+1 = f,

where un+1 is the prediction value at the next timestep. A is the coefficient matrix of un+1,
and f is the right-hand sides with all the terms based on un. Then un+1 of next timestep
can be calculated by solving the above linear system.
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Chapter 3

Methodolody

The proposed model is based on the projection correction MAR approach. The main idea is
that instead of using a one-dimensional interpolation, we use the Euler elastica inpainting
to restore the corrupted region.

In order to do the inpainting, we need to know the location of the corrupted region on
the sinogram domain. However, due to the reason that it does not work well to capture
the region boundary directly on the sinogram, we decide to segment the metal part on
the image domain, followed by a forward projection of the segmented metal. Comparing
the projected sinogram with the original one, we can locate the metal trace region. After
implementing the inpainting algorithm, we reconstruct the sinogram back into a 2-D image,
which is the final restored image that we desire. The whole procedure can be divided into
the following stages.

1. Metal Segmentation
Apply K-means clustering method to segment the metal part on the initial artifact
image.

2. Forward Projection and Metal Trace Identification
Forward project the segmented metal to get a metal trace; compare the metal trace
with original sinogram to locate the inpainting domain.

3. Contrast Improvement and Sinogram Inpainting
Use Gamma Correction to increase the contrast of the sinogram; then apply the Euler
Elastica inpainting algorithm onto the inpainting domain of the sinogram.
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4. Reconstruction and Metal Insertion
Obtain the reconstructed image by FBP algorithm and insert the segmented metal
back into the corrected image.

5. Iteration Correction
Apply steps 1 - 5 iteratively until the image has been repaired to an acceptable
degree.

A flowchart of the whole procedure is shown in Figure 3.1.

3.1 Image Segmentation

We will apply K-means clustering on the artifact image to segment the metal objects.
Actually, what we want is to locate the region that contains the wrong information affected
by the metallic objects on the sinogram. Intuitively, the light trace on the sinogram should
be the metal trace. However, sometimes the boundary of the trace is very blurry, or
the background is very complicated, then it fails to identify the metal trace and using
thresholding alone is not able to segment it out.

Then we consider to segment the metal on the image domain first, and then project
the segmented metal to obtain a metal trace sinogram. With the same size as the original
sinogram, we can compare these two and locate the inpainting domain on the original
sinogram.

In order to segment the metal object, the most commonly used method is applying
thresholding on the reconstructed image domain, since the pixel intensity values of the
metal region are typically much larger than the rest of the image. Thresholding works well
on images with small amount artifacts. However, when the image is badly damaged by
a large amount of artifacts, thresholding is not able to identify the metal piece. In this
thesis, we use K-means clustering instead of thresholding to segment the metal part on the
reconstructed image.

K-means clustering is an algorithm to classify the objects based on their features into
K groups. The aim of the clustering is to group data in a way that similar objects are
in one cluster and objects of different clusters are dissimilar. The grouping is done by
minimizing the distances between data and the corresponding cluster central point. The
objective function is defined as below:
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Figure 3.1: Flowchart of the whole methodolody
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F =
K∑
i=1

∑
xj∈Si

(xj − ci)T (xj − ci), (3.1)

where Si, i = 1, 2, · · · , K are K clusters, and ci is the central point of all the points xj ∈ Si.
In general, K can be selected manually at first. Since we just want to segment the

metal, then setting k = 2 would be the first choice. Sometimes, larger K will yield better
result when the background is complicated. After the image has been segmented into K
pieces, we manually choose the one from the K pieces to check which one is the metal
piece. Normally, the Kth piece is the one containing the brightest patterns, so is the metal
piece. However, it still requires an extra work to check for that. Figure 3.2 shows some
experimental results applying K-means clustering on medical CT images.

3.2 Forward Projection and Metal Trace Identifica-

tion

In the previous section, we used K-means clustering to segment the metallic part on the
reconstructed image. We will make use of the metal information to locate the inpainting
domain on the sinogram. The segmented metal image is needed as an “input” image for
the forward projection, and projected under the same parametric conditions to get a metal
sinogram as left Figure 3.3.

Normally, the inpainting domain is set slightly wider than the exact metal trace location.
Since the segmentation may not be accurate, a wider region will ensure that the segmented
region will include the metal trace. However, setting the inpainting domain too large will
also damage the correct information. Therefore, a proper thresholding value σ for the
metal trace identification is important. Based on our experience, a σ is often in the range
of a quarter to a half of the maximum of the metal sinogram. Then a mask of the metal
trace, M , can be obtained by

M(i, j) =

{
1, if S(i, j) ≥ σ

0, if S(i, j) < σ
(3.2)

Since the metal sinogram and the original sinogram have the same size, the non-zero
pixels on the metal sinogram correspond to the metal trace on the original sinogram. The
inpainting domain is then located, as the red region in the right of Figure 3.3.
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Figure 3.2: K-means Segmentation

3.3 Contrast Enhancement and Sinogram Inpainting

Sinogram images are normally gray-scale images, often in low contrast with shades and
lights in the background. We apply a contrast enhancement technique to improve the
quality of the sinogram before inpainting. Increasing the contrast helps calculating gradient
values so that capturing the curvature more accurately. Accordingly, when inpainting
completed, an inverse correction will be applied with the same parameter to recover the
image into the same value range as before.

The method we use in this project is called Gamma Correction, or often simply gamma.
It is a nonlinear algorithm used to encode and decode luminance in images. Gamma
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Figure 3.3: Metal mask and the identified metal trace inpainting domain on the sinogram

Correction is defined by the following mathematical expression:

Vout = A · V γ
in (3.3)

where A is a constant, Vin is the image to be processed, and Vout is after-processing image.
In the common case, we set A = 1 and γ is in the range of [0, 1]. When γ < 1, it is called
an encoding gamma, and the contrast of the image will decrease; conversely, γ > 1 is called
a decoding gamma and will increase the contrast of the image. A comparison of the effect
of applying Gamma Correction is shown in Figure 3.4.

Now we can implement the Euler elastica inpainting algorithm proposed in the previous
section onto the corrected sinogram. In practice, there are several issues to be discussed
before implementation: initial condition, boundary condition and parameter choices.

3.3.1 Initial Condition and Boundary Condition

All PDE-based algorithms require setting the initial condition and the boundary condition.
For a 2-D image, an initial condition is the default value of its inpainting domain, and a
boundary condition is the intensity values of the pixels at four edges of the image.

For the initial condition, we set the pixel values to be zero on the inpainting domain.
In some of the inpainting literature, it is also common to use random noise values as an
initial condition [29]. Experiments have shown that different initial conditions do not show
much influence to the final effect as well as to the speed. Thus we just use zero as an initial
value for all the implementations in this project.
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Figure 3.4: Increase the contrast using Gamma Correction

Boundary condition is relatively more complicated. In this thesis, inpainting domain
will not spread to the top and bottom edges, therefore, we only need to consider the values
at the left and right boundaries. The method we use is to apply linear interpolation to the
most left and right five columns of the image. From Figure 3.5, we can see that the linear
interpolation produces reasonable results at the boundaries.

Figure 3.5: Boundary conditions given by linear interpolation
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3.4 Reconstruction

The corrected sinogram is reconstructed by inverse Radon transformation after applying
the inverse Gamma Correction on the inpainted sinogram. Normally, the original metal
location will turn into a gray or black hole on the corrected image. Therefore, the segmented
metal is inserted back into the image to make the final image more complete and consistent.

3.5 Iterative Correction

When an image is dramatically damaged by the artifacts, an iteration correction is required.
The iteration correction is to repeat the previous step 1 to step 4 more times until a stopping
criteria has been reached. After each iteration, the image quality gets better, which will
benefit the whole procedures for next inpainting; thereby we can expect a better restoration
for next iteration.

3.5.1 Stopping Criteria

A stopping criterion is used for both inpainting step and iteration step. It is measured by
the changes between two steps. The quantitative parameters we use include a root-mean-
square error (RMSE) and a peak signal-to-noise ratio (PSNR). They both measure the
similarity of two items, but in different scales.

RMSE is one of the most commonly used measures to calculate the error between two
items. It represents the sample standard deviation of the differences between predicted
values and observed values. The formula is as below:

RMSE =

√∑
j∈Ω(f̂j − fj)2

NΩ

(3.4)

where NΩ denotes the number of pixels in the chosen region Ω. f̂j is the inpainted value
of a pixel and fj is its original value of that pixel.

Another metric is PSNR, which is commonly used to measure the quality of reconstruc-
tion loss of image or signal in engineering, based on the calculation of RMSE. Generally
speaking, PSNR is preferred over RMSE because the measure increases when the error
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decreases, meaning that a better inpainting result has a higher PSNR value.

PSNR = 20× log10

(
1

RMSE(f̂j, fj)

)
. (3.5)

Figure 3.6 shows the absolute value of PSNR, |PSNRt|, and the changing difference of
PSNR, |PSNRt+1−PSNRt|, during a inpainting process. In Figure 3.6, we can see that
there is a rapid decreasing at the beginning and then gradually decreases to convergence.
The changing difference has declined to zero over time, ensuring the convergence again.
A common iteration number for convergence is around 2000 timesteps and the stopping
criterion of the difference of PSNR is smaller than 10−6.

As to the stopping criterion for the whole model iteration, the stopping criteria of the
difference of PSNR is set at 10−2, which means that the difference between two iterations
is less than 0.01.

Figure 3.6: PSNR and changing of PSNR over time
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Chapter 4

Experiments

In this chapter, we will apply our model to four types of image data. First, we will
briefly introduce the testing images. An experiment of the parameters used in the model is
carried out. Then, we test the model on the sinogram domain. Next on the image domain,
we compare the results with standard methods, LIMAR, CIMAR and NMAR. Finally,
iteration correction scheme is tested on type C and D images, and some difficult cases are
considered.

4.1 Image Data Sets

Four image data sets are used for the numerical experiments (Figure 4.1) : Shepp-Logan
phantom (A), jaw phantom (B), artifact-free CT phantom images (C) and clinical CT
images with streaking artifacts (D).

A. The first type is the Shepp-Logan phantom, which is a gray-scale intensity image
that consists of one large ellipse (representing the brain) and several smaller ellipses (rep-
resenting features in the brain). We use this Shepp-Logan phantom to test the inpainting
algorithm on accuracy, efficiency and consistency. The Shepp-Logan phantom has its ad-
vantages such as small size, simple and easy to edit.

B. The second type is called the jaw phantom. It simulates tooth CT image with dental
fillings. This origin of the jaw phantom is in [25], where they simulated the teeth with
different size of circles. We use this original jaw phantom image to simulate artificial CT
images suffering from beam hardening and streaking artifacts in a similar way as in real
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CT scanning. The aim of using jaw phantom is to compare the inpainting performance
with LIMAR and NMAR.

C. The third type is artifact-free CT images obtained from the open sources on the Internet
[1]. Comparing with manually created phantom images, CT images have more complicated
background and patterns. We use this image data set to implement LIMAR, CIMAR and
iteration tests. Quantitative evaluation will also be carried out between the corrected im-
ages and the original artifact-free CT images.

D. The last type is the clinical CT images that are characterized by serious metal ar-
tifacts. These will be the worst case to be considered and we do not know the original
clean images. Iteration tests will be implemented with this type of images.

Figure 4.1: Four types of image data used for testing
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4.2 Parameter Selection

Before implementation, we carry out simulated tests for all the five parameters used in
implicit scheme, and discuss how poor parameter choices can affect the inpainting results.

There are totally four parameters to be determined. They are timestep dt, elastica
parameters a, b, convergence constant C1, and Lagrangian multiplier λ.

We did all the tests on a 100×100 gray image cut from the jaw phantom sinogram.
Basic information of the test image is shown in Figure 4.2.

Figure 4.2: Test image

4.2.1 Timestep

Basically, an implicit scheme will always converge with any timestep. However, our ex-
perience is that a large timestep does not necessarily guarantee fast convergence. The
most important thing in the implicit algorithm is the length of the timestep, rather than
the number. From Figure 4.3, we can see that the results with a large ∆t do not always
outperform the ones with a small ∆t.

With ∆t = 1, the algorithm will converge after step = 300. The PSNR change
fluctuates around 2 × 10−6. When ∆t = 10, the PSNR change keeps around 2 × 10−5

after step = 200. It shows that both choice will converge. When ∆t is larger, convergence
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Figure 4.3: Test on timestep

happens faster, but the result is not very accurate. It is important to balance time and
accuracy. However, we do have more interest in the quality of the result than time, so a
smaller ∆t is desired. In our implementation, we usually take ∆t = 1.

4.2.2 Elastica parameter

Elastica parameter refers to the ratio between a and b. In general, larger b/a ratio will
lead to a stiffer inpainting result, because the inpainting function has put more weights to
the curvature term in the elastica model. As a result, the inpainted edges become sharper.

On the other side, increasing the b/a ratio could result in a side-effect. In order to
maintain the curvature, the inpainting will spread outside the inpainting domain, causing
extra noises. However, this effect can be offset by increasing the Lagrangian multiplier λ,
which will penalize any changes to the image outside the inpainting domain.

When b = 0, which means there is no attention to the curvature while inpainting, the
PSNR change parameter keep decreasing. When the b/a ratio between 1-2, the algorithm
converges after about 200 steps. When b/a ratio is more than 5(b > 25), the image begins
to appear noisy.
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In our experimentation with the medical image sinogram, the inpainting domain is
mainly refer to the metal trace. The trace is relatively straight with low-curvature. There-
fore, adjusting the b/a ratio does not affect much to the results. Therefore in practice, we
just set the ratio of b/a to be 1.

Figure 4.4: Test on b/a ratio

4.2.3 Convergence constant

The USTM constant is the term C1 in the implicit scheme [9]. Theoretically speaking, C1

is a convexity term that controls the convergence of the algorithm. However in practice,
C1 does not show any effect on the convergence no matter how small C1 is. Therefore, we
just set C1 as 1 in our implementation.

4.2.4 Lagrangian multiplier

The Lagrangian multiplier, λ, is a penalty term that adds weight on the boundary term
in (2.3). As introduced before, it has a inverse effect against the Elastica parameter.
Increasing λ will emphasize the weight on the “changing” component during inpainting.
As shown in Figure 4.5, when it is too small, blur and artifacts will appear surrounding
the inpainting domain. Large λ, however, significantly slows down the speed of algorithm
for convergence.
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Figure 4.5: Test on lagrangian multiplier

4.2.5 Zero gradient

When discretizing the PDE formulas, some of the terms need to be divided by the magni-
tude of the gradient. Therefore, there are some cases that when the gradient is zero, the
dominator is zero. Then a small positive constant, ε, is added to avoid this situation. In
practice, this term could dramatically influence the result as shown in Figure 4.6.

Setting ε too small will affect the convergence of the algorithm, and when ε is too large,
the algorithm will not even converge. In practice, we have found that it works well using
an ε around 10−2 for simple test images and 10−3 for complicated clinical CT images.

Figure 4.6: Test on lifting factor
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4.3 Inpainting Results on Sinogram Domain

The sinogram shown in Figure 4.7 is obtained from the projection of a jaw phantom. The
medium gray trace between the wider and thinner ones is the metal trace region.

From Figure 4.7, it can be seen that inpainting works well in the central part of the
image, preserving clear edges as well as the curvature of the light trace in the background.
However, at the corner of the image where three traces intersect with each other, the
continuity is broken, and the Euler elastica’s inpainting will lose its curvature preserving
feature; see red arrows in Figure 4.7

Figure 4.8 is cut from a clinical head CT phantom. The comparison clearly shows the
“curvature preserving” principle of Euler elastica inpainting. The inpainting domain is the
white trace bounded by the red lines in the first artifact image. After inpainting, both
linear and cubic interpolation create inconsistent edges at the boundary of the inpainting
domain. The Euler elastica inpainting gives a smoother output as expected, which connects
the background pattern together.

Figure 4.7: Correction of the artifact sinogram
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Figure 4.8: Correction of the artifact sinogram

4.4 Conparison with LIMAR and NMAR

Figure 4.9 shows the comparative performance of different MAR algorithms using the
simulated jaw phantom image data (Type B). In order for comparison, we simulated similar
three set of artifact jaw images as in paper [25], and compare our inpainting restoration
results with the LIMAR and NMAR results shown in the paper.

The first column are three original artifact-free reference images. The spheroids rep-
resent teeth of different sizes.The second column are artifact images, with two simulated
dental fillings. We implemented our inpainting model on these three types of dataset and
compare the inpainting results with the LIMAR and NMAR results in [25]. All the meth-
ods have noticeably reduced streaking artifacts surrounding the tooth area. LIMAR results
in the paper performs worst and introduces a large amount of new artifacts, resulting in a
result even worse than the uncorrected image.

Both NMAR in the paper and Inpainting method reduce the streaking artifacts while
introducing moderate new artifacts. Actually, there are only a few differences between
NMAR and Inpainting from the outputs of these three set of comparisons. In the first
set of comparison, where the metal pieces are relatively small, NMAR performs slightly
better with fewer new artifacts than Inpainting. But with larger metal implants such as in
the third set of comparison, Inpainting shows better details than NMAR. We remark that
the simulated artifacts in the uncorrected image here is more severe than the ones in the
original paper. This example illustrates that Euler’s elastica inpainting method is superior
to LIMAR and as good as, or slightly better than NMAR.
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Figure 4.9: Euler’s elastica inpainting results with jaw phantom image
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4.5 Comparison Experiments with LIMAR and CIMAR

In this section, we apply LIMAR, CIMAR and Inpainting methods on three typical CT
phantom image data (Type C) and conduct a quantitative comparison.

The first two columns are reference and manually-created artifact images respectively.
Severe streak artifacts can be observed spreading from the metallic object location. Cor-
rection results on both image and sinogram are displayed in Figure 4.10 and Figure 4.11.
In Figure 4.10, the first column is the original artifact-free images. In the second col-
umn, we can see the artifacts origin from the metallic objects. And the comparison in
the last three columns demonstrates that inpainting results outperform those by LIMAR
and CIMAR with better preservation of structure and details, especially in regions close
to metallic objects. Also in Figure 4.11, the restored sinogram after LIMAR and CIMAR
contain significant inconsistency in the inpainting domain, which result in the extra arti-
facts in the reconstructed images. In conclusion, experiment results from both image and
sinogram domain show that the proposed inpainting method provide a superior correction
than LIMAR and CIMAR.

A quantitative comparison is then carried out between the reconstructed images and the
original artifact-free phantom images. The measurements are RMSE and PSNR parameters
that we introduced before. From Table 4.1, it shows that for all the three types of CT
phantoms, inpainting algorithm has the highest PSNR, which means the best restoration
score. CIMAR performs better than LIMAR with head and tooth phantoms, but less than
LIMAR in the hip phantom which suffers the largest metallic region among these three.

LIMAR CIMAR Inpainting

Hip PSNR 21.1491 17.4287 27.1354
RSME 0.0876 0.1345 0.0440

Head PSNR 22.4392 34.5161 35.5229
RSME 0.0531 0.0597 0.0132

Tooth PSNR 30.0728 31.4894 36.9748
RSME 0.0314 0.0266 0.0142

Table 4.1: Quantitative measurement comparison with LIMAR and CIMAR
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Figure 4.10: Clinical CT phantom image comparison with LIMAR and CIMAR
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Figure 4.11: Clinical CT phantom sinogram comparison with LIMAR and CIMAR
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4.6 Iteration Experiments

In this section, we apply the iteration correction on both CT phantom images (type C)
and real clinical CT images (type D). Images used in this section are often suffered from
more severe artifacts and we expect iterative correction can yield better results after each
iteration. A stopping criterion, which is referred as PSNR in our thesis, is set approximately
10−2.

It can be shown from both imaging results (Figure 4.12) and numerical results (Table
4.2) that each iteration has an improvement for correction. In Figure 4.12, we can tell
that the artifacts in three images have been decreased each time than last time. And
in Table 4.2, the PSNR values for three images are increasing with the iteration times.
The improvement from the original artifact image to the first iteration is the largest. The
subsequent improvement decreases until convergence.

Figure 4.13 are real clinical CT images, including a head, a total hip arthroplasty and
a hip prostheses. It illustrates the results given by the Euler elastica inpainting applying
on the real CT images with different times of iteration. It has improved the visual quality
of the artifact images in a significant degree.

Finally, we carry out the experiment on two extreme cases as shown in Figure 4.6, which
is also a head and a hip CT images with severe artifacts. The first one has damaging
artifacts spreading on the whole image, and the second one is under an extremely low
contrast. No matter how many number of iterations, the final visual results are still not
satisfying.

Iteration0 Iteration1 Iteration2

Hip PSNR 21.7267 24.8536 28.3136
RSME 0.07305 0.0571 0.0383

Tooth PSNR 28.3125 29.0002 29.8274
RSME 0.0384 0.0354 0.0322

Head PSNR 24.0052 28.7754 29.7568
RSME 0.0630 0.0364 0.0265

Table 4.2: Quantitative measurement for iterations
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Figure 4.12: Iteration results for clinical CT phantom images
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Figure 4.13: Iteration Experiment for real CT artifact images
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Figure 4.14: Experiment on extreme cases
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Chapter 5

Conclusion

Metal artifacts on CT images often deteriorate quality in reconstructed CT images dras-
tically. In this project, we propose and verify a novel method for metal artifact reduction
based on Euler elastica inpainting technique. We observed a significant reduction of streak
artifacts without introducing further artifacts in other regions; thereby, effectively improv-
ing the visual quality of CT images. Both simulated and clinical images have been tested
on with a quantitative evaluation as well. Comparisons with commonly used linear interpo-
lation MAR and normalized MAR have illustrated that Euler elastica inpainting provides
a smoother and more accurate restoration than those conventional one-dimensional inter-
polation methods.

Future work will be devoted to the improvement to a better segmentation, more efficient
inpainting discretization and the evaluation of the algorithm.
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